
Solutions to the Tutorial Problems in
the book “Magnetohydrodynamics of the Sun”

by ER Priest (2014)
CHAPTER 9

PROBLEM 9.1. Linear Theory of Magnetoconvection.
Derive the linear dispersion relation for magnetoconvection

(ω + κk2)(ω + ηk2)(ω + νk2)k2

= −(B0 · k)2
µρ0

(ω + κk2)k2 +
gαT∆T

d
(ω + ηk2)(k2

x + k2
y) (1)

in the Boussinesq approximation.

SOLUTION.

The incompressible MHD equations, including uniform viscous, magnetic and
(radiative) thermal diffusion and gravity, are (Sec.2.4.3) ∇ · v = ∇ ·B = 0
with

ρ
dv

dt
= −∇p + j×B+ ρν∇2v − ρgẑ,

∂B

∂t
= ∇× (v ×B) + η∇2B,

dT

dt
= κ∇2T.

Departures from an equilibrium plasma, with a linear temperature profile
[T0(z)], temperature difference ∆T and uniform magnetic field (B0), are writ-
ten B = B0 +B1,v = v1, T = T0(z) + T1. The equations are linearised and
for simplicity the Boussinesq approximation is adopted, which holds when
convection is highly subsonic and the depth (d) is much smaller than a scale-
height. This filters out sound waves and incorporates density variations only
in the buoyancy force, where they are written ρ1 = −ρ0αTT1.

The linearised equations are then ∇ · v1 = ∇ ·B1 = 0 with

ρ0
∂v1

∂t
= −∇p1 + j1 ×B0 + ρ0ν∇2v1 − ρ1gẑ,

∂B1

∂t
= ∇× (v1 ×B0) + η∇2B1,

∂T1

∂t
+ (v1 ·∇)T0 = κ∇2T1.
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In other words, ∇ · v1 = ∇ ·B1 = 0 with

ρ0

(

∂

∂t
− ν∇2

)

v1 = −∇p1 + j1 ×B0 + ρ0gαTT1ẑ,

(

∂

∂t
− η∇2

)

B1 = (B0 ·∇)v1,

(

∂

∂t
− κ∇2

)

T1 = v1z
dT0

dz
.

Taking the curl of the equation of motion and dividing by ρ0 gives
(

∂

∂t
− ν∇2

)

∇× v1 =
(B0 ·∇)

µρ0
∇×B1 + gαT∇× (T1ẑ).

Operating on this equation with (∂/∂t − η∇2) and (∂/∂t − κ∇2), and sub-
stituting for B1 and T1 then gives an equation for v1 alone, namely,

(

∂

∂t
− η∇2

)(

∂

∂t
− κ∇2

)(

∂

∂t
− ν∇2

)

∇× v1

=
(B0 ·∇)2

µρ0

(

∂

∂t
− κ∇2

)

∇× v1 +
gαT∆T

d

(

∂

∂t
− η∇2

)

∇× (v1zẑ).

Now ∇×(∇×v1) = −∇2v1 and ∇×(∇×v1z ẑ) = −∇∂v1z/∂z−∇2v1zẑ,
whose z-component is just −(∂2/∂x2 + ∂2/∂y2)v1z. Thus, after taking the
curl of the above equation, its z-component reduces to an equation for v1z ,
namely

(

∂

∂t
− κ∇2

)(

∂

∂t
− η∇2

)(

∂

∂t
− ν∇2

)

∇2v1z

=
(B0 ·∇)2

µρ0

(

∂

∂t
− κ∇2

)

∇2v1z +
gαT∆T

d

(

∂

∂t
− η∇2

)(

∂2v1z
∂x2

+
∂2v1z
∂y2

)

.

A solution of the form

v1z ∼ eωtei(kx+kyy) sin kzz

vanishes at the boundaries (z = 0, d) if kz = π/d implies that ∂/∂t is replaced
by ω and ∇ by ik. The above equation therefore reduces to

(ω + κk2)(ω + ηk2)(ω + νk2)k2

= −(B0 · k)2
µρ0

(ω + κk2)k2 +
gαT∆T

d
(ω + ηk2)(k2

x + k2
y), (2)
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as required.

PROBLEM 9.2. Convection in the Absence of a Magnetic Field.

Use Eq.(2) for the case of no magnetic field with rolls (ky = 0) aligned
with the y-direction, to show that convection sets in as overturning mo-
tion with the disturbance growing monotonically with wavenumber kx when
Ra > (π2 + k2

xd
2)3/k2

xd
2. Hence show that the minimum Rayleigh number is

27π4/4 and that it occurs when kx = πd/
√
2, a classic result due to Rayleigh

(1916) (Sec.7.5.6), which gives the precise value for the order of magnitude
criterion.

