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Absolute Maximum and Minimum & GAMBRIDGE

A function f: D — R has a global or absolute maximum at a
point c if f(c) > f(x) for every x € D. Similarly, it has a global or
absolute minimum at a point d if f(d) < f(x) for every x € D.
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A function f: D — R has a global or absolute maximum at a
point c if f(c) > f(x) for every x € D. Similarly, it has a global or
absolute minimum at a point d if f(d) < f(x) for every x € D.
Various situations are possible:

@ f may not have an absolute maximum or an absolute
minimum: f(x) =x: R - R and f(x) =1/x:(0,1) —» R.
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A function f: D — R has a global or absolute maximum at a
point c if f(c) > f(x) for every x € D. Similarly, it has a global or
absolute minimum at a point d if f(d) < f(x) for every x € D.
Various situations are possible:
@ f may not have an absolute maximum or an absolute
minimum: f(x) =x: R - R and f(x) =1/x:(0,1) —» R.
® f may have an absolute maximum but not an absolute
minimum: f(x) = —x?: R — R.
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A function f: D — R has a global or absolute maximum at a
point c if f(c) > f(x) for every x € D. Similarly, it has a global or
absolute minimum at a point d if f(d) < f(x) for every x € D.
Various situations are possible:
@ f may not have an absolute maximum or an absolute
minimum: f(x) =x: R - R and f(x) =1/x:(0,1) —» R.
® f may have an absolute maximum but not an absolute
minimum: f(x) = —x?: R — R.
© f may have an absolute minimum but not an absolute
maximum: f(x) = x?>: R — R.
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A function f: D — R has a global or absolute maximum at a
point c if f(c) > f(x) for every x € D. Similarly, it has a global or
absolute minimum at a point d if f(d) < f(x) for every x € D.
Various situations are possible:
@ f may not have an absolute maximum or an absolute
minimum: f(x) =x: R - R and f(x) =1/x:(0,1) —» R.
® f may have an absolute maximum but not an absolute
minimum: f(x) = —x?: R — R.
© f may have an absolute minimum but not an absolute
maximum: f(x) = x?>: R — R.
@ f has both an absolute minimum and an absolute maximum.
And they may occur several times: sin: R — R.
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A function f: D — R has a global or absolute maximum at a
point c if f(c) > f(x) for every x € D. Similarly, it has a global or
absolute minimum at a point d if f(d) < f(x) for every x € D.
Various situations are possible:
@ f may not have an absolute maximum or an absolute
minimum: f(x) =x: R - R and f(x) =1/x:(0,1) —» R.
® f may have an absolute maximum but not an absolute
minimum: f(x) = —x?: R — R.
© f may have an absolute minimum but not an absolute
maximum: f(x) = x?>: R — R.
@ f has both an absolute minimum and an absolute maximum.
And they may occur several times: sin: R — R.

Absolute maxima and minima are collectively known as absolute
extremes.
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We say that f: D — R has a local or relative maximum at a
point c if there is an open interval | containing ¢ such that
f(c) > f(x) for every x € IND.
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We say that f: D — R has a local or relative maximum at a
point c if there is an open interval | containing ¢ such that
f(c) > f(x) for every x € IND.

Similarly, f has a local or relative minimum at a point d if there

is an open interval / containing d such that f(d) < f(x) for every
xelnD.
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We say that f: D — R has a local or relative maximum at a
point c if there is an open interval | containing ¢ such that
f(c) > f(x) for every x € IND.

Similarly, f has a local or relative minimum at a point d if there

is an open interval / containing d such that f(d) < f(x) for every
xelnD.

Local maxima and minima are collectively known as local
extremes.
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We say that f: D — R has a local or relative maximum at a
point c if there is an open interval | containing ¢ such that
f(c) > f(x) for every x € IND.

Similarly, f has a local or relative minimum at a point d if there
is an open interval / containing d such that f(d) < f(x) for every
xelnD.

Local maxima and minima are collectively known as local
extremes.

An absolute maximum will also be a local maximum, and an
absolute minimum will be a local minimum. But local extremes
need not be absolute extremes, and a function could well have
local extremes without having any absolute extreme.
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Theorem 1

Let f(x) have a local extreme at an interior point ¢ of an interval in its
domain. Then either f'(c) does not exist or f'(c) = 0.

