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Absolute Maximum and Minimum

A function f : D → R has a global or absolute maximum at a
point c if f (c) ≥ f (x) for every x ∈ D. Similarly, it has a global or
absolute minimum at a point d if f (d) ≤ f (x) for every x ∈ D.

Various situations are possible:

1 f may not have an absolute maximum or an absolute
minimum: f (x) = x : R → R and f (x) = 1/x : (0, 1) → R.

2 f may have an absolute maximum but not an absolute
minimum: f (x) = −x2 : R → R.

3 f may have an absolute minimum but not an absolute
maximum: f (x) = x2 : R → R.

4 f has both an absolute minimum and an absolute maximum.
And they may occur several times: sin : R → R.

Absolute maxima and minima are collectively known as absolute
extremes.
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Local Maximum and Minimum

We say that f : D → R has a local or relative maximum at a
point c if there is an open interval I containing c such that
f (c) ≥ f (x) for every x ∈ I ∩ D.

Similarly, f has a local or relative minimum at a point d if there
is an open interval I containing d such that f (d) ≤ f (x) for every
x ∈ I ∩ D.

Local maxima and minima are collectively known as local
extremes.

An absolute maximum will also be a local maximum, and an
absolute minimum will be a local minimum. But local extremes
need not be absolute extremes, and a function could well have
local extremes without having any absolute extreme.
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Fermat’s Theorem

Theorem 1

Let f (x) have a local extreme at an interior point c of an interval in its
domain. Then either f ′(c) does not exist or f ′(c) = 0.

Proof. Suppose f ′(c) exists. We have to show that f ′(c) = 0. Suppose
f ′(c) > 0, that is,

lim
x→c

f (x)− f (c)

x − c
> 0.

Since the limit is positive, the values
f (x)− f (c)

x − c
must themselves be

positive once we are close to c . That is, there must be a δ > 0 such that

0 < |x − c | < δ =⇒ f (x)− f (c)

x − c
> 0. Then,

c − δ < x < c =⇒ f (x) < f (c) =⇒ c is not a point of local minimum,

c < x < c + δ =⇒ f (x) > f (c) =⇒ c is not a point of local maximum.

This rules out f ′(c) > 0. We similarly rule out f ′(c) < 0. □
Amber Habib Calculus
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Two Examples

An example of a local extreme which occurs at a point where f ′

does not exist:

Example 2

Consider f (x) = |x |. It has a local minimum at x = 0 but f ′(0) is
not defined.

An example of a point where f ′ is zero but it is not a local extreme:

Example 3

Consider f (x) = x3. Then f ′(0) = 0 but there isn’t a local extreme
at x = 0.
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Critical Points

We call c a critical point or critical number of f (x) if it is an interior
point c of an interval in the domain of f and either f ′(c) does not exist
or f ′(c) = 0.

Let f : [a, b] → R. By Fermat’s Theorem, the local extremes of f occur
either at critical points or at the end-points of [a, b].

Example 4

Consider f (x) = x3 − 3x + 1 with domain [0, 3].

1 Function values at endpoints: f (0) = 1 and f (3) = 19.

2 Critical points: Since f is differentiable we look for f ′(c) = 0. This
gives 3c2 − 3 = 0 or c = ±1. Thus c = 1 is the only critical point
(in the given domain).

3 Function values at the critical points: f (1) = −1.

Thus the candidates for absolute extremes are only f (0) = 1, f (1) = −1
and f (3) = 19. So the absolute maximum is at x = 3 and the absolute
minimum is at x = 1.
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Monotonicity Theorem

Theorem 5

Suppose I is an interval and f : I → R is differentiable on I .

1 If f ′(x) > 0 for every x ∈ I then f is strictly increasing.

2 If f ′(x) ≥ 0 for every x ∈ I then f is increasing.

We also have the corresponding statements regarding negative
derivatives and decreasing functions.

Proof. Suppose f ′(x) > 0 for every x ∈ I . Let p, q ∈ I with p < q.
We have to show that f (p) < f (q).
By continuity, f achieves its maximum and minimum over [p, q].
By Fermat’s Theorem the points of maximum and minimum can
only be p or q.
If the maximum and minimum values are equal, then f is a
constant function, and f ′ = 0. So f (p) ̸= f (q).
(continued)
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Monotonicity Theorem

(Proof continued)
Suppose f (q) is the minimum value over [p, q]. Then

f ′(q) = lim
x→q−

f (x)− f (q)

x − q
≤ 0.

