
Answers to exercises

Here we provide answers to all the exercises in the book; in some cases we only provide
brief numerical answers, while in other cases we provide more explanation.

Part I: Quantum information

1. Quantum bits and quantum gates
1. This follows by direct matrix calculation:
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)
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with sx = sin θ cos φ, sy = sin θ sin φ, and sz = cos θ . Thus

s.s = sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ = 1. (A.6)

As s is a unit vector, it connects the origin with a point on the unit sphere.
2. A mixed state has the form ρ = ∑

n Pn|ψn〉〈ψn|, where Pn ≥ 0 and
∑

n Pn = 1. Each
contributing density matrix can be described by a Bloch vector and so the mixed state
can also be represented by a vector s = ∑

n Pnsn. As all the sn are of unit length, the
weighted sum has a length of at most 1 (which only occurs when all the Pn except one
are zero). Thus the mixed-state vector lies inside the unit sphere (the Bloch sphere). The
point 1

2σ0 corresponds to the center of the Bloch sphere. This is the maximally mixed
state.

3. The conventional description of the maximally mixed state has the matrix form
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Similarly an equal mixture of |+〉 and |−〉 takes the form
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4. The result calculated above is obvious if the states are represented by Bloch vectors.
The vectors representing the orthogonal states |0〉 and |1〉 are antiparallel on the Bloch
sphere, and so an equally weighted sum gives the null vector, corresponding to a point at
the center of the Bloch sphere, that is the maximally mixed state. Similarly the vectors
representing |+〉 and |−〉 are also antiparallel, and so sum to give the same result.
Clearly, the maximally mixed state can be decomposed as an equal mixture of any state
|ψ〉 with the state |ψ⊥〉 which is orthogonal to it, and so there are an infinite number of
decompositions into two equally weighted parts. (Of course, further, even more complex
decompositions are also possible.)

5. By direct multiplication σ 2
x = σ0 and similarly for σy and σz. Now

exp(−iθ σα/2) = σ0 +
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= σ0 cos(θ/2) − iσα sin(θ/2). (A.12)

6. Using methods from above we note that the propagator for 90y is (σ0 − iσy)/
√

2, while
that for 180x is −iσx. Then use brute-force multiplication (note the order!):
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which is the Hadamard gate (up to an irrelevant global phase). The other three are done
in the same way.

7. HσxH = H (HσzH) H = (HH) σz (HH) = 1σz1 = σz.
8. Reversing the definitions of |+〉 and |−〉 gives |0〉 = (|+〉 + |−〉)/√2 and |1〉 =

(|+〉 − |−〉)/√2, so
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and making an X-measurement returns |+〉 or |−〉 with probabilities
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Alternatively we have
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and making a Z-measurement gives |0〉 or |1〉 with probabilities as above; applying a
final Hadamard gate simply converts these to |+〉 and |−〉 with the same probabilities.

9. The first Hadamard gate rotates the two eigenstates of the X-measurement onto the
two eigenstates of a Z-measurement. Any single-qubit measurement will have two
eigenstates which lie at diametrically opposed points on the Bloch sphere and which can
be rotated onto |0〉 and |1〉 in the same way. As rotation gates are unitary they will also
work with superposition states. Equivalently, we can think of unitary gates as rotating
operators rather than states: surrounding a Z-measurement gate with a pair of Hadamard
gates is equivalent to rotating it into an X-measurement.

2. An atom in a laser field
1. In systems of this kind the single outer electron can be thought of as moving in a

central field, although the form of this field will be much more complex than the simple
Coulomb field found in hydrogen, and so the wavefunction will still be separable into
radial and angular parts. As the selection rules only rely on certain angular integrals
being zero, they will be unaffected by the changes to the radial parts.

2. Inserting the numbers gives 1/	 ≈ 31 ns. To achieve Rabi flopping we need V � 	, and
using E = �V/a0e gives E � 400 V for the rotating field; double this for the oscillating
field. In reality the lifetime is about 7 ns, and the field must be large compared with
5000 V/m.

3. Sudden jumps are only effective when V � ω0 or E � 2π�c/ea0λ, and putting the
numbers in gives E � 6 × 1010 V/m, which is too large to generate as a static field
(breakdown will occur). Even if you could produce the field it would cause many other
transitions as well.

4. The Abbe limit is λ/2 ≈ 200 nm (realistic systems are often around an order of magni-
tude worse than this).

5. For the excited state population, compare the energy gap E = hc/λ ≈ 5 × 10−19 J with
kBT ≈ 4.1 × 10−21 J at 300 K; clearly the excited state population will be negligible.

6. To get a peak electric field strength of 800 V/m in a spot of diameter 200 nm requires a
power of 13 pW; the surprisingly low power requirement largely reflects the tiny size of
the laser spot. This calculation is fairly unrealistic, both as to the field strength required
and the spot size achievable: using more realistic numbers of 10,000 V/m and a diameter
of 10µm gives a power of 5µW, which is still rather low. Significantly larger powers are
used in real quantum computers as this enables Raman transitions to be used far from
resonance.

3. Spins in magnetic fields
1. This can be worked out by brute force but it is simpler just to rescale the field. If a 90◦

rotation lasts 6µs then a 360◦ rotation lasts 24µs, and the rotation rate is 106/24 Hz.
Divide this by 500 MHz and multiply by 12 T to get 1 mT or 10 Gauss. But this is the
strength of the rotating field, and we want the oscillating field, so double this to get 2 mT
or 20 Gauss.
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2. Using E = hν with ν = 500 MHz gives an energy gap of 3.313 × 10−25 J or 2µeV.
Compare this with kBT at 300 K, which is 4.142 × 10−21 J, so the two states will be
very nearly equally occupied. A Boltzmann calculation gives fractional populations of
0.50002 and 0.49998, with an excess fractional population of 4 × 10−5.

3. In a sample of 0.2 ml of water there are about 0.2/18 moles of water, which is 6.7×1021

molecules, but each molecule has two hydrogen atoms, giving 1.34 × 1022 nuclei. Thus
the excess population is 5.35×1017 spins. For the last bit, solve the Boltzmann equation
to discover that 99% population in the lower state requires hν/kBT = 4.595, or a
temperature of 5 mK.

4. The answer depends on what is meant by “tolerate,” but suppose we insist that the
inhomogeneous broadening can be no more than 50% as large as the homogeneous
broadening, that is 0.5 Hz. To achieve this at a frequency of 0.5 GHz requires a field
homogeneous to one part in 109. Reaching this limit is difficult and expensive, but
possible over small regions of space.

5. Begin by finding the propagators for the underlying gates:

φz =
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e−iφ/2 0
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)
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1 0
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(
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)
(A.17)

and the first result is shown by direct multiplication:
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which is identical to 180x. The propagator for the second spin-echo sequence is just
the square of the above, and (−iσx)

2 = −1, which is the identity up to a global phase.
The third and fourth sequences give the same result. Direct multiplication shows that
changing the phase of both 180 pulses has no effect, but changing just one of them gives
−iσz, which is a 180z rotation. In general, using 180 pulses separated by a phase angle
is equivalent to performing a z-rotation through twice that angle.

