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Preface

This  informal  introduction  to  Mathematica®(a  product  of  Wolfram Research,  Inc.)  is  offered  as  a  downloadable
resource for users of the textbook Essentials of Hamiltonian Dynamics (Cambridge University Press, 2012). The aim is
to familiarize the student with the core concepts and functions of Mathematica programming, so that he or she can
very quickly become comfortable with computational methods in dealing with the illustrative examples and  exercises
in the textbook.  The scope of Mathematica obviously greatly exceeds what can be covered in these few pages, and so
it is highly recommended that the student take full advantage of the excellent documentation which is included with
the software (accessible via the Help menu). 

1.  Getting started
Mathematica conducts a dialogue with the user:  you type in a mathematical expression,  press  Enter , and Mathemat-
ica evaluates the expression according to rules which are either built-in or have been prescribed by you, displaying the
result as output.  The input/output alternation continues until you quit the session, with all steps recorded in the cells of
your notebook.
     The simplest expressions involve ordinary numbers (e.g. 1, 2, 3, . . . , 1/2, 2/3, 
. . . , 3.14159), and the familiar operations and relations of arithmetic and logic.
     Elementary numerical operations: 

+ (plus),   - (minus),   * (times),   / (divided by),   ^ (to the power)
     Elementary numerical relations:

 == (is equal to),  != (is not equal to),

< (is less than),  >  (is greater than),
      

<=  (is less than or equal to),  >=  (is greater than or equal to)
     Elementary logical relations:

|| (or),  &&  (and),   !  (not)

For example,   2+2  evaluates to  4  ,  1<2  evaluates to  True , and  !(2>1)  evaluates to  False  .  Note that if
Mathematica cannot decide whether a relation is true or false (or more generally when there are no rules applicable to
the evaluation of an input expression), it simply outputs the expression unchanged.  For instance,  it is meaningless to
ask whether the complex number  2 + 3i  is greater than  1 , and so evaluation of  2+3I > 1  yields the output  2+3i >
1 , together with a few words of friendly advice about he folly of trying to order the complex numbers.

This document was prepared as a Mathematica v.8 notebook.



Exercise 1.   Evaluation of simple expressions.

Evaluate the following expressions "by hand" .   Check your results using Mathematica. 

1)  4 ä 7 - 8 ä 6
2)  4 ä (7 - 8) ä 6
3)  4 ä (7 - 8 ä 6)
4)  3 · 3 · 3 ¥  27
5)   (4 ä 6 > 12 ä 2) ||( -5/7  - 1 > -1/7  )
6) (4 < 5) && (5 < 6) && (6 < 7) && (7 < 4)
7) (3 ä 9 - 35 ÷ 5)  ÷  (6 ä 4 + 72 ÷ 2)
8)   5/8 == 1/(1+1/(1+1/(1+1/(1+1))))
9)  Is it possible to construct an expression involving only real numbers which Mathematica will be unable to evaluate
(except by cheating or simply outputting the input)?
10) Give an example of an expression which involves all three of the listed logical operations and which evaluates to
True .

     In addition to numbers, Mathematica manipulates abstract symbols ("unknowns") which you introduce.  For this 
purpose, you may use individual letters or strings of letters and numbers (i.e. words ), avoiding capitalization.  CapitalÖ
ized words are used by Mathematica for its own built-in expressions (e.g.  Pi  for p ,  E  for  e , the base of natural 
logarithms,  I  for  i , the square-root of  -1 , and  Abs  for the absolute-value function).
     
     Numbers and abstract symbols are the simplest examples of what Mathematica recognizes as legitimate expresÖ
sions.  They are elementary , in the sense that there are no rules which can be used to reduce them to simpler form.  All 
non-elementary expressions have the form
     
                                                          h[e1,e2,...en]

were   h, e1, e2, ...,en  are all expressions, which may or may not be elementary. The basic Mathematica 
operation (its part in the dialogue with you) is to evaluate  expressions, i.e. to consult its stored list of rules to replace 
the input expression by a well defined output expression. For example, the input expression  4*6    is actually shortÖ
hand for the more formal  Times[4,6].  The sub-expressions Times, 4, and 6 are all elementary, and cannot 
be simplified.  On the other hand, Mathematica has built-in rules associated with expressions having  Times  as the 
"head", namely the rules of multiplication, which allow Mathematica to replace  Times[4,6]  by the single number  
24 .  In the same way,  the expression  3==5  is the shorthand form of  Equal[3,5], which evaluates to False. 

     A compound expression  
     
                                               ex1;ex2;....;exn   
                                                         
is evaluated sequentially (left to right), with only the evaluated expression  exn
displayed in the output.  If  exn is omitted, or replaced by  Null  , there is no output displayed, although the evaluaÖ
tion of   ex1;ex2;....;ex(n-1);  may have an effect on stored quantities.  For example, the assignment 
expression 
 
                                                         a=3;
                            
associates the rule "Replace a  by  3" with the symbol  a  .  Because of the semicolon, the evaluation of      a=3;  
creates no output , but of course, the effect of the evaluation is non-trivial.  Henceforth, every time  a  appears in an 
expression, it will be replaced by 3 .  The value can be changed by a new assignment, or cleared by evaluating  
Clear[a] .   At any time during your Mathematica session, you can check what rules, if any, pertain to a particular 
symbol. Evaluating  ?a  reveals all of the rules associated with the symbol  a .
Often it is desirable to evaluate an expression with certain values inserted for the sysmbols, but without storing  those
values for future use.  For example, suppose we want to evaluate Sin[a*b] with  a  set equal to 0.75 and  b  set
equal to 1.09,  but without permanently assigning those numerical values to  a  and  b .  We would evaluate
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Often it is desirable to evaluate an expression with certain values inserted for the sysmbols, but without storing  those
values for future use.  For example, suppose we want to evaluate Sin[a*b] with  a  set equal to 0.75 and  b  set
equal to 1.09,  but without permanently assigning those numerical values to  a  and  b .  We would evaluate

In[1]:= Sin@a * bD ê. 8a Ø 0.75, b Ø 1.09<

Out[1]= 0.729438

                          

Exercise 2.   Assignment.  Evaluation of compound expressions.

