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Chapter 1

Ex. 1.1
Magnetic observatories report their field observations as either the XY Z
or HDZ coordinate values depending on local historical or commercial
demands. A researcher in geomagnetism should be able to readily convert
between the two systems. The problem here is to transform the ABG
station geographic direction field values of Xmean = 3664 nT, Ymean =
827 nT, and Zmean = 2142 nT into values for H, D, F, and I.

Looking at Equation (1.4) we see that we can obtain H and D from

XandY.
Hmean = /(X? + Y?)
= /((3664)% + (827)?)
= ,/(14108825)

= 3756 nT

Sketch the X and Y values in the horizontal plane and see that
we are looking for an angle about equal to 10° eastward for D. Using
Equation (1.4) to find D, we have

Xmean/Ymean = 827/3664
= 0.2257,

SO

Dmean = tan~! (0.2257)
= 12.72° or 12deg 43min eastward.

Using Equation (1.2) we can write

Fmean = \/ (Xmean? + Ymean? + Zmean?)
= /(36642 + 8272 + 21422)
= 4324 nT.

For the dip (inclination) /, sketch the vertical angle using H and Z to
indicate an estimate of 30°. Then / is obtained from Equation (1.3) as
I = tan~!(Zmean/Hmean)
= tan~'(2132/3756)
= tan~'(0.5676)
= 29.58° or 29deg 35min downward.




Ex. 1.2

To find the geomagnetic coordinates of a location we use program C.1
in Appendix C. Download the file GMCORD.EXE onto your computer.
While in the DOS mode, type the location where you have stored that file
and enter “GMCORD”. Follow directions to give the station name for
your location, for the latitude in decimal degrees, and for the longitude
in decimal degrees.

For my location in Boulder, Colorado, USA, whose geographic co-
ordinates are +40.0° and —105.0°, the program shows the coordinates
of +48.74° geomagnetic latitude and +321.2° geomagnetic longitude.
To compare with the map of Figure 1.16 we need to convert the east lon-
gitude location to (360 — 321.2) = 38.8 degrees west longitude. Then
the map seems to verify the computed value. The Boulder location is a
mid-latitude location.

Ex. 1.3

At Boulder the geomagnetic latitude was found to be 48.74 degrees north
(Exercise 1.2). From Figure 1.9, using the horizontal scale location for
about 49 degrees we see that the computation curve corresponds to a field
line of about 2.2 Earth radii distant from the Earth center. Assuming a
mean Earth radius of 6,371 km, the radial distance of this field line would
be at about 14,020 km from the Earth center.

Ex. 1.4

At the Boulder geomagnetic latitude (above) of +48.74 degrees the ap-
proximate length, /, of the field line (Equation (1.30)) connecting Boulder
with its conjugate location would be

[ =0.38 x 48.74

18.52 Earth radii.

Using a mean Earth radius of 6,371 km, that field line is about
118,000 km in length.

Ex. 1.5

The map of Figure 1.10 shows that the location of Boulder (at geographic
location 40 degrees north and 105 degrees west) would correspond to a
value of about a 2.4 L-shell. Using Equation (1.31) to obtain the equiv-
alent Invariant Latitude:

cos(Invarient Latitude) = 1/1/(2.4)
= 0.6455.



Thus
Invariant Latitude = cos™'(0.6455)
= 49.8 degrees.

This Invariant Latitude is, of course, quite close to the geomagnetic
latitude of 48.74 degrees we found for Boulder using the GEOMAG
program in Exercise 1.2.

Ex. 1.6

Read the program description for the file SPH.EXE, at C.11 in
Appendix C, then download the program on your computer. While in
the DOS mode, enter the location where you have stored the file and
type “SPH”. In Figure 1.14 there is diagrammed the Legendre polyno-
mials form =3 andn=6,m=4andn =8, m =4 and n = 4, as well
as m = 0 and n = 5. Use these four pairs of coefficients to call up the
pictures of the Legendre surface. The # is called the “degree” and the m
is called the “order” of the polynomial. To tilt the figure (degrees AWAY
from vertical) toward you, start with 30. To rotate the figure (degrees
ABOUT the vertical) on its axis, start with 0. Count the oscillations
along a latitude line and compare it with the m value. Count the oscil-
lations around a longitude line and compare it with » — m 4 1. Look
again at Figure 1.4 and compare the explanations below each sphere.

