
Possible outcomes

• Separating equilibrium: if large size is large enough, informed trader

will always trade large quantity

– small trades only by U, hence no bid-ask spread for small size!

• Pooling equilibrium: I randomizes between small and large trades:

hides some of his information to improve prices for large trades

– spread for small size smaller than spread for large size

Important assumptions

• trading is anonymous

• informed traders act competitively: exploit information immediately
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The Microstructure of Financial Markets, de Jong and Rindi (2009)

Empirical Market Microstructure

Based on de Jong and Rindi, Chapter 6

Frank de Jong

Tilburg University
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Estimation of the bid-ask spread

Assume a sample of i = 1, .., N bid and ask quotes is available

• for example from intra-day stock exchange data

Average quoted bid-ask spread

Ŝquoted =
1
N

N∑

i=1

(aski − bidi)

Drawbacks of this measure

• quotes may not be binding, or valid for small size only

• spread may vary over the day (U-shape typically)

• quoted spread may not be a good measure of actual trading costs if

trading is busiest when spreads are small

45



Transaction costs

A general definition of the transaction costs for a trade at time t is

St = 2Qt(Pt − P ∗t )

where Pt is the transaction price, P ∗t the equilibrium price true, and Qt

the trade sign, defined by

Qt =





+1 if trade is buy

−1 if trade is sell

Problem is that P ∗t and often also Qt are not directly observable
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Effective spread (1)

Assume sample of t = 1, .., T transactions is available

• transaction price Pt

• bid and ask quotes prevailing at the time of the trade

• quote midpoint is Mt = 1
2
(askt + bidt)

Effective spread: replace P ∗ by M

Ŝeffective =
2
T

T∑
t=1

Qt(Pt −Mt)

Note: sometimes it is difficult to measure Mt at exactly the same time

as the trade, creating a bias in the spread estimator
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Effective spread (2)

If Qt is not observed, one can assume that

• Qt = 1 whenever Pt > Mt

• Qt = −1 whenever Pt < Mt

• Qt = 0 when Pt = Mt

Effective spread then is

Ŝeffective =
2
T

T∑
t=1

|Pt −Mt|
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Quoted and Effective spread estimates

Source: Chordia, Roll and Subramanyam (2001)
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Realized spread

Trading typically has a price impact

• effective spread will overestimate cost of round-trip trade

Realized spread may be better measure

• approximate equilibrium price P ∗ by midquote after the trade

Ŝrealized =
2
T

T∑
t=1

Qt(Pt −Mt+1)
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Roll’s estimator

Often, obtaining good quality bid and ask prices is difficult, but

transaction prices are available

Roll (1977) proposed spread estimator entirely based on transaction

prices

Basic idea: transaction price equals efficient price P ∗ plus (for a buy) or

minus (for a sell) half the spread

Pt = P ∗t + (S/2)Qt

and

Qt =





+1 if trade is buy

−1 if trade is sell

In many datasets, trade direction Qt is not observed
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Assuming that Qt and Qt−1 are uncorrelated

Define price change ∆Pt = Pt − Pt−1; Roll showed that

Cov(∆Pt, ∆pt−1) = −(S/2)2

Re-arranging this equality gives Roll’s estimator of the effective

bid-ask spread

Ŝ = 2
√
−Cov(∆Pt, ∆Pt−1)

Notice that for this estimator to exist, the covariance of price changes

must be negative!

• Hasbrouck (2006) suggests a Bayesian Gibbs sampling estimator top

deal with this problem

Implicit assumption in Roll’s estimator: trading does not affect

mid-point of bid and ask quotes
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Basic microstructure model

Consider the following model of transaction prices

Pt = P ∗t + (S/2)Qt

P ∗t+1 = P ∗t + et+1

• Pt = transaction price

• P ∗t = efficient price

• Qt = trade direction indicator

• et = new public information arriving between trades

• S = average bid-ask spread
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Incorporating price effects of trading

Basic microstructure model with price impact of trading

Pt = P ∗t + (S/2)Qt

P ∗t+1 = P ∗t + ZQt + et+1

The new element Z is the price impact of a trade

• due to adverse selection or inventory effects

Spread now consists of fixed-cost part and price impact part

S/2 = C + Z

Model can be written as

Pt = P ∗t + (C + Z)Qt

P ∗t+1 = P ∗t + ZQt + et+1
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Taking first differences and substituting out P ∗t gives the reduced form