4. Photon techniques
1. We have the general form for U (θ, φ) in equation (4.13) and a half wave plate corre-

sponds to φ = π , so

U (θ, π ) =
(

cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ − cos2 θ + sin2 θ

)
=

(
cos(2θ ) sin(2θ )

sin(2θ ) − cos(2θ )

)
.

(A.20)

Now choosing 2θ = π/2 gives U (π/4, π ) =
(

0 1
1 0

)
which is a NOT gate, while

choosing 2θ = π/4 gives

U (π/8, π ) = 1√
2

(
1 1
1 −1

)
(A.21)

which is a Hadamard gate.
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2. As the number states are all orthonormal we have

〈α|α〉 = e−|α|2
∞∑

n=0

(α∗α)n

n!
= e−|α|2 e+|α|2 = 1 (A.22)

and P(n) = e−|α|2 |α|2n/n!. Hence P(0) = e−|α|2 , P(1) = |α|2P(0), and P(n > 0) =
1 − P(0). Thus if a laser pulse contains at least one photon then the probability that it
contains exactly one photon is

P(n = 1|n > 0) = |α|2e−|α|2

1 − e−|α|2 (A.23)

and for α = √
0.1 we get P(0) = 0.9048, P(1) = 0.0905, and P(n = 1|n > 0) =

0.9508.

5. Two qubits and beyond
1. Start by writing the controlled-NOT gate as |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ X. Then note that

X = HZH, and that 1 can be written as H1H. Finally, factor out the common Hadamard
gate to leave (1 ⊗ H) · (|0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Z) · (1 ⊗ H) as desired.

2. Start from a general eigenstate |a〉|b〉 and follow through the sequence to three controlled-
NOT gates in turn using a⊕a⊕b = 0⊕b = b to simplify terms:

|a〉|b〉 → |a〉|a⊕b〉 → |a⊕(a⊕b)〉|a⊕b〉 = |b〉|a⊕b〉 → |b〉|(a⊕b)⊕b〉 = |b〉|a〉.
(A.24)

The final part follows immediately from the linearity of unitary operations. This is
normally thought of as swapping amplitudes between the two qubits, but it is often
better to think of this process as swapping the labels identifying the two qubits.

3. The matrix form of the SWAP gate ⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ (A.25)

can be obtained either by matrix multiplication or by noting directly that it swaps |01〉
and |10〉 and leaves |00〉 and |11〉 alone. Explicit calculation shows that the SWAP gate
leaves three Bell states entirely unaffected, except that the singlet state |ψ−〉 picks up a
global phase factor of −1. The result is not surprising as the Bell states are symmetric
or antisymmetric states of the two qubits as a whole, not of the individual qubits, and so
should not be affected by swapping the labels of the qubits. The global phase of −1 for
|ψ−〉 occurs because this state is antisymmetric under the exchange of qubit labels.

4. The explicit forms are

|00〉 = |φ+〉 + |φ−〉√
2

|11〉 = |φ+〉 − |φ−〉√
2

, (A.26)

|01〉 = |ψ+〉 + |ψ−〉√
2

|10〉 = |ψ+〉 − |ψ−〉√
2

. (A.27)

Just as superpositions of separable states can be entangled, so superpositions of entangled
states can be separable.



6 Answers to exercises

5. Direct calculation shows that starting from |1〉|0〉 gives |φ−〉. Similarly, starting from
|0〉|1〉 and |1〉|1〉 gives |ψ+〉 and |ψ−〉, respectively.

6. Simply apply the gates in the entangling network in reverse order to disentangle the
states. This works because both controlled-NOT and H are self-inverse; in general, you
would have to use inverse gates as well as reversing the order.

6. Measurement and entanglement
1. This problem is almost identical to the series of polarizers considered previously; the

angles on the Bloch sphere are twice those between the axes of light polarization, but
this cancels out. Hence the probability that the quantum state is always projected onto
|0〉 is Pn = [cos(π/2n)]2n, and a series expansion gives Pn ≈ 1 − π2/4n. In the limit of
very large n the quantum state will always be found in |0〉. Note that this is only a lower
bound on the probability that the final state will be |0〉, as the state could go from |0〉
to |1〉 and then back to |0〉, but in the limit of large n such double changes will be very
unlikely.

2. Ignoring global phases a Z gate will turn |ψ−〉 into |ψ+〉, while an X gate will turn it
into |φ−〉. To obtain |φ+〉 either apply both X and Z gates in either order, or note that
this combination is equivalent to Y.

3. Clearly it suffices to show that |ψ−〉 is unaffected by bilateral Hadamards and T gates
(H ⊗ H and T ⊗ T). These are easily shown by direct calculation.

4. Measurement in any basis can be achieved by applying some rotation to the qubit before
and after the measurement, and if the measurement bases are the same for each qubit
then the rotations must be the same for each qubit. But this is a bilateral rotation, and
we have just shown that |ψ−〉 is invariant under bilateral rotations. The final state after
the measurement will be affected by the second bilateral rotation, but this does not
affect the outcome of the measurements. This argument does not work for the other
four Bell states as they are not invariant under bilateral rotations: for example, |φ±〉 are
interconverted by bilateral T gates, while |φ−〉 and |ψ+〉 are interconverted by bilateral
Hadamard gates.

Part II: Quantum computation

7. Principles of quantum computing
1. The SWAP gate was explored in Part I and can be implemented using the network shown

in equation (5.12), which works for both classical and quantum inputs. The classical
CLONE network is just a single controlled-NOT gate

a a

0 a
(A.28)
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(if a = 1 then the second qubit is flipped from 0 to 1) but CLONE does not work on a
quantum computer unless the qubits are in eigenstates: the no-cloning theorem.

2. To build NOT and controlled-NOT gates from Toffoli gates just set both inputs (NOT) or
one of the two inputs (controlled-NOT) to one. To build an OR gate use De Morgan’s laws,
a OR b = NOT(NOT a AND NOT b) and implement AND using a Toffoli gate.

3. Both NOT and AND gates can be built from Fredkin gates with appropriate patterns of
inputs, though it takes a bit of thought to see why these gates work.

a a

0 a

1 NOT a

a a

0 a AND b

b (NOT a) AND b
(A.29)

The circuit for a NOT gate also copies the input a at the same time, and so implements
CLONE on a classical computer.

4. Since the Fredkin gate is a controlled-SWAP gate it can be built from the standard SWAP

network by adding an additional control to each gate, turning each controlled-NOT gate
into a Toffoli gate:

=
(A.30)

It is not possible to build a Toffoli gate using only Fredkin gates without using ancilla
bits; this is most easily seen by noting that the Fredkin gate only swaps bits or leaves
them alone, so the number of 0s and 1s in the output must be the same as in the input.
However, since the Fredkin gate is universal, there must be some construction of a
Toffoli gate using multiple Fredkin gates and ancilla bits.

