FINAL example 4

SI-MKS

Speed of light in free space ¢ = 299792458 x 10° m s
Planck’s constant h = 6.58211889 x 10 '° eV s

h = 1.054571596 x 107 J s
Electron charge e = 1.602176462x 107" C
Electron mass m, = 9.10938188 x 10~ kg
Neutron mass m, = 1.67492716 x 10" kg
Proton mass m, = 1.67262158 x 107 kg
Boltzmann ky = 1.3806503 x 10 > J K
constant ky = 8.617342x 10" eV K
Permittivity of free space €, = 8.8541878 x 10 " F m""
Permeability of free space Lo = 4m % 10"Hm'
Speed of light in free space c=1/ m
Avagadro’s number N, = 6.02214199 x 10” mol '
Bohr radius ag = 0.52917721x10 ’m
o = 4ngozf

moe

Inverse fine-structure constant o' = 137.0359976
ol = 4n2§hc
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PROBLEM 1
(a) In a uniform dielectric the dielectric function is a constant over space but depends on wave vec-

tor so that ¢ = g(q) . Given an impurity potential at position r due to a charge e at position R; is
762

4mg,|r—R)|’
(b) Use the expression for v(q) and Fermi's Golden rule to evaluate the total elastic scattering

rate for an electron of initial energy E£(K) due to a single impurity in a dielectric with dielectric func-

v,(r-R;) = derive an expression for v(q) . (30%)

tion € = g(q) . Describe any assumptions you have made. (30%)

(c) Extend your calculation to include elastic scattering of an electron energy £ moving in the x-
direction in the conduction band of a semiconductor with effective electron mass m~ = 0.07 x my .
The electron is incident on two identical ionized impurities, one at position x = 0 nm and the
other at x = 20 nm. The semiconductor has low frequency relative permittivity €, = 13.2.
Explain you results. (40%)

PROBLEM 2
In first-order time-dependent perturbation theory a particle initially in eigenstate |#) of the unper-

turbed Hamiltonian scatters into state |m) with probability |am(t)|2 after the perturbation W(x, ¢) is
applied at time ¢ = 0.
(a) Derive the expression for the time-dependent coefficient

t'=t

10

a() = 3 [ W™ ar

t'=0

where the matrix element W,,, = (m|W(x, ¢)|n) and ho,, = E, —E, is the difference in eigenen-
ergies of the states |m) and |n) . (30%)

(b) An electron is in the ground state of a one-dimensional rectangular potential well for which
V(x) = 0 intherange 0 <x <L and V(x) = oo elsewhere. It is decided to control the state of the

2,2
/T

electron by applying a pulse of electric field E(¢) = Eje ' in the x-direction starting at time
t = 0, where 1 is a constant and |E| is the maximum strength of the applied electric-field. Calcu-
late the probability P,, that the particle will be found in the first excited state in the long time limit,
t— 0. (30%)

(c) If the electron is in a semiconductor and has an effective mass m = 0.07 x m,, where m,
is the bare electron mass, and the potential well is of width L = 10 nm, calculate the minimum

value of |E | for which P, = 1. Comment on your result. (40%)

= s
You may wish to make use of the standard integral I e “dx = % ﬁ .
a

t'=0




PROBLEM 3

A two-level system described by Hamiltonian IZIO has eigenstates |1) and |2) with energy separa-
tion hw, = E,—E,. The system is initially in its ground state |1) and at time #> 0 it is illumi-
nated by a small electric field E = Ey(e'” + e ™) in the x direction. The electric field oscillates at
frequency ® and has magnitude |E,| .

(a) Write down the Hamiltonian for time #>0 in terms of I:IO and a perturbation w. (10%)
(b) The solution at time ¢>0 is of the form |x, ¢) = al(t)eiiwlt\l)+a2(t)eiimzt|2> where

E, = ho, and E, = ho,. Substitute this into the time-dependent Schrédinger equation and show
that

ih(%al(t)) e Uy + ih(%az(t)) e Ry = ay)e W + ay(t)e W)

then multiply both sides by (1| or (2| and obtain two equations

—i(0,— o)t

ih%alm = a,()U 1) + ay(t)e Q1)

i(0y—w)t

inae) = ae'™ @MY + a0 @)

where (IIVIK) = —e|Eo| (x[k)(™ + &™) = Wy(e™ +e ™). (40%)
(c)If ® = o, , find the probability that the system will be in the excited state |2) at time > 0.
At what values of #> 0 will the system be in a pure ground state? (50%)

PROBLEM 4

(a) A particle mass m; moves in the one-dimensional double barrier potential of energy
Vo = 0.2 eV sketched in the following figure and is bounded by barriers of infinite energy for
x<0 nm and x> 100 nm. The ground state, first, and second excited state eigenenergies of the
particle are £, = 0.063 eV, E, = 0.098 eV ,and E; = V, = 0.200 eV respectively. Sketch and
explain the shapes of the corresponding eigenfunctions. (40%)

V— o V— o
_ A
>
L
—
<
>
on
g
o V0:0.2 I
=
s
g
£
0.0 | | | | | 1 | >

0 10 20 30 40 50 60 70 80 90 100
Position, x (nm)

(b) A particle mass m, moves in the symmetric one-dimensional double barrier potential of
energy V, = 0.2 eV sketched in the following figure and is bounded by barriers of infinite energy
for x <0 nm and x> 100 nm . The ground state, first, and second excited state eigenenergies of
the particle are £, = 0.069 eV, E, = 0.070 eV ,and E; = V;, = 0.200 eV respectively. Sketch
and explain the shapes of the corresponding eigenfunctions. (40%)
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(c) Explain the differences between your results in part (a) and (b). (20%)
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