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Problems and solutions for Chapter 6 

 

P.*A. (a) Detailed balance in transition state theory at a given energy. Given that the 

forward and reversed reaction proceed via the same transition state, show that the yield 

function, equation (6.4), is the same for the forward and reversed reaction. Next, based on 

the derivation of equation (6.5) show that the rate constant at the energy E, computed by 

transition state theory satisfies detailed balance. It is easier to derive the condition of 

detailed balance between the rates k(E) of the forward and reversed reaction starting from 

the equality of the yield function. (b) Detailed balance in transition state theory at a given 

temperature. Given that the forward and reversed reaction proceed via the same transition 

state, show that the rates k(T) of the forward and reversed reaction satisfy detailed 

balance meaning that their ratio is the equilibrium constant for the reaction. If you are not 

familiar with the statistical mechanics result for the equilibrium constant K(T), reverse the 

question: Derive an expression for K(T) starting with the transition theory expressions for 

the rates k(T) of the forward and reversed reaction. 

 

S.A. (a). The theoretical ability to reverse the direction of the motion along a classical 

trajectory means that given a transition state as a configuration of no return, the transition 

state for the reactants crossing over to products is the same as the transition state for the 

products crossing over to reactants. The number N‡(E ! E0 )  of states at the transition 

state at the energy E is then independent of do we consider the forward or the reversed 

reaction. Hence the yield function, equation (6.4), N‡(E ! E0 ) / h , is the same. It follows 

from equation (6.5) that the rate constants for the forward and reversed reaction are 

related by 
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(b). From (a) and equation (6.7) the partition function of the transition state is the same 

for both directions. Therefore, from (6.11) 
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But the difference in the height of the barrier with respect to the reactants and products is 

the exoergicity !E0 of the reaction, cf. legend of figure 6.1. Hence 
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P.C. The expression for the thermal rate constant. Equation (3.8) is the thermal rate 

constant for reactants in a particular state. Equation (A.3.3) shows how to average over 

the internal states of the reactants. Using the definitions of partition functions from 

Appendix 6.A derive equation (6.7). This involves a fair amount of changing the variable 

in integrations. 

 

S.C. The starting point is the rate constant for state selected reactants, equation (3.8) 

 ki (T ) = v (kBT )
!2
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Taking a thermal average over the reactants, using equation (6.6) and 

pi = exp(!Ei / kBT ) /QI  
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The limit of integration over the total energy E can be taken from 0 because the cross 

section for state selected reactants vanishes below the energy threshold E > Ei or ET> 0. 
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E. The most direct router is to use the result from stat mech that the partition function and 

the entropy are related by kB lnQ = S + E T . We prove this for the special case of 

internal states by starting from the general expression S = !kB pi lni" pi  and using the 

Boltzmann expression for pi  from C above. Otherwise the result follows by starting from 

the stat thermo expression for E  as given in E of chapter 3 and using (A.6.7) to relate 

the free energy and lnQ . Once we agree that Q = exp S / kB( )exp !E / kBT( ) the 

expression for the entropy of activation in TST follows from the standard form of the 

reaction rate constant as the difference between the entropy of the internal degrees of 

freedom at the transition state minus the entropy of the reactants. (b). A useful image of 

the distribution at the transition state is to think of a harmonic potential for a coordinate 

perpendicular to the reaction coordinate. This is the saddle at the transition state, see 

figure 5.1. If this potential is shallow the rate of crossing along the reaction coordinate is 

high while the rate is low if the passage is tight. Computing the entropy for a thermal 

distribution of states of a harmonic potential of frequency ν we find that in the high 

temperature limit Q = kBT / h!  and E = kBT  so the entropy increases with decreasing 

frequency as ln(kBT / h!) . Note also how increasing the temperature makes the rate of 

crossing higher because more states perpendicular to the reaction coordinate can be 

sampled. 

 

P. G. Transition state theory for unimolecular reactions. In the high pressure limit one can 

assume that the energy rich species A* has reached thermal equilibrium. (a) Verify the 

TST result for the rate of unimolecular dissociation k(T ) = kBT h( ) Q‡ Q( )exp(!" E0)  

where Q is the partition function for A and Q‡ is the partition function for the transition 

state. (b) This result looks just like the TST expression for the bimolecular thermal 

reaction rate constant. But this cannot be. A unimolecular reaction rate constant has 

different dimensions than a bimolecular one. Resolve this dilemma. (c) The thermal 

dissociation of ethane, CH3CH3 →2CH3, has, of course, a very high value for the 
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activation energy. But it also has an unusually high value for the measured Arrhenius A 

factor, roughly A=1017.4 s-1. Suggest a possible explanation. Your explanation should 

take into consideration that many other bond breaking unimolecular reactions have high 

A factors. (d) On the other hand, the thermal dissociation C2H5-O-CH=CH2 

→C2H4+CH3CHO has a rather low A factor, roughly A=1011.4 s-1. It is suggested that the 

reason is that the structure of the transition state is a six member ring, which enables an H 

atom to move from one end of the molecule to the other with a more modest barrier. 