5. If the control bit is 0 then the central controlled-gate is not applied to the target qubit,
which just experiences VV † = 1; if the control bit is 1 the target qubit experiences
VUV † as desired. This idea obviously generalizes to controlled-controlled-gates, and
since controlled-NOT is self-inverse we can simplify the construction in equation (A.30)
by replacing the outer Toffoli gates by simple controlled-NOT gates.

6. As previously noted the controlled-NOT gate implements the bitwise sum, that is the sum
without carry, while the carry bit is 1 if and only if both a and b are 1. There is no need
to explicitly preserve the second input as all gates applied to it are reversible.

8. Elementary quantum algorithms
1. The oracle will take the form of an f -controlled-NOT gate, and its parity can be deter-

mined in two calls with just two bits:

0 f f 1

0 f (0) ⊕ f (1)
(A.31)
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2. The circuit

(A.32)

will achieve the desired result.
3. We have already proved f11 and f01, and f00 is trivial, so the only interesting case is f10.

Using H2 = 1 the circuit can be written as

H H

H X H H X H
(A.33)

and the remaining steps follow easily by combining results for f01 and f11.
4. The amplitude amplification operator is given by

UAA = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ (A.34)

= 1

2

⎛
⎜⎜⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎟⎠ . (A.35)

Suppose the satisfying function is f00; the state after the function evaluation will be

ψ00 = 1

2

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ (A.36)

and the final state can then be evaluated by multiplication to get

UAAψ00 = 1

4

⎛
⎜⎜⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−1
0
0
0

⎞
⎟⎟⎠ , (A.37)

which is −|00〉. The other three possibilities can be evaluated in exactly the same way,
and the answers are obvious by symmetry.

5. For the case of two satisfying inputs, it is simplest to choose a concrete case again,
such as f00 and f01 matching. Then explicit matrix calculations show that no amplitude
amplification occurs: a measurement is equally likely to give any of the four possible
results. As before, this argument applies whatever the two matches are. With three
matches the situation is slightly more interesting, and amplitude amplification results in
the final state being the single non-matching input, which now is the state marked with
a unique phase.
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6. Easily shown by direct calculation. As controlled-NOT gates are self-inverse the decoding
networks can be obtained by applying the same gates in reverse order.

7. The state of the five qubits as they enter the network is

(α|000〉 + β|111〉) ⊗ |0〉 ⊗ |0〉 = α|00000〉 + β|11100〉 (A.38)

and in general we have four possible states:

|ψ0〉 ⊗ |00〉 = α|00000〉 + β|11100〉,
|ψ1〉 ⊗ |00〉 = α|10000〉 + β|01100〉,
|ψ2〉 ⊗ |00〉 = α|01000〉 + β|10100〉,
|ψ3〉 ⊗ |00〉 = α|00100〉 + β|11000〉,

(A.39)

where the subscript identifies the bit which has experienced a spin flip error (0 indicating
no error). Now run through the network of controlled-NOT gates:

|ψ0〉 ⊗ |00〉 CN14−→ α|00000〉 + β|11110〉 CN24−→ α|00000〉 + β|11100〉
CN15−→ α|00000〉 + β|11101〉 CN35−→ α|00000〉 + β|11100〉 = |ψ0〉 ⊗ |00〉,

(A.40)

|ψ1〉 ⊗ |00〉 CN14−→ α|10010〉 + β|01100〉 CN24−→ α|10010〉 + β|01110〉
CN15−→ α|10011〉 + β|01110〉 CN35−→ α|10011〉 + β|01111〉 = |ψ1〉 ⊗ |11〉,

(A.41)

|ψ2〉 ⊗ |00〉 CN14−→ α|01000〉 + β|10110〉 CN24−→ α|01010〉 + β|10110〉
CN15−→ α|01010〉 + β|10111〉 CN35−→ α|01010〉 + β|10110〉 = |ψ2〉 ⊗ |10〉,

(A.42)

|ψ3〉 ⊗ |00〉 CN14−→ α|00100〉 + β|11010〉 CN24−→ α|00100〉 + β|11000〉
CN15−→ α|00100〉 + β|11001〉 CN35−→ α|00101〉 + β|11001〉 = |ψ3〉 ⊗ |01〉.

(A.43)

The first three qubits (which are always control bits) are not changed by any of the
controlled-NOT gates. Furthermore, the states of the ancilla qubits 4 and 5 are the same
in both components of the superposition, and so can be factored out as indicated. If a
quantum state is separable then measuring one part has no effect on the other, and so the
ancillas can be measured without affecting the logical qubit. Finally, note that the four
different ancilla states are all orthonormal, and so can be perfectly distinguished.

8. From the results of the previous question it is easy to write down the error correcting
steps, as measuring the ancillas in the computational basis gives four distinct results
with corresponding actions. For example, if the ancillas are in |01〉 then the encoded
qubits are in state |ψ3〉, which can be fixed by applying a NOT gate to qubit 3; similar
results apply in the other cases. For quantum control, note that these actions can all be
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implemented using generalized Toffoli gates, but implementing all these Toffoli gates
is a lot of work. Another problem is that the ancilla qubits need to be reinitialized to |0〉
at the end; this is easy if the ancillas have been measured, as any ancillas in state |1〉 can
be reset with NOT gates.

9. In a classical code, if two errors occur on different bits then two bits have the wrong
value, and the majority vote approach “corrects” the third bit to the wrong value. (If the
same bit is flipped both times then the situation is indistinguishable from the error-free
case.) For the quantum code the state |ψL〉 is “corrected” to NOTL|ψL〉.

10. For an initial state |ψ〉 = α|0〉 + β|1〉 the relevant density matrices are

ρa = 1
2 (φ+z|ψ〉〈ψ |φ+z + φ−z|ψ〉〈ψ |φ−z) (A.44)

and

ρb = (1 − p) × |ψ〉〈ψ | + p × Z|ψ〉〈ψ |Z. (A.45)

Now φ±z = cos(φ/2)1 ∓ i sin(φ/2)Z and so

ρa = cos2(φ/2)|ψ〉〈ψ | + sin2(φ/2)Z|ψ〉〈ψ |Z (A.46)

with the other two terms canceling. Clearly ρa and ρb have the same form, and they are
identical if p = sin2(φ/2), which rearranges to various forms such as p = (1−cos φ)/2
or φ = arccos(1 − 2p).

9. More advanced quantum algorithms
1. There are four possible inputs, each of which has two possible outputs, giving a total

of 24 = 16 possible functions of which two are constant and six are balanced, with the
last eight functions being neither constant nor balanced (four give mostly 0 and four
give mostly 1). For the rest of the question we only consider the constant and balanced
cases. A single value of f (x) tells us nothing, while two values that disagree with
each other indicates a balanced function. After three queries we know the result with
certainty (either we have a disagreement, or three values are the same, and the function
is constant). Hence the minimum number of queries is two and the maximum is three.