Evaluate the following expressions "by hand".  Check your results using Mathematica. 

1)  a=2; b=3; a*b
2)  a + 1/a + 1/(a*a)/.a->2
3)  x=3.1;  y=2.5;  z=1.9;  (x^2 + y^2 +z^2)^(1/2)
4)  a=1; a=2; b=a^3
5)  Clear[a];  b=a
6)  b=(a+1)/.a->1; c=b+1; a=b+c
7) a=2; a*b^2/.b->10

2.  Functions

A function quite generally is a rule which assigns to each member of a certain set (domain) a unique member of  a
certain other set (range).  A function  in Mathematica has, not surprisingly,  the additional requirement that the domain
and range are sets of expressions in the strict sense discussed above.  To define a function  f  depending on  n  variable
arguments we write
     

f[x1_,x2_,....,xn_]:= expression depending explicitly on x1,x2,....,xn

where the lower dashes following the argument names indicate that these are not specific expressions, but rather are
dummy variables which can take on arbitrary values within their respective domains,  and the delayed assignment
symbol := indicates that all expressions appearing on the  righthand side are to be evaluated only at the time that the
function is evaluated.  The distinction between := and  = is a bit subtle, but should become clear through examination
of a simple example. Define a function g[x_] via

                g[x_]:= a*x^2 + 1

Now evaluate 

               a=3;x=9;g[2]
               
to obtain the value  13 .   Note that assigning the symbol  x the value 9 has no effect on the evaluation of  g[2]
since  the  x  appearing in the function definition is a dummy variable which is replaced by the argument 2 rather than
being evaluated according to the stored  rule  x=9 associated with the symbol  x .
The concept of assignment is a bit tricky, and is made more mysterious by the use of the equals sign in a way quite
different from ordinary mathematical usage.  Consider, for instance, the expression

a=a^2

In ordinary algebra this would be an equation with only two numerical  solutions, 0  and  1. But suppose we have
already assigned the value 3 to the symbol a . What happens when Mathematica evaluates a=a^2 ?   Answer:  first,
the righthand member is evaluated making use of the stored value assigned to a; the result  (in this case,  9) is then
assigned to a  as its new value.  If we now inquire about the rules associated with a by evaluating  ?a , we will find
only one rule, namely a=9 .  This example is not a weird exceptional case. Whenever we want to describe the transfor-
mation of a quantity x  by a function f  (written in ordinary mathematics as  x # f(x) ) we will evaluate in Mathemat-
ica the expression  x=f[x]. Whatever value is assigned to x is inserted into the function definition of f and the
evaluation carried out;  the result is then assigned to x as its new value.
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The concept of assignment is a bit tricky, and is made more mysterious by the use of the equals sign in a way quite
different from ordinary mathematical usage.  Consider, for instance, the expression

a=a^2

In ordinary algebra this would be an equation with only two numerical  solutions, 0  and  1. But suppose we have
already assigned the value 3 to the symbol a . What happens when Mathematica evaluates a=a^2 ?   Answer:  first,
the righthand member is evaluated making use of the stored value assigned to a; the result  (in this case,  9) is then
assigned to a  as its new value.  If we now inquire about the rules associated with a by evaluating  ?a , we will find
only one rule, namely a=9 .  This example is not a weird exceptional case. Whenever we want to describe the transfor-
mation of a quantity x  by a function f  (written in ordinary mathematics as  x # f(x) ) we will evaluate in Mathemat-
ica the expression  x=f[x]. Whatever value is assigned to x is inserted into the function definition of f and the
evaluation carried out;  the result is then assigned to x as its new value.

Exercise 3  Function Definitions.

1)  Define functions sphereA[diam_]  and sphereV[diam_] which output, respectively, the area and volume
of a sphere of diameter diam .

2) Define a function dist[x_,y_,z_]  which, for every point  (x,y,z)  in 3-dimensional space (rectangular
coordinates) calculates the distance of that point from the origin.

3) Define a function triangleQ[s1_,s2_,s3_] which tests for the triangle inequality.  It should output True if
each of its arguments is less than the sum of the other two,  and False  otherwise.  (Note that if s1,s2,s3  are the
lengths of the sides of an actual triangle, the function will indeed evaluate to True).

4) Define a function f[a_,b_] which outputs True if the cube of  a+b  is smaller than the square of a or larger
than the 4th power of b , and False otherwise.

5) Define a function g[a_,b_] which assigns the value a  to the variable  x , assigns the value b  to the variable y
, and, finally, outputs the product of x and y.

3.    Representation of numbers

Mathematica stores and manipulates various types of numbers.

Exact real and complex numbers.  Integers, rational numbers (ratios of integers),  and unapproximated irrationals
(such as the built-in constants Pi and E) are handled as exact quantities. For example, if you ask Mathematica to
evaluate 13  or  51/101 , or Pi, it merely outputs the entered number. Complex numbers take the form a+b I , where
a and b are real and I is a built in constant representing -1 .