This contradicts the positivity of f ′. It follows that f (q) is the
maximum value over [p, q] and hence f (p) < f (q).
Now, suppose we only have f ′(x) ≥ 0 for every x ∈ I . Let p, q ∈ I
with p < q. Take any ϵ > 0 and consider the function
g(x) = f (x) + ϵx . Then g ′(x) = f ′(x) + ϵ > 0 and g is strictly
increasing. Now,

g(p) < g(q) =⇒ f (q)− f (p) > ϵ(p − q).

Thus f (q)− f (p) is greater than every negative number and hence
must be non-negative. □

Amber Habib Calculus



Extreme Values and Monotonicity Derivative Tests and Curve Sketching

Example

We will show that x3 + 3x + 1 = 0 has exactly one solution.

f (x) = x3 + 3x + 1 is continuous and differentiable everywhere.

We have f (−1) = −3 < 0 and f (0) = 1 > 0. By Intermediate
Value Theorem we have a c ∈ (−1, 0) such that f (c) = 0, i.e.
c3 + 3c + 1 = 0.

Now f ′(x) = 3x2 + 3 ≥ 3 > 0.

Hence f is strictly increasing, therefore one-one. So there can only
be one c with f (c) = 0.
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Zero derivative implies constancy

Theorem 6

Let f , g be differentiable functions from an interval I to R.
1 If f ′(x) = 0 for each x ∈ I then f (x) is constant.

2 If f ′(x) = g ′(x) for each x ∈ I then f (x) = g(x)+constant.

Proof. Assume f ′(x) = 0 for each x ∈ I .
f ′ ≥ 0 implies f is increasing.
f ′ ≤ 0 implies f is decreasing.
Since f is both increasing and decreasing, it is constant.

Assume f ′(x) = g ′(x) for each x ∈ I . Apply the first part of the
theorem to f (x)− g(x). □
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Characterizing the Exponential Function

Theorem 7

If f ′(x) = k f (x) on an interval I then f (x) = Aekx .

Proof. Consider g(x) = f (x)e−kx . Then

g ′(x) = f ′(x)e−kx − kf (x)e−kx = kf (x)e−kx − kf (x)e−kx = 0.

Hence g(x) = A, a constant, and f (x) = Aekx . □

Task 1

Suppose f : R → R is differentiable, f ′ = f and f (0) = 1. Show
that f (x) = ex .
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Characterizing Sine and Cosine

The sine and cosine functions satisfy the relation f ′′ = −f . More
generally, every combination a cos x + b sin x satisfies this relation.
Are they the only ones?

Task 2

Suppose f : R → R is differentiable, f ′′ = −f and
f (0) = f ′(0) = 0. Show that f (x) = 0. (Hint: Differentiate the
function f 2 + (f ′)2).

Task 3

Suppose f : R → R is differentiable and f ′′ = −f . Show that if
f (0) = a and f ′(0) = b then f (x) = a cos x + b sin x.
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Saddle Points

A critical point that is not a local extreme is called a saddle point.

saddle

local max

local min

f ′ > 0 f ′ > 0 f ′ < 0 f ′ > 0

Observe the changes in the sign of f ′ as we pass through different
types of critical points.
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First Derivative Test

Theorem 8

Let f be continuous on (a, b) and let c ∈ (a, b) be a critical point
of f . Suppose f is differentiable on (a, b) except perhaps at c.
Then,

1 If f ′(x) ≥ 0 for x ∈ (a, c) and f ′(x) ≤ 0 for x ∈ (c , b) then f
has a local maximum at c.

2 If f ′(x) ≤ 0 for x ∈ (a, c) and f ′(x) ≥ 0 for x ∈ (c , b) then f
has a local minimum at c.

3 If f ′ has the same sign on either side of c then f has a saddle
point at c.
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First Derivative Test – Proof

Suppose f ′(x) ≥ 0 for x ∈ (a, c) and f ′(x) ≤ 0 for x ∈ (c , b). By the
Monotonicity Theorem, f is increasing on (a, c) and decreasing on (c , b).