For the average case, suppose the function is balanced and that f (x1) = 1: then f (x2)

will be 1 with probability 1/3 and 0 with probability 2/3. In the latter case we can stop;
otherwise, we will need one more query. So for a balanced function the average number
of queries required is 2/3×2+1/3×3 = 7/3, while for a constant function it is always
necessary to use three queries. If the function is chosen to be constant or balanced
with 50% probability, then the average number of queries is (7/3 + 3)/2 = 8/3. (If
the function was chosen from amongst the eight possible functions at random then the
average query count would be (6×7/3+2×3)/8 = 5/2, but this is not what was asked!)
On a quantum computer the minimum, maximum, and average query counts are all 1.

2. The angle θ can be calculated from equation (9.31) giving arctan(15/7) ≈ 28.96◦,
while θ0 is arcsin(1/

√
15) ≈ 14.96◦. The success probability is given by

Pr = sin2 (θ0 + r × θ ) (A.47)

giving P0 ≈ 0.067, P1 ≈ 0.481, P2 ≈ 0.708, and P3 ≈ 0.958.
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3. The values from the high N approximation are θ ≈ 28.65◦ (which is close to the exact
value) and θ0 = 0 (which is not). The naive formula for choosing r gives slightly too
high a value, but works well even for small N as the maximum in Pr is reasonably
broad and (fortuitously) the effects of rounding r to the nearest integer go in the right
direction when N is a low power of 2.

4. The first result is easily proven by direct calculation; the second result follows by linearity.
5. For A = �σz and B = �σx it is easy to calculate

e−iAδt/� =
(

e−iδt 0
0 eiδt

)
e−iBδt/� =

(
cos δt −i sin δt

−i sin δt cos δt

)
(A.48)

and the approximate propagators follow by direct multiplication. The exact propagator
can be calculated as

e−i(A+B)δt/� = 1√
2

(√
2 cos(

√
2δt) − i sin(

√
2δt) −i sin(

√
2δt)

−i sin(
√

2δt)
√

2 cos(
√

2δt) + i sin(
√

2δt)

)
(A.49)

either by brute force, or more subtly by noting that σz+σx = √
2H and spotting the eigen-

vectors of H geometrically. The desired results then follow by taking series expansions.

10. Trapped atoms and ions
1. The potential energy is given by

U = M

2

N∑
n=1

(
ω2

r r2
n + ω2

z z2
n

) + e2

4πε0

∑
m>n

1

|rn − rm| (A.50)

where the first group of terms is just the standard form for the potential energy of n
harmonic oscillators, written in plane polar coordinates, and the second group of terms
is the Coulomb repulsions between the ions (the second sum goes over all pairs of ions,
counting each pair only once).

2. For an ion traveling in free space the effect of the motion will be to cause Doppler shifts
in the transition frequencies. The effect will depend on the velocity distribution, but
the most common result is Doppler broadening. In a trap the motion is quantized as
vibrations within the trap, and it is necessary to consider transitions between vibrational
sublevels of each electronic level. For a strictly harmonic trap these levels are equally
spaced, with En = (n + 1

2 )hν, and transitions with �n = ±1 result in a pair of sharp
sidebands, separated from the sharp principal transition by ±hν.

3. The phase gate Uπ negates |01〉 while leaving other states unchanged, and can be
converted to the standard controlled-Z gate by applying X gates (NOT gates) to the first
qubit before and after the Uπ . Finally apply Hadamard gates to the second (target) qubit
to get a controlled-NOT gate.
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4. The first bit is just brute force:

|0〉〈0| ⊗ Z + |1〉〈1| ⊗ 1 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ = Uπ . (A.51)

Now the “massively entangled” state of two particles is just

UπH⊗2|00〉 = (|0〉〈0| ⊗ Z + |1〉〈1| ⊗ 1) × (|0〉|0〉 + |0〉|1〉 + |1〉|0〉 + |1〉|1〉) (A.52)

neglecting normalization. Multiplying this out gives

|0〉〈0|0〉 ⊗ Z|0〉 + |0〉〈0|0〉 ⊗ Z|1〉 + |0〉〈0|1〉 ⊗ Z|0〉 + |0〉〈0|1〉 ⊗ Z|1〉
+|1〉〈1|0〉 ⊗ 1|0〉 + |1〉〈1|0〉 ⊗ 1|1〉 + |1〉〈1|1〉 ⊗ 1|0〉 + |1〉〈1|1〉 ⊗ 1|1〉. (A.53)

As usual all the inner products can be replaced by 0 or 1, and dropping the (pointless)
1 operators this simplifies to

|0〉Z|0〉 + |0〉Z|1〉 + |1〉|0〉 + |1〉|1〉 = (|0〉Z + |1〉)(|0〉 + |1〉). (A.54)

The corresponding state for three atoms is

(|0〉Z + |1〉)(|0〉Z + |1〉)(|0〉 + |1〉) (A.55)

and multiplying this out and using Z|0〉 = |0〉 and Z|1〉 = −|1〉 gives

|0〉|0〉|0〉−|0〉|0〉|1〉−|0〉|1〉|0〉−|0〉|1〉|1〉+|1〉|0〉|0〉−|1〉|0〉|1〉+|1〉|1〉|0〉+|1〉|1〉|1〉,
(A.56)

matching the result given (neglecting normalization of course).

11. Nuclear magnetic resonance
1. From the exercises in Part I we know that a 12 T field gives a 1H Larmor frequency

of about 500 MHz, and so we need a field difference of 100 ÷ (500 × 106) × 12 =
2.4×10−6 T per Å, or 24,000 T/m. Generating field gradients of this size is challenging.

2. There are two reasonable approaches to this. The first is to use perturbation theory,
writing the Hamiltonian as H = H0 + H1 where

H0/� = ω1
σ1z

2
+ ω2

σ2z

2
(A.57)

and

H1/� = ω12
σ1xσ2x + σ1yσ2y + σ1zσ2z

4
. (A.58)

First-order perturbation theory says that the eigenstates are unaffected by the coupling,
and the eigenvalues are changed by the diagonal matrix elements of the perturbation,
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that is just the z terms. Thus to first order the Heisenberg coupling can be replaced by
an Ising coupling. To check that this approach is valid we need the first-order effect on
the eigenvectors, and in general the other states get mixed in according to

a(1)

k = 〈k|H1|m〉
Em − Ek

. (A.59)

The only off-diagonal elements in the perturbation connect the two central states; these
are of size 1

2 ω12 and so mixing is negligible if∣∣∣∣ ω12

ω1 − ω2

∣∣∣∣ � 1. (A.60)

An alternative approach is to diagonalize the full Hamiltonian and then take appropriate
limits to show that the eigenvalues can be approximated by the diagonal elements.