Arbitrary precision floating-point numbers.  Mathematica can approximate an exact real number r with a specified
number  digits  of  significant  digits.   Specifically,  evaluate  N[r,digits],  or,  alternatively,
SetPrecision[r,digits].  For example,  N[1/3,8] evaluates to 0.33333333, while N[Pi,1000] evalu-
ates to
3.141592653589793238462643383279502884197169399375105820974944592307816406\
 
  286208998628034825342117067982148086513282306647093844609550582231725359\
 
  408128481117450284102701938521105559644622948954930381964428810975665933\
 
  446128475648233786783165271201909145648566923460348610454326648213393607\
 
  260249141273724587006606315588174881520920962829254091715364367892590360\
 
  011330530548820466521384146951941511609433057270365759591953092186117381\
 
  932611793105118548074462379962749567351885752724891227938183011949129833\
 
  673362440656643086021394946395224737190702179860943702770539217176293176\
 
  752384674818467669405132000568127145263560827785771342757789609173637178\
 
  721468440901224953430146549585371050792279689258923542019956112129021960\
 
  864034418159813629774771309960518707211349999998372978049951059731732816\
 
  096318595024459455346908302642522308253344685035261931188171010003137838\
 
  752886587533208381420617177669147303598253490428755468731159562863882353\
 
  7875937519577818577805321712268066130019278766111959092164201989

Machine precision floating-point numbers.  This is the most efficient way of handling real numbers in most applica-
tions.  If your input number contains an explicit decimal point,   Mathematica  will  interpret it  as having a certain
number (the machine precision) of significant digits.  You can learn your computer's machine precision by evaluating
the built-in constant $MachinePrecision.  To approximate an exact number r by a machine-precision floating-
point number, evaluate N[r].  

Minimum  and  maximum  precision.   Mathematica  has  two  stored  constants,  $MinPrecision  and
$MaxPrecision, which specify the minimum and maximum precision with which approximate real numbers are
represented.  In the evaluation of N[r,digits]or SetPrecision[r,digits], with r an exact real number, if
digits is less than $MinPrecision, the assigned precision will be upgraded to$MinPrecision; if digits
exceeds  $MaxPrecision,  the  assigned  precision  will  be  downgraded  to$MaxPrecision.  Since  normally
$MinPrecision  and $MaxPrecision  have the values 0 and infinity,  respectively,  the user can safely forget
about them.  However, there is a useful application of these bounds which deserves mention here.  If you would like to
perform a calculation using uniform precision n, then you should set 
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Machine precision floating-point numbers.  This is the most efficient way of handling real numbers in most applica-
tions.  If your input number contains an explicit decimal point,   Mathematica  will  interpret it  as having a certain
number (the machine precision) of significant digits.  You can learn your computer's machine precision by evaluating
the built-in constant $MachinePrecision.  To approximate an exact number r by a machine-precision floating-
point number, evaluate N[r].  

Minimum  and  maximum  precision.   Mathematica  has  two  stored  constants,  $MinPrecision  and
$MaxPrecision, which specify the minimum and maximum precision with which approximate real numbers are
represented.  In the evaluation of N[r,digits]or SetPrecision[r,digits], with r an exact real number, if
digits is less than $MinPrecision, the assigned precision will be upgraded to$MinPrecision; if digits
exceeds  $MaxPrecision,  the  assigned  precision  will  be  downgraded  to$MaxPrecision.  Since  normally
$MinPrecision  and $MaxPrecision  have the values 0 and infinity,  respectively,  the user can safely forget
about them.  However, there is a useful application of these bounds which deserves mention here.  If you would like to
perform a calculation using uniform precision n, then you should set 
$MaxPrecision = $MinPrecision = n;

Repeating a calculation with several different values of n is often a good way of testing whether round-off error is
playing a significant role.

4.  Transcendental functions
Mathematica includes a large supply of built-in mathematical functions, including those normally found on a good
scientific  calculator,  namely  Sqrt[z_],  Exp[z_],  Log[z_],  Log[base_,z_],  Sin[z_],
ArcSin[z_], Sinh[z_], ArcSinh[z_], etc. , as well as a fairly complete collection of the special func-
tions of mathematical physics, such as BesselJ[z_], EllipticK[m_], JacobiSN[u_,m_], etc.
Important:  a function whose arguments are all exact will evaluate to an exact (not floating-point) quantity, so, for
example, Sin[2] evaluates to itself.  To get the machine-precision numerical value, you should use either Sin[2.0] or
N[Sin[2]].

5.   Lists
One of the most common types of non-elementary expressions is a list  of numbers or, more generally, expressions,
written {e1,e2,....,en} or, more fully, List[e1,e2,...en]. Given a list mylist,  you can extract its
kth  member by evaluating  mylist[[k]] (not to be confused with mylist[k] !). The number of elements in
a list mylist is given by Length[mylist].  For use later on, we introduce a few of the built-in Mathematica
functions pertaining to manipulation of lists.

ü Join and AppendTo

The use of Join and AppendTo is obvious from the following examples:
In[2]:= Join[{1,2,3},{4,5,6}]

Out[2]= 81, 2, 3, 4, 5, 6<

In[3]:= alist={1,2,3};AppendTo[alist,4];alist

Out[3]= 81, 2, 3, 4<

ü Map

The function Map is used to apply a function  f[x_] to each element of a list, i.e. 
Map[f,{e1,e2,...,en}  evaluates to   {f[e1],f[e2],...,f[en]} . 
For example, if we define 

In[4]:= f[x_]:=x^2

we have
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In[5]:= Map[f,{1,2,3,4,5,6}]

Out[5]= 81, 4, 9, 16, 25, 36<

A commonly used shorthand notation for Map[f,{e1,e2,...,en}  is  f/@{e1,e2,....,en}.