The continuity of f then gives us that f is increasing on (a, c] and
decreasing on [c , b). For, suppose there is x1 < c with f (x1) > f (c). By
the Intermediate Value Theorem, there is x2 ∈ (x1, c) with
f (x2) =

1
2 (f (x1) + f (c)) < f (x1), violating the fact that f is increasing

on (a, c). This shows that f is increasing on (a, c]. Similarly, f is
decreasing on [c , b).

It follows that f (c) is the largest value taken by f (x) on (a, b) and hence
there is a local maximum at c .

Similarly, if f ′(x) < 0 for x ∈ (a, c) and f ′(x) > 0 for x ∈ (c , b), there is
a local minimum at c .

But if f ′(x) has the same sign on both sides of c then values on one side
are higher and on the other are lower. Hence there is neither a local
maximum nor a local minimum at c . □
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Example

Consider f (x) = x2ex . We have f ′(x) = 2xex + x2ex = x(x + 2)ex .

f ′(c) = 0 ⇐⇒ c(c + 2) = 0 ⇐⇒ c = 0,−2

Identify the the sign of the derivative on either side of each critical point:

x < −2 −2 < x < 0 x > 0
f ′(x) + − +

By the First Derivative Test, there is a local maximum at −2 and a local
minimum at 0. The function increases on (−∞,−2) to the value
4e−2 ≈ 0.54 at −2, then decreases to the value 0 at 0. Beyond 0 it
increases again. Note that

lim
x→∞

x2ex = ∞ and lim
x→−∞

x2ex = lim
x→∞

x2/ex = 0

−5

0.2

0.4

0.6

0.8
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Convexity

A function f : I → R is said to be convex on I if its graph over
every interval [a, b] in I lies below the secant line through the
endpoints of the graph over that interval.

I

The graph of a convex function turns upwards as we move from
left to right.
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Concavity

f : I → R is said to be concave on I if its graph over every interval
[a, b] in I lies above the secant line through the endpoints of the
graph over that interval.

I

The graph of a concave function turns downwards as we move
from left to right.
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Formal Definitions of Convex/Concave

1 f is called convex on I if for every a, x , b ∈ I with a < x < b,
we have

f (x) ≤ f (a) +
f (b)− f (a)

b − a
(x − a) (1)

2 f is called concave on I if for every a, x , b ∈ I with
a < x < b, we have

f (x) ≥ f (a) +
f (b)− f (a)

b − a
(x − a) (2)

Task 4

Can a function be both convex and concave?

If the inequalities (1) and (2) are strict, we call f strictly convex
and strictly concave respectively.
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Inflection and Convexity Test

A point where the function is continuous and switches from strictly
convex on one side to strictly concave on the other, is called an
inflection point of the function.

Theorem 9

Let f be twice differentiable on an interval I . Then

1 f ′′ ≥ 0 on I implies f is convex on I .

2 f ′′ ≤ 0 on I implies f is concave on I .

3 If f ′′ is continuous at an inflection point c then f ′′(c) = 0.

If the inequalities are strict, so is the convexity.
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Convexity Test – Proof
First, suppose f ′′ ≥ 0 on I . Let c , d ∈ I with c < d . Consider

g(x) = f (c) +
f (d)− f (c)

d − c
(x − c)− f (x), for x ∈ (c , d).

Note that g(c) = g(d) = 0. Further, g ′′ = −f ′′ ≤ 0 and so g ′ is a
decreasing function.
We wish to show that for each x ∈ (c , d), g(x) ≥ 0. Suppose that
g(x) < 0 at some point x ∈ (c , d). By the Monotonicity Theorem, we
obtain α, β as follows:

• α ∈ (c , x) and g ′(α) < 0,

• β ∈ (x , d) and g ′(β) > 0.

This contradicts g ′ being a decreasing function. Hence g(x) < 0 is
impossible, and f is convex.
If f ′′ ≤ 0 on I , apply the first part to −f .
For the third part, suppose f ′′(c) > 0. Then, by continuity, f ′′ > 0 in an
interval I centered at c . So f is convex on I and c is not an inflection
point.This rules out f ′′(c) > 0. We can similarly rule out f ′′(c) < 0.
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Second Derivative Test

Theorem 10

Let f have a critical point at c and f ′′ be continuous in an open
interval containing c. Then

1 f ′′(c) > 0 implies there is a local minimum at c.

