Possible outcomes

- Separating equilibrium: if large size is large enough, informed trader will always trade large quantity
 - small trades only by U, hence no bid-ask spread for small size!
- Pooling equilibrium: I randomizes between small and large trades: hides some of his information to improve prices for large trades
 - spread for small size smaller than spread for large size

Important assumptions

- trading is anonymous
- informed traders act competitively: exploit information immediately

The Microstructure of Financial Markets, de Jong and Rindi (2009)

Empirical Market Microstructure

Based on de Jong and Rindi, Chapter 6

Frank de Jong

Tilburg University

Estimation of the bid-ask spread

Assume a sample of i = 1, .., N bid and ask quotes is available

• for example from intra-day stock exchange data

Average quoted bid-ask spread

$$\hat{S}_{quoted} = \frac{1}{N} \sum_{i=1}^{N} (ask_i - bid_i)$$

Drawbacks of this measure

- quotes may not be binding, or valid for small size only
- spread may vary over the day (U-shape typically)
- quoted spread may not be a good measure of actual trading costs if trading is busiest when spreads are small

Transaction costs

A general definition of the transaction costs for a trade at time t is

$$S_t = 2Q_t(P_t - P_t^*)$$

where P_t is the transaction price, P_t^* the equilibrium price true, and Q_t the trade sign, defined by

$$Q_t = \begin{cases} +1 & \text{if trade is buy} \\ -1 & \text{if trade is sell} \end{cases}$$

Problem is that P_t^* and often also Q_t are not directly observable

Effective spread (1)

Assume sample of t = 1, .., T transactions is available

- transaction price P_t
- bid and ask quotes prevailing at the time of the trade
- quote midpoint is $M_t = \frac{1}{2}(ask_t + bid_t)$

Effective spread: replace P^{\ast} by M

$$\hat{S}_{effective} = \frac{2}{T} \sum_{t=1}^{T} Q_t (P_t - M_t)$$

Note: sometimes it is difficult to measure M_t at exactly the same time as the trade, creating a bias in the spread estimator

Effective spread (2)

If Q_t is not observed, one can assume that

- $Q_t = 1$ whenever $P_t > M_t$
- $Q_t = -1$ whenever $P_t < M_t$
- $Q_t = 0$ when $P_t = M_t$

Effective spread then is

$$\hat{S}_{effective} = \frac{2}{T} \sum_{t=1}^{T} |P_t - M_t|$$

Source: Chordia, Roll and Subramanyam (2001)

Realized spread

Trading typically has a price impact

• effective spread will overestimate cost of round-trip trade

Realized spread may be better measure

• approximate equilibrium price P^* by midquote *after* the trade

$$\hat{S}_{realized} = \frac{2}{T} \sum_{t=1}^{T} Q_t (P_t - M_{t+1})$$

Roll's estimator

Often, obtaining good quality bid and ask prices is difficult, but transaction prices are available

Roll (1977) proposed spread estimator entirely based on transaction prices

Basic idea: transaction price equals efficient price P^* plus (for a buy) or minus (for a sell) half the spread

$$P_t = P_t^* + (S/2)Q_t$$

and

$$Q_t = \begin{cases} +1 & \text{if trade is buy} \\ -1 & \text{if trade is sell} \end{cases}$$

In many datasets, trade direction Q_t is not observed

Assuming that Q_t and Q_{t-1} are uncorrelated

Define price change $\Delta P_t = P_t - P_{t-1}$; Roll showed that

$$\operatorname{Cov}(\Delta P_t, \, \Delta p_{t-1}) = -(S/2)^2$$

Re-arranging this equality gives **Roll's estimator** of the effective bid-ask spread

$$\hat{S} = 2\sqrt{-\text{Cov}(\Delta P_t, \, \Delta P_{t-1})}$$

Notice that for this estimator to exist, the covariance of price changes must be negative!

• Hasbrouck (2006) suggests a Bayesian Gibbs sampling estimator top deal with this problem

Implicit assumption in Roll's estimator: trading does not affect mid-point of bid and ask quotes

Basic microstructure model

Consider the following model of transaction prices

$$P_t = P_t^* + (S/2)Q_t$$

 $P_{t+1}^* = P_t^* + e_{t+1}$

- $P_t = \text{transaction price}$
- $P_t^* = \text{efficient price}$
- $Q_t =$ trade direction indicator
- $e_t =$ new public information arriving between trades
- S = average bid-ask spread

Incorporating price effects of trading

Basic microstructure model with price impact of trading

$$P_t = P_t^* + (S/2)Q_t$$

 $P_{t+1}^* = P_t^* + ZQ_t + e_{t+1}$

The new element Z is the price impact of a trade

• due to adverse selection or inventory effects

Spread now consists of fixed-cost part and price impact part

$$S/2 = C + Z$$

Model can be written as

$$P_t = P_t^* + (C+Z)Q_t$$

 $P_{t+1}^* = P_t^* + ZQ_t + e_{t+1}$

Taking first differences and substituting out P_t^* gives the reduced form

$$\Delta P_t = (C+Z)Q_t - CQ_{t-1} + e_t$$

The parameters C + Z and C can be estimated from the regression coefficients in a regression of ΔP_t on Q_t and Q_{t-1}