ü Example: compound interest

ls  =  {1023.76,  123.98,  765.50,  86.09,  877.82,  1201.21,  576.91,  233.77,
1172.40,36.63}

is a list of the Jan. 1, 1998 savings account balances at the National City County Bank, earning 5% per annum com-
punded quarterly, and we wish to predict the Jan. 1, 1999 balances (assuming no deposits or withdrawals), we define
the function

new[x_] := 1.0125*x

which gives the balance at the end of a quarter as a function of its value  x  at the beginning of that quarter (the interest
rate is of course one-quarter of  .05 ). We then introduce a new function which gives the cumulative effect after 4
quarters,  i.e. the so-called fourth iterate of the function new,

new4[x_] := new[new[new[new[x]]]]

The built-in function Nest[f_,exp_,n_] provides a more economical alternative:

new4[x_]:= Nest[new,x,4] .

To update all ten of the savings balances simultaneously, we evaluate

ls = new4 /@ ls  ,  

with output

{1075.92,  130.296,  804.499,  90.4759,   922.541,  1262.41,  606.301,  245.679,
1232.13, 38.4961}

ü Table

Often we create lists by applying repeatedly a single rule (function).  This construction is realized in Mathematica  by
the built-in function Table, which behaves as follows:

Table[g[k],{k,1,n}]

evaluates to  {g[1],g[2],....,g[n]}. Within the Table function, the "iterator" k is a dummy variable which
assumes the values 1,2,...,n.  The list of squares obtained by using Map  can also be obtained, more simply, using
Table: 

In[6]:= Table[i^2,{i,1,6}]

Out[6]= 81, 4, 9, 16, 25, 36<

In dynamics, lists are often defined recursively, with the (n+1)st member generated from the nth member by a rule
xn+1 = f Hxn) .    Given the initial value x0,  a 1000-step sequence can be calculated as

Join@88x0<<, Table@x = f@xD, 81000<DD

Here the argument {1000} is shorthand for {k,1,1000}.
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Exercise 4.    Constructing and transforming lists.

1) Using Table, construct a list intlist of the first 100  positive integers.

2) Using Table, construct a list oddlist of the first 100  odd, positive  integers in reverse numerical order (largest
first).

3) Use Map with a suitably defined transformation function to to transform oddlist into evenlist consisting of
the first 100 even integers in reverse numerical order.

4) Use Map with a suitably defined transformation function to to transform evenlist into a list of the first 100
integers in reverse numerical order.

5) Use Table to define a function reverse[ls_] which takes any list ls of length 100 and outputs a list of length
100 in which the members of ls appear in reverse order.  What happens if you apply this function to a list of length
different from 100?      

6.  Displaying data

Mathematica has a number of built-in functions for the graphical display of information.  We shall make frequent use
of these functions, without worrying about how they have been programmed by experts. In this section we introduce
the two most frequently used of the graphics functions,  Plot[], which plots the graph of a function over a pre-
scribed range of arguments,  for example

In[7]:= Plot[3*x^3-4*x^2-13*x-9,{x,-3,5}]

Out[7]= -2 2 4

-50

50

and ListPlot[], which plots the points in the plane specified by a list of {x,y} pairs, for example
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In[8]:= ListPlot[{{-2,5},{6,1},{-3,-2},{2,2},{5,-1}}, AspectRatio->Automatic]

Out[8]=

-2 2 4 6

-2

-1

1

2

3

4

5

 Each of the graphics functions has a large number of options.  When none are listed, defaults are chosen behind the
scenes.  For example, if you do not specify the aspect ratio, Mathematica chooses it to be the inverse of the golden
ratio,  i.e.  .618034...   The choice AspectRatio->Automatic,  on the other  hand,  specifies  the same scale for
hyorizontal and vertical coordinates, which is what we usually want to represent points in the plane.  The hidden
options are revealed by evaluating Options[Plot]  and  Options[ListPlot].

ü Explorations 

Evaluate  Options[Plot]  and  Options[ListPlot] to display all the default options for these functions.

In the ListPlot example, try out the options (one at a time) 
AspectRatio->1/2, 
AspectRatio->2,
Joined->True,
PlotRange->{{-3,4},{-3,4}},
Axes->False,
Frame->True,
PlotStyle->PointSize[.1],
PlotStyle->Red
AxesStyle->RGBColor[0,1,0]
DisplayFunction->Identity

Exercise 5.    Rootfinding using Plot[]

In this exercise we put Mathematica's graphing power to use to solve a nontrivial mathematical problem.  Define a
polynomial function p(x) of the real variable  x  by

p@x_D := x^4 + 3 * x^3 - 2 * x^2 - 10 * x - 1 ;

We seek to find the largest real  x  for which   p(x) = 0.
Very soon we shall develop a very elegant method for solving this class of problems, but for the time being we just
want to see how raw computational power can solve the problem without being very clever. To get a rough idea of the
solution we can make use of Mathematica's basic plotting function, Plot, to obtain the graph
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In[24]:= Plot[p[x],{x,-3,3}]  