Proof. Suppose f'(c) exists. We have to show that f’'(c) = 0. Suppose

f'(c) > 0, that is,
lim M > 0.

Xx—c X—cC
f(x) —f(c)

X—cC

positive once we are close to ¢. That is, there must be a § > 0 such that
f(x)—f

M > 0. Then,

Since the limit is positive, the values must themselves be

O<|x—¢]|<d =

c—0<x<c = f(x)<f(c) = cisnot a point of local minimum,
c<x<c+d = f(x)>f(c) = cis not a point of local maximum.

This rules out f'(c) > 0. We similarly rule out '(¢) < 0, 0
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An example of a local extreme which occurs at a point where f’
does not exist:

Example 2

Consider f(x) = |x|. It has a local minimum at x = 0 but 7'(0) is
not defined.
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An example of a local extreme which occurs at a point where f’
does not exist:

Example 2

Consider f(x) = |x|. It has a local minimum at x = 0 but 7'(0) is
not defined.

An example of a point where f’ is zero but it is not a local extreme:
Example 3

Consider f(x) = x3. Then f’(0) = 0 but there isn't a local extreme
at x = 0.
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We call ¢ a critical point or critical number of f(x) if it is an interior
point ¢ of an interval in the domain of f and either f'(c) does not exist
or f'(c) =0.
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Critical Points & GAMBRIDGE

We call ¢ a critical point or critical number of f(x) if it is an interior
point ¢ of an interval in the domain of f and either f'(c) does not exist
or f'(c) =0.

Let f: [a, b] — R. By Fermat’'s Theorem, the local extremes of f occur
either at critical points or at the end-points of [a, b].
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We call ¢ a critical point or critical number of f(x) if it is an interior
point ¢ of an interval in the domain of f and either f'(c) does not exist
or f'(c) =0.

Let f: [a, b] — R. By Fermat’'s Theorem, the local extremes of f occur
either at critical points or at the end-points of [a, b].

Example 4
Consider f(x) = x3 — 3x + 1 with domain [0, 3].
@ Function values at endpoints: f(0) =1 and f(3) = 19.

@ Critical points: Since f is differentiable we look for f’(c) = 0. This
gives 3c2 —3 =0 or c = +1. Thus ¢ = 1 is the only critical point
(in the given domain).

© Function values at the critical points: f(1) = —1.
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We call ¢ a critical point or critical number of f(x) if it is an interior
point ¢ of an interval in the domain of f and either f'(c) does not exist

or f'(c) =0.
Let f: [a, b] — R. By Fermat’'s Theorem, the local extremes of f occur
either at critical points or at the end-points of [a, b].
Example 4
Consider f(x) = x3 — 3x + 1 with domain [0, 3].
@ Function values at endpoints: f(0) =1 and f(3) = 19.

@ Critical points: Since f is differentiable we look for f’(c) = 0. This
gives 3c2 —3 =0 or c = +1. Thus ¢ = 1 is the only critical point
(in the given domain).

© Function values at the critical points: f(1) = —1.

Thus the candidates for absolute extremes are only f(0) =1, f(1) = -1
and f(3) = 19. So the absolute maximum is at x = 3 and the absolute
minimum is at x = 1.
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Theorem 5

Suppose | is an interval and f: | — R is differentiable on |I.
@ Iff'(x) > 0 for every x € | then f is strictly increasing.
@® If f'(x) > 0 for every x € | then f is increasing.

We also have the corresponding statements regarding negative
derivatives and decreasing functions.

Proof. Suppose f'(x) > 0 for every x € . Let p,q € | with p < g.
We have to show that f(p) < f(q).

By continuity,  achieves its maximum and minimum over [p, q].
By Fermat's Theorem the points of maximum and minimum can
only be p or g.

If the maximum and minimum values are equal, then f is a
constant function, and ' = 0. So f(p) # f(q).

(continued)
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(Proof continued)
Suppose f(q) is the minimum value over [p, g]. Then

X—q— X—q

<0.

This contradicts the positivity of f’. It follows that f(q) is the
maximum value over [p, q] and hence f(p) < f(q).