3. As in the previous chapter the critical step is to make a standard controlled-Z gate, as
this can be converted to a controlled-NOT gate with a couple of Hadamard gates. Now the
controlled-Z can be decomposed (up to an irrelevant global phase) as evolution under
the Ising coupling for a time τ = π/ω12 together with a −90z rotation on both qubits.
The Ising term can be implemented with a spin echo as shown in equation (11.12). It
might be argued that the −90z gates are not standard, but these can be replaced by a
sequence of three S gates, where S = √

Z is a standard gate. For a NOT gate that takes the
same length of time, start from a spin echo which refocuses everything, and put a NOT

gate on the beginning or end; if you are careful this NOT gate will cancel an earlier one.
4. Assuming the couplings take the Ising form, the Hamiltonian is

H/� = 1
2 (ω1σ1z + ω2σ2z + ω3σ3z) + 1

4 (ω12σ1zσ2z + ω13σ1zσ3z + ω23σ2zσ3z) . (A.61)

A possible spin-echo network is

τ/4

X

X τ/4

X

τ/4

X

X τ/4

X

(A.62)

5. To reduce an apparent Larmor frequency, combine a period of free precession with a
period under a spin echo. To change the sign of a Larmor frequency, surround a period
of free precession with NOT gates. Any single component of a Hamiltonian, including
couplings, can be rescaled in the range ±1, but simultaneously rescaling multiple
elements gets complicated and is not always possible.

Part III: Quantum communication

13. Basics of information theory
1. The number of substrings to be encoded is the sum of all substrings Ns = NAA+NAB+NB

and to be consistent with the average number of messages A and B we must also have
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pNo = 2NAA + NAB and (1 − p)No = NAB + NB. A substring AB in the original message
will be encoded as 10 whenever it is part of a sequence of messages of the form BA . . . AB
with an odd number 2n + 1 of As. The probability for such a sequence is (1 − p)2 p2n+1

and we therefore obtain the overall average number of encodings of a substring AB as

NAB = No(1 − p)2 p
∞∑

n=0

p2n = Nop(1 − p)

1 + p
.

The values for NAA and NB and No immediately follow, and the probabilities then follow
as pAA = NAA/Ns, pAB = NAB/Ns, and pB = NB/Ns.

2. We use pC = 1 − pA − pB and maximizing the Shannon entropy gives pA = pB = pC =
1/3. Its maximum is given by H (X ) = log2(3) bits.

3. One message contains H (X ) = 7/4 bits of information. We choose: A = 0, B = 10,
C = 110, and D = 111. The average message length is 7/4 and the encoding is
thus optimal. Each first bit of a message encoding has probabilities p0 = pA = 1/2 and
p1 = pB+pC +pD = 1/2. The message is encoded with at least two bits with probability
1/2 and the second bit has probabilities p0 = 2pB = 1/2 and p1 = 2(pC + pD) = 1/2.
With overall probability 1/4 there is a third bit in the string which has probabilities
p0 = 4pC = 1/2 and p1 = 4pD = 1/2. Each bit in the string has a probability of 1/2
of being in states 0 and 1 as required for an optimal code.

4. One message contains H (X ) = 4 log2(3)/3 bits of information. This corresponds to
H (X ) = 4/3 trits found by using log3 instead of log2 when working out the entropy.
We choose A = 0, B = 1, C = 20, D = 21, and E = 22 and find the average length
of an encoded message to be 4/3 trits, that is, this encoding is optimal. Each trit has a
probability of 1/3 of being in states 0, 1 and 2, which can be worked out similarly to
Exercise 13.3.

5. The probability of having values x for X and y for Y is given by p(x, y) = p(y|x)p(x)

if local realism may be assumed. Furthermore,

H (X ,Y ) = −
∑
x,y

p(x, y) log2(p(x)p(y|x))

= −
∑

x

p(x) log2(p(x)) −
∑
x,y

p(x, y) log2(p(y|x))

= H (x) −
∑
x,y

p(x, y) log2(p(y|x))

and therefore

H (Y |X ) = −
∑
x,y

p(x, y) log2(p(y|x)) ≥ 0,

since p(x, y) ≥ 0 and − log2(p(y|x)) ≥ 0. The conditional entropy H (Y |X ) is only
equal to zero if Y is a deterministic function of X , that is, p(y|x) only takes on values 0
and 1.
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6. The joint probabilities are p(A, A) = p(1 − �), p(A, B) = p�, p(B, A) = (1 − p)�, and
p(B, B) = (1 − p)(1 − �). The derivative of the mutual information is given by

dH (X : Y )

dp
= (2� − 1) log2

(
� + p − 2�p

1 − � − p + 2�p

)
.

This is dH (X : Y )/dp = 0 for p = 1/2, consistent with the symmetry of the channel
which thus works best for p = 1/2. The channel capacity is given by

C(N ) = log2(2 − 2�) + � log2

(
�

� − 1

)
,

and takes on the value of C(N ) = 1 for � = 0 and for � = 1, showing that the channel
is ideal in these limiting cases. At � = 1/2 we find C(N ) = 0, that is, no information
can be transmitted in this case.

14. Quantum information
1. The reduced states are ρA = ρB = 1/2. This is the same for each Bell state because

there exist local operations which turn the Bell states into each other. For instance,
σz ⊗ 1|�+〉 = |�−〉. In any Bell state S(ρAB) = 0 while S(ρA) = S(ρB) = 1. A Bell
state thus contains mutual information of S(ρA : ρB) = 2 and negative conditional
entropy.

2. The Bell states are orthogonal and thus p1 = p2 = p3 = p4 = 1/4 yielding S(ρAB) =
log2(4) = 2, which is the maximum possible entropy. That is, the state is the maximally
mixed state ρAB = I/4. It can therefore be written as

ρAB = (|00〉〈00| + |01〉〈01| + |10〉〈10| + |11〉〈11|)/4

and is not entangled. The entropies of the reduced states, which are also maximally
mixed, are given by S(ρA) = log2(2) = 1 and S(ρB) = log2(2) = 1.

Repeating the calculation for ρ̃AB gives

ρ̃AB = (|ψ−〉〈ψ−| + |φ−〉〈φ−|)/2

= ((|01〉 − |10〉)(〈01| − 〈10|) + (|00〉 + |11〉)(〈00| + 〈11|))/4

and therefore S(ρ̃AB) = log2(2) = 1. The reduced density operators and their entropies
are

ρ̃A = (|0〉〈0|+|1〉〈1|+|0〉〈0|+|1〉〈1|)/4 = (|0〉〈0|+|1〉〈1|)/2, S(ρ̃A) = log2(2) = 1,

ρ̃B = (|0〉〈0|+|1〉〈1|+|0〉〈0|+|1〉〈1|)/4 = (|0〉〈0|+|1〉〈1|)/2, S(ρ̃B) = log2(2) = 1.