∆Pt = (C + Z)Qt − CQt−1 + et

The parameters C + Z and C can be estimated from the regression

coefficients in a regression of ∆Pt on Qt and Qt−1

An alternative way to write the regression is

∆Pt = C∆Qt + ZQt + et

level variable Qt estimates adverse selection component Z: permanent

price effect

difference variable ∆Qt estimates the fixed cost component C:

temporary price effect
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Glosten and Harris (1988)

Glosten and Harris make both spread components linear in trade size |q|
• temporary spread component C = C0 + C1qt

• permanent spread component (price impact) Z = Z0 + Z1qt

Reduced form

∆Pt = C0∆Qt + C1∆xt + Z0Qt + Z1xt + et

with xt = qtQt the ”signed” trade size
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Data for Accor (a French hotel firm) on May 24, 1991

Transaction prices (circles) and midquote (line)
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Liquidity estimates for Accor on May 24, 1991

Measure Seff SRoll C0 Z0 C1 Z1

Absolute (FF) 1.02 0.84 0.71 0.25 -0.07 0.20

t-statistic (16.95) (4.88) (-0.78) (1.58)

Relative (bp) 13.44 11.21 9.37 3.34 -0.91 2.57

t-statistic (16.77) (4.85) (-0.77) (1.55)
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Amihud’s ILLIQ measure

• Finding data on bid-ask spreads for many stocks over long sample

periods is almost impossible

• Data on returns and trading volume are readily available (e.g. from

Datastream)

• Amihud suggests the following measure daily of liquidity: the

absolute price change divided by trading volume for stock i on day d

|Rid|
Vid

• Idea: this proxies Kyle’s lambda (price impact of trading volume)
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Amihud’s ILLIQ measure (2)

• On any day, this ratio is a very noisy measure and in practice it is

averaged over all trading days in a month or year to get a monthly

or annual liquidity estimate for stock i

ILLIQit =
1
Dt

Dt∑

d=1

|Rid|
Vid

where Dt is the number of trading days in month or year t

• Amihud (2002) shows that ILLIQ is strongly correlated with more

precise measures of liquidity such as bid-ask spreads and price

impacts (estimated on transactions data by the Glosten-Harris

method)

• ILLIQ is therefore a useful measure of illiquidity and trading costs
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Spearman rank correlations between liquidity proxies

Effective Roll’s Gibbs ILLIQ

spread estimator estimator

Effective spread 1.000

Roll’s estimator 0.636 1.000

Gibbs estimator 0.872 0.791 1.000

ILLIQ 0.937 0.592 0.778 1.000

Source: Hasbrouck (2006), Table 2.
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The PIN model

P (news) = α





P (good news|news) = δ

P (bad news|news) = 1− δ
P (no news) = 1− α

Trades arrive according to Poisson processes.

The arrival rate of uninformed buy orders is εB and that of uninformed

sell orders εS .

On days with information, informed trades arrive at rate µ.
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The PIN model: results

Bid-ask spread follows from Glosten-Milgrom model

S =
αµ

αµ+ εB + εS
[VH − VL]

Probability of informed trade

PIN =
αµ

αµ+ εB + εS

and covariance between number of buy and sell orders is

Cov(NB , NS) = −α2µ2δ(1− δ)
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Maximum Likelihood estimation of PIN

Probability density of Poisson variable N is

P (N = n) = e−λ
λn

n!

In PIN model, arrival rates of the number of buy (NB) and sell (NS)

trades are

E(NB |good news) = εB + µ, E(NS |good news) = εS

E(NB |bad news) = εB , E(NS |bad news) = εS + µ

E(NB |no news) = εB , E(NS) = εS
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Based on this, the likelihood function can be constructed:

L(B,S;ψ) = αδe−(εB+µ) (εB + µ)B

B!
e−εS

(εS)S

S!

+ α(1− δ)e−εB (εB)B

B!
e−(εS+µ) (εS + µ)S

S!

+ (1− α)e−εB
(εB)B

B!
e−εS

(εS)S

S!

This likelihood can be multiplied over several days (typically, all the days

of a month) with observations (Bt, St) to obtain the likelihood function

L(ψ) =
T∏
t=1

L(Bt, St;ψ)
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