Discuss if this can explain the low A value. (e) Now generalize the TST result for the 

dissociation rate constant to lower pressures. You may use the steady state approximation 

but you must generalize the discussion in section 6.2.1 because we have shown in 6.2.2 

that the rate of dissociation is a strongly increasing function of the energy of the 

molecule. 

 

S.G. (a). See section 6.2.2.1  (b). The TST expression for either a unimolecular or a 

bimolecular rate constants is 

 k(T ) =
kBT

h

Q
‡

Q
exp(!E0 / kBT )  

The first factor has the dimension of time-1 so the other dimensions, if any, come from 

the ratio of partition functions. For a unimolecular reaction this ratio is dimensionless so 

the dimension of the rate constant is, as expected, time-1.  For a bimolecular reaction the 

ratio of partition functions has the dimension volume. Why? Because for the A+B 

reactants there is a partition function per unit volume of the motion of the center of mass 

of A and there is also a partition function per unit volume of the motion of the center of 

mass of B. For the transition state there is only a partition function per unit volume of 

motion of its center of mass. (c) In ethane the two methyl groups are not independent of 

one another. For example, there is a (small but finite) barrier to rotation about the C-C 

bond. In the transition state for the dissociation of ethane, CH3CH3! CH3+CH3  the 
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reaction coordinate is the C-C distance. In the transition state the two methyl groups are 

much more independent so entropy favors the dissociation. The same will be the case for 

other bond breaking processes. (d) A ring structure for the transition state means that it is 

more constrained than the reactants so entropy does not favor the dissociation. (e). You 

need to modify the discussion of section 6.2.2.1. First, as shown in section 6.2.1 the more 

general expression for the concentration of energy rich molecules is 

A*[ ] = A[ ]
k M[ ]

!k M[ ] + kd
 

Since the total energy is conserved we can write such an equation for each value of E 

 A*(E)[ ] = A[ ]
k M[ ]

!k M[ ] + kd(E)

"(E)exp(#E / kBT )

Q
 

so that, by analogy to section 6.2.2.1 

reaction rate= A*(E)[ ]! kd(E)dE

= A[ ]
1

Q

k M[ ]
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P. I. The thermal-like prior distribution. The prior distribution for energy disposal into a 

degree of freedom, say X, contains the factor 1 ! EX / Eav( )
m  where Eav is the energy 

avaliable for distribution and the power m depends on how many atoms are involved. The 

origin of this factor is the density of translational states. What this factor does is to 

describe the shrinking volume in phase space as more and more of the available energy is 

being put into the particular degree of freedom, X. There are many situations, e.g., the 

distribution of rotational states of a particular vibrational manifold, where EX/Eav  <1. For 

this range show that (1 ! EX / Eav )
m
" exp !EX / (Eav / m)( )   is a good approximation. 

The distribution is then 'thermal-like' but note that the 'temperature' depends on the 



MRD     Problems and solutions for Chapter 6    page6 

 R. D. Levine 2005 

available energy. So the distribution of rotational states in different vibrational manifolds 

will have a different 'temperature'! 

 

S.I. Expand in a Taylor series  

1! EX / Eav( )m = 1! m EX / Eav( ) + (m2 / 2) EX / Eav( )2 + ..

exp !µEX( ) = 1! µEX + µ2EX
2 + ..

 

To lowest order in  EX / Eav( )  the two expansions agree if µ = m / Eav . As EX / Eav( )  

tends to its upper limit of one, the two expressions are significantly different. 

 

P.K. Quality of fit. Let PT (v)  be a trial form for the distribution of the products 

vibration, say of the form (6.35). Then the quality of the fit to the measured distribution 

P(v) is DST ! P(v)ln P(v) / P
T
(v)( )v" . (a) Using the inequality ln(1/x)≥1-(1/x), where 

equality obtains if and only if x=1, show that DST is non negative and vanishes only for a 

perfect fit. (b) On the basis of (a) conclude that the best value of λv is when DST is 

minimal. Compute DST as a function of λv, determine the stationary point and show that 

it is indeed a minimum. (c) Show that this is the same value of λv as determined in the 

text, that is, by regarding equation (6.33) as an implicit equation for !v . *(d) Show that 

DST is the difference between the entropy of the distribution PT(v) and entropy of the 

experimental distribution. This is the sense in which the entropy of the distribution PT(v) 

is said to be maximal.  
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S.K. The logarithmic inequality  ln x ! 1"1 / x  with equality if and only if x =1 is shown 

in the figure          
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where the last equality means that both the actual distribution and the trial distribution are 

normalized. 

(a) DST ! 0  with equality if and only if  P(v) = P
T

(v) for all v  

(b) If we take the trial functional form PT(v) = exp !"0
T
! "v

T
Ev( )  then we can optimize 

the value of !v
T  by making DST as small as possible. Note that we cannot separately 

optimize the value of !0
T  because !0

T  is determined by the value of !v
Tand the condition 

that the trial distribution is normalized 

 exp(!0
T
) = exp("!v

T
Evv

# )   

For use below we note that this result implies that 
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To minimize DSTwe compute it  
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DS
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remembering that !0
T  is determined by the value of !v

T . Then 
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The minimal value !DS
T

!"v
T( ) = 0 is when the mean value of the energy computed for 

the trial distribution, EvP
T
(v)

v
!  is equal to the actual mean value, EvP(v)v

!  

