

Chapter 4: Differentiation Part B: Applications of Differentiation

▶ ∢ ≣

Calculus

Derivative Tests and Curve Sketching

Table of Contents

Extreme Values and Monotonicity

Oerivative Tests and Curve Sketching

< ロ > < 同 > < 三 > < 三 > 、

Absolute Maximum and Minimum

A function $f: D \to \mathbb{R}$ has a **global** or **absolute maximum** at a point c if $f(c) \ge f(x)$ for every $x \in D$. Similarly, it has a **global** or **absolute minimum** at a point d if $f(d) \le f(x)$ for every $x \in D$.

Amber Habib Calculus

Absolute Maximum and Minimum

A function $f: D \to \mathbb{R}$ has a **global** or **absolute maximum** at a point c if $f(c) \ge f(x)$ for every $x \in D$. Similarly, it has a **global** or **absolute minimum** at a point d if $f(d) \le f(x)$ for every $x \in D$. Various situations are possible:

1 f may not have an absolute maximum or an absolute minimum: $f(x) = x \colon \mathbb{R} \to \mathbb{R}$ and $f(x) = 1/x \colon (0,1) \to \mathbb{R}$.

<ロト < 同ト < ヨト < ヨト -

Absolute Maximum and Minimum

A function $f: D \to \mathbb{R}$ has a **global** or **absolute maximum** at a point c if $f(c) \ge f(x)$ for every $x \in D$. Similarly, it has a **global** or **absolute minimum** at a point d if $f(d) \le f(x)$ for every $x \in D$. Various situations are possible:

- **1** f may not have an absolute maximum or an absolute minimum: $f(x) = x \colon \mathbb{R} \to \mathbb{R}$ and $f(x) = 1/x \colon (0,1) \to \mathbb{R}$.
- ② *f* may have an absolute maximum but not an absolute minimum: $f(x) = -x^2$: ℝ → ℝ.

Absolute Maximum and Minimum

A function $f: D \to \mathbb{R}$ has a **global** or **absolute maximum** at a point c if $f(c) \ge f(x)$ for every $x \in D$. Similarly, it has a **global** or **absolute minimum** at a point d if $f(d) \le f(x)$ for every $x \in D$. Various situations are possible:

- **1** f may not have an absolute maximum or an absolute minimum: $f(x) = x \colon \mathbb{R} \to \mathbb{R}$ and $f(x) = 1/x \colon (0,1) \to \mathbb{R}$.
- ② *f* may have an absolute maximum but not an absolute minimum: $f(x) = -x^2$: ℝ → ℝ.
- **3** f may have an absolute minimum but not an absolute maximum: $f(x) = x^2 \colon \mathbb{R} \to \mathbb{R}$.

イロト 不得 トイヨト イヨト 二日

Absolute Maximum and Minimum

A function $f: D \to \mathbb{R}$ has a **global** or **absolute maximum** at a point c if $f(c) \ge f(x)$ for every $x \in D$. Similarly, it has a **global** or **absolute minimum** at a point d if $f(d) \le f(x)$ for every $x \in D$. Various situations are possible:

- **1** f may not have an absolute maximum or an absolute minimum: $f(x) = x \colon \mathbb{R} \to \mathbb{R}$ and $f(x) = 1/x \colon (0,1) \to \mathbb{R}$.
- ② *f* may have an absolute maximum but not an absolute minimum: $f(x) = -x^2$: ℝ → ℝ.
- 3 f may have an absolute minimum but not an absolute maximum: $f(x) = x^2 \colon \mathbb{R} \to \mathbb{R}$.
- **4** f has both an absolute minimum and an absolute maximum. And they may occur several times: sin: $\mathbb{R} \to \mathbb{R}$.

Absolute Maximum and Minimum

A function $f: D \to \mathbb{R}$ has a **global** or **absolute maximum** at a point c if $f(c) \ge f(x)$ for every $x \in D$. Similarly, it has a **global** or **absolute minimum** at a point d if $f(d) \le f(x)$ for every $x \in D$. Various situations are possible:

- **1** f may not have an absolute maximum or an absolute minimum: $f(x) = x \colon \mathbb{R} \to \mathbb{R}$ and $f(x) = 1/x \colon (0,1) \to \mathbb{R}$.
- 2 *f* may have an absolute maximum but not an absolute minimum: $f(x) = -x^2 : \mathbb{R} \to \mathbb{R}$.
- 3 f may have an absolute minimum but not an absolute maximum: $f(x) = x^2 \colon \mathbb{R} \to \mathbb{R}$.
- **4** f has both an absolute minimum and an absolute maximum. And they may occur several times: $\sin : \mathbb{R} \to \mathbb{R}$.

Absolute maxima and minima are collectively known as **absolute** extremes.

Local Maximum and Minimum

э

We say that $f: D \to \mathbb{R}$ has a **local** or **relative maximum** at a point *c* if there is an open interval *I* containing *c* such that $f(c) \ge f(x)$ for every $x \in I \cap D$.