Out[24]=

-3 -2 -1 1 2 3

10

20

30

The root of p(x) clearly lies between 1.6 and 1.8.  To improve on our estimate, we "zoom in" and plot the function over
that small range of x values, centered about its midpoint:

In[25]:= Plot[p[1.7 + x],{x,-.1,.1}]

Out[25]= -0.10 -0.05 0.05 0.10

-3

-2

-1

1

2

Now we see that the function p(x) goes through zero between 1.71 and 1.73, and so we again use the Plot function to
zoom in on the relevant interval:

In[26]:= Plot[p[1.72 + x],{x,-.01,.01}]

Out[26]=

-0.010 -0.005 0.005 0.010

-0.4

-0.3

-0.2

-0.1

0.1

0.2

Continue in this fashion until you have determined the root with 12 significant figures.
Once you get the hang of it, you should be able to gain at least one digit of accuracy with each new plot.

7.  Branching and iteration
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7.  Branching and iteration

Thus far we have been using Mathematica as an electronic calculator capable of manipulating numbers, symbols, lists,
and graphics.  To obtain full programming capability, we need to add to our machinery two essential functions to allow
for branching (alternative pathways) and iteration (repetition).  To allow for the dependence of a sequence of opera-
tions on whether a certain condition is satisfied or not, we use the built-in function  If[a_,b_,c_] , which evalu-
ates to  b  if   a  evaluates to True , and to  c  if  a  evaluates to False. (What happens if a  is neither true nor false
?)  
                                                   

Exercise 6.    Using  If[a_,b_,c_].

Define the functions

                                   abs[x_]:= If[x>=0,x,-x]
              step[x_]:= If[x>=0,1,0]
              
Without help from Mathematica,  sketch the graphs of the functions over the interval -1 b x b 1.
Then use  Plot  to check your results.

Mathematica has several functions which implement repeated (iterated) evaluation of an expression.  We shall restrict
ourselves to the simplest of these,
      
                                      Do[ex[i],{i,min,max}] ,

which evaluates  ex[i]  for  i equal to  min ,  then again for  i equal to  min+1, etc. and finally for  i equal to
max .   The examples below will show the power and versatility of this function.

 Note that some people prefer to state the iteration range before the expression ex. This can be done using
 
 For[i=min,i<=max,i++,ex[i]]
 
which is  equivalent  to Do[ex[i],{i,min,max}]  .   The For  function and the  notation i++  (shorthand for
i=i+1) are borrowed from the C programming language.

The  Do  and  For functions provide a convenient way to sum over a sequence of numbers.  For example, to add up
the entries in a list  ls  of length length , we evaluate

sum=0; Do[sum=sum+ls[[i]],{i,1,length}]; sum

and to sum up the geometric series  10 + 11 + 12 + ......+ 87 + 88 + 89 + 90, we evaluate
In[12]:= total = 10; For@n = 10, n <= 90, n++, total = total + nD; total

Out[12]= 4060

Exercise 7.    Products and series.

1) The factorial function,  n! = 1·2·3····n , is a product of  n  factors, and may be calculated using the same iterative
strategy used above for a sum of  n terms.  Define a Mathematica function  fac[n_]  which, for given  n , evaluates
to  n!  .

2) The base of natural logarithms, e , can be approximated by the following sum:
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1) The factorial function,  n! = 1·2·3····n , is a product of  n  factors, and may be calculated using the same iterative
strategy used above for a sum of  n terms.  Define a Mathematica function  fac[n_]  which, for given  n , evaluates
to  n!  .

2) The base of natural logarithms, e , can be approximated by the following sum:

  
e(n) = 1

1!
+
1
2!
+L +

1
n!

Using  Do or For and  fac , define a Mathematica function e[n_]  which, for any positive integer  n , gives a
fractional approximation to e .  Write this number as a decimal using Mathematica's built-in function  N[x_,k_].
Calculate  e(15)  and compare with the result of evaluating  N[E,k]  with  the precision  k  appropriately chosen.

3) The natural logarithm of 2  has the following expansion as an infinite series:

ln 2 = (−1)k +1∑ 1
k

Define a Mathematica function  ln2[n_]  which calculates the first  n  terms of the series and displays the result as a
decimal with 50 significant figures.
4) Repeat calculations (2) and (3) using the built-in function  Sum.   (Consult the documentation for the proper usage.)

Another useful application of iteration is to produce a table of values.  For example, to create a table of the first 3
powers of the first 10 positive integers, we evaluate

In[13]:= powers={};
Do[AppendTo[powers,{n,n^2,n^3}],{n,1,10}]; 
powers

Out[15]= 881, 1, 1<, 82, 4, 8<, 83, 9, 27<, 84, 16, 64<, 85, 25, 125<,
86, 36, 216<, 87, 49, 343<, 88, 64, 512<, 89, 81, 729<, 810, 100, 1000<<

The same result is achieved more concisely using the list-making function Table introduced earlier:
powers=Table[{n,n^2,n^3},{n,1,10}]

To display our result in a more readable form,  we can make use of Mathematica's built-in function TableForm:  
In[16]:= TableForm@powersD

Out[16]//TableForm=

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Exercise 8.  Constructing a table of values. Ravages of inflation.