SOLUTION.
With B0 = 0, ky = 0 and dimensionless values defined as k̄ = kd, k̄x = kxd,
ω̄ = ωd2/κ and Ra = gαT∆Td3/(κν, Eq.(2) reduces to

ω̄2 + k̄2(1 + κ/ν)ω̄ + k̄4 − Ra k̄2
x/k̄

2 = 0,

where k̄2
x = k̄2 − π2.

Instability onset occurs when ω̄ is real and increases through zero to
positive values. The condition for ω̄ (given by the above quadratic equation)
to be real is simply

k̄4(1 + κ/ν)2 > 4(k̄4 − Ra k̄2
x/k̄

2).

The condition for ω̄ to be positive is simply

k̄4 − Ra k̄2
x/k̄

2 < 0,

or, after substituting for k̄x,

Ra >
k̄6

k̄2 − π2
or Ra >

(k̄2
x + π2)3

k̄2
x

,

where k̄2
x = kx d, as required. The equation Ra = k̄6/(k̄2 − π2) when plotted

for Ra as a function of k̄2 in the range k̄2 > π2 possesses a minimum value
of Ra = 27π4/4 when k̄2 = 3/2π2 and so k̄2

x = 1/2π2.
Thus, we have proved that the minimum Rayleigh number for the onset

of convection is 27π4/4 at kx = πd/
√
2, as required.
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PROBLEM 9.3. Convection in a Horizontal Magnetic Field.
Use Eq.(2) for the case of a horizontal magnetic field (B0 = B0x̂), with no
dissipative effects (κ = η = ν = 0).

(a) Show that rolls parallel to the field (with kx = 0) are unstable (ω > 0)
for all wavenumbers ky 6= 0;

(b) For a given kx 6= 0, prove that convection is inhibited for all ky if the
magnetic field is so strong that B2

0/(µρ0) > gαT∆T/(dk2
x).

SOLUTION.
With no dissipation and a horizontal magnetic field (B0 = B0x̂), the dis-
persion relation Eq.(2) becomes

ω2 = − B2
0

µρ0
k2
x +

gαT∆T

d

k2
x + k2

y

k2
,

where k2 = k2
x + k2

y + π2/d2.
(a) For rolls parallel to the field (with kx = 0), this becomes

ω2 =
gαT∆T

d

k2
y

k2
y + π2/d2

,

and so such rolls are unstable (ω > 0) for all wavenumbers ky 6= 0, as required.
When ky = 0, then ω = 0.

(b) Also, for a given kx 6= 0, the plasma is stable (ω2 < 0) provided

B2
0

µρ0
>

gαT∆T

dk2
x

k2
x + k2

y

k2
x + k2

y + π2/d2
.

However, the maximum value of (k2
x + k2

y)/(k
2
x + k2

y + π2/d2) as ky varies is
unity in the limit as ky → ∞. Thus, for a given non-zero kx, convection is
inhibited for all ky if the magnetic field is so strong that

B2
0

µρ0
>

gαT∆T

dk2
x

,

as required.

PROBLEM 9.4. Concentration of a Flux Tube by a Stagnation-
Point Flow.
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(a) By seeking steady-state solutions of the induction equation with no elec-
tric field, show that a sheet (B ŷ) of flux 2B0a is concentrated by a 2D
stagnation-point flow (vx = −V0x/a, vy = V0y/a) to the form

B(x) = 2B0

(

Rm

π

)1/2

exp

(

−Rmx
2

a2

)

,

where Rm = aV0/(2η). Deduce that its thickness is 2a/
√
Rm and its peak

field strength is 2B0

√

(Rm/π).
(b) Prove that the corresponding effect of a 3D flow (vR = −V0R/a, vz =

2V0z/a) in cylindrical polars on a field B(R) ẑ is to make

B(R) = B0Rm exp(−RmR
2/a2).

SOLUTION.
(a) The integral of the induction equation is Ohm’s law, namely,

E+ v ×B = η∇×B,

which, for the above flow and magnetic field, becomes

E − V0x

a
B = η

dB

dx
,

where E is constant. If E = 0, the equation separates and the solution is

loge B − loge c = −V0x
2

2ηa
,

where loge c is a constant of integration. Taking exponentials gives

B(x) = c exp(−Rmx
2/a2),

where Rm = aV0/(2η).
Now, since the flux in this sheet is assumed to be 2B0a, we have

2B0a =

∫

∞

−∞

B(x)dx =

∫

∞

−∞

c exp(−Rmx
2/a2) dx.