We obtain S(ρ̃AB) = S(ρ̃A) = S(ρ̃B) and S(ρA|ρB) = 0, S(ρA : ρB) = 1, and thus
cannot decide whether the state is entangled or not from the entropies.
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We write the state in matrix form in the computational basis

ρ̃AB = (|01〉〈01| + |10〉〈10| + |00〉〈00| + |11〉〈11| − |01〉〈01| − |10〉〈10|

+ |00〉〈11| + |11〉〈00|)/4 =

⎛
⎜⎜⎝

1/4 0 0 1/4
0 1/4 −1/4 0
0 −1/4 1/4 0

1/4 0 0 1/4

⎞
⎟⎟⎠ .

By using |+′〉 = (|0〉 + i|1〉)/√2 and |−′〉 = (|0〉 − i|1〉)/√2 we find

ρ̄AB = (| +′ −′〉〈+′ −′ | + | −′ +′〉〈−′ +′ |)/2

=

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1
i
i
1

⎞
⎟⎟⎠ (

1 i −i 1
) +

⎛
⎜⎜⎝

1
i

−i
1

⎞
⎟⎟⎠ (

1 −i i 1
)
⎤
⎥⎥⎦ 1

8

ρ̄AB =

⎛
⎜⎜⎝

1/4 0 0 1/4
0 1/4 −1/4 0
0 −1/4 1/4 0

1/4 0 0 1/4

⎞
⎟⎟⎠ = ρ̃AB.

The state is thus an incoherent mixture of two product states and not entangled.
Remark: Calculating the partial transpose of ρ̃AB we find

ρ̃
TB
AB = (|�+〉〈�+| + |�−〉〈�−|)/2.

This is a valid density operator and therefore has no negative eigenvalues, that is, the
state is not entangled.

3. The density operators can be written as ρA = ∑
j pA

j |ψ j〉〈ψ j| and ρB = ∑
n pB

n |φn〉〈φn|.
The eigenvectors of the density operator are thus |ψ j〉 ⊗ |φn〉 with a probability of
pA

j pB
n , where pA

j are the eigenvalues (probabilities) of the density operator ρA and pB
n

are the eigenvalues of ρB. We can thus write S(ρAB) = −∑
j,n pA

j pB
n log2(pA

j pB
n ) =

−∑
j,n pA

j pB
n log2(pB

n )−∑
j,n pA

j pB
n log2(pA

j ) = −∑
n pB

n log2(pB
n )−∑

j pA
j log2(pA

j ) =
S(ρA) + S(ρB).

4. If ρAB = |�A〉 〈�A| ⊗ |�B〉 〈�B| then S(ρAB) = 0, S(ρA) = 0 and also S(ρB) = 0. Thus
S(ρA|ρB) = 0.

If S(ρA|ρB) ≥ 0 then

0 ≤ S(ρA|ρB) = S(ρAB) − S(ρB) = −S(ρB) ≤ 0,

since S(ρAB) = 0 for any pure state. Therefore 0 ≤ −S(ρB) ≤ 0 and so S(ρB) = 0 and
therefore ρB is a pure state. This means that ρAB = ρA ⊗ ρB and since ρAB is pure we
also have a pure ρA. It follows that if a pure state cannot be written in this form, and
thus is entangled, it must have a conditional entropy smaller than zero.

5. After undergoing both channels the state of the systems is ρAB = � |00〉 〈00| + (1 −
�)

∣∣�−〉 〈
�−∣∣ with eigenvalues � and 1 − �. The mutual information is thus given by

S(ρA : ρB) ≈ 1.22 for � = 1/5.
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6. If distance L needs to be covered by these channels then �a = 1−e−γ L for the asymmetric
channel while �s = 1 − e−γ L/2 for the symmetric channel. By comparing the mutual
information created in each case we find that the asymmetric channel performs slightly
better for γ L � 0.63 and the symmetric channel becomes better for larger distances.

15. Quantum communication
1. The phase shift creates the state |�〉 = (eiφ|ab〉+|ba〉)/√2. The beam splitters transform

the state according to

|in〉1 → 1√
2
(|out〉3 + |out〉4) and |in〉2 → 1√

2
(|out〉3 − |out〉4).

The state after the beam splitter is therefore

|�〉 = (1 + eiφ )(|A3B3〉 − |A4B4〉) + (1 − eiφ )(|A3B4〉 − |A4B3〉)√
8

and the modulus squared of the individual amplitudes yields the probabilities for
coincidence clicks in the corresponding detectors. These are pA3,B3 = pA4,B4 =
cos2(φ/2)/2 and pA3,B4 = pA4,B3 = sin2(φ/2)/2. No other coincidences will be de-
tected in an ideal experiment.

2. In an individual run the state after the phase shifter is |�〉 = (ei(φ+ϕ)|ab〉 + |ba〉)/√2
and we now need to average over all possible values for the unknown phase, which is
equally distributed in [0, 2π [ to obtain the density matrix

ρ = 1

2

∫ 2π

0
dϕ(ei(φ+ϕ)|ab〉 + |ba〉)(e−i(φ+ϕ)〈ab| + 〈ba|) = 1

2
(|ab〉 〈ab| + |ba〉 〈ba|).

This is independent of the phase shift φ.
3. The beam splitters transform the density matrix ρ from Example 15.3 into

ρD = 1

4
(|A3B3〉 〈A3B3| + |A3B4〉 〈A3B4| + |A4B3〉 〈A4B3| + |A4B4〉 〈A4B4|

− (|A3B4〉 〈A4B3| + |A3B3〉 〈A4B4| + h.c.), (A.63)

where h.c. denotes the Hermitian conjugate of the first terms in the bracket. We therefore
obtain pA3,B3 = pA4,B4 = 1/4 and pA3,B4 = pA4,B3 = 1/4 and again no other coincidences
will be detected in an ideal experiment.

4. We first continue from Example 15.1 by considering the case of a symmetric spatial
wavefunction (|ul〉 + |lu〉)/√2. The BS turns the wavefunction into

(|u〉 + |l〉)(|u〉 − |l〉) + (|u〉 − |l〉)(|u〉 + |l〉)√
8

= |uu〉 − |ll〉√
2

.

Both photons thus follow the same path after the BS.
The overall state containing spatial and polarization degrees of freedom must be

symmetric and so the Bell states are written as

|�−〉 = 1

2
(|HV 〉 − |V H 〉)(|ul〉 − |lu〉) |�+〉 = 1

2
(|HV 〉 + |V H 〉)(|ul〉 + |lu〉),

|�−〉 = 1

2
(|HH 〉 − |VV 〉)(|ul〉 + |lu〉) |�+〉 = 1

2
(|HH 〉 + |VV 〉)(|ul〉 + |lu〉).
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The photons must thus follow the same arms for all Bell states except |�−〉. Clicks in
two different arms thus indicate state |�−〉, while clicks in two detectors of the same
arm are caused by |�+〉. If only one detector clicks1 then either of the states |�±〉 was
measured. These two cannot be distinguished.

