Schedule

The following table gives the course schedule for Stanford EE273 taught during Autumn Quarter 1998. Each row summarizes the contents of one lecture. Also listed are the reading assignments that should be completed before each lecture and homework assignments that reinforce the lecture material.

Lecture	Date	Торіс	Reading	Homework
1	23 Sep	Introduction to Digital Systems Engineering: Overview	1	HW1: 1-1, 1-5,
		of signaling, power distribution, timing, and noise issues.		1-9
		Technology trends in digital systems.		
2	28 Sep	Wires: Electrical models of wires. Lossless transmission	3.1	None
		line model. Termination and reflections. The	through	
		Telegrapher's equation. TDR demonstration.	3.3.3	
3	30 Sep	More on wires: Lossy transmission lines. Skin effect	3.3.4	HW2: 3-2, 3-6,
		resistance and dielectric absorption. Multidrop	through	3-7, 3-16
		buses. Balanced lines. Common and differential mode	3.5.2	(SPICE all
	0.5.0	analysis.		problems)
4	05 Oct	Wire Wrapup: modeling and analysis of wires. Use of the TDR.	3.6 and 3.7	None
5	07 Oct	Noise: Overview of noise sources. Power supply noise.	6.1	HW3: 6-3, 6-6,
		Crosstalk - capacitive lines - coupled transmission lines -	through	6-7, 6-13, 6-16
		even and odd mode deriviation - signal return crosstalk.	6.3	
6	12 Oct	More on noise: intersymbol interference, alpha particles,	6.4	None
		thermal and shot noise, parameter variations. Managing	through	
		noise. Noise budgets and BER.	6.6	
7	14 Oct	Signaling: A quick comparison. Transmission modes,	7.1 and	HW4: 7-2, 7-7,
		receiver operation - references and noise cancellation,	7.3	7-8
0	10.0.4	termination methods. Differential signaling.	7.4 1	NT
8	19 Oct	More Signaling: Signaling over capacitive lines.	/.4 and	None
0	21.0.4	Signaling over inductive lines. Signal encoding.	/.5	NL
9	21 Oct	Advanced Signaling. Simultaneous bidirectional	8.1	None
		I PC lines. DC belanged godes		
Midtorm	26 Oct	Midterm in the evening location TBD no class on this	None	None
	20 001	day		
10	28 Oct	Timing: Signals, values, and events. Clock domains.	9.1	HW5: Crosstalk
		Timing uncertainty: skew and jitter. Synchronous timing	through	to RC lines, $8-2$,
11	02 NI	and pipeline timing conventions.	9.5	9-2, 9-3
11	02 NOV	Closed-loop timing: Measuring and canceling skew. A	9.0.1	None
		simple timing loop. Timing loop components. Bundled	unrougn	
12	04 Nov	Clock distribution: off chin distribution: clock trees	9.0.3	HW6.06
12	04 1000	phase-locked distribution, salphasic distribution, On-	9.1	(SPICE it) clock
		chin distribution: trees meshes jitter calculations		dist problem w/
		cinp distribution. trees, mesnes, juter calculations.		spice
13	09	The synchronization problem: why synchronize.	10.1 and	None
10	Nov	metastability and synchronization failure, calculating	10.2	1.0110
		failure probability, common synchronizer pitfalls.		
		synchronization hierarchy.		
14	11 Nov	Synchronizer design: brute-force synchronizer;	_10.3	Project assigned
		mesochronous syncrhonizers: two-register synchronizer,		
		FIFO synchronizer; plesiochronous synchronization,		
		dealing with data-rate mismatch, arbitrary periodic		
		synchronization, the clock predictor.		
15	16 Nov	Asynchronous design: signaling conventions, stoppable	_10.4	None
		clocks, trajectory-map synthesis.		

16	18 Nov	Off-Chip Power Distribution: the power distribution problem, local loads and signal loads, a typical distribution network. Bypass capacitors. Regulators: shunt regulators, series regulators, switching regulators.	_5.1, 5.2, and 5.5	None
17	23 Nov	On-Chip Power distribution: current-profile of digital functions, IR drops, fraction of metal coverage, deliberate and symbiotic bypass capacitance, local regulation.	5.3	None
18	25 Nov	Slack	None	None
19	30 Nov	Project presentations	None	project due
20	02 Dec	Project presentations	None	project due
Final	10 Dec	8:30AM-10:30AM	None	None