2 f ′′(c) < 0 implies there is a local maximum at c.

Proof. Let f ′′(c) > 0. By continuity, f ′′ > 0 in an open interval
containing c .
Then f ′ is strictly increasing in that interval.
Hence f ′ changes from negative to positive at c , and there is a
local minimum at c (by the First Derivative Test).
For the second part, apply the first part to −f . □
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Example

Let f (x) = x2ex . We saw earlier that this has a local maximum at −2
and a local (as well as absolute) minimum at 0.

f ′(x) = (x2 + 2x)ex =⇒ f ′′(x) = (x2 + 4x + 2)ex .

We identify the possible inflection points.

f ′′(c) = 0 ⇐⇒ c2 + 4c + 2 = 0 ⇐⇒ c = −2±
√
2 ≈ −3.4,−0.6.

x < −2−
√
2 −2−

√
2 < x < −2 +

√
2 x > −2 +

√
2

f ′′(x) + − +
Convexity Convex Concave Convex

Note that f ′′(−2) = −2e−2 < 0 confirms the local maximum at −2 and
f ′′(0) = 2 > 0 confirms the local minimum at 0.

−6 −4 −2 2

0.2

0.4

0.6

0.8
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Curve Sketching

We have seen how first and second derivative calculations can give
us key features of a graph.

We can capture all the essential aspects of a function’s behaviour
by supplementing these with the following: domain, axis-intercepts,
points of discontinuity, symmetry (even, odd, periodic),
asymptotes (vertical, horizontal, slant).

Let’s demonstrate this with an example.
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Example

Consider f (x) = arctan

(
x − 1

x + 1

)
.

Domain: The domain is R \ {−1}. Note also that f (x) ∈ (−π/2, π/2).
Intercepts: The function is zero at x = 1. It cuts the y -axis at
y = f (0) = arctan(−1) = −π/4.
Symmetry: We have f (2) = arctan(1/3) and f (−2) = arctan(3). They
are positive and unequal (arctan is 1-1) so f (x) is neither even nor odd.
Vertical Asymptotes: As f (x) is continuous on its domain, the only
possibility of vertical asymptotes is at x = −1. So we calculate the
one-sided limits there:

lim
x→−1+

x − 1

x + 1
= lim

t→0+

t − 2

t
= −∞ =⇒ lim

x→−1+
arctan

(
x − 1

x + 1

)
= −π

2
,

lim
x→−1−

x − 1

x + 1
= lim

t→0+

t + 2

t
= ∞ =⇒ lim

x→−1−
arctan

(
x − 1

x + 1

)
=

π

2
.

Since the limits are finite there isn’t a vertical asymptote at x = −1.
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Example - continued

Horizontal Asymptotes:

lim
x→∞

(
x − 1

x + 1

)
= 1 =⇒ lim

x→∞
arctan

(
x − 1

x + 1

)
= arctan(1) =

π

4
,

lim
x→−∞

(
x − 1

x + 1

)
= 1 =⇒ lim

x→−∞
arctan

(
x − 1

x + 1

)
= arctan(1) =

π

4
.

Therefore y = π/4 is a horizontal asymptote on both sides.
Critical Points:

d

dx
arctan

(
x − 1

x + 1

)
=

(x + 1)2

(x + 1)2 + (x − 1)2
× (x + 1)− (x − 1)

(x + 1)2

=
1

x2 + 1
.

There are no critical points. In fact f ′(x) > 0 and so f is strictly
increasing on (−∞,−1) and also on (−1,∞).
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Example - continued

Convexity: f ′′(x) =
d

dx

1

x2 + 1
=

−2x

(x2 + 1)2
.

We have f ′′(x) > 0 for x < 0 and f ′′(x) < 0 for x > 0.

So f is convex on (−∞,−1) and on (−1, 0).

It is concave on (0,∞). The only inflection point is x = 0.

Here is the graph of f .

−4 −2 2 4

−1

1 y = π/4
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