To show that the stationary point is a minimum we need to compute 
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(d).  DST = P(v)lnP(v) ! P(v)lnP
T
(v)

v
"

v
"  

But at the minimal value, where EvP
T
(v)

v
! = EvP(v)v

!  
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P. M. The ion-molecule reaction CH2=CH2
++ CH2=CH2 → C3H5

++CH3  was studied in 

a crossed beam arrangement. (a) At low collision energies the product ion was observed 
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to have an angular distribution with a forward-backward symmetry. Why does that make 

chemical sense? (b) As the collision energy was increased, the angular distribution 

became increasingly asymmetric and eventually became predominately forward. Why? 

And can you suggest at what energy this will happen? (c) Will you use transition state 

theory to compute the reaction rate at low energies? If not, what will you use? (d) If we 

use the CD2=CD2
+ instead of the CH2=CH2

+ ion, do we expect the ion CD2=CH2
+ as a 

possible product? Does the answer depend on the collision energy? 

N. Towards biological applications mass spectrometry is increasingly concerned with 

ions of ever larger mass∗. Apart from the technical problem of detection of heavy ions 

there is the question of a time window. An ion has to dissociate within at most a few µs’s 

if its fragmentation is to be detected by a conventional mass spectrometer. Assume that 

ionization is by impact of 70 eV electrons, e+P→e+e+P+. (a) Make a reasoned guess for 

the excess energy of the parent ion and do not forget about the Franck Condon principle, 

section 7.0.1. (b) What is the range of the maximal molecular weight for the parent in 

order that the fragmentation of the ion can still be detected. Assume that biological 

molecules are made of atoms of a mean atomic weight of 7.6 and that a mean vibrational 

frequency is 1000 cm-1. Ionization weakens bonds so take a dissociation energy of 2 eV. 

(c) Suggest ways for extending the range of application of analytical mass spectrometry 

towards higher masses. If necessary, make a literature search. 

 

 

                                                

∗ Such ions need not be formed by electron impact.  There are other options. For a very 

successful method see Fenn and Mann (1989). See T. Nohmi, T. and J. B. Fenn,  JACS 

114, 3241 (1992) for an example of molecular weights up to 5 million. 
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S.M. (a) The reaction can proceed via the cyclobutene ion. When cold this is a stable ion 

and corresponds to a deep well on the potential energy surface. (b). At higher collision 

energies the intermediate ion is energy richer and so becomes progressively shorter lived. 

(c). Transition state theory can be used to compute the rate of unimolecular dissociation 

of the cyclobutene ion. But the rate of the reaction should be computed as in section 

6.2.3. (d) In the collision of CH2=CH2 + CD2=CD2
+  if the cyclobutene ion is long lived 

it can dissociate also to CH2=CD2
+ . So this product is expected at lower collision 

energies where the intermediate ion lives long enough that the identity of the bonds is 

forgotten. 

 

P.N. Termolecular processes and sticky collisions. Third atom-assisted processes are 

often assumed in chemical kinetics. A notable example is in recombination processes, 

e.g., O+O2+M→O3+M, where the function of the third body, M in the example, is to take 

away energy and thereby stabilize the new ozone molecule. It is reasonable to conjecture 

that the reaction proceeds by a two step process where, in the first step O+O2 (or O2+M) 

undergo a collision where a long living complex is formed and it lives for long enough to 

collide with M (or with O). (a) Use RRK theory to estimate the lifetime of the unrelaxed 

O3 complexes formed from thermal O+O2. (Go for or estimate the data that you need). 

(b) The complex needs to collide with M before it dissociates. Is the estimated lifetime 

sufficient if the pressure is, say, an atmosphere?   

 

S.N. The RRK estimate for the rate of dissociation of energy rich ozone is ! 1" E0 E( )
2 . 

ν  is the frequency at the barrier E is the total energy measured from the ground state of 

ozone and E0 is the minimal energy necessary to dissociate ozone. 2=3n-6-1 where n=3 is 

the number of atoms, 3n-6 is the number of vibrational modes of the nonlinear mpolecule 
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and 2 is the number of vibrations at the transition state. 5One vibration becomes the 

reaction coordinate). Ozone is not a very stable molecule, E0 ! 20kcalmol
-1 . The ozone 

molecule is formed from a collision of thermal reactants so these cannot bring in much 

more than say 1kcalmol
-1

 so E ! 21kcalmol
-1 .  The lifetime of the energy rich ozone is 

therefore of the order of (1 / 21)!2 " 0.002  of a vibrational period. Not very long. Even at 

atmospheric pressure many molecules will dissociate rather be stabilized by cillisions. 

 

 

 

 