イロト イポト イヨト ・

Local Maximum and Minimum

We say that $f: D \to \mathbb{R}$ has a **local** or **relative maximum** at a point *c* if there is an open interval *I* containing *c* such that $f(c) \ge f(x)$ for every $x \in I \cap D$.

Similarly, f has a **local** or **relative minimum** at a point d if there is an open interval I containing d such that $f(d) \le f(x)$ for every $x \in I \cap D$.

Local Maximum and Minimum

We say that $f: D \to \mathbb{R}$ has a **local** or **relative maximum** at a point *c* if there is an open interval *I* containing *c* such that $f(c) \ge f(x)$ for every $x \in I \cap D$.

Similarly, f has a **local** or **relative minimum** at a point d if there is an open interval I containing d such that $f(d) \le f(x)$ for every $x \in I \cap D$.

Local maxima and minima are collectively known as **local** extremes.

Local Maximum and Minimum

We say that $f: D \to \mathbb{R}$ has a **local** or **relative maximum** at a point *c* if there is an open interval *I* containing *c* such that $f(c) \ge f(x)$ for every $x \in I \cap D$.

Similarly, f has a **local** or **relative minimum** at a point d if there is an open interval I containing d such that $f(d) \le f(x)$ for every $x \in I \cap D$.

Local maxima and minima are collectively known as **local** extremes.

An absolute maximum will also be a local maximum, and an absolute minimum will be a local minimum. But local extremes need not be absolute extremes, and a function could well have local extremes without having any absolute extreme.

CAMBRIDGE UNIVERSITY PRESS

Fermat's Theorem

Theorem 1

Let f(x) have a local extreme at an interior point c of an interval in its domain. Then either f'(c) does not exist or f'(c) = 0.

Proof. Suppose f'(c) exists. We have to show that f'(c) = 0. Suppose f'(c) > 0, that is,

$$\lim_{x\to c}\frac{f(x)-f(c)}{x-c}>0.$$

Since the limit is positive, the values $\frac{f(x) - f(c)}{x - c}$ must themselves be positive once we are close to c. That is, there must be a $\delta > 0$ such that $0 < |x - c| < \delta \implies \frac{f(x) - f(c)}{x - c} > 0$. Then,

 $c - \delta < x < c \implies f(x) < f(c) \implies c$ is not a point of local minimum, $c < x < c + \delta \implies f(x) > f(c) \implies c$ is not a point of local maximum.

This rules out f'(c) > 0. We similarly rule out f'(c) < 0, c = 0, c = 0, c = 0

< A > <

글 🖌 🔺 글 🕨

Two Examples

An example of a local extreme which occurs at a point where f' does not exist:

Example 2

Consider f(x) = |x|. It has a local minimum at x = 0 but f'(0) is not defined.

Two Examples

An example of a local extreme which occurs at a point where f' does not exist:

Example 2

Consider f(x) = |x|. It has a local minimum at x = 0 but f'(0) is not defined.

An example of a point where f' is zero but it is not a local extreme:

Example 3

Consider $f(x) = x^3$. Then f'(0) = 0 but there isn't a local extreme at x = 0.

Critical Points

э

We call *c* a **critical point** or **critical number** of f(x) if it is an interior point *c* of an interval in the domain of *f* and either f'(c) does not exist or f'(c) = 0.

Critical Points

We call c a **critical point** or **critical number** of f(x) if it is an interior point c of an interval in the domain of f and either f'(c) does not exist or f'(c) = 0. Let $f: [a, b] \to \mathbb{R}$. By Fermat's Theorem, the local extremes of f occur either at critical points or at the end-points of [a, b].

Critical Points

We call c a **critical point** or **critical number** of f(x) if it is an interior point c of an interval in the domain of f and either f'(c) does not exist or f'(c) = 0. Let $f: [a, b] \to \mathbb{R}$. By Fermat's Theorem, the local extremes of f occur either at critical points or at the end-points of [a, b].

Example 4

Consider $f(x) = x^3 - 3x + 1$ with domain [0, 3].

- **1** Function values at endpoints: f(0) = 1 and f(3) = 19.
- **2** Critical points: Since f is differentiable we look for f'(c) = 0. This gives $3c^2 3 = 0$ or $c = \pm 1$. Thus c = 1 is the only critical point (in the given domain).
- **3** Function values at the critical points: f(1) = -1.

Critical Points

We call c a **critical point** or **critical number** of f(x) if it is an interior point c of an interval in the domain of f and either f'(c) does not exist or f'(c) = 0. Let $f: [a, b] \to \mathbb{R}$. By Fermat's Theorem, the local extremes of f occur either at critical points or at the end-points of [a, b].

Example 4

Consider $f(x) = x^3 - 3x + 1$ with domain [0, 3].

