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5 The assumption according to which a system may be accurately or completely defined through a quantum state ψ ,  is equivalent to assume that the system is closed, meaning that it is not 

coupled nor entangled to any other unknown external system. 
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Density operator or matrixDensity operator or matrixDensity operator or matrixDensity operator or matrix 
 

Let { } { }ni
n xxxxV ,..., 21==  an orthonormal basis for the space of quantum 

states ψ , i.e. verifying ijji xx δ= . In this basis, the states have a unique 

decomposition,    which takes the form    
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where ix  ( ni ...1= ) represent the complex coordinates. If the modulus/length of ψ  is 

unity, we have 
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As we have seen in Chapter 16, for qubits, the number 
2

ii xp = , represents the 

probability to find (or measure) the state ψ  in the basis state ix . Hence the 
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Density operator or matrixDensity operator or matrixDensity operator or matrixDensity operator or matrix    
    

Let ψ  a pure state, meaning a determinitstic or well-defined quantum state with a 

probability of unity. Let { } { }ni
n xxxxV ,..., 21==  an orthonormal basis for the 

space of quantum states ψ . In this basis, the states have the unique decomposition    
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where ix  ( ni ...1= ) are complex coordinates. If the modulus/length of ψ  is unity, we 

have 
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We can now define a Hermitian operator called density operator of density matrix , ρ , 

associated to the pure state ψ  as follows : 

                                                                                                                                                                                                                                           
4 By application of the property 0)log(lim 0 =→ xxx , which makes the function xx log  analytically defined for any real 0≥x . 

6 The assumption according to which a system may be accurately or completely defined through a quantum state ψ ,  is equivalent to assume that the system is closed, meaning that it is not 

coupled nor entangled to any other unknown external system. 
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coordinates ix  represent complex amplitude probabilities. We can now define the 

density operator/matrix associated to the state ψ  as follows: 
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The density matrix is diagonal, since its elements ijρ  are given by  
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Hence, the density matrix operator takes the diagonal matrix representation: 
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It is immediately noted that the trace of the density matrix is unity since 
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According to the decomposition in eq.(17.34), we obtain 
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The density-matrix elements are thus jiij xxji == ρρ , with jiij ρρ =  since ρ  is 

Hermitian. Given this definition and the property in eq.(17.35), is immediately noted that 
the trace of the density matrix is unity, since 
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Consider next the case of a statistical mixture of pure states. Let{ }Nψψψ ,..., 21  an 

sensemble of N pure states, not necessarily orthogonal to each other. Assume that to each 

pure state kψ  be associated a probability kp , meaning that the system state ψ  is 

most generally defined by the linear superposition : 
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where kα  are complex numbers verifying kk p=2α . The state ψ  is undefined 
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since there exist an infinity of sets { } Nkk ...1=α  having this property. However, the density 

matrix formalism makes it possible to exactly and comprehensively describe any statistical 
mixture of states, through the definition  
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We now have the tools to make a short hint to quantum information theory. This may 
also constitute a nice reward for having gone through the lengthy description of Dirac 
notations!  
 
Let introduce a new operator called UU log , where U  is assumed to be diagonal with 

non-negative coefficients. To calculate the matrix coefficients of UU log , we must first 

define Ulog . Assume then a linear operator V , which verifies )exp(VU = , which 

defines UV log= . Formally, the exponential operator is determined by the infinite 

series: 
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Since U  is diagonal, any of the powers nV  must be diagonal. The diagonal coefficients 

of U  are thus given by )exp( iiii VU =  or )log( iiii UV = . The matrix 

UUUVW log==  is also diagonal. It is clear that its coefficients are given by 

)log( iiiiiiiiii UUVUW == . This result shows that the matrix UUW log=  is 

analytically defined for any diagonal matrix U  with coefficients 0≥iiU .4 We conclude 

that the density matrix ρ=U , for which the coefficients are non-negative, is an eligible 

candidate for the operator UU log . We thus have iiiiii ρρρρ log)log( =  and the 

matrix definition    
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where kρ  is the density matrix associated with the pure state kψ . It is immediately 

noted that the density-matrix trace is unity, since 1)()( ≡=== ∑∑ k kk kk ptrptr ρρ , 

according to the previous trace property and the definition of probabilities.  

Since ρ  is Hermitian, it is possible to find an orthonormal basis { }
nii

n yW
...1=

=  where 

ρ  is diagonal. Call this diagonal representation ρ~ .  Under the basis transformation 

ρρ ~→ , the trace is preserved, according to the property in eq.(17.33), hence 

1)()~( ≡= ρρ trtr . The diagonal density matrix ρ~  is thus defined by 
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with coefficients iq  being probabilities. Thus ρ~  defines a statistical mixture of the pure, 

orthonormal-basis states iy .  

 

The above has shown that the density-matrix representations ρ  (of mixture iψ ) and ρ~  

(of mixture iy ) are equivalent, apart from their probability coefficients ip  and iq . For 

QIT purposes, it is often easier to use the diagonal representation ρ~ , along with the 

orthonormal basis { }iy . For simplicity, we shall use for now on the notations ii xp ,,ρ  

instead of ii yq ,,~ρ  to refer to the diagonal representation. 