Now, suppose we only have f'(x) > 0 for every x € . Let p,q € |
with p < g. Take any € > 0 and consider the function

g(x) = f(x) + ex. Then g’(x) = f/(x) + € > 0 and g is strictly
increasing. Now,

g(p) <glq) = f(q)—f(p) >e(p—q).

Thus f(q) — f(p) is greater than every negative number and hence
must be non-negative. 0
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We will show that x3 4+ 3x + 1 = 0 has exactly one solution.

f(x) = x3 + 3x + 1 is continuous and differentiable everywhere.
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We will show that x3 + 3x + 1 = 0 has exactly one solution.
f(x) = x3 + 3x + 1 is continuous and differentiable everywhere.

We have f(—1) = =3 < 0 and f(0) =1 > 0. By Intermediate
Value Theorem we have a ¢ € (—1,0) such that f(c) =0, i.e.
c+3c+1=0.
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We will show that x3 + 3x + 1 = 0 has exactly one solution.
f(x) = x3 + 3x + 1 is continuous and differentiable everywhere.

We have f(—1) = =3 < 0 and f(0) =1 > 0. By Intermediate
Value Theorem we have a ¢ € (—1,0) such that f(c) =0, i.e.
c+3c+1=0.

Now f(x) =3x?>+3>3>0.
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We will show that x3 + 3x + 1 = 0 has exactly one solution.
f(x) = x3 + 3x + 1 is continuous and differentiable everywhere.

We have f(—1) = =3 < 0 and f(0) =1 > 0. By Intermediate
Value Theorem we have a ¢ € (—1,0) such that f(c) =0, i.e.
c+3c+1=0.

Now f(x) =3x?>+3>3>0.

Hence f is strictly increasing, therefore one-one. So there can only
be one ¢ with f(c) = 0.
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Theorem 6

Let f, g be differentiable functions from an interval | to R.
@ /ff'(x) =0 for each x € | then f(x) is constant.
@® If f'(x) = g'(x) for each x € | then f(x) = g(x)+constant.
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Theorem 6

Let f, g be differentiable functions from an interval | to R.
@ /ff'(x) =0 for each x € | then f(x) is constant.
@® If f'(x) = g'(x) for each x € | then f(x) = g(x)+constant.

Proof. Assume f’(x) = 0 for each x € /.

f’ > 0 implies f is increasing.

f’ < 0 implies f is decreasing.

Since f is both increasing and decreasing, it is constant.
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Theorem 6

Let f, g be differentiable functions from an interval | to R.
@ /ff'(x) =0 for each x € | then f(x) is constant.
@® If f'(x) = g'(x) for each x € | then f(x) = g(x)+constant.

Proof. Assume f’(x) = 0 for each x € /.

f’ > 0 implies f is increasing.

f’ < 0 implies f is decreasing.

Since f is both increasing and decreasing, it is constant.

Assume f'(x) = g’(x) for each x € I. Apply the first part of the
theorem to f(x) — g(x). O
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Theorem 7
If f(x) = k f(x) on an interval | then f(x) = Ae*. J

Proof. Consider g(x) = f(x)e~ . Then
g'(x) = f'(x)e™™ — kf(x)e ™™ = kf(x)e " — kf(x)e ™ = 0.
Hence g(x) = A, a constant, and f(x) = Ae**. O

Task 1

Suppose f: R — R s differentiable, f' = f and f(0) = 1. Show
that f(x) = e*.
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The sine and cosine functions satisfy the relation f” = —f. More

generally, every combination acos x + bsin x satisfies this relation.
Are they the only ones?

Task 2

Suppose f: R — R is differentiable, f"" = —f and

f(0) = f'(0) = 0. Show that f(x) = 0. (Hint: Differentiate the
function 2 4 (f')?).

Task 3

Suppose f: R — R is differentiable and f” = —f. Show that if
f(0) = a and f'(0) = b then f(x) = acosx + bsin x.
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A critical point that is not a local extreme is called a saddle point.

local max

saddle

f’>0 f’>0 f'<0 f’>0

Observe the changes in the sign of ' as we pass through different
types of critical points.
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Theorem 8

Let f be continuous on (a, b) and let ¢ € (a, b) be a critical point

of f. Suppose f is differentiable on (a, b) except perhaps at c.
Then,

@ /ff'(x) >0 for x € (a,c) and f'(x) <0 for x € (c, b) then f
has a local maximum at c.