- **1** Function values at endpoints: f(0) = 1 and f(3) = 19.
- **2** Critical points: Since f is differentiable we look for f'(c) = 0. This gives $3c^2 3 = 0$ or $c = \pm 1$. Thus c = 1 is the only critical point (in the given domain).
- **3** Function values at the critical points: f(1) = -1.

Thus the candidates for absolute extremes are only f(0) = 1, f(1) = -1and f(3) = 19. So the absolute maximum is at x = 3 and the absolute minimum is at x = 1.

UNIVERSITY PRESS

Monotonicity Theorem

Theorem 5

Suppose I is an interval and $f: I \to \mathbb{R}$ is differentiable on I.

1 If f'(x) > 0 for every $x \in I$ then f is strictly increasing.

2 If $f'(x) \ge 0$ for every $x \in I$ then f is increasing.

We also have the corresponding statements regarding negative derivatives and decreasing functions.

Proof. Suppose f'(x) > 0 for every $x \in I$. Let $p, q \in I$ with p < q. We have to show that f(p) < f(q).

By continuity, f achieves its maximum and minimum over [p, q]. By Fermat's Theorem the points of maximum and minimum can only be p or q.

If the maximum and minimum values are equal, then f is a constant function, and f' = 0. So $f(p) \neq f(q)$. (continued)

Monotonicity Theorem

(Proof continued) Suppose f(q) is the minimum value over [p, q]. Then

$$f'(q)=\lim_{x
ightarrow q-}rac{f(x)-f(q)}{x-q}\leq 0.$$

This contradicts the positivity of f'. It follows that f(q) is the maximum value over [p, q] and hence f(p) < f(q). Now, suppose we only have $f'(x) \ge 0$ for every $x \in I$. Let $p, q \in I$ with p < q. Take any $\epsilon > 0$ and consider the function $g(x) = f(x) + \epsilon x$. Then $g'(x) = f'(x) + \epsilon > 0$ and g is strictly increasing. Now,

$$g(p) < g(q) \implies f(q) - f(p) > \epsilon(p-q).$$

Thus f(q) - f(p) is greater than every negative number and hence must be non-negative.

Derivative Tests and Curve Sketching

・ロト ・回ト ・ヨト ・ヨト

3

We will show that $x^3 + 3x + 1 = 0$ has exactly one solution.

イロト イヨト イヨト

Example

3

We will show that $x^3 + 3x + 1 = 0$ has exactly one solution.

 $f(x) = x^3 + 3x + 1$ is continuous and differentiable everywhere.

イロト イヨト イヨト

Example

We will show that $x^3 + 3x + 1 = 0$ has exactly one solution. $f(x) = x^3 + 3x + 1$ is continuous and differentiable everywhere. We have f(-1) = -3 < 0 and f(0) = 1 > 0. By Intermediate Value Theorem we have a $c \in (-1, 0)$ such that f(c) = 0, i.e. $c^3 + 3c + 1 = 0$. Example

イロト イヨト イヨト

CAMBRIDGE

We will show that $x^3 + 3x + 1 = 0$ has exactly one solution.

 $f(x) = x^3 + 3x + 1$ is continuous and differentiable everywhere. We have f(-1) = -3 < 0 and f(0) = 1 > 0. By Intermediate Value Theorem we have a $c \in (-1, 0)$ such that f(c) = 0, i.e. $c^3 + 3c + 1 = 0$.

Now $f'(x) = 3x^2 + 3 \ge 3 > 0$.

Example

We will show that $x^3 + 3x + 1 = 0$ has exactly one solution.

 $f(x) = x^3 + 3x + 1$ is continuous and differentiable everywhere. We have f(-1) = -3 < 0 and f(0) = 1 > 0. By Intermediate Value Theorem we have a $c \in (-1, 0)$ such that f(c) = 0, i.e. $c^3 + 3c + 1 = 0$.

Now $f'(x) = 3x^2 + 3 \ge 3 > 0$.

Hence f is strictly increasing, therefore one-one. So there can only be one c with f(c) = 0.

<ロト < 同ト < ヨト < ヨト

Zero derivative implies constancy

Theorem 6

Let f, g be differentiable functions from an interval I to \mathbb{R} .

- 1 If f'(x) = 0 for each $x \in I$ then f(x) is constant.
- 2 If f'(x) = g'(x) for each $x \in I$ then f(x) = g(x)+constant.

< ロ > < 同 > < 三 > < 三 > 、

Zero derivative implies constancy

Theorem 6

Let f, g be differentiable functions from an interval I to \mathbb{R} .

- 1 If f'(x) = 0 for each $x \in I$ then f(x) is constant.
- 2 If f'(x) = g'(x) for each $x \in I$ then f(x) = g(x)+constant.

Proof. Assume f'(x) = 0 for each $x \in I$. $f' \ge 0$ implies f is increasing. $f' \le 0$ implies f is decreasing. Since f is both increasing and decreasing, it is constant.

