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Life from a physics perspective

1.12.1 One E. coli bacterium divides in 30 minutes, if the temperature is
good and food is plentiful. One bacterium fills a volume of 1μm3. How long
would it take for one E. coli to reach the volume of the Earth (which has the
radius of ∼ 6 .000 km)? Repeat the calculation for human replication (each
having a volume of about 0 .1 m3), assuming a doubling time of 30 years.

Answer After n generations, the descendants of one bacterium could expand
to a volume of:

V = 2n · 1μm3 = 2n · 10−18 m3

This volume reaches the volume of the Earth when:

4π

3
(6 000 000m)3 = 2n10−18 m3 ⇒

n = log

(
4π

3
(6 000 000)3 · 1018

)
/ log(2)

= log(1039)/ log(2) = 39/ log10(2) = 129

This takes only about 65 hours.
Repeating the above for a human with 0.1 m3 volume gives:

n = log

(
4π

3
(6 000 000)3 · 10

)
/ log(2)

= log(1022)/ log(2) = 22/ log10(2) = 73

generations, which takes 2200 years.
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1.12.2 There are 1014 cells in a human body and every day 1011 cells die.
How much information needs to be re-generated inside a human to keep it
functional over a lifetime of 80 years (human DNA contains 3 × 109 base
pairs)? There is damage to DNA ∼ 105 times per cell per day in humans, ev-
ery one of which could lead to cancer. How many damages need to be repaired
during human lifetime?

Answer The total number of cells that need to be regenerated is:

N = 1011 · 365 · 80 ∼ 3 · 1015 (1.1)

a number that is about 30 times the number of cells in our body. As each
cell has 3 · 109 different base pairs in two chromosome copies, the necessary
information processing is:

NI = 6 · 109 ·N = 2 · 1025 (1.2)

base pairs, with each base pair having two bits of information. Thus in total
one needs to generate 4 · 1025 bits of information due to cell death during a
lifetime.

DNA damage requires a total repair of:

NI damage = 1014 · 105 · 365 · 80 = 3 · 1023 (1.3)

1.12.3 Life is highly specific. Assume that you need to say hello to everybody
in a city with 106 people. How long would this take if saying hello takes
1 second? What is the maximum time unit allocated to non-specific binding
between pairs of random proteins in a E. coli cell, if any particular pair meets
at least once within the 30 minutes generation time of an E. coli cell. There
are of the order of 3 000 000 proteins in E. coli.

Answer Assigning 1 sec to each hello, the total time would be 106 s or
106/3600 ∼ 300 hours.
The visit time for each protein should then be 2000 s/3 000 000 = 0.0007 s
or about 1 ms.

1.12.4 Consider the four-step cycle of a molecular motor modeled in terms
of two variables ϕ1 = 0, 1 and ϕ2 = 0, 1 and an energy function:

H = A · (ϕ1 + ϕ1ϕ2)· (1.4)
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where the degeneracy g = 10 of the ϕi = 0 states is larger than that of the
unique ϕi = 1 states implying that ϕi = 0 is 10 times more likely than ϕi = 1
when A = 0. Let A alternate between 0 and 1. For A = 0, the state (0,0) is
by far the most likely, and the (1,1) state will decay to the (0,0) situation.
For A = −1, on the other hand, the (1,1) state is favored. Define motion
x → x+ 1 respective to x → x− 1 in terms of the sequence of shifts in these
variables, and show that directed motion can be possible [43].

Answer The two ϕ variables are controlled through one external variable
A, which may take the values A = 0 or A = −1, and is associated with
the hydrolysis state of the motor. The control is enforced through the total
energy function:

H = A (ϕ1 + ϕ1ϕ2) (1.5)

As there are more non-specific states than specific (bound) ones, the degen-
eracy of the ϕ = 0 states is larger than that of the ϕ = 1 states. In the model
we typically set the degeneracy of the ϕ1 = 0 and the ϕ2 = 1 states to be
g = 10, whereas we assume only one specific state for ϕ1 = 1 and ϕ2 = 1.
The states and associated steps are illustrated in Fig. 1.1.