® Iff'(x) <0 for x € (a,c) and f'(x) > 0 for x € (c, b) then f
has a local minimum at c.

© If f' has the same sign on either side of ¢ then f has a saddle
point at c.
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Suppose f’'(x) > 0 for x € (a,¢) and f'(x) < 0 for x € (c, b). By the
Monotonicity Theorem, f is increasing on (a, ¢) and decreasing on (c, b).
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Suppose f’'(x) > 0 for x € (a,¢) and f'(x) < 0 for x € (c, b). By the
Monotonicity Theorem, f is increasing on (a, ¢) and decreasing on (c, b).

The continuity of f then gives us that f is increasing on (a, c] and
decreasing on [c, b). For, suppose there is x; < ¢ with f(x;) > f(c). By
the Intermediate Value Theorem, there is x» € (x1, ¢) with

f(x2) = 3(f(x1) + f(c)) < f(x1), violating the fact that f is increasing
on (a, c). This shows that f is increasing on (a, c]. Similarly, f is
decreasing on [c, b).
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Suppose f’'(x) > 0 for x € (a,¢) and f'(x) < 0 for x € (c, b). By the
Monotonicity Theorem, f is increasing on (a, ¢) and decreasing on (c, b).

The continuity of f then gives us that f is increasing on (a, c] and
decreasing on [c, b). For, suppose there is x; < ¢ with f(x;) > f(c). By
the Intermediate Value Theorem, there is x» € (x1, ¢) with

f(x2) = 3(f(x1) + f(c)) < f(x1), violating the fact that f is increasing
on (a, c). This shows that f is increasing on (a, c]. Similarly, f is
decreasing on [c, b).

It follows that f(c) is the largest value taken by f(x) on (a, b) and hence
there is a local maximum at c.
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Suppose f’'(x) > 0 for x € (a,¢) and f'(x) < 0 for x € (c, b). By the
Monotonicity Theorem, f is increasing on (a, ¢) and decreasing on (c, b).

The continuity of f then gives us that f is increasing on (a, c] and
decreasing on [c, b). For, suppose there is x; < ¢ with f(x;) > f(c). By
the Intermediate Value Theorem, there is x» € (x1, ¢) with

f(x2) = 3(f(x1) + f(c)) < f(x1), violating the fact that f is increasing
on (a, c). This shows that f is increasing on (a, c]. Similarly, f is
decreasing on [c, b).

It follows that f(c) is the largest value taken by f(x) on (a, b) and hence
there is a local maximum at c.

Similarly, if f'(x) < 0 for x € (a,¢) and f'(x) > 0 for x € (c, b), there is
a local minimum at c.
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Suppose f’'(x) > 0 for x € (a,¢) and f'(x) < 0 for x € (c, b). By the
Monotonicity Theorem, f is increasing on (a, ¢) and decreasing on (c, b).

The continuity of f then gives us that f is increasing on (a, c] and
decreasing on [c, b). For, suppose there is x; < ¢ with f(x;) > f(c). By
the Intermediate Value Theorem, there is x» € (x1, ¢) with

f(x2) = 3(f(x1) + f(c)) < f(x1), violating the fact that f is increasing
on (a, c). This shows that f is increasing on (a, c]. Similarly, f is
decreasing on [c, b).

It follows that f(c) is the largest value taken by f(x) on (a, b) and hence
there is a local maximum at c.

Similarly, if f/(x) < 0 for x € (a,c) and f'(x) > 0 for x € (c, b), there is
a local minimum at c.