イロト イポト イヨト ・

Zero derivative implies constancy

Theorem 6

Let f, g be differentiable functions from an interval I to \mathbb{R} .

- 1 If f'(x) = 0 for each $x \in I$ then f(x) is constant.
- 2 If f'(x) = g'(x) for each $x \in I$ then f(x) = g(x)+constant.

Proof. Assume f'(x) = 0 for each $x \in I$. $f' \ge 0$ implies f is increasing. $f' \le 0$ implies f is decreasing. Since f is both increasing and decreasing, it is constant. Assume f'(x) = g'(x) for each $x \in I$. Apply the first part of the

Assume f'(x) = g'(x) for each $x \in I$. Apply the first part of the theorem to f(x) - g(x).

Derivative Tests and Curve Sketching

< ロ > < 同 > < 三 > < 三 > 、

Characterizing the Exponential Function

э

Theorem 7

If f'(x) = k f(x) on an interval I then $f(x) = Ae^{kx}$.

< ロ > < 同 > < 三 > < 三 > 、

Characterizing the Exponential Function

Theorem 7

If f'(x) = k f(x) on an interval I then $f(x) = Ae^{kx}$.

Proof. Consider $g(x) = f(x)e^{-kx}$. Then

$$g'(x) = f'(x)e^{-kx} - kf(x)e^{-kx} = kf(x)e^{-kx} - kf(x)e^{-kx} = 0$$

Hence g(x) = A, a constant, and $f(x) = Ae^{kx}$.

Task 1

Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable, f' = f and f(0) = 1. Show that $f(x) = e^x$.

Characterizing Sine and Cosine

The sine and cosine functions satisfy the relation f'' = -f. More generally, every combination $a\cos x + b\sin x$ satisfies this relation. Are they the only ones?

Task 2

Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable, f'' = -f and f(0) = f'(0) = 0. Show that f(x) = 0. (Hint: Differentiate the function $f^2 + (f')^2$).

Task 3

Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable and f'' = -f. Show that if f(0) = a and f'(0) = b then $f(x) = a\cos x + b\sin x$.

イロト イポト イヨト イヨト

Table of Contents

< ロ > < 同 > < 三 > < 三 >

• Extreme Values and Monotonicity

Oerivative Tests and Curve Sketching

Saddle Points

A critical point that is not a local extreme is called a **saddle point**.

Observe the changes in the sign of f' as we pass through different types of critical points.

Image: A mathematical states of the state

<ロト < 同ト < ヨト < ヨト

First Derivative Test

Theorem 8

Let f be continuous on (a, b) and let $c \in (a, b)$ be a critical point of f. Suppose f is differentiable on (a, b) except perhaps at c. Then,

- 1 If $f'(x) \ge 0$ for $x \in (a, c)$ and $f'(x) \le 0$ for $x \in (c, b)$ then f has a local maximum at c.
- If f'(x) ≤ 0 for x ∈ (a, c) and f'(x) ≥ 0 for x ∈ (c, b) then f has a local minimum at c.
- 3 If f' has the same sign on either side of c then f has a saddle point at c.

Derivative Tests and Curve Sketching

<ロト < 同ト < ヨト < ヨト -

First Derivative Test - Proof

3

Suppose $f'(x) \ge 0$ for $x \in (a, c)$ and $f'(x) \le 0$ for $x \in (c, b)$. By the Monotonicity Theorem, f is increasing on (a, c) and decreasing on (c, b).

<ロト < 同ト < ヨト < ヨト -

First Derivative Test - Proof

Suppose $f'(x) \ge 0$ for $x \in (a, c)$ and $f'(x) \le 0$ for $x \in (c, b)$. By the Monotonicity Theorem, f is increasing on (a, c) and decreasing on (c, b).

The continuity of f then gives us that f is increasing on (a, c] and decreasing on [c, b). For, suppose there is $x_1 < c$ with $f(x_1) > f(c)$. By the Intermediate Value Theorem, there is $x_2 \in (x_1, c)$ with $f(x_2) = \frac{1}{2}(f(x_1) + f(c)) < f(x_1)$, violating the fact that f is increasing on (a, c). This shows that f is increasing on (a, c]. Similarly, f is decreasing on [c, b).

First Derivative Test - Proof

Suppose $f'(x) \ge 0$ for $x \in (a, c)$ and $f'(x) \le 0$ for $x \in (c, b)$. By the Monotonicity Theorem, f is increasing on (a, c) and decreasing on (c, b).

The continuity of f then gives us that f is increasing on (a, c] and decreasing on [c, b). For, suppose there is $x_1 < c$ with $f(x_1) > f(c)$. By the Intermediate Value Theorem, there is $x_2 \in (x_1, c)$ with $f(x_2) = \frac{1}{2}(f(x_1) + f(c)) < f(x_1)$, violating the fact that f is increasing on (a, c). This shows that f is increasing on (a, c]. Similarly, f is decreasing on [c, b).