An alternative way to write the regression is

$$\Delta P_t = C\Delta Q_t + ZQ_t + e_t$$

level variable Q_t estimates adverse selection component Z: permanent price effect

difference variable ΔQ_t estimates the fixed cost component C: temporary price effect

Glosten and Harris (1988)

Glosten and Harris make both spread components linear in trade size |q|

- temporary spread component $C = C_0 + C_1 q_t$
- permanent spread component (price impact) $Z = Z_0 + Z_1 q_t$

Reduced form

$$\Delta P_t = C_0 \Delta Q_t + C_1 \Delta x_t + Z_0 Q_t + Z_1 x_t + e_t$$

with $x_t = q_t Q_t$ the "signed" trade size

Data for Accor (a French hotel firm) on May 24, 1991 Transaction prices (circles) and midquote (line)

Measure	S^{eff}	S^{Roll}	C_0	Z_0	C_1	Z_1
Absolute (FF)	1.02	0.84	0.71	0.25	-0.07	0.20
t-statistic			(16.95)	(4.88)	(-0.78)	(1.58)
Relative (bp)	13.44	11.21	9.37	3.34	-0.91	2.57
t-statistic			(16.77)	(4.85)	(-0.77)	(1.55)

Liquidity estimates for Accor on May 24, 1991

Amihud's *ILLIQ* measure

- Finding data on bid-ask spreads for many stocks over long sample periods is almost impossible
- Data on returns and trading volume are readily available (e.g. from Datastream)
- Amihud suggests the following measure daily of liquidity: the absolute price change divided by trading volume for stock *i* on day *d*

$$\frac{|R_{id}|}{V_{id}}$$

• Idea: this proxies Kyle's lambda (price impact of trading volume)

Amihud's ILLIQ measure (2)

• On any day, this ratio is a very noisy measure and in practice it is averaged over all trading days in a month or year to get a monthly or annual liquidity estimate for stock *i*

$$ILLIQ_{it} = \frac{1}{D_t} \sum_{d=1}^{D_t} \frac{|R_{id}|}{V_{id}}$$

where D_t is the number of trading days in month or year t

- Amihud (2002) shows that *ILLIQ* is strongly correlated with more precise measures of liquidity such as bid-ask spreads and price impacts (estimated on transactions data by the Glosten-Harris method)
- *ILLIQ* is therefore a useful measure of illiquidity and trading costs

Spearman rank correlations between liquidity proxies

	Effective	Roll's	Gibbs	ILLIQ
	spread	estimator	estimator	
Effective spread	1.000			
Roll's estimator	0.636	1.000		
Gibbs estimator	0.872	0.791	1.000	
ILLIQ	0.937	0.592	0.778	1.000

Source: Hasbrouck (2006), Table 2.

The PIN model

$$P(news) = \alpha \begin{cases} P(good \ news | news) = \delta \\ P(bad \ news | news) = 1 - \delta \end{cases}$$
$$P(no \ news) = 1 - \alpha$$

Trades arrive according to Poisson processes.

The arrival rate of uninformed buy orders is ϵ_B and that of uninformed sell orders ϵ_S .

On days with information, informed trades arrive at rate μ .

The PIN model: results

Bid-ask spread follows from Glosten-Milgrom model

$$S = \frac{\alpha \mu}{\alpha \mu + \epsilon_B + \epsilon_S} \left[V_H - V_L \right]$$

Probability of informed trade

$$PIN = \frac{\alpha\mu}{\alpha\mu + \epsilon_B + \epsilon_S}$$

and covariance between number of buy and sell orders is

$$Cov(N_B, N_S) = -\alpha^2 \mu^2 \delta(1-\delta)$$

Maximum Likelihood estimation of PIN

Probability density of Poisson variable N is

$$P(N=n) = e^{-\lambda} \frac{\lambda^n}{n!}$$

In PIN model, arrival rates of the number of buy (N_B) and sell (N_S) trades are

$$E(N_B|good news) = \epsilon_B + \mu, \quad E(N_S|good news) = \epsilon_S$$
$$E(N_B|bad news) = \epsilon_B, \quad E(N_S|bad news) = \epsilon_S + \mu$$
$$E(N_B|no news) = \epsilon_B, \quad E(N_S) = \epsilon_S$$

Based on this, the likelihood function can be constructed:

$$L(B, S; \psi) = \alpha \delta e^{-(\epsilon_B + \mu)} \frac{(\epsilon_B + \mu)^B}{B!} e^{-\epsilon_S} \frac{(\epsilon_S)^S}{S!} + \alpha (1 - \delta) e^{-\epsilon_B} \frac{(\epsilon_B)^B}{B!} e^{-(\epsilon_S + \mu)} \frac{(\epsilon_S + \mu)^S}{S!} + (1 - \alpha) e^{-\epsilon_B} \frac{(\epsilon_B)^B}{B!} e^{-\epsilon_S} \frac{(\epsilon_S)^S}{S!}$$

This likelihood can be multiplied over several days (typically, all the days of a month) with observations (B_t, S_t) to obtain the likelihood function

$$\mathbf{L}(\psi) = \prod_{t=1}^{T} L(B_t, S_t; \psi)$$