Change the variable from x to X = x
√
Rm/a. Then the integral becomes

2B0a =
ac√
Rm

∫

∞

−∞

exp(−X2)dX.
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But
∫

∞

−∞
exp(−X2)dX =

√
π, and so

2B0a = ac

√

π

Rm
,

or in other words c is given by

c = 2B0

(

Rm

π

)1/2

,

as required. Thus we see that the sheet thickness is 2a/
√
Rm and the peak

field strength is 2B0

√

(Rm/π).
(b) The corresponding case in cylindrical geometry is very similar with

Ohm’s law becoming

E − V0R

a
B = η

dB

dR

and the solution when E=0 being

B(R) = c exp(−RmR
2/a2).

Now, if the flux is πB0a
2, we have

πB0a
2 =

∫

∞

0

2πB(R)RdR =

∫

∞

0

2πc exp(−RmR
2/a2)RdR

=
πa2

Rm
[− exp(−RmR

2/a2)]∞0 =
πa2c

Rm
,

which implies that c = RmB0. Thus, the radius of the tube is a/Rm and the
peak field is RmB0.

PROBLEM 9.5. The Shape of a Buoyant Flux Tube.
Show that the equation of a vertical slender flux tube in equilibrium in the
yz-plane between magnetic buoyancy and magnetic tension in an isothermal
medium of scale-height H is given by

cos
y

2H
= e(z−zs)/(2H),

where (y = 0, z = zs) is the summit of the tube. Hence deduce that the
maximum footpoint separation for such a tube is 2πH .
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SOLUTION.
If the footpoints of a flux tube are separated by less than a few scale-heights
(H), a buoyant tube in the convection zone can form an arch if it is in equilib-
rium under a balance between the forces of magnetic buoyancy and magnetic
tension. The shape [z = z(y)] of such an arch in a vertical yz-plane may be
estimated as follows.

With z directed vertically upwards, the gradient of the arch is given in
terms of its inclination [θ(z)] to the horizontal by

dz

dy
= tan θ. (∗)

Furthermore, the tension per unit area along the tube is B2/µ, and so the
assumption that the tube is in horizontal equilibrium implies that the hori-
zontal component of the total tension summed across the cross-sectional area
A is constant, namely,

AB2

µ
cos θ =

AsB
2
s

µ
,

where B2/µ and B2
s/µ are the tensions per unit area in the tube at height

z and at the summit (y = 0, z = zs), while A and As are the corresponding
cross-sectional areas. But the flux AB is constant along the tube, and so the
above equation becomes

B cos θ = Bs.

Now, the field strength [B(z)] for a tube in a hydrostatic isothermal
medium is given (Sec.9.2.1) by

B(z)2 = B2
se

(zs−z)/H .

Thus, eliminating B between the above two equations gives

cos θ = e(z−zs)/(2H). (∗∗)

Then, d/dz of Equation (∗∗) implies

dθ

dz
= −cot θ

2H
,

which, when combined with Equation (∗), gives

dθ

dy
= − 1

2H
.
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This may be integrated to give

θ = − y

2H
,

and so Equation (∗∗) implies that the equation of the arch is simply

cos
y

2H
= e(z−zs)/(2H),

As z → −∞, so y → ±πH , and the maximum footpoint separation is
therefore 2πH .

PROBLEM 9.6. Magnetic Buoyancy Instability.
Consider a 1D equilibrium [p0(z), ρ0(z), T0(z), B0(z)x̂] satisfying the perfect
gas law and magnetostatic balance with uniform sound and Alfvén speeds.
Find the dispersion relation for perturbations of the form f(z)ei(kx+ny−ωt)

when n−1 ≪ k−1, H . Deduce that, when 0 < k2H < −(1/B0)dB0/dz, the
configuration is unstable.

SOLUTION.
In the basic stability analysis (Schatzman, 1963; Gilman, 1970) the equi-
librium variables [p0(z), ρ0(z), T0(z), B0(z)] satisfy the perfect gas law

p0 = (kB/m)ρ0T0

and magnetostatic balance

d/dz[p0 +B2
0/(2µ)] + ρ0g = 0.