Ex. 1.7

Read the program description for GEOMAG.EXE, at C.2 in Appendix C,
and download the file onto your computer. While in the DOS mode, type
the location where you have stored the file and type “GEOMAG”. Enter
“igrf” for the model and then answer the questions. For example, note that
you are asked for the site elevation and if you want a decimal represen-
tation of the year (yes/no). For the Boulder location, elevation of 5280 ft
at 40.0 degrees north and 105 degrees west, the program computed val-
ues for 1 June 2003 gives X = 20694 nT, Y = 3710 nT, Z = 49580 nT,
F = 53853 nT, etc. for the other component representations.

Ex. 1.8

Let us take 31 December in the year 2004 for our problem. The Table 1.2
shows us Gauss coefficients for 1 January of each year — that is 2000.0
in the format used by IGRF modelers (mid year in 2000 would be
2000.5). For our problem we need to add in the secular variation (sv)
of 14.6 nT/year for five years to extend the 2000 model to just before
start of 2005. So we have

@ =¥ = —29615 + 5 x 14.6 = —29542.



The geomagnetic colatitude of Boulder (see Ex. 1.2) is just (90 —
48.74) = 41.26 degrees. Thus, our three field components (computed
from the axial dipole model only) are given as

X' = —(—)29542 x sin(41.26)
X' = 29542 x 0.6595
X' = 19482 nT

Y’ = 0 (no axial tilt for axial model geomagnetic dipole)

7' = —(—)2 x 29615 x cos(41.26)
7' =59230 x 0.7517
7' = 44525 nT.

Ex. 1.9

First we must obtain the Gauss coefficients for our selected year 2005
(or 31 December 2004). In Exercise 1.8 we found g) to be —29542.
Similarly, using Table 1.2 we calculate

g1 = —1728 45 x 10.7
—1728 + 53.5
= —1674.5

and

hi = 5186 + 5 x (—22.5)
= 5186 —112.5
= 5073.5.

Thus we have for the colatitude Equation (1.80):

VI(5073.572 + (—1674.5)] = 5342.7.
Then
[5342.7/(—29542)] = —0.1809.

The pole colatitude location is 8, the negative of the angle whose tangent
is —0.1809:

0 = 10.25 degrees.
Using the longitude Equation (1.81) we have

[5073.5/(—1674.5)] = —3.0299.



The pole longitude is ¢, the angle whose tangent is —3.0299.
@ = —71.73 degrees.

Therefore, we find that the centered dipole axial pole position (used
for geomagnetic coordinates) derived for the end of year 2004 (be-
gining of 2005), projected from the IGRF-2000 model, is located at
(90 — 10.25) = 79.75 degrees north and 71.73 degrees west. Compare
this result with the axial pole position for the geomagnetic coordinates
plotted in Figure 1.16. As we shall see later in the text, the geomagnetic
coordinate pole position is not the best representation of the magnetic
field for the high latitude regions.

Ex. 1.10

The magnetic dipole moment (M) is derived from the g}, ¢!, and A}
Gauss coefficients which we have already found in the above exercises.
Thus, with R, = 6371 km, using Equation (1.82), we obtain

M = [(47 x 1077) x (6.371 x 10°] x
VI(=29542)2 + (—1674.5)2 + (5073.5)°]
= [8.006] x [30, 021]
= 240, 348

= 2.403 x 10° Ampere-meters.

Ex. 1.11

Follow instructions to the website; then view and print the field charts.
The polar grid chart shows the location of the pole obtained from a full-
field representation using ALL the Gauss coefficients. The geomagnetic
coordinate system is obtained from the first three Gauss coefficients that
represents just the centered dipole part of the full field display. The two
pole locations differ considerably.

Ex. 1.12
Taking YEAR2 = 1900, Table 1.2 gives

hi/gl = 5922/(—2298)
= —2.577.

and ¢ is the angle whose tangent is —2.577; thus ¢ = —68.79 degrees.
The centered dipole longitude in 1900 was at 68.79 degrees west.

Now YEARI-YEAR2 is 2005—1900 or 105 years and
?(YEARI]) — ¢(YEAR2)= 71.73 — 68.79 or 2.94 degrees. Therefore,
the westward drift of the centered dipole over those years is about



0.028 degrees per year. To circle 360 degrees around the spin axis it
would seem to take about (360/0.028) = 12, 857 years at that rate.