It follows that f(c) is the largest value taken by f(x) on (a, b) and hence there is a local maximum at c.

First Derivative Test - Proof

Suppose $f'(x) \ge 0$ for $x \in (a, c)$ and $f'(x) \le 0$ for $x \in (c, b)$. By the Monotonicity Theorem, f is increasing on (a, c) and decreasing on (c, b).

The continuity of f then gives us that f is increasing on (a, c] and decreasing on [c, b). For, suppose there is $x_1 < c$ with $f(x_1) > f(c)$. By the Intermediate Value Theorem, there is $x_2 \in (x_1, c)$ with $f(x_2) = \frac{1}{2}(f(x_1) + f(c)) < f(x_1)$, violating the fact that f is increasing on (a, c). This shows that f is increasing on (a, c]. Similarly, f is decreasing on [c, b).

It follows that f(c) is the largest value taken by f(x) on (a, b) and hence there is a local maximum at c.

Similarly, if f'(x) < 0 for $x \in (a, c)$ and f'(x) > 0 for $x \in (c, b)$, there is a local minimum at c.

First Derivative Test - Proof

Suppose $f'(x) \ge 0$ for $x \in (a, c)$ and $f'(x) \le 0$ for $x \in (c, b)$. By the Monotonicity Theorem, f is increasing on (a, c) and decreasing on (c, b).

The continuity of f then gives us that f is increasing on (a, c] and decreasing on [c, b). For, suppose there is $x_1 < c$ with $f(x_1) > f(c)$. By the Intermediate Value Theorem, there is $x_2 \in (x_1, c)$ with $f(x_2) = \frac{1}{2}(f(x_1) + f(c)) < f(x_1)$, violating the fact that f is increasing on (a, c). This shows that f is increasing on (a, c]. Similarly, f is decreasing on [c, b).

It follows that f(c) is the largest value taken by f(x) on (a, b) and hence there is a local maximum at c.

Similarly, if f'(x) < 0 for $x \in (a, c)$ and f'(x) > 0 for $x \in (c, b)$, there is a local minimum at c.

But if f'(x) has the same sign on both sides of c then values on one side are higher and on the other are lower. Hence there is neither a local maximum nor a local minimum at c.

・ロト ・回ト ・ヨト ・ヨト

Example

3

Consider
$$f(x) = x^2 e^x$$
. We have $f'(x) = 2xe^x + x^2e^x = x(x+2)e^x$.
 $f'(c) = 0 \iff c(c+2) = 0 \iff c = 0, -2$

Identify the the sign of the derivative on either side of each critical point:

Example

Consider
$$f(x) = x^2 e^x$$
. We have $f'(x) = 2xe^x + x^2 e^x = x(x+2)e^x$.
 $f'(c) = 0 \iff c(c+2) = 0 \iff c = 0, -2$

Identify the the sign of the derivative on either side of each critical point:

By the First Derivative Test, there is a local maximum at -2 and a local minimum at 0. The function increases on $(-\infty, -2)$ to the value $4e^{-2} \approx 0.54$ at -2, then decreases to the value 0 at 0. Beyond 0 it increases again.

Example

Consider
$$f(x) = x^2 e^x$$
. We have $f'(x) = 2xe^x + x^2 e^x = x(x+2)e^x$.
 $f'(c) = 0 \iff c(c+2) = 0 \iff c = 0, -2$

Identify the the sign of the derivative on either side of each critical point:

By the First Derivative Test, there is a local maximum at -2 and a local minimum at 0. The function increases on $(-\infty, -2)$ to the value $4e^{-2} \approx 0.54$ at -2, then decreases to the value 0 at 0. Beyond 0 it increases again. Note that

$$\lim_{x \to \infty} x^2 e^x = \infty \text{ and } \lim_{x \to -\infty} x^2 e^x = \lim_{x \to \infty} x^2 / e^x = 0$$

Convexity

A function $f: I \to \mathbb{R}$ is said to be **convex** on I if its graph over *every* interval [a, b] in I lies *below* the secant line through the endpoints of the graph over that interval.

The graph of a convex function turns upwards as we move from left to right.

Image: A mathematical states of the state

글 🖌 🔺 글 🕨

▶ ∢ ⊒ ▶

Concavity

 $f: I \to \mathbb{R}$ is said to be **concave** on *I* if its graph over *every* interval [a, b] in *I* lies *above* the secant line through the endpoints of the graph over that interval.

The graph of a concave function turns downwards as we move from left to right.

