
21.5a Double dispatching

Another form of passive iterator uses interfaces and dispatching (this is
perhaps an obsolescent technique since anonymous access to subprogram

parameters were introduced in Ada 2005, however, it has a certain symmetry
which is interesting). Assuming the parent package Lists as described in Section
21.5, we can write

package Lists.Iterators is
type Iterator is interface;
procedure Iterate(IC: in Iterator'Class; L: in List);
procedure Action(It: in out Iterator; C: in out Colour) is abstract;

end;

package body Lists.Iterators is

procedure Iterate(IC: in Iterator'Class; L: in List) is
This: access Cell := L;

begin
while This /= null loop

Action(IC, This.C); -- dispatches
-- or IC.Action(This.C);

This := This.Next;
end loop;

end Iterate;

end Lists.Iterators;

and the subprograms to perform the specific operations can now be declared in a
package as follows

package Lists.Iterators.Ops is
function Count(L: List) return Natural;
procedure Green_To_Red(L: in List);

end;

package body Lists.Iterators.Ops is

function Count(L: List) return Natural is
type Count_Iterator is new Iterator with null record;
Result: Natural := 0;

procedure Action(It: in out Count_Iterator; C: in out Colour) is
begin

Result := Result + 1;
end Action;

It: Count_Iterator;
begin

Iterate(It, L); -- or It.Iterate(L);
return Result;

end Count;

1



procedure Green_To_Red(L: in List) is
type GTR_Iterator is new Iterator with null record;

procedure Action(It: in out GTR_Iterator; C: in out Colour) is
begin

if C = Green then C := Red; end if;
end Action;

It: GTR_Iterator;
begin

Iterate(It, L); -- or It.Iterate(L);
end Green_To_Red;

end Lists.Iterators.Ops;

The workings should be noted carefully. The subprograms call Iterate and pass a
particular iterator as parameter. The tag of this identifies the associated Action
which is then called from within the loop of Iterate. Each iterator is a null
extension of the abstract type Iterator and acts as a call-back handle.

Observe that the extensions are not within a package specification and so no
new primitive operations can be added but nevertheless the existing operation
Action can be overridden. Moreover, the extensions are inside the subprograms
such as Count and so are at an inner level – this was not permitted in Ada 95 but
is permitted in Ada 2005 and Ada 2012. 

It is instructive to note the similarity between the dispatching procedures
Action and the procedures such as Count_Action when using the access to
subprogram form of passive iterator described in Section 21.5. In both cases
variables such as Result are global and in fact the text of the procedures is the
same.

As another example, if we wanted to change all balls of a given colour to
another given colour then we would write

procedure Change_Colour(L: in List; From, To: in Colour) is
type Change_Iterator is new Iterator with null record;

procedure Action(It: in out Change_Iterator; C: in out Colour) is
begin

if C = From then
C := To;

end if;
end Action;

It: Change_Iterator;
begin

Iterate(It, L);
end Change_Colour;

Clearly the same technique can be used with any data structure and we leave
the reader to explore how it might be generalized as an exercise.

2 Object oriented techniques



Exercise

1 Consider how to generalize the passive iterator approach described above to
work on any structure by declaring a package containing interfaces Structure
and Iterator plus primitive operations Iterate and Action. Apply the
generalization to a binary tree by declaring a type Tree as an extension of
Structure. Then declare a function that counts the number of balls of a given
colour in any structure and apply it to determine how many Green balls are in
a tree. Hint: use double dispatching.

21.5a Double dispatching 3

Answer

1 package Iterators is
type Structure is interface;
type Iterator is interface;
procedure Iterate(S: in Structure;

IC: in Iterator'Class) is abstract;
procedure Action(It: in out Iterator;

C: in out Colour) is abstract;
end;

package Trees is
type Tree is new Structure with private;
...
procedure Iterate(T: in Tree; IC: in Iterator'Class);

private
type Node;
type Node_Ptr is access Node;

type Node is
record

Left, Right: Node_Ptr;
C: Colour;

end record;
type Tree is new Structure with

record
Root: Node_Ptr;

end record;
end;

package body Trees is
...
procedure Iterate(T: in Tree; IC: in Iterator'Class) is

procedure Inner(N: in Node_Ptr) is
begin

if N /= null then
Action(IC, N.C); -- dispatches on IC
Inner(N.Left);
Inner(N.Right);

end if;
end Inner;

begin
Inner(T.Root);

end Iterate;
end Trees;

The package Iterators has no body. It serves just
as a means of establishing the interfaces and
their primitive operations; Iterate is a primitive
operation of Structure and Action is a primitive
operation of Iterator. The type Trees is then
extended from Structure but note that an extra
level is required in order to hold the pointer to
the root of the tree. A consequence of this is that
the recursive walk over the tree has to be done
by a local procedure Inner within Iterate. We
now declare the general counting function thus
function Count(S: Structure'Class; C: Colour)

return Natural is
type Count_Iterator is new Iterator with

null record;
Result: Natural := 0;

procedure Action(It: in out Count_Iterator;
C: in out Colour) is

begin
if C = Count.C then

Result := Result + 1;
end if;

end Action;

It: Count_Iterator;
begin

Iterate(S, It); -- dispatch on S
return Result;

end Count;

Oak: Tree; -- declare some tree
... -- build the tree
N := Count(Oak, Green);

The final statement counts how many nodes have
the colour Green in the Tree called Oak. Note the
double dispatching. The function Count dispatches
to the particular Iterate for the tree structure and
then that Iterate dispatches to the Action for
counting.