Ex. 1.13

The best baseline can be obtained from the values on extremely quiet
days of the year. A Fourier analysis, run on those representative monthly
mean values of the daily field, will extract four things: the annual vari-
ation, the semiannual variation, a base level, and the trend in the base
level. That assumes that the quiet daily variation will average out for
the day. For a more accurate representation of the best baseline, you
can assume that a daily variation must first be removed from the quiet
day data by a program such as FOURSQI given in C.8 of Appendix C
before establishing representative monthly values for the year’s Fourier
analysis.

Chapter 2

Ex. 2.1

Read the description of file SQIMODEL.EXE, at C.3 in Appendix C,
and download the program file onto your computer. For Boulder (BDR)
latitude of 40 deg north and 105 deg west, (on year 2003, month 6,
day 21) I selected to have the hourly (60-min) values printed. The pro-
gram reports the station declination to be 8.8 degrees east. The Sq hourly
values, from this model for extremely quiet values, show a minimum A
of —15.6 gamma (nT) occurring at 10 am local meridian time (LT)
with a maximum of 3.26 gamma at midnight. D shows a maximum of
30.6 gamma at 8 am LT and a minimum of —2.8 gamma at 1 pm LT.
Z shows a minimum of —11.9 gamma at 11 am LT and maxima of
4.7 gamma at 6 am LT and 5.3 gamma at 6 pm LT.

Ex. 2.2

Read the description of file SUN-MOON.EXE, at C.5 in Appendix C,
and download the program file onto your computer. Boulder (BDR) has
a latitude of 40 deg north and 105 deg west, (on year 2003, month 6,
day 21). The program works in Universal Time (UT) so that the request
for 12 hours Local Time (LT) must be changed. At the Boulder longitude
of —105 degrees, with 15 degrees per hour around the Earth, we must
add 7 hours to the LT and obtain 19 UT. Entering 19 UT for the requested
hour, the program output for the Chapman Function (SQRTCOSCHI =
Square Root of the Cosine of Chi) becomes 0.978 at local noon on the
given day.



X, the solar zenith angle, is 90 — ALTITUDE = 90 — 73.204 or
16.796 degrees. The given values of the Chapman function was com-
puted in the program by just taking

cosine (x) = co0s(16.796)
= 0.9573

SO

+/(cosine) = 0.9784.

Ex. 2.3

The Larmor frequency becomes the gyrofrequency (Equation (2.7))
when we use the value of (g/m) = (e/m) as 1.76 x 10''. Thus, with
the Exercise 1.7 value of By = F = 53853 x 10~ Tesla we obtain

Larmor frequency = 1.76 x 10'! x 5.3853 x 1073
= 1.76 x 5.38 x 10°
= 9.47 x 10° cycles/second.

Ex. 2.4

When the collision frequency is much smaller than the gyrofrequency
we can use the two approximations for the Pederson (o) and Hall (o7)
conductivities given in the text at Equations (2.10) and (2.11). Thus we
have the ratio

022 /o1 = [o9 x (coll.freq./gyrofreq)]* /[0y x (coll.freq./gyrofreq)*]

= 0y

Ex. 2.5
In Figure 2.10, the maximum Hall conductivity o, is about 1.0 x
10~3 S/m. From Equation (2.11) we have

1.0 x 1073 = (coll.freq.)/(gyrofreq.)

but we found (in Ex. 2.3) that the gyrofrequency = 9.47 x 10°.
So

Collision Frequency = (1.0 x 107%) x (9.47 x 10°)
= 9.47 x 10? times/sec.

The collision frequency is about a thousand times greater than the
gyrofrequency. The Figure 2.10 gives us only a rough estimate of the
expected conductivity values because the figure applies to midlatitude
noon; at other hours the conductivity is likely to be less. The values



should be greater at lower latitudes and less at higher latitudes. No in-
formation is given about what month applies. Also, a seasonal variation
is expected with the change in solar radiation (Figure 2.14).

Ex. 2.6

The SQIMODEL program was run and the H, D, and Z variations for
Boulder data of 21 June 2005 in Local Time were sketched from the
listed values. The H field component had a minimum of —15.66 nT at
10:00 and a maximum of 3.30 nT at 23:30. The D showed a maximum of
31.23 nT at 7:30 and a minimum of —28.17 nT at 13:30. The Z showed
a minimum of —11.94 nT at 11:30 and maxima of 0.95 and 5.45 nT at
2:30 and 17:30 respectively. The peaks and valleys compared with the
sketch of values expected from Figure 2.19.