Derivative Tests and Curve Sketching

イロト イポト イヨト イヨト

Formal Definitions of Convex/Concave

э

1 f is called **convex** on I if for every $a, x, b \in I$ with a < x < b, we have

$$f(x) \le f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
 (1)

Derivative Tests and Curve Sketching

MBRIDGE

Formal Definitions of Convex/Concave

UNIVERSITY PRESS

イロト イポト イヨト ・

1 f is called **convex** on I if for every $a, x, b \in I$ with a < x < b, we have

$$f(x) \leq f(a) + \frac{f(b) - f(a)}{b - a}(x - a) \tag{1}$$

2 *f* is called **concave** on *I* if for every $a, x, b \in I$ with a < x < b, we have

$$f(x) \ge f(a) + \frac{f(b) - f(a)}{b - a}(x - a) \tag{2}$$

Derivative Tests and Curve Sketching

Formal Definitions of Convex/Concave

• *f* is called **convex** on *I* if for every $a, x, b \in I$ with a < x < b, we have

$$f(x) \leq f(a) + \frac{f(b) - f(a)}{b - a}(x - a) \tag{1}$$

2 *f* is called **concave** on *I* if for every $a, x, b \in I$ with a < x < b, we have

$$f(x) \ge f(a) + \frac{f(b) - f(a)}{b - a}(x - a) \tag{2}$$

(日)

Task 4

Can a function be both convex and concave?

Derivative Tests and Curve Sketching

Formal Definitions of Convex/Concave

1 *f* is called **convex** on *I* if for every $a, x, b \in I$ with a < x < b, we have

$$f(x) \le f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
 (1)

2 *f* is called **concave** on *I* if for every $a, x, b \in I$ with a < x < b, we have

$$f(x) \ge f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
 (2)

Task 4

Can a function be both convex and concave?

If the inequalities (1) and (2) are strict, we call f strictly convex and strictly concave respectively.

ヨト イヨト

Inflection and Convexity Test

A point where the function is continuous and switches from strictly convex on one side to strictly concave on the other, is called an **inflection point** of the function.

Theorem 9

Let f be twice differentiable on an interval I. Then

- 1) $f'' \ge 0$ on I implies f is convex on I.
- **2** $f'' \leq 0$ on I implies f is concave on I.
- 3 If f'' is continuous at an inflection point c then f''(c) = 0.

If the inequalities are strict, so is the convexity.

・ロト ・回ト ・ヨト ・ヨト

Convexity Test - Proof

3

First, suppose $f'' \ge 0$ on I. Let $c, d \in I$ with c < d. Consider

$$g(x)=f(c)+\frac{f(d)-f(c)}{d-c}(x-c)-f(x), \text{ for } x\in(c,d).$$

Convexity Test - Proof

3

First, suppose $f'' \ge 0$ on I. Let $c, d \in I$ with c < d. Consider

$$g(x)=f(c)+rac{f(d)-f(c)}{d-c}(x-c)-f(x), ext{ for } x\in (c,d).$$

Note that g(c) = g(d) = 0. Further, $g'' = -f'' \le 0$ and so g' is a decreasing function.

Amber Habib

Calculus

<ロト < 同ト < ヨト < ヨト -

Convexity Test - Proof

First, suppose $f'' \ge 0$ on I. Let $c, d \in I$ with c < d. Consider

$$g(x)=f(c)+rac{f(d)-f(c)}{d-c}(x-c)-f(x), ext{ for } x\in(c,d).$$

Note that g(c) = g(d) = 0. Further, $g'' = -f'' \le 0$ and so g' is a decreasing function.

We wish to show that for each $x \in (c, d)$, $g(x) \ge 0$. Suppose that g(x) < 0 at some point $x \in (c, d)$. By the Monotonicity Theorem, we obtain α, β as follows:

- $\alpha \in (c,x)$ and $g'(\alpha) < 0$,
- $\beta \in (x, d)$ and $g'(\beta) > 0$.

Convexity Test - Proof

First, suppose $f'' \ge 0$ on I. Let $c, d \in I$ with c < d. Consider

$$g(x)=f(c)+rac{f(d)-f(c)}{d-c}(x-c)-f(x), ext{ for } x\in(c,d).$$

Note that g(c) = g(d) = 0. Further, $g'' = -f'' \le 0$ and so g' is a decreasing function.

We wish to show that for each $x \in (c, d)$, $g(x) \ge 0$. Suppose that g(x) < 0 at some point $x \in (c, d)$. By the Monotonicity Theorem, we obtain α, β as follows:

- $\alpha \in (c,x)$ and $g'(\alpha) < 0$,
- $\beta \in (x, d)$ and $g'(\beta) > 0$.

This contradicts g' being a decreasing function. Hence g(x) < 0 is impossible, and f is convex.

Convexity Test - Proof

First, suppose $f'' \ge 0$ on I. Let $c, d \in I$ with c < d. Consider

$$g(x)=f(c)+rac{f(d)-f(c)}{d-c}(x-c)-f(x), ext{ for } x\in(c,d).$$

Note that g(c) = g(d) = 0. Further, $g'' = -f'' \le 0$ and so g' is a decreasing function.