Skeptical about the long-term survival of the National City County Bank, a winner of the state lottery, in 2012, places
$1 million in gold coins  in a buried safe with instructions in her will that the money be distributed to her heirs 500
years later.  Assuming a uniform inflation rate of  3% per year over the entire period, construct a table of the values, in
2012 dollars, of the buried cash for the years 2012,2022,2032,...,2512.  Plot the results using Mathematica's built-in
function ListPlot[list_]  .  To connect the points in the graph, include in ListPlot the argument Joined-
>True.
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It is often desirable to allow for an iterated evaluation to be interrupted under specific conditions, or for a particular
step to be omitted under specific conditions.  These are accomplished by employing, together with Do and  If  , the
built-in functions  Break[] and  Continue[],  respectively.   If   Break[]   is  encountered in any step,  the
iteration sequence is immediately halted;  if  Continue[] is encountered, evaluation of the current step is halted
and the evaluation sequence proceeds to the next step.  For, example, here is an expression which evaluates to the
largest integer whose square is less than 1000:

Do[ If[(n+1)^2>=1000,Break[]]; m=n  , {n,1,50} ]; m

and here is one which evaluates to the sum of all elements of the list  numlist  which are greater than 5:

numlist={1,3,7,9,31,2,14,4,5,8};
      sum=0;

  For[n=1,n<=10,n++,
  If[n<=5,Continue[]]; 
  sum=sum+numlist[[n]]];

  sum

Exercise 9.    Using Break[] and Continue[].

1) Define a function pos[numlist_]which,  when given a list  of  numbers numlist,   outputs  another list  of
numbers consisting of  the positive members of  numlist,  in  order.   Hint:  use Table  to  construct  the new list,
usingIf and Continue to filter out the non-positive members.

2) Define a function search[stringlist_] which, when applied to a list of strings stringlist, systemati-
cally examines each member in order and performs one of the following operations:
     *    if the string is "Bob",  it prints "Bob found.  End of search."  and quits the search.
     *    if the string is "stop", it prints "End of search." and quits the search.
     *    otherwise it proceeds to the next string on the list.
     
3) What exactly does the following short "program" calculate?
     count=300000;
     Do[If[count/100000.0>N[Pi],Break[],count=count+1],{k,1,100000}];
     count/100000

Run the "program" and compare the result with what you get by evaluating N[Pi,6].  Explain any discrepancy.

4) A sheet of paper has thickness 0.1 mm.  Folding the sheet doubles the thickness.  Assume that it is possible to repeat
the folding operation arbitrarily many times,  After how many foldings does the thickness exceed the diameter of the
Earth?  Use Mathematica's For function to automate the calculation of the thickness after each folding, using Break
to stop after the right number of foldings.  Estimate the answer using the approximate equality of 2^10  and  10^3 and
compare with your numerical result.
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8.   Newton's method for rootfinding
The iterated function approach provides a powerful method for numerically solving an equation of the form  g(x)=0 ,
provided that we can make a good guess at the solution and can explicitly differentiate the function  g(x) .  The typical
situation is shown below:

  The root  x* we are seeking is, in the figure, the point where the graph of  g(x)   crosses the x  axis.  Suppose that we
have guessed the value  x1.  We can improve on this value by considering the straight line through  (x1, g(x1)) which is
tangent to the graph of  g(x) at  x1  (slope=g'(x1)) and calculating the point  x2  where the straight line intersects the x
axis, namely

x2= x1 - gHx1Lg' Hx1L
 .

The new value can be improved upon by the same procedure,  and in fact we can keep repeating it until the increment
in  xn is below the desired accuracy threshold.  It is easy to reformulate the process as an iterated mapping ("Newton's
map") :

         xn+1 = f (xn)   ,
where

f (x ) = x  - g HxLg' HxL    ,

with

        x* = limnØ¶ xn  .

In typical cases, the convergence is extremely rapid, usually more rapid than other systematic rootfinding methods.
The price one pays is that the method doesn't always work.  For example, it is not always possible to write down
explicitly the derivative of a function.  And if the first guess is far  from the zero of the function, the function  f  may
map you to a point further away  from  x*  than the original point (like the point x?? in Fig. 3.7).  

In Exercise 5 we introduced the polynomial 
In[17]:= p@x_D := x^4 + 3 * x^3 - 2 * x^2 - 10 * x - 1

and used a "trial and error" method to find its largest root.  Let us define explicitly Newton's map associated with this
function:

In[18]:= f@x_D := x - p@xD ê H4 * x^3 + 9 * x^2 - 4 * x - 10L
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Guessing the position of the largest root from Fig.2.1 to be 1.6, we apply  f  iteratively:
In[19]:= x = 1.6;

TableForm@Table@x = f@xD, 86<DD
Out[20]//TableForm=

1.7423905489923557`
1.723655811175423`
1.7232888209165893`
1.7232886816569`
1.72328868165688`
1.72328868165688`

Note that the output originally showed only 6 significant digits.  The remaining digits were revealed by converting to
input form (via the “Cell/Convert To/InputForm Display” menu item).  We see that iteration of Newton’s map have
converged after 5 iterations to a result with 15-digit precision.  If we want (say) 30-digit precision, we must start with a
more precise initial condition:

In[21]:= x = SetPrecision@16 ê 10, 40D;
TableForm@Table@x = f@xD, 87<DD

1.742390548992355802640722724113968033356
1.72365581117542298853208090037574328444
1.72328882091658922123886352499212068822
1.7232886816569000795514254637311313473
1.7232886816568800317552026684964751982
1.723288681656880031755202668080996237
1.723288681656880031755202668080996237

As expected, one additional iteration of Newton’s map is sufficient for convergence (with 37 significant digits). 

Exercise 10.    Newton's method I

1) Find the second real root of p(x), to 18-digit precision, by the same method used above for the first root.  