Ex. 2.7
Entering the 30-min H values obtained in Ex. 2.6, for the Boulder data
of 21 June 2005 into program FOURSQI1, the Fourier analysis of the
quiet horizontal field is obtained. Because we have used an Sq program
to obtain the input field the daily mean value is 0 and the trend line (A
and B values) about a midday axis is also 0. If we had analyzed some
raw data we would have non-zero values for these.

The Fourier coefficients found for the Sq(H) at Boulder on the given
date are:

Al =+4377 A2=-2.199 A3 =+40349 A4=+40.762 A5 =0.000
Bl =-2973 B2=+44.938 B3 =-3.815 B4=40.942 B5 =0.000.

The coefficients higher than 4 are all zero here because that was the
limiting size provided by SQIMODEL. If we had analyzed raw data
there would be higher values, limited only by the resolution of the input
scaling.

Ex. 2.8

For the 24 hourly values of Sq(H) at Boulder, the median was found to
exist between 0.9 and 1.1; whereas 0.0 was the mean value. Recall that
the Sq(H) analysis values were obtained from a field modeling program
that used Fourier components oscillating about a mean value of 0 — so,
no wonder that our mean turned out to be 0. The median identifies
the Sq(H) value where there are as many values above as are below:
this turns out to be not 0 but about 1.0 gamma. The mean value of 0
had a sample deviation of 5.4 gamma, so the median was well within
one standard deviation size. This is an exercise in the use of the two
programs.




Ex. 2.9

The flare effect is a result of the increased ionization affecting the
Sq currents in the ionosphere. Assuming that the December flare oc-
curs near noon at our station latitude, we just estimate that the relative
flare size between latitudes is comparable to that found in Figures 2.23
and 2.24 for the Sq.

The December flare effect on H at the equator, shown in Figure 2.33,
is about 20 gammas in amplitude. For our Boulder location (at 40 degrees
north latitude), using Figure 2.23, we see that the December relative
magnitudes of Sq(H) at 0° and 40° are about 3 to 1. Therefore, at the
40 degrees latitude of Boulder we expect that flare to be about 7 gammas
(1/3 of the size at Huancayo in Figure 2.33).

Ex. 2.10

In the absence of detailed records, the program SQIMODEL in
Appendix C can provide preliminary values of the quiet field for the sol-
stices and equinoxes. However, that model was derived from data taken
during a year of extreme solar-quiet conditions. For more accurate val-
ues in today’s conditions, the local Sq values should be scaled from your
recent local observatory records on isolated quiet days, selected so there
was also not any geomagnetic field disturbances on the full preceding day
or beginning of the following day (to avoid associated storm effects). Af-
ter scaling 12 or more days spread through the year, run the analysis to ob-
tain the Fourier coefficient of those individual Sq days using FOURSQI
program. Then do a linear extrapolation of the values you have found and
determine the expected values of the coefficients at evenly spaced days
through the 360 days of the year. Next, for each coefficient, run a second
Fourier analysis on these values. (You can trick the FOURSQ1 program
input to represent the daily values as annual, semiannual, etc. values.) The
coefficients from this run will allow you to predict (Equation (1.46)) the
Sq at any day of the year for the aeromagnetic survey people. Be sure to
tell the user that on some disturbed days, the ionosphere may be modified
so that the expected Sq contribution may be different. However, it is usual
for areomagnetic flights to avoid making measurements on disturbed
days.

Chapter 3

Ex. 3.1
Using Equation (3.7) we see that the Alfen Mach Number, M, 4, is equal
to the ratio of the Source Disturbance Velocity to the Alfven Velocity:
M, = 300/30
=10



or

M,n = 400/30
= 13.3 Alfven Mach Number.

Ex. 3.2
From the equations in Figure 3.20, the magnetopause standoff position
in Earth radii can be found for a satellite that identifies the magnetopause
boundary at its passage at six Earth radii distance and an angle of
30 degrees from the ecliptic.

With @ = 1.5 we have 6, = (30 — «) equal to 28.5 so that (sin 6;)*
becomes (0.47715)* = 0.051838 and

Ruso = (er/Z)[l +v(1 - sin401)]
=3 x [14/(1—-0.051838)]
=3 x [1 +/(0.9482)]

=3 x [1+0.97376]
=3 x 1.97376
= 5.92 Earth radii at magnetospheric standoff.