We wish to show that for each $x \in (c, d)$, $g(x) \ge 0$. Suppose that g(x) < 0 at some point $x \in (c, d)$. By the Monotonicity Theorem, we obtain α, β as follows:

- $\alpha \in (c,x)$ and $g'(\alpha) < 0$,
- $\beta \in (x, d)$ and $g'(\beta) > 0$.

This contradicts g' being a decreasing function. Hence g(x) < 0 is impossible, and f is convex.

If $f'' \leq 0$ on I, apply the first part to -f.

Convexity Test - Proof

First, suppose $f'' \ge 0$ on I. Let $c, d \in I$ with c < d. Consider

$$g(x)=f(c)+rac{f(d)-f(c)}{d-c}(x-c)-f(x), ext{ for } x\in (c,d).$$

Note that g(c) = g(d) = 0. Further, $g'' = -f'' \le 0$ and so g' is a decreasing function.

We wish to show that for each $x \in (c, d)$, $g(x) \ge 0$. Suppose that g(x) < 0 at some point $x \in (c, d)$. By the Monotonicity Theorem, we obtain α, β as follows:

- $\alpha \in (c,x)$ and $g'(\alpha) < 0$,
- $\beta \in (x, d)$ and $g'(\beta) > 0$.

This contradicts g' being a decreasing function. Hence g(x) < 0 is impossible, and f is convex.

If $f'' \leq 0$ on I, apply the first part to -f.

For the third part, suppose f''(c) > 0. Then, by continuity, f'' > 0 in an interval *I* centered at *c*. So *f* is convex on *I* and *c* is not an inflection point.

Convexity Test - Proof

First, suppose $f'' \ge 0$ on I. Let $c, d \in I$ with c < d. Consider

$$g(x)=f(c)+rac{f(d)-f(c)}{d-c}(x-c)-f(x), ext{ for } x\in(c,d).$$

Note that g(c) = g(d) = 0. Further, $g'' = -f'' \le 0$ and so g' is a decreasing function.

We wish to show that for each $x \in (c, d)$, $g(x) \ge 0$. Suppose that g(x) < 0 at some point $x \in (c, d)$. By the Monotonicity Theorem, we obtain α, β as follows:

- $\alpha \in (c,x)$ and $g'(\alpha) < 0$,
- $\beta \in (x, d)$ and $g'(\beta) > 0$.

This contradicts g' being a decreasing function. Hence g(x) < 0 is impossible, and f is convex.

If $f'' \leq 0$ on I, apply the first part to -f.

For the third part, suppose f''(c) > 0. Then, by continuity, f'' > 0 in an interval *I* centered at *c*. So *f* is convex on *I* and *c* is not an inflection point. This rules out f''(c) > 0. We can similarly rule out f''(c) < 0.

Second Derivative Test

Theorem 10

Let f have a critical point at c and f'' be continuous in an open interval containing c. Then

- 1 f''(c) > 0 implies there is a local minimum at c.
- 2 f''(c) < 0 implies there is a local maximum at c.

Second Derivative Test

Theorem 10

Let f have a critical point at c and f'' be continuous in an open interval containing c. Then

- 1 f''(c) > 0 implies there is a local minimum at c.
- 2 f''(c) < 0 implies there is a local maximum at c.

Proof. Let f''(c) > 0. By continuity, f'' > 0 in an open interval containing c.

Second Derivative Test

Theorem 10

Let f have a critical point at c and f'' be continuous in an open interval containing c. Then

- 1 f''(c) > 0 implies there is a local minimum at c.
- 2 f''(c) < 0 implies there is a local maximum at c.

Proof. Let f''(c) > 0. By continuity, f'' > 0 in an open interval containing c.

Then f' is strictly increasing in that interval.

Second Derivative Test

Theorem 10

Let f have a critical point at c and f'' be continuous in an open interval containing c. Then

- 1 f''(c) > 0 implies there is a local minimum at c.
- 2 f''(c) < 0 implies there is a local maximum at c.

Proof. Let f''(c) > 0. By continuity, f'' > 0 in an open interval containing c.

Then f' is strictly increasing in that interval.

Hence f' changes from negative to positive at c, and there is a local minimum at c (by the First Derivative Test).

< ロ > < 同 > < 三 > < 三 > 、

Second Derivative Test

Theorem 10

Let f have a critical point at c and f'' be continuous in an open interval containing c. Then

- 1 f''(c) > 0 implies there is a local minimum at c.
- 2 f''(c) < 0 implies there is a local maximum at c.

Proof. Let f''(c) > 0. By continuity, f'' > 0 in an open interval containing c.

Then f' is strictly increasing in that interval.

Hence f' changes from negative to positive at c, and there is a local minimum at c (by the First Derivative Test).

For the second part, apply the first part to -f.