If photons were fermions the Bell states would be

|�−〉 = 1

2
(|HV 〉 − |V H 〉)(|ul〉 + |lu〉) |�+〉 = 1

2
(|HV 〉 + |V H 〉)(|ul〉 − |lu〉),

|�−〉 = 1

2
(|HH 〉 − |VV 〉)(|ul〉 − |lu〉) |�+〉 = 1

2
(|HH 〉 + |VV 〉)(|ul〉 − |lu〉).

The same arguments as above apply and again lead to the conclusion that |�−〉 and
|�+〉 can be identified while |�±〉 are not distinguishable.

5. Four messages A, B, C, and D can faithfully be transmitted in one use of the channel
with the highest mutual information achieved when they are chosen with probability
1/4 each, giving joint probabilities of p(A, A) = p(B, B) = p(C,C) = p(D, D) = 1/4
and thus C(N ) = 2 bits.

For an imperfect Bell state analyzer only three messages can be encoded. The channel
capacity is thus C(N ) = log2(3) = 1.58 bits.

6. Follow the descriptions of these schemes in the main text with the appropriate replace-
ments for the Bell states.

7. From Example 15.2 we know that before classical communication the state of Bob’s
qubit is

ρ3 = 1

2
(|0〉 〈0| + |1〉 〈1|) .

This is maximally mixed and does not depend on α or β. No information about the state
is known to Bob before the measurement outcome is revealed.

The initial state is unknown to Alice and she only possesses one copy of the qubit.
Alice has no way of measuring the state of her qubit since any such attempt would
inevitably project the qubit into an eigenstate of the measured operator and hence
destroy the original state.

8. For states |�±〉 Bob will apply the unitary operation intended for |�∓〉 with probability
1/2. In these error cases Bob’s operation converts his qubit into state |ψE〉 = α|0〉−β|1〉.
After Bob has applied his unitary operation the overall state is

ρ̃123 = (|φ+〉〈φ+|/8 + |φ−〉〈φ−|/8 + |ψ−〉〈ψ−|/4 + |ψ+〉〈ψ+|/4) ⊗ |ψ〉〈ψ |
+ (|φ+〉〈φ+| + |φ−〉〈φ−|) ⊗ |ψE〉〈ψE |/8 .

We can now again trace over particles 1, 2 yielding ρ̃1 = 3|ψ〉〈ψ |/4+|ψE〉〈ψE |/4. The
resulting fidelity with the original state is

F = 〈ψ |ρ̃1|ψ〉 = 3/4 + 1/4|〈ψE |ψ〉|2 = 3/4 + |1 − 2|β|2|/4,

with a maximum value of Fmax =1 for |β|2 = 0 or |β|2 =1, that is, states on the north and
south pole of the Bloch sphere, |ψ〉 = |0〉 or |ψ〉 = |1〉. The minimum value Fmin = 3/4

1 Two clicks in the case of photon number-resolving detectors.
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is obtained for |β|2 = 1/2, which are all the states on the equator of the Bloch sphere
|ψ〉 = (|0〉 + eiφ|1〉)/√2 with arbitrary phase φ ∈ [0, 2π [.

Remark: One may argue that the imperfect beam splitter does not project into Bell
states |�±〉 but rather into states |00〉 and |11〉. In this case the density operator after
Bob’s operation is then

ρ̃123 = 1

4
|ψ〉 〈ψ | (∣∣�−〉 〈

�−∣∣ + ∣∣�+〉 〈
�+∣∣ + 1

2
(|α|2 |000〉 〈000| + |β|2 |111〉 〈111| .

After tracing out particles 2 and 3 we obtain ρ1 = 1
2 |ψ〉 〈ψ | + |α|2

2 |0〉 〈0| + |β|2
2 |1〉 〈1|.

Both states are identical to the ones written down above, as can easily be checked by
writing them out in the computational basis.

9. This question is solved by carrying out the calculations about teleportation in the main
text, making the replacements α → |φ〉4/

√
2 and β → |ϕ〉4/

√
2. The calculation also

works for mixed-density operators.

16. Violating EPR
1. The observable QS = −σ (1)

z (σ (2)
z + σ (2)

x )/
√

2 has an expectation value given by

〈QS〉 = 〈�−|QS|�−〉 = −(〈01|σ (1)
z σ (2)

z |01〉 + 〈10|σ (1)
z σ (2)

z |10〉)/
√

8 = 1/
√

2.

Similarly for RS = −σ (1)
x (σ (2)

z + σ (2)
x )/

√
2 we find

〈RS〉 = 〈�−|RS|�−〉 = (〈01|σ (1)
x σ (2)

x |10〉 + 〈10|σ (1)
x σ (2)

x |01〉)/
√

8 = 1/
√

2.

Also, for RT = σ (1)
x (σ (2)

z − σ (2)
x )/

√
2,

〈RT 〉 = 〈�−|RT |�−〉 = (〈01|σ (1)
x σ (2)

x |10〉 + 〈10|σ (1)
x σ (2)

x |01〉)/
√

8 = 1/
√

2.

and for QT = σ (1)
z (σ (2)

z − σ (2)
x )/

√
2,

〈QT 〉 = 〈�−|QT |�−〉 = −(〈01|σ (1)
z σ (2)

z |01〉 + 〈10|σ (1)
z σ (2)

z |10〉)/
√

8 = −1/
√

2.

Therefore we get a violation of the CHSH inequality 〈QS〉 + 〈RT 〉 + 〈RS〉 − 〈QT 〉 ≤ 2.
2. The state |ψ−〉 is obtained from |φ−〉 by applying the operator σ (2)

x and thus Alice may
measure the same observables Q and R while Bob should measure S′ = σ (2)

x Sσ (2)
x = T

and T ′ = σ (2)
x Tσ (2)

x = S, that is, S and T change their roles.
3. As usual we identify |H 〉 and |V 〉 with |0〉 and |1〉 in the Z basis and then denote the

corresponding basis states in the X basis by |H ′〉 and |V ′〉 and in the Y basis by |R〉
and |L〉. Using

√
2|H ′〉 = |H 〉 + |V 〉, √

2|V ′〉 = |H 〉 − |V 〉 and
√

2|R′〉 = |H 〉 + i|V 〉,
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√
2|L〉 = |H 〉 − i|V 〉 we find

1√
2

(|HHH 〉 + |VVV 〉) = 1

4
(|(H ′ + V ′)(R + L)(R + L)〉

−|(H ′ − V ′)(L − R)(L − R)〉)
= 1

4
(|H ′RR〉 + |H ′RL〉 + |H ′LR〉 + |H ′LL〉

+ |V ′RR〉 + |V ′RL〉 + |V ′LR〉 + |V ′LL〉
− |H ′RR〉 + |H ′RL〉 + |H ′LR〉 − |H ′LL〉
+ |V ′RR〉 − |V ′RL〉 − |V ′LR〉 + |V ′LL〉)

= 1

2
(|H ′RL〉 + |H ′LR〉 + |V ′LL〉 + |V ′RR〉),

and by symmetry we find in the other bases

1√
2

(|HHH 〉 + |VVV 〉) = 1

2
(|RH ′L〉 + |LH ′R〉 + |LV ′L〉 + |RV ′R〉),

1√
2

(|HHH 〉 + |VVV 〉) = 1

2
(|RLH ′〉 + |LRH ′〉 + |LLV ′〉 + |RRV ′〉).