Ex. 3.3

Equation (3.9) gives Hy, the increment of the H component resulting
from a compression of the Earth’s field by the arrival of the solar wind. Itis
given in terms of the geomagnetic colatitude of the station (for Boulder at
90 — 48.74 = 41.26 degrees) and the magnetospheric standoff position,
Rus, equal to the Ryso found in Exercise 3.2.

H, = [250 x sin(6)]/Ruso
= (250 x 0.65950)/5.92
= 164.87/5.92

= 27.8 gamma compression effect on H component.

Ex. 3.4

Equation (3.10) tells us the energy, £, required to confine the magnetic
dipole field at the Equator. First we must find the value of H, at the
Equator using Equation (3.9):

Hy, = [250 x sin(90)]/5.92
= (250 x 1)/5.92

= 42.3 gamma.



So Equation (3.10) becomes

E=41x10"H,
= (4.1 x 10"%) x 42.3
= 173.43 x 10%®
= 1.73 x 10" Joules.

Ex. 3.5

At website www.ptialaska.net/~hutch/aurora.html scroll down to the
third auroral photo on the main page. It is the picture with an SUV
vehicle in the lower right corner. The auroral display resembles great
light-greenish window curtains, seen from below and spreading almost
from horizon to horizon as “drapery” form auroras. The bottom of these
draperies seems well defined and at a constant altitude above the Earth
(that turns out to be about 100 km). Some of the draperies are so faint that
only the lower borders are visible. The auroral draperies themselves show
many vertical dark lines (that follow the magnetic main field directions)
perpendicular to the lower borders. All the draperies seem to be “hung”
in the same general (magnetic east — west) direction and some seem to
be almost parallel to others in their folds.

Ex. 3.6

We use Table 3.4 for estimates of the yearly occurrence of the Ap index.
If we select Ap = 70 and Ap = 5 as the high and low values for this
exercise, then

N Number days/year for Ap > 70 is 4.14 x 10* x Ap~2%
N = 4.14 x 10* x (70)7%*

SO

log(N) = log(4.14) + 4 — 2.25 x log(70)
=0.617+4 —2.25 x 1.845
= 0.617+4 —4.151
= 0.466.

Thus N = 2.9 (£0.2) times per year for Ap > 70.

N Number days/year for Ap < 5is — 52.3 +267.4 x log(Ap)
N = —52.34+[267.4 x log(5)]
= —52.3 4 (267.4 x 0.69897)
= —52.3+186.9
= 134.6.



Thus N = 134.6(£5.4) times per year for Ap < 5.

Note the > and < signs and that these values are simply a guide to
average expectations. The approximations for Ap were obtained as an
average behavior over a full solar activity cycle. In quiet solar years the
number of low Ap values will be larger; in active solar years the number
of high Ap values will be larger.

Ex. 3.7
Using Equation (3.16) we can estimate the values of AE for various Ap
indices:

AE=194+11.2 x Ap.
With Ap = 70 we have

AE =1944+11.2x 70
= 1944784
= 786 nT (AE value for a large storm).

With Ap = 5 we have

AE =184+112x5
= 57.8 nT (value for a quiet period).
Next, enter website http://www.ngdc.noaa.gov following the directions

in the exercise. It is shown that on 20 April 2002 (020420) the Ap value
was 70.

Ex. 3.8

Note that the date 22 January 2000 is shown at the beginning of the
data line as DST0001P22. The 24 hourly values of Dst on the given
date are displayed as groups of four spaces following the 000. Be sure
to ignore the values in the last four spaces of each data line. The sam-
ple was selected to show the main phase and the recovery phase of a
storm.

Ex. 3.9

Using the DSTDEMO program, enter the values starting with UT hour 15
(which will be called hour 1 in storm time). When editing the data for
mis-keyed values be sure to note that the negative of all values is what is
listed and plotted. This storm shows a typical rise to main phase peak,
but the slow recovery is interrupted by a second burst of activity near
hour 20 (storm time) and another burst near hour 45.




Ex. 3.10
This is an excellent website to explore and learn about the space
environment. The instructor can add to the exploration by discussing
the displays and following the activity predictions through the class
semester.