・ロト ・回ト ・ヨト ・ヨト

Example

3

Let $f(x) = x^2 e^x$. We saw earlier that this has a local maximum at -2 and a local (as well as absolute) minimum at 0.

$$f'(x) = (x^2 + 2x)e^x \implies f''(x) = (x^2 + 4x + 2)e^x.$$

イロト イヨト イヨト

Example

э

Let $f(x) = x^2 e^x$. We saw earlier that this has a local maximum at -2 and a local (as well as absolute) minimum at 0.

$$f'(x) = (x^2 + 2x)e^x \implies f''(x) = (x^2 + 4x + 2)e^x.$$

We identify the possible inflection points.

 $f^{\prime\prime}(c)=0 \iff c^2+4c+2=0 \iff c=-2\pm\sqrt{2}pprox -3.4, -0.6.$

	$x < -2 - \sqrt{2}$	$ -2 - \sqrt{2} < x < -2 + \sqrt{2}$	$x > -2 + \sqrt{2}$
f''(x)	+	_	+
Convexity	Convex	Concave	Convex

Example

Let $f(x) = x^2 e^x$. We saw earlier that this has a local maximum at -2 and a local (as well as absolute) minimum at 0.

$$f'(x) = (x^2 + 2x)e^x \implies f''(x) = (x^2 + 4x + 2)e^x.$$

We identify the possible inflection points.

 $f^{\prime\prime}(c)=0 \iff c^2+4c+2=0 \iff c=-2\pm\sqrt{2}pprox -3.4, -0.6.$

Note that $f''(-2) = -2e^{-2} < 0$ confirms the local maximum at -2 and f''(0) = 2 > 0 confirms the local minimum at 0.

글 🖌 🔺 글 🕨

Curve Sketching

We have seen how first and second derivative calculations can give us key features of a graph.

We can capture all the essential aspects of a function's behaviour by supplementing these with the following: domain, axis-intercepts, points of discontinuity, symmetry (even, odd, periodic), asymptotes (vertical, horizontal, slant).

Let's demonstrate this with an example.

イロト 不得 トイヨト イヨト 二日

Example

Consider $f(x) = \arctan\left(\frac{x-1}{x+1}\right)$. **Domain:** The domain is $\mathbb{R} \setminus \{-1\}$. Note also that $f(x) \in (-\pi/2, \pi/2)$. **Intercepts:** The function is zero at x = 1. It cuts the y-axis at $y = f(0) = \arctan(-1) = -\pi/4.$ **Symmetry:** We have $f(2) = \arctan(1/3)$ and $f(-2) = \arctan(3)$. They are positive and unequal (arctan is 1-1) so f(x) is neither even nor odd. **Vertical Asymptotes:** As f(x) is continuous on its domain, the only possibility of vertical asymptotes is at x = -1. So we calculate the one-sided limits there:

 $\lim_{x \to -1+} \frac{x-1}{x+1} = \lim_{t \to 0+} \frac{t-2}{t} = -\infty \implies \lim_{x \to -1+} \arctan\left(\frac{x-1}{x+1}\right) = -\frac{\pi}{2},$ $\lim_{x \to -1-} \frac{x-1}{x+1} = \lim_{t \to 0+} \frac{t+2}{t} = \infty \implies \lim_{x \to -1-} \arctan\left(\frac{x-1}{x+1}\right) = \frac{\pi}{2}.$

Since the limits are finite there isn't a vertical asymptote at x = -1.

э

Example - continued

Horizontal Asymptotes:

$$\lim_{x \to \infty} \left(\frac{x-1}{x+1} \right) = 1 \implies \lim_{x \to \infty} \arctan\left(\frac{x-1}{x+1} \right) = \arctan(1) = \frac{\pi}{4},$$
$$\lim_{x \to -\infty} \left(\frac{x-1}{x+1} \right) = 1 \implies \lim_{x \to -\infty} \arctan\left(\frac{x-1}{x+1} \right) = \arctan(1) = \frac{\pi}{4}.$$

Therefore $y = \pi/4$ is a horizontal asymptote on both sides. **Critical Points:**

$$\frac{d}{dx} \arctan\left(\frac{x-1}{x+1}\right) = \frac{(x+1)^2}{(x+1)^2 + (x-1)^2} \times \frac{(x+1) - (x-1)}{(x+1)^2} \\ = \frac{1}{x^2 + 1}.$$

There are no critical points. In fact f'(x) > 0 and so f is strictly increasing on $(-\infty, -1)$ and also on $(-1, \infty)$.

æ

Example - continued

Convexity:
$$f''(x) = \frac{d}{dx} \frac{1}{x^2 + 1} = \frac{-2x}{(x^2 + 1)^2}$$
.
We have $f''(x) > 0$ for $x < 0$ and $f''(x) < 0$ for $x > 0$.
So f is convex on $(-\infty, -1)$ and on $(-1, 0)$.
It is concave on $(0, \infty)$. The only inflection point is $x = 0$.
Here is the graph of f .