If the (isothermal) sound and Alfvén speeds, cs0 = (p0/ρ0)
1/2, vA0 =

B0/(µρ
1/2
0 ), are constant, independent of height, the resulting dispersion re-

lation has constant coefficients, and the equilibrium profiles are

p0(z) = p∗e−z/HB , ρ0(z) = ρ∗e−z/HB , B0(z) = B∗e−z/(2HB),

where p∗, ρ∗, B∗ are the values at z = 0 and HB = [p∗ + B∗2/(2µ)]/(ρ∗g) is
the scale-height [H = p∗/(ρ∗g)] increased by the presence of the magnetic
field.

Perturbations of the form f(z)ei(kx+ny−ωt) in the linearised MHD equa-
tions yield

(c2s0+v2A0)ω
4−v2A0[(2c

2
s0+v2A0)k

2+c2s0/(2HHB)]ω
2+k2v4A0c

2
s0(k

2−(2HHB)
−1) = 0
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as the dispersion relation when n−1 ≪ k−1, H . The perturbed field in a
horizontal plane possess a long-wavelength structure along its length and a
short-wavelength structure in the y-direction, reminiscent of neighbouring
flux loops rising and sinking from a unidirectional field. As a loop rises,
its field strength tends to increase due to horizontal stretching but also to
decrease due to vertical expansion. When there are no variations along the
field (k = 0), the above dispersion relation gives stability.

When dB0/dz < 0 and the wavelength (2π/k) along the field is so large
that

0 < k2H <
1

2HB
≡ − 1

B0

dB0

dz
,

the last term in the dispersion relation is negative, and so the configuration
is unstable (ω2 < 0). This is an updated version of Parker’s condition, with
magnetic tension being overcome by magnetic buoyancy for small enough
wavenumbers k.

The influence of normal buoyancy is to modify the above instability cri-
terion to

1

HB0

dB0

dz
< −k2 − γN2

v2A
,

while magnetic and thermal diffusion reduce the stabilising effect of stratifi-
cation and modify it to

1

HB0

dB0

dz
< −k2 − η

κ

γN2

v2A

PROBLEM 9.7. Self-Similar Model for a Sunspot.
The Schlüter-Temesvary model for a sunspot has self-similar magnetic field

BR = −1
2
Rf(ζ)dBi/dz, Bz = f(ζ)Bi(z),

in terms of the similarity variable ζ = RB
1/2
i (z) where f(0) = 1. It satisfies

∇ ·B = 0 and the equations for magnetohydrostatic equilibrium. Calculate
the flux (Fm) through the spot and show how Bi(z) and pe(z) may be de-
termined if the temperature structure, flux (Fm) and shape factor f(ζ) are
prescribed, together with Bi and dBi/dz at z = 0.

SOLUTION.
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A simple self-similar model for magnetostatic equilibrium of a sunspot is
based on the force balance

0 = −∇p + j×B− ρgẑ, (3)

with gravity acting along the negative z-axis. For a cylindrically symmetric
(∂/∂φ = 0), untwisted (Bφ = 0) magnetic field [BR(R, z), 0, Bz(R, z)], the
force balance has components

0 = − ∂p

∂R
+

Bz

µ

(

∂BR

∂z
− ∂Bz

∂R

)

,

0 = −∂p

∂z
− BR

µ

(

∂BR

∂z
− ∂Bz

∂R

)

− ρg.

A similarity solution automatically satisfying ∇ ·B = 0 has the form

BR = −R

2
f(ζ)

dBi

dz
, Bz = f(ζ)Bi(z),

where ζ = RB
1/2
i (z) and f(0) = 1, so that Bi(z) represents the field on the

axis of symmetry (R = 0).
The flux (Fm) through the spot is

Fm = 2π

∫

∞

0

ζf(ζ)dζ.

The above radial component of force balance may then be integrated with
respect to R from 0 to ∞ at constant z, to give

0 = 2[pe(z)− pi(z)] + 4a2B
1/2
i

d2B
1/2
i

dz2
−B2

i , (∗)

where the subscripts e and i denote values at R = ∞ and R = 0, respectively,
and a2 =

∫

∞

0
1
2
ζf 2(ζ)dζ .

On the other hand, the vertical component of the force balance gives
dpi/dz = −ρig, at R = 0 (where BR vanishes), and

dpe
dz

= −ρeg, (∗∗)

provided f → 0 fast enough at infinity. Thus, if the temperature structure,
flux (Fm) and shape factor f(ζ)(= e−ζ2 , for instance) are prescribed, plus Bi

and dBi/dz at z = 0, Eqs.(∗) and(∗∗) determine Bi(z) and pe(z).
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