Ex. 3.11

We would find that impulsive SEP events are quite common, lasting for
hours. The events are accompanied by helium 3 and 4 isotopes in about
similar amounts, iron and oxygen atoms in about equal amounts, and
about ten times as many hydrogen atoms as helium atoms.

The Sun is about 1.496 x 10® km from the Earth. Light waves and
X-rays travel atabout 3 x 10° km per second. Thus, the X-rays will arrive
at the same time as the event is seen, having taken (1.496/3) x 103 =
498.7 seconds (or 8.3 minutes) for the trip from the Sun.

Assuming a particle flow of about 500 km/sec, the onset of the
disturbance at the Earth could occur at

Arrival = 1.496 x 10®/(5 x 10%) seconds
= 2.992 x 10° seconds
= 99.7 hours
= 4 days and 1.7 hours.

Ex. 3.12

Geostationary orbits of Earth satellites are located at about six Earth
radii distant near the equatorial plane. During large magnetic storms,
the magnetospheric standoff position can be pushed inward past the
geostationary satellite route. When on the dayside of the Earth during
solar—terrestrial disturbances, onboard magnetometers can record the
field interactions between the IMF and the Earth’s main field. Scientists
study these interactions in an effort to determine why some arriv-
ing solar particles have a major or minor effect on the Earth’s space
environment.

While on the nightside of the Earth, the geostationary satellite can,
once a day, sense the magnetospheric tail current sheet changes following
a storm and trace its seasonal variability. The tail current can be the
reservoir of some auroral particles.

With an on-board magnetometer, an occasional erratic behavior of
the satellite electronics can be evaluated for possible local field and
particle source of damage.




Chapter 4

Ex. 4.1

You may find that the instructions from GSFC/NASA need to be modi-
fied slightly to accommodate my available materials. The purpose of this
exercise is to familiarize the student with the simplicity of magnetic mea-
surements. If an observatory variometer is available for demonstration,
that would be a better substitute for this exercise.

Ex. 4.2
For a 10 nT field, using B = 47 x 1077 x H, we have

H, = B,/(47 x 1077)
= (10 x 107°)/(4m x 1077) Tesla
at a frequency /= 1/30 cycles/second.

Equation (4.5), for ocean water conductivity o,, = 10 Siemens/meter,
the electric field would be:

E, = H, x \/[(47 x 10-7 x 27)/(30 x 0,,)]

E, = [B,/(4m x 107)] x y/[(47 x 107 x 27)/(30 x 10)]

=[10 x 107°/(47 x 107)] x /[(872 x 10-7)/(3 x 102)]

= [(107%) /(47 x 1077)] x /[7? x 2.667 x 10 x 10-10]
= (107" /47) x (m x 5.164 x 107°)

= (5.164/4) x 107

= 1.291 x 107 volts per meter.

At a probe separation of 10 meters, the electric field in millivolts
would be

E (water) = 10 x 1.291 x 107® x 10® millivolts/meter
= 1.29 x 107> millivolts.
Using Equation (4.5) we see that for similar conditions except a change to
the conductivity of dry earth, 0,=10~> Siemens/meter, the two electric

field values will change as the square root of the inverse ratio of the
conductivities.

E,(earth)/E (water) = /(0w /0¢c)

or

E,(earth)

E\(water) x [v/(ow/0.)]
= 1.291 x 107® x [/(10/10-5)]



=1.291 x 107% x 10°

= 1.291 x 1073 volts per meter.

At a probe separation of 10 meters, the electric field in millivolts
would be

E(earth) = 10 x 1.291 x 107> x 10°
= 12.91 millivolts.

Ex. 4.3
For Equation (4.7) we have

V =27 fNAB
= 27(1/30) x (10%) x 2 x (10 x 107%)
= (4/30)7 x 107*
= 4.189 x 1073 volts
= 0.04189 millivolts.

Ex. 4.4

In Exercise 1.7 we already used program GEOMAG and found the total
field to be F = 53853 nT at the local location (here it is Boulder). The
equation for this problem is Equation (4.10). In the fourth para-
graph following that equation the gyromagnetic ratio is given as
0.2675 (nT xsec)~!. Therefore our working equation becomes

Larmor frequency = 0.2675 x 5.3853 x 10*

= 1.44 x 10* cycles per second.

The Larmor period is just 1/(1.44x10%) = 6.94 x 10~ seconds.

