FINAL example 2

SI-MKS
Speed of light in free space ¢ = 299792458 x 10° m s
Planck’s constant h = 6.58211889 x 10 '° eV s
h = 1.054571596 x 107 J s
Electron charge e = 1.602176462x 107" C
Electron mass m, = 9.10938188 x 10~ kg
Neutron mass m, = 1.67492716 x 10" kg
Proton mass m, = 1.67262158 x 107 kg
Boltzmann constant ks = 1.3806503 x 102 1K"
ky = 8.617342x 10" eV K
Permittivity of free space €, = 8.8541878 x 10 " F m""
Permeability of free space Lo = 4m % 10"Hm'
Speed of light in free space c=1/ m
Avagadro’s number N, = 6.02214199 x 10” mol '
Bohr radius ag = 0.52917721x10 ’m
ay = 475807;;12
mye
Inverse fine-structure constant o' = 137.0359976
ol = 47123?10

Applied quantum mechanics



PROBLEM 1
The first four lowest energy states of a one-dimensional harmonic oscillator with characteristic fre-
quency ®, are subject to the perturbation

-1
1 0 —= 0
WOO WOI WOZ W03 /\/E
W = Wio Wi Wi, Wis| _ Aho, 00 0 O
Wi Wor Wy W ;1_ l 0
2
Wi Wy Wy, Wi J2
L0 0 0 0]
where A « 1.

(a) Find the new eigenenergies to first-order in time-independent perturbation theory. (50%)
(b) Find the new eigenenergies to second-order in time-independent perturbation theory. (50%)

PROBLEM 2
In first-order time-dependent perturbation theory a particle initially in eigenstate |n) of the unper-

turbed Hamiltonian scatters into state |m) with probability |am(t)|2 after the perturbation W(x, t) is

applied at time ¢ = 0.
(a) Derive the expression for the time-dependent coefficient
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where the matrix element W,,, = (m|W(x, ¢)|n) and ho,, = E, —E, is the difference in eigenen-

ergies of the states |m) and |n) . (40%)

(b) A particle in a continuum system described by Hamiltonian IEIO is prepared in eigenstate |n)

with eigenenergy E, = A, . Consider the effect of a perturbation turned on at time ¢+ = 0 that is
harmonic in time such that I;V(x, t) = V(x)cos(mwt), where V(x) is the spatial part of the potential
and o is the frequency of oscillation. Show that the scattering rate in the static limit (00 — 0) is

given by Fermi’s golden rule rl: 27“|W,,”,|2D(E)8(E,,,7En), where the matrix element

W,n = {(m| I;V(x, t)|n) couples state |n) to state |m) via the static potential V(x), the density of
final continuum states is D(E), and 8(E,, — E,) ensures energy conservation. (50%)

(c) Justify the use of time-dependent perturbation theory to describe an electron scattering from
a static potential that has no explicit time dependence. (10%)




PROBLEM 3
A potential V(x, y) is infinite except in a region 0 <x <L, and 0 <y <L where V(x,y) = 0.

(a) Write down the time-independent Schrodinger equation for an electron confined to motion in
the potential and solve for the eigenfunctions and eigenenergies. (20%)

(b) What is the degeneracy of the ground state and what is the degeneracy of the first excited
state? (10%)

(c) The system is perturbed by introducing a constant potential W= Vo = 0.1 eV in aregion

for which 0 <x < ]E‘, O<y <§, and L = 3 nm. The perturbation W = 0 elsewhere. Use first-

order perturbation theory to find the numerical value of the new ground state energy. (30%)
(d) What are the numerical values of the new eigenenergies of the first excited state? What are
the new eigenfunctions of the first excited state? (40%)

You may wish to use the relation 2sin(0)sin(¢) = cos(0—¢)—cos(0+¢)

PROBLEM 4
(a) The time-dependence of the expectation value of an operator A is found from %(A) . What
general conclusions may be drawn concerning time-dependence of expectation value an operator

A that commutes with a Hamiltonian used to describe a physical system? (40%)

(b) Suppose a Hamiltonian with eigenfunctions ¢ and ¢, and corresponding eigenvalues £ and
E, does not commute with an operator 1; . The operator 1; has eigenfunctions u, = (¢, + )/ 2
and u, = (¢, —¢,)/ J2 and corresponding eigenvalues a; and a,. Attime ¢ = 0 the system is in
state W = u, . Show that at time 7 the state of the system is y() = (¢1eiiE't/ﬁ+ ¢2eiiE2t/ﬁ)/ J2 and

find how the expectation value of the operator A varies with time. (60%)
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