2) Try to determine, by reasoning and perhaps some trial and error, which points on the real line are attracted to each
of the real roots. These are called the basins of attraction of the two roots. Can you find any points which lie outside the
basins of attraction of both real roots?  Are the real zeroes of p'(x) in this category?  If so, are they the only ones?

To see why Newton's method works so well, let us consider a simpler example,

p(x) = x2 - 1 . 

The graph of this function is shown below, where one can see immediately the positions of the two zeroes at  x = 1
and  x = -1  . 

-2 -1 1 2

-1

1

2

3

 Now let us construct Newton's map,

                                 f(x)  =  x - p HxLp' HxL   =  x
2+1
2 x  ,

                                 
 which is graphed below.
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You can easily differentiate   f(x)  to get

                                         f ' (x) = x
2-1
2 x2

  , f ʼʼ (x) = 1
x3

    .
 from which it follows (consistent with the appearance of the graph) that the function f(x) has a local maximum at  x =
-1  and a local minimum at  x = 1 .  Let us zoom in on a small neighborhood of   x = 1  to check the stability of the
fixed point of    f(x)  there.  Since the function is behaving like   (x-1)2  inear the fixed point  x=1 ,  f(1.04) - 1   is
approximately (1/2) (.04)2   =  .0008, and by the same reasoning,   f(1.0008) -1  = 0.00000032,  and  f(1.00000032) -1 =
0.000 000 000 000 05 .  It is clear that the secret of Newton's method's success lies in the vanishing of the derivative of
Newton's map at the fixed point.  Each time the function  f  is applied, the already tiny error is squared, becoming
extremely tiny.  That extremely tiny error is then squared, becoming absurdly tiny, etc.,etc. We can check that the
desired flatness of the Newton map is almost always true:
If  f(x)  =  x - p(x)/p'(x),  then  f '(x)= p(x)p"(x)/p'(x)2 ,  which is equal to zero at any zero of p(x), provided that it is a
simple zero where the slope of the graph  p'(x) is not zero.  A modified version of Newton's method  can be used for
higher order zeroes, but we shall not pursue that issue here.

Exercise 11.    Newton's method II

1)  Calculate the zero of  sin x  near  x   =  3.0  with  15  significant figures  using Newton's method, i.e. by calculating
the  derivative  of  the  function,  defining  Newton's  mapping  as  a  Mathematica  function,  and  applying  the  function
iteratively starting with a value of  x known to be close to the exact root.   See if you can automate the process using
the Do  function, using Print to print out the result after each iteration.  Use the built-in function Sin[x_].
Compare your result with N[Pi,18].  Plot the Newton mapping and see that it has a flat point at the expected value
of x . 

2)  Calculate the natural logarithm of 1000 to 15 significant figures by finding the zero of the function  ex-1000 . Again
you are to construct Newton's map  and find the result by iteration.  Use Plot to help you choose your initial value.
Use the built-in function Exp[x_] or the built-in constant  E. Compare your result with N[Log[1000],18].   Plot
the Newton mapping and see that it is flat at the expected value of x .
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of x . 

2)  Calculate the natural logarithm of 1000 to 15 significant figures by finding the zero of the function  ex-1000 . Again
you are to construct Newton's map  and find the result by iteration.  Use Plot to help you choose your initial value.
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the Newton mapping and see that it is flat at the expected value of x .

9.    Integrating differential equations
It is typical in the theoretical description of a moving particle to be given its initial state (position and velocity) and a
set of differential equationsof motion.   Integration of the differential equations  is generally not  possible in exact form.
However,  excellent  approximation methods exist  which,  with the help of  computers,  make possible the numerical
integration of the equations.  We will restrict our attention to a simple and reliable method of numerical integration,
namely the Runge-Kutta scheme, which works as follows. 

We consider the case of a particle restricted to the x axis, with position at time t  determined by the differential equation
dx
dt = f(x) ,    with    x(0)=x0 .

We want to approximate the continuous orbit  x(t) by a sequence xn,  n=0,1,2,...  of approximate positions at times
tn = n dt , where dt is small and we want the difference xn+1- xnto coincide with the Taylor series expansion up to term
of order dt4:

xn+1 - xn = xHtn+1L - xHtnL = x† HtnL dt +
1

2 !
x..HtnL dt 2 +

1

3 !
x...HtnL dt 3 +

1

4 !
x....HtnL dt 4 + OIdt5M

where the dots denote time-differentiation.  The Taylor coefficients can be expressed as known functions of  x  by
applying the differential equation:
x† = f HxL ,
x.. = f ' HxL f HxL ,
x... = f '' HxL H f HxL L2 + H f ' HxLL2 f HxL ,
x.... = f ''' HxL f HxL3 + 4 f '' HxL f ' HxL f HxL2 + H f ' HxLL3 f HxL .

According to the Runge-Kutta prescription, we calculate the sequence of  xn by iterating
xn+1 = RK4step@xnD

with  RK4step defined by
In[22]:= RK4step[f_,dt_,z_]:= Module[{k1,k2,k3,k4},

  k1=f[z]*dt;
      k2=f[z+k1/2]*dt;
      k3=f[z+k2/2]*dt;
      k4=f[z+k3]*dt;
      z+(k1+2*k2+2*k3+k4)/6]

Here the function Module is used as a “wrapper” (instead of parentheses) for the function definition.  The advantage
is that the variables k1, k2, k3, k4 are strictly localized within the definition, so that calling RK4step will not
disturb any assignments which you may previously have made to global variables with the same names.  The same is
of course true of the dummy variables f, dt, and z.  
Mathematica  has a very nice built-in function Series  for calculating Taylor series of functions. For example, to
compute the Taylor series of sin(e) about the point 0, to O(e18), we evaluate
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In[23]:= Series@Sin@eD, 8e, 0, 18<D

Out[23]= e -
e3

6
+

e5

120
-

e7

5040
+

e9

362 880
-

e11

39 916 800
+

e13

6227 020 800
-

e15

1307 674 368 000
+

e17

355 687 428 096 000
+ O@eD19

Let us test the Runge-Kutta functions to see whether they succeed in reproducing the Taylor series up to 4th order in dt
.