 
Let introduce next a new operator called UU log , where U  is assumed diagonal with 

non-negative coefficients. To define Ulog , assume then a linear operator V , which 

verifies )exp(VU = . The exponential operator is determined by the series: 
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Finally, we find that the trace of ρρ log  is given by the expression: 
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Based on our background of Shannon’s information theory (Chapter 4), we can 

heuristically define an “entropy” H for the quantum state describe by the density matrix 
ρ under the form 
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Consider now a quantum system. This system may exist in a quantum state ψ , which 

we shall assume here to represent a statistical mixture of pure states ix .5 Such pure 
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Since U  is diagonal, any of the powers nV  are diagonal. We have )exp( iiii VU =  or 

)log( iiii UV = . The matrix UUUVW log==  is also diagonal. Clearly, 

)log( iiiiiiiiii UUVUW == . This shows that UUW log=  is analytically defined for 

any diagonal matrix U  with coefficients 0≥iiU .4 Therefore, ρ=U  is an eligible 

candidate for the operator UU log . We thus have iiiiii ρρρρ log)log( =  and  
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Finally, we find that the trace of ρρ log  is given by the expression: 
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Based on our background of Shannon’s information theory (Chapter 4), we can 
heuristically define an “entropy” H for the quantum state described by ρ under the form 
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Consider now a quantum system. As we have seen in Chapter 17, this system may exist in 

a quantum state ψ , which most generally is a statistical mixture of pure states ix .6  
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we shall assume here to represent a statistical mixture of pure states ix .5 Such pure 

states, which cannot be defined by any mixture of the other pure states, are orthogonal to 

each other and have a unity length, such that ijji xx δ= . The set of pure states 

{ } { }ni xxxx ,..., 21=  thus defines an orthonormal basis for the n -dimensional 

space nV  of all possible quantum states ψ  defining the system. Consistently, any state 

ψ  of nV  accepts a unique decomposition of the form    
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n

i
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2211 ...ψ   (21.2) 

 

where ix  ( ni ...1= ) are complex coordinates. We may choose to represent the 

quantum system with a state ψ  of unity length, i.e. ∑ ==
i ix 1

2ψψ , in which 

case the real number 
2

ii xp = , represents the probability to find the state ψ  in the 

pure state ix . In the quantum world, the system in the quantum state ψ  thus plays 

the role of a “random events” source, and naturally the concepts of “information” and 
“entropy” may be associated to such a system. 
 
To establish such a connection, we need to use the concept of density operator (or density 
matrix), which was previously introduced in chapter 17. As we have learnt, the density 
operator/matrix ρ  is an alternative way to define a quantum system in a given state 

ψ , by means of an operator. Formally,    
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where ii xx  is the projector (or measurement) operator on the basis state ix . It is 

clear that iii xpx =ρ , which shows that ix  is an eigenstate of ρ  with associated 

We may assume, without loss of generality for most QIT purposes, that these pure states 

are orthogonal to each other and have a unity length, such that ijji xx δ= . The set of 

pure states { } { }ni xxxx ,..., 21=  thus defines an orthonormal basis for the n -

dimensional space nV  of all possible quantum states ψ  defining the system. 

Consistently, any state ψ  of nV  accepts a unique decomposition of the form    
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i
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where ix  ( ni ...1= ) are complex coordinates. We may choose to represent the quantum 

system with a state ψ  of unity length, i.e. ∑ ==
i ix 1

2ψψ . The definition in 

eq.(21.2) may also correspond to that of a linear superposition of states, with deterministic 

(well-known) coefficients ix . In such a case, ψ  is a pure state. However, if we attribute 

to the coefficients ix  the meaning of complex amplitude probabilities, then ψ  is a 

statistical mixture of states. In this case, the real number 
2

ii xp = , represents the 

probability to find the state ψ  in the pure state ix . In the quantum world, the system 

in quantum state ψ  thus plays the role of a “random events” source, and naturally the 

concepts of “information” and “entropy” may be associated to such a system. As observed 
in Chapter 17, a statistical mixture of states cannot be defined by eq.(21.2), since there 

exist an infinity of complex sets { } niix ..1=  verifying ii px =2
.  

 
Instead, we need to use density operator (or density matrix) formalism previously 
introduced in that chapter. As we have learnt, the density operator/matrix ρ  (or its 

diagonal representation ρ~ ) is the most comprehensive way to define quantum systems. 

Formally,    
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eigenvalue ip . In the case where ψ  is a pure state, e.g. kx=ψ  with ikip δ= , 

the density operator is simply given by ψψρ = , and only in such a case. As a 

general definition, a pure state is a state that has 100% probability to be observed in a 

quantum system, or which is exactly known. A given basis state (for instance 0  or 1  

in a 2D space) may or may not be a pure state, according to this condition be or not be 
fulfilled (see more on this further down).  
 

As we have also seen in chapter 17, the matrix elements ijρ  of the density operator 

verify ijiijijiij pxxx δδρρ =≡= 2
, showing that the matrix is diagonal in the 

computational basis { }ix , as expected from the fact that it is the basis of eigenstates. 