For each value of A and starting conditions for (ϕ1, ϕ2) one may consider
the trajectory for (ϕ1, ϕ2). Starting at (0,0) we have the options:

(a) Forward motion x → x + 1 is associated with the sequence of events
where binding is followed by stroke: (0, 0) → (1, 0) → (1, 1)

(b) Backward motion x → x − 1 is associated with the sequence where
stroke is happens before binding: (0, 0) → (0, 1) → (1, 1)

Further, in case of reversal (1, 1) → (0, 0), backtracking a given path implies
that one reverses the corresponding x move.

If A = 0, the two options (a,b) are equally likely, and x makes a random
step. If A = −1, the forward step (a) is most likely, because it is associated
with an energy gradient on both steps along the path. That is, a first move
along step (b) may easily be reversed ((0, 0) → (0, 1) → (0, 0)) because this
costs no energy. Thus for A = −1 there will be a bias toward forward motion.

The steps (a,b) define what happens from (0,0) to (1,1), and we saw a
tendency to forward step when starting at (0,0), imposing the switch A =
0 → A = −1. To complete the cycle we must let A = −1 → A = 0. Thus we
retrace what happens with (ϕ1, ϕ2) from state (1,1) in the absence of forces.
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j1 = 0 j1 = 0j1 = 1 j1 = 1

j2 = 0 j2 = 1j2 = 0 j2 = 1
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A = 0

H = A ( j1 + j1 j2 )

Figure 1.1 Schematic view of some states during one cycle of the discrete
ratchet model discussed in the text. Below the four states, which are labelled
as in the earlier figure, we show the parameterization of the states in terms of
two binary variables. By making movement of ϕ2 dependent on the state of
ϕ1, as shown by the energy function H, one can drive the cycle of states into a
directed motion by externally changing the potential through the parameter
A. As was the case with the continuous ratchet, this model is also at a
maximum 50% effective, because state (1,1) can go to states (1,0) and (0,1)
with equal probability when A = 0. In the first case, (1, 1) → (1, 0), one is
back in state (b), and has not performed any motion. (c) is the rigor state and
the A = −1 → A = 0 transition corresponds to the ATP binding transition.

In this case any of the two variables may relax first. If they retrace through
the reverse of path (a), then x → x− 1 and there is no net motion. However
if they retrace as the reverse of path, (b) then the system in fact progresses
even further. The A = −1 → A = 0 change induces a move from (1,1) to
(0,0) that makes no average motion.

To study the dynamics in a discrete simulation, we shift between the
A = 0 and the A = −1 cases. For each A, the model is simulated in a
metropolis-like algorithm, where at each update one selects randomly either
ϕ1 or ϕ2 and tries to change it. The factor g > 1 in degeneracy of the ϕ = 0
states means that for zero energy difference a transition 0 → 0, or 1 → 0
is g times more likely than a transition 0 → 1 or 1 → 1. When imposing
A = −1, then any move where the energy is increased is penalized by a
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Figure 1.2 Movement in the discrete ratchet of Fig. 1.1, H = A(ϕ1+ϕ1ϕ2)E0
for A cycling between 0 and −1 and a degeneracy factor g = 10 for the
detached state (ϕ = 0). When the temperature increases, the state ϕ1, ϕ2 =
1, 1 becomes thermodynamically suppressed, even when A = −1, and the
“motor” performs a random walk (any trajectory between the (0,0) and the
(1,1) states becomes equally likely). kBT is measured in units of E0.

factor e−E0/kBT . Therefore the reversal in path (a) is suppressed, whereas
reversal in path (b) is not. Figure 1.2 shows the simulated movement of x
for two different temperatures. For the high temperature the motion stops,
because the free energy of the (1,1) state always stays higher than that of
the (0,0) state.
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