In[24]:= Series[RK4step[f,dt,x],{dt,0,4}]

Out[24]= x + f@xD dt +
1

2
f@xD f£@xD dt2 +

1

6
If@xD f£@xD2 + f@xD2 f££@xDM dt3 +

1

24
If@xD f£@xD3 + 4 f@xD2 f£@xD f££@xD + f@xD3 fH3L@xDM dt4 + O@dtD5

Success!  

When we generalize the above analysis to a system of n differential equations, the Taylor expansions become much
more complicated, involving the full zoo of partial derivatives.  There is no need to change the RK4step function,
however, only to reinterpret its arguments.  The state variable z is now an n-dimensional array (an n-vector), as is the
function f and the auxiliary variables k1,k2,k3,k4 in the defining formula. Since the latter involves only opera-
tions (addition, multiplication by a scalar) which apply to vectors of any dimension, there is no need to alter the
definition in any way.  The remarkable fact is that, regardless of dimension, this relatively simple prescription contin-
ues to reproduce the terms of the Taylor expansion up to 4th order in the time step.  You may want to verify this
statement yourself for (say) n = 2.
As a relatively simple illustrative example from classical dynamics, let us consider the case of a single particle on the x-
axis moving under the influence of a potential energy function V(x) = 5

2
 x2+ 1

4
x4 .   The equation of motion can still be

written dzdt = f(z) , but now with z = (x,v) and

In[25]:= f@8x_, v_<D := 8v, -5 x - x^3<

Let us calculate numerically the approximate x,v-space orbit with a time step dt= 0.01 and initial condition z(0)= (1,0),
from t=0 until t=10 , requiring 1000 time steps.

In[26]:= dt = 0.01; z = z0 = 81, 0<;

In[27]:= xvorbit = Join@8z0<, Table@z = RK4step@f, dt, zD, 81000<DD;

The values of x(t) and v(t) over the same time interval are given by
In[28]:= xvals = Table@8Hk - 1L * dt, xvorbit@@k, 1DD<, 8k, 1, 1001<D;

vvals = Table@8Hk - 1L * dt, xvorbit@@k, 2DD<, 8k, 1, 1001<D;

We can now display these quantities using ListPlot:
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In[30]:= ListPlot@xvorbit, AspectRatio Ø Automatic,
PlotStyle Ø 8Black, PointSize@.002D<, Frame Ø TrueD

Out[30]=

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

In[31]:= ListPlot@xvals, Joined Ø True, PlotStyle Ø 8Black, Thickness@.002D<D

Out[31]=
2 4 6 8 10

-1.0

-0.5

0.5

1.0

In[32]:= ListPlot@vvals, Joined Ø True, PlotStyle Ø 8Red, Thickness@.002D<D

Out[32]=
2 4 6 8 10

-2

-1

1

2

Now suppose we are interested in an accurate value for x(5).  Let us calculate this using different sizes for the timestep.
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In[33]:= TableForm@Table@z = 81, 0<; dt = N@10^H-k - 1LD;
Do@z = RK4step@f, dt, zD, 85 * 10^Hk + 1L<D; z@@1DD, 8k, 1, 5<DD

0.8303583916750513`
0.8303584148097363`
0.8303584148119723`
0.8303584148119801`
0.830358414812048`

H* converted to Input Form via Cell menu *L

It seems we are running into the effects of round-off errors as we increase the number of iterations.  Let us repeat the
calculations with higher-precision data.

In[34]:= TableForm@Table@z = 81, 0<; dt = N@10^H-k - 1L, 40D;
Do@z = RK4step@f, dt, zD, 85 * 10^Hk + 1L<D; z@@1DD, 8k, 1, 5<DD

Out[34]//TableForm=

0.8303583916750530236708151454211521
0.8303584148097332778721690880249257
0.8303584148119724270345425217938646
0.8303584148119726502003824188680016
0.8303584148119726502226915062673201

The above numerical experiment shows that the number of significant digits in our value for x(5) increases by 4 for
each reduction of dt by a factor of 1/10.  This is exactly as it should be for a 4th-order scheme.  It allows us to con-
clude that our best value has an error of order 10-23.

10.    The functions   Manipulate and Animate
One of the most useful innovations in recent versions of Mathematica is the inclusion of the functions Manipulate
and Animate , which allow us to display very effectively the parameter dependence of our results.  For example,
suppose we wish to visualize the effect of changing the initial position  x(0) on the function x(t), for 0btb5.   We
evaluate

In[35]:= dt = 0.01; Animate@z = 8a, 0<;
ListPlot@Table@z = RK4step@f, dt, zD; 8k * dt, z@@1DD<, 8k, 1, 500<D,
Joined Ø True, PlotStyle Ø 8Black, Thickness@.002D<D, 8a, 0, 5<D

Out[35]=

a

1 2 3 4 5

-4

-2

2

4
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