The matrix representation of ρ  is thus: 
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This result shows that quantum information, as defined by the VN entropy, represents an 
incompressible feature in quantum systems, as is also the case for classical information in 
random events sources, as defined by Shannon entropy. What is the quantum 
information contained in a qubit?.  The answer is straightforward. Assume a qubit of 
general definition  
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where ii yy  are the projectors (or measurement) operators on the basis states iy  for 

which the density matrix ρ~  is diagonal. As we have also seen in chapter 17, the two 

representations of ρ  and ρ~  are equivalent, except for the probability coefficients ii qp ,  

and the basis representations ii yx , . For simplicity, we shall use for the diagonal 

representation the notations ii xp ,,ρ  instead of ii yq ,,~ρ . In this case, the matrix 

elements ijρ  thus verify ijiijijiij pxxx δδρρ =≡= 2
, and we finally have : 
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This result shows that quantum information, as defined by the VN entropy, represents an 
incompressible feature in quantum systems, as is also the case for classical information in 
random events sources, as defined by Shannon entropy. What is the quantum information 
contained in a qubit? The answer is simple, but not that straightforward. Assume indeed a 
qubit of general definition  
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                                       10 βα +=q                        (21.10) 

 

where 1,0  are two pure states in the 2D quantum space 2V , and 

22
1 βα −==p . From the definitions in eq.(21.3) and eq.(21.4), we have 
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In the result in eq.(21.13), we recognize the Shannon entropy of a two-events source 

{ }1,0=X , corresponding to the two possible “states” of a classical bit (see eq.(4.13) 

and eq.(4.14)). The average qubit information is thus equivalent to that of two classical 

bits, the amount depending upon the weights 10 , pp  in the state mixture. As previously 

described in Chapter 4, the function )( pf  has a maximum of unity for 2/1=p , 

corresponding to 2/1== βα  (phases being arbitrary) or a uniform distribution 

2/110 == pp , and for the VN entropy, 12log)(max =≡ρS . In this case, the 

quantum information amounts to exactly two classical bits. The minimum of )( pf  is 

zero, which is reached either when 0,1 10 == pp  or when 1,0 10 == pp , meaning 

that the qubit is in a pure state, i.e. 0=q  or 1=q , giving 0)(max ≡ρS . In this 

case, there is no quantum information in the system, as there is no information in a 
single, deterministic classical bit.  
 

It is clear that the VN entropy of a n -qubit (or qunit) in the quantum space nV  always 

                                      10 βα +=q                        (21.10) 

 

where 1,0  are two pure states in the 2D quantum space 2V , and 

22
1 βα −==p . As we know, p and p−1  represent the probabilities to measure 

q  in the state 0  and 1 , respectively, corresponding to classical bits measurements 

“0” and “1”. Such measurement outcomes are those of a classical two-events source 

{ }1,0=X , with Shannon entropy )()1log()1(log)( pfppppXH ≡−−−−=  (see 

eq.(4.13)). As previously seen in Chapter 4, the entropy )(XH has a maximum of unity 

( 1=H  bit) for a uniform distribution )2/1,2/1()1,( =− pp , or 2/1== βα  and 

is identically zero ( 0=H  bit) for the deterministic distribution )0,1()1,( =− pp  or 

)1,0()1,( =− pp . Thus to any qubit can be associated a Shannon entropy 

1)(0 ≤≤ XH . What about the VN entropy ? Assume that the system is in the state 0  

with probability 
2α=p  and in the state 1  with probability 

2
1 β=− p . From the 

definition in eq.(21.3) , the density matrix of this statistical mixture is 
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and we obtain the VN entropy  
  
       )()1log()1(log)( pfppppS ≡−−−−=ρ           (21.13) 

 
The quantum information )(ρS  in the statistical mixture ρ  is thus identical to its classical 

information counterpart )(XH  for the single qubit measurement, with 

1)()(0 ≤=≤ XHS ρ . It should be emphasized, however, that the system described by 

the statistical mixture ρ  in eq.(21.11) is not equivalent to that defined by the qubit q  in 

eq.(21.10)! The two can be connected if we introduce 10' βα −=q . It is then is 
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has the maximum nS log)(max ≡ρ , when the system is in the most homogeneous state 

superposition with a uniform probability distribution npi /1= , hence corresponding to 

maximum quantum information. In the general case, we have nS log)(0 ≤≤ ρ .  
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eq.(21.10)! The two can be connected if we introduce 10' βα −=q . It is then is 

easily verified that the statistical mixture 2/)''( qqqq +=σ  is identical to ρ , or 

ρσ = . As for a system with density matrix qq=τ , its VN entropy is identically zero, 

since it corresponds to a pure state ( q  is a pure state in the orthonormal basis 

{ }⊥qq ,  where 0=⊥ qq ). 

  
It is clear that the VN entropy of statistical mixture of n  qubits reaches the maximum 

nS log)(max ≡ρ , corresponding to the uniform probability distribution npi /1= . In the 

general case, we thus have nXHS n log)()(0 ≤=≤ ρ .  
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