Ex. 4.5

The purpose of this exercise is to familiarize the student with the nearest
INTERMAGNET observatory, the type of records found there and where
more information can be obtained. For example, I have found that the
Boulder observatory uses Fluxgate and proton precession magnetome-
ters. The colatitude, east longitude and altitude are given. The station
reports field as HDZ and total field. The local Geomagnetic Information
Node (GIN) for details is located at Golden whose address and contact
is given elsewhere in this website.




Ex. 4.6
For Boulder at 40 degrees latitude, 6 = (90 — 40) = 50 degrees. Also,
r = 6.37 x 10° and dr = 1. Using Equation (4.14) we have

db = [—18.6 x 10* x cos(50°)] x [1/(6.37 x 10%)]
= (—1.86 x 0.6428 x 10°)/(6.37 x 10%)
—0.1877 x 107!

= —0.0187 nT through one meter outward.

Ex. 4.7

Our bar magnet of 107 gamma causes an oscillation period, 7, of one-
tenth second. Equation (4.4) tells us that B varies as the inverse square of
the period (or the period varies as the inverse square root of the field).
Thus, calling the magnet field By, and the Earth’s field B, and working
in nT for the field, we have the ratio

Te/ T = v/ (Bn/Be).

Working with my Boulder field value of 5.3853 x 10* gamma.

T. = Tm\/ (Bm/Be)

1071/[107/(5.3853 x 10%)]

1071/(1.857 x 10%)

1.363 x 10!

13.6 seconds oscillation of the compass needle.

Ex. 4.8

The purpose of this exercise in reading about the Danish Oersted satellite
is to have the student appreciate the wealth of information about mag-
netism on the websites and to realize the valuable contributions of many
nations to the global magnetic field modeling.

Ex. 4.9

One should locate a site that is far from electrical noises, such as
radiowave transmitters, industrial development, electric railways, and
power lines. The site will have lower power transmission line noise
to filter out if located at the end of a long feeder line for a commer-
cial power source. A possible site needs to be excluded if major mag-
netic field gradients (due to surface anomalies) are found in a magnetic
survey with a field proton magnetometer. Attention should be paid to
measurement errors that can arise from the common objects listed in
Table 4.4.



The exact direction for geographic north needs to be determined
using a GPS system or a gyro-theodolite. The observatory needs to be
constructed of non-magnetic materials and even the construction con-
crete must be examined to assure that the selected gravel to be used will
not deflect the measured field. There should be concern for even large
sheets of roofing metal that can move in the wind and generate dynamo
currents to disturb the natural field readings.

For instrumentation, a proton magnetometer is best for establish-
ing the baseline main field. Presently, commercial fluxgate magnetome-
ters provide the rapid response to field variations about the baseline.
Our book provides references for publications with information on ob-
servatory construction and calibration. Discussions with leaders of the
INTERMAGNET program are advisable to determine if the observatory
can meet the exacting standards of that program (Table 4.5). Note that
observatories which contribute copies of their magnetic data to the World
Data Center system are allowed to draw data from the WDC archives
without charge.

Chapter 5

Ex. 5.1

Communication satellite topics are: damage to the satellite and its orbit
as well as temporary disruption in transmission of signals to and from
the Earth’s stations.

Too much increased weight is required to shield satellite electronics
from space particles, so all satellites are exposed. Storm particles can
initiate single-particle upsets in which satellite computer chips are hit
by individual energetic, charged solar-terrestrial particles. Difficulties
can also arise from the charged particle bombardment of the satellite
itself, causing an electric charge build-up that discharges to damage
operational components. Some of the storm particles flood the magneto-
sphere only during a magnetic storm; others linger and congregate at the
South Atlantic/South American Anomaly (Figure 5.1) position (which
can not always be avoided by judicial satellite placement). At geosta-
tionary distances, on occasions, the magnetospheric boundary is com-
pressed sufficiently to cause the satellite to be exposed to the solar wind
itself.

Because of the potential for a multitude of problems, satellite
position-change commands should be avoided. The heating accompa-
nying a geomagnetic storm changes the satellite drag within the magne-
tosphere so that the satellite position may later need thruster adjustments
to avoid loss of its geostationary location.



Communication to and from satellites must traverse the Earth’s
ionosphere, which can become unstable during geomagnetic storms
(Figure 5.7). At the ground communications center for the satellite, ra-
diowave and telephone signals to other ground locations can be disrupted
(Figure 5.6).