Therefore, measuring two photons in circular R, L polarization the state of the third
photon is fixed; if the two results are identical (RR or LL) then the third photon is in
state V ′ and for opposite polarizations (LR or RL) the polarization of the third photon is
H ′. Let us consider a measurement in the XXX basis. Quantum mechanically we find

1√
2

(|HHH 〉 + |VVV 〉) = 1

4
(|(H ′ + V ′)(H ′ + V ′)(H ′ + V ′)〉

+ |(H ′ − V ′)(H ′ − V ′)(H ′ − V ′)〉)
= 1

2
(|H ′H ′H ′〉 + |H ′V ′V ′〉 + |V ′H ′V ′〉 + |V ′V ′H ′〉).

Which outcomes are possible if the polarizations are elements of reality? The permuta-
tions of |GHZ〉 above imply that if H (V ) is obtained for one photon, the other two have
to have opposite (identical) circular polarization. Imagine we find V and V for photons
2 and 3. Since 3 is V , 1 and 2 have to have identical circular polarization. Also, since
2 is V , 1 and 3 have to have identical circular polarization. If all of these are elements
of reality, then all photons have identical circular polarization. Thus photon 1 needs to
carry polarization V . We conclude that |VVV 〉 is a possible outcome. Similarly, one can
verify that the only four possible outcomes are

|V ′V ′V ′〉 |H ′H ′V ′〉 |H ′V ′H ′〉 |V ′H ′H ′〉.
Local realism and quantum mechanics predict opposite results in all cases!

4. In order to answer this question we need to follow Example 16.3. We find that 1/2
of the events will not lead to the right number of clicks in T . Another factor of 1/2
comes from requiring a single click in D3 and the final stage of the analysis gives
another factor of 1/2. Therefore we overall find that the probability is 1/8. Combining
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this with the requirement to produce two entangled pairs, the overall probability is
p = 10−6/8 = 1.25 × 10−7.

17. Quantum cryptography
1. (a) Alice and Bob will choose the matching bases for 50% of the qubits. This gives a

key generation rate of 500 bits per second on average.
(b) If an eavesdropper is present the number of intercepted qubits n to be compared

for detecting Eve with probability P is n = log2(1 − P)/ log2(pr), where pr is the
probability of Eve not affecting the bit value. Eve intercepts each bit with probability
1/2 and changes intercepted bits with probability 1/4. This leads to a probability of
pr = 7/8 for a bit compared by Alice and Bob to not be affected by the presence of Eve,
and thus ncompare = log2(1 − P)/ log2(7/8) = 51.7 ≈ 52.

Out of the key of 1000 bits established in two seconds, Alice and Bob need to
sacrifice ncompare = 52 bits. This gives a key generation rate of 474 bits/sec. In two
seconds Eve measured 1000 qubits. On average, 526 of them were discarded or used
for comparison by Alice and Bob ⇒ 474 bits in the key remain, each with probability
3/4 of being correct, resulting in 89 bits of mutual information. (H (X : Y ) = 1 +
1 − 2(log2(8) + 3 log2(8/3))/8) = 0.1887.) Alice and Bob end up with 948 bits,
each pair agreeing with probability 7/8 and thus a mutual information of 433 bits
(H (X : Y ) = 1 + 1 − 2(log2(16) + 7 log2(16/7))/16) = 0.456).

2. Measuring at an angle φ corresponds to projecting onto the states |φ+〉 = cos(φ)|0〉 +
sin(φ)|1〉 with eigenvalue +1 and |φ−〉 = − sin(φ)|0〉+ cos(φ)|1〉 with eigenvalue −1,
as shown in Example 16.2. Thus we have

〈φ−|0〉 = − sin φ 〈φ−|1〉 = cos φ 〈φ+|0〉 = cos φ 〈φ+|1〉 = sin φ

and find for P±,± = 〈φ±, φ±| �−〉 〈
�−∣∣ φ±, φ±〉

P++(φA, φB) = 1

2
(cos(φA) sin(φB) − sin(φA) cos(φB))2 = 1

2
sin2(φA − φB),

P+−(φA, φB) = 1

2
(cos(φA) cos(φB) + sin(φA) sin(φB))2 = 1

2
cos2(φA − φB),

P−+(φA, φB) = 1

2
(− sin(φA) sin(φB) − cos(φA) cos(φB))2 = 1

2
cos2(φA − φB),

P−−(φA, φB) = 1

2
(− sin(φA) cos(φB) + cos(φA) sin(φB))2 = 1

2
sin2(φA − φB).

Therefore

E(φA, φB) = P++(φA, φB) + P−−(φA, φB) − P+−(φA, φB) − P−+(φA, φB)

= − cos(2(φa − φb)).

We can now compare this with a direct calculation of the expectation value:

E(φA, φB) = 〈�−|σφA ⊗ σφB |�−〉 = − cos(2(φa − φb)).
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3. A change in the path length (which is much shorter than the coherence length and thus
keeps the spatial overlap of the photons at the beam splitter close to one) results in a
phase shift that adds directly to φA. The detector which should ideally not click will
now click with probability sin2(�φ), and the other detector with probability cos2(�φ).
Averaging over the equally distributed phases we find, for the probability �p of a click
in the wrong detector,

�p =
∫ π/20

−π/20
d�φ sin2(�φ) ≈ 0.26% .

4. In the setup shown in Figure 17.1(b) the operations carried out by Alice are described
by

|0〉 → 1√
2

(|0,�〉 + eiφA |1〉) → 1

2

(|0,�〉 + |1,�〉 + eiφA (|0〉 − |1〉)) .

Here � denotes a delay with respect to the original mode larger than the coherence
length. Only states in the lower arm (|1〉 and |1,�〉) are kept. At Bob’s place the state is
manipulated further:

1√
8

(|0,�〉 − |1,�〉 − eiφA (|0〉 − |1〉))
→ 1√

8

(
eiφB |0,�〉 − |1, 2�〉 − eiφA (|0〉 − |1,�〉)) .

Only those terms with a delay � lead to interference and the others are discarded. Thus
we obtain the state

1√
8

(
eiφB |0,�〉 + eiφA |1,�〉) .

In this setup both pulses travel along the same fiber and variations (slow on the time
scale of the delay �) in the phase only contribute an irrelevant global phase.

This state can be used as described in the main text for the setup in Figure 17.1(a) to
realize the BB84 protocol. Note the normalization of the state, which indicates that this
protocol only succeeds 1/4 of the time with single photons.
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