The communication satellite command site should be in constant
contact with the global space disturbance forecasting centers and have
skilled personnel to interpret the wealth of information about space
weather that is provided by such centers.

Ex. 5.2
The signal at 30 seconds period in Exercise 4.2 considered the dry earth
and ocean water conductivities of o, = 10~ and o, = 10 Siemens per
meter. With Equation (5.2), the approximate penetration depth for the dry
earth is

Ze = (1/27) x /(5 x T)/o]
= (1/27) x V/[(5 x 30)/(107%)]
= (1/27) x /[(15 x 10) x 10]
= (3.873 x 10%)/2%
= 6.16 x 10? kilometers

= 616 kilometers into the dry earth;
and for ocean water the depth becomes

Zy = (1/27) x {/[(5 x 30)/10]
= (1/2m) x V/(15)
= 3.873/2n
= 0.616 kilometers

= 616 meters into the ocean water.

Another way is to realize that the penetration depth varies as the in-
verse square root of the conductivities. Thus, once we have the dry-earth
depth, we can see that the ocean water has a coductivity of 10° larger.
Therefore the depth should be 103 smaller.

Ex. 5.3

The purpose of this exercise is to familiarize the student with the available
journal literature regarding pipeline corrosion. Whether the student reads
Campbell (1986), Shapka (1993), or Trichtchenko and Boteler (2001),
the references therein will provide some understanding of the importance
of geomagnetic storms to the oil and gas industry.




Ex. 5.4

The spectacular electric power grid failures are more newsworthy
than other geomagnetic storm effects because of the immediate and
widespread public inconveniences. However, public complacency con-
cerning this subject exists because the occasions of major power
failures are so widely spread in time. The student is asked to read the
articles listed in Section 5.5 so that the relationship of magnetic storms
to the public power-outages can be better appreciated.

Ex. 5.5

Aeromagnetic surveys are used for preliminary investigation of the ge-
ological formations within the Earth’s outer crust. Oil/gas exploration
companies principally fund such operations. A telephone call to the local
geological exploration organizations (government or private) can provide
the flight track information. However, realize that private organizations
typically restrict their release of detailed mapping results.

Ex. 5.6

Introduction to Geomagnetic Fields has simply given the basic ideas
for each magnetic topic; full textbooks have been written on each of the
subjects. The student’s reading of these two scientific papers on induction
measurements should lead to an appreciation of geomagnetic studies to
the application in geological surveys.

Ex. 5.7

The understanding of seafloor spreading, plate tectonics, and earthquake
dynamics all had their start with geomagnetic field measurements. The
USGS websites provide the student with excellent reviews of the scien-
tific work on these subjects.

Ex. 5.8

Pseudo-science advocates often assign magnetism with mysterious
properties. These two examples, the loss of ships in the mysterious
Bermuda Triangle and magnet therapy (that is so popular just now),
are exposed in detail by the Skepdic website.

Ex. 5.9

Looking at Table 5.3 for Kp = 7 we see that both power systems and
pipeline problems can arise. Spacecraft can expect surface charging and
orbit problems due to atmospheric drag changes. Navigation information



from satellites and from ground transmitters can occur. Propagation of
high frequency radiowave signals is affected.

The table indicates that Kp = 7 has an occurrence of about 200 times
per 11 years. Taking 365 days/year and eight values of Kp index reported
per day, that rate transforms to

Rate = (200 times/11yr)/[(365day/yr) x (8ind/day)]
= 0.0685 times/index

= 6.8 percent of the indices.

Using Figure 3.54, which gives the occurrence percent of all Kp indices,
we see that a value of about 0.4 to 0.5 percent is indicated. There is
more than a factor of ten difference! Is it that the Forecasting Center is
overstating the danger or that one or the other of the sample sets was an
inadequate representation? A new study should be made with the data
available on the website given in Exercise 3.8. The logarithmic form of
the Figure 3.54 is not in dispute.

Figure 3.54, using four levels, calls the Kp = 7 value a “Large
Storm”; whereas the Forecasting Center Table 5.3, identifying five levels,
calls it a “Strong Storm”. Both names are in public use.

From Table 3.3 at Kp = 7 we have an eqivalent level of ap = 132.
By convention, the midlatitude H component of field would be about
equal to that level, 132 nT.