But if f/(x) has the same sign on both sides of ¢ then values on one side
are higher and on the other are lower. Hence there is neither a local
maximum nor a local minimum at c. 0
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Consider f(x) = x2eX. We have f'(x) = 2xe* + x?e* = x(x + 2)e*
f'(c)=0 < ¢c(c+2)=0 < c=0,-2
Identify the the sign of the derivative on either side of each critical point:
| x< 2] -2<x<0| x>0
' (x) ‘ + ‘ - ‘ +
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Consider f(x) = x2eX. We have f'(x) = 2xe* + x?e* = x(x + 2)e*
f'(c)=0 < ¢c(c+2)=0 < c=0,-2
Identify the the sign of the derivative on either side of each critical point:
| x< 2] -2<x<0| x>0
i)y | + | - |+
By the First Derivative Test, there is a local maximum at —2 and a local
minimum at 0. The function increases on (—o0, —2) to the value

4e=2 22 0.54 at —2, then decreases to the value 0 at 0. Beyond 0 it
increases again.
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Consider f(x) = x2eX. We have f'(x) = 2xe* + x?e* = x(x + 2)e*
f'(c)=0 < ¢c(c+2)=0 < c=0,-2
Identify the the sign of the derivative on either side of each critical point:
| x< 2] -2<x<0| x>0

' (x) ‘ + ‘ — ‘ +
By the First Derivative Test, there is a local maximum at —2 and a local
minimum at 0. The function increases on (—o0, —2) to the value
4e=2 22 0.54 at —2, then decreases to the value 0 at 0. Beyond 0 it
increases again. Note that

2

lim x’¢* =ocoand lim x%¢“= lim x?/e* =0
X—>00 X—>—00 X—> 00
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A function f: | — R is said to be convex on [ if its graph over
every interval [a, b] in | lies below the secant line through the
endpoints of the graph over that interval.

The graph of a convex function turns upwards as we move from
left to right.
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f: 1 — R is said to be concave on [/ if its graph over every interval
[a, b] in | lies above the secant line through the endpoints of the
graph over that interval.

The graph of a concave function turns downwards as we move
from left to right.
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@ 1 is called convex on [ if for every a,x, b € | with a < x < b,
we have

Fx) < f(a)+ (B =@ 1)
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Formal Definitions of Convex/Concave RO A

@ 1 is called convex on [ if for every a,x, b € | with a < x < b,
we have

Fx) < f(a)+ (B =@ 1)

® f is called concave on [ if for every a, x, b € | with
a < x < b, we have

) > fla)+ " =T ) @)
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Formal Definitions of Convex/Concave RO A

@ 1 is called convex on [ if for every a,x, b € | with a < x < b,
we have

Fx) < f(a)+ (B =@ 1)

® f is called concave on [ if for every a, x, b € | with
a < x < b, we have

f(b)—f
) > f(a) + =Ty @
Task 4
Can a function be both convex and concave? J
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Formal Definitions of Convex/Concave O SRS

@ 1 is called convex on [ if for every a,x, b € | with a < x < b,

we have
) < f(a) + =T ) 1)

® f is called concave on [ if for every a, x, b € | with
a < x < b, we have

f(b)—f
) > f(a) + =Ty @
Task 4
Can a function be both convex and concave? J

If the inequalities (1) and (2) are strict, we call f strictly convex
and strictly concave respectively.
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A point where the function is continuous and switches from strictl
p y
convex on one side to strictly concave on the other, is called an
inflection point of the function.
Theorem 9
Let f be twice differentiable on an interval |. Then

@ ' >0 onl implies f is convex on I.

® " <0 onl implies f is concave on .

® If f" is continuous at an inflection point c then f”(c) = 0.

If the inequalities are strict, so is the convexity.
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First, suppose f” >0 on /. Let ¢,d € | with ¢ < d. Consider

CAMBRIDGE
g(x) = f(c) + w( —¢) — f(x), for x € (¢, d).
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First, suppose f” >0 on /. Let ¢,d € | with ¢ < d. Consider
f(d)— f
g(x)="f(c)+ M(X —c) — f(x), for x € (c,d).

d—c

Note that g(c) = g(d) = 0. Further, g’ = —f”" <0 andso g’ is a
decreasing function.
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Convexity Test — Proof WP v s

First, suppose f” >0 on /. Let ¢,d € | with ¢ < d. Consider

g(x) = f(c) + W(X —¢) = f(x), for x € (c,d).

Note that g(c) = g(d) = 0. Further, g’ = —f”" <0 andso g’ is a

decreasing function.
We wish to show that for each x € (¢, d), g(x) > 0. Suppose that
g(x) < 0 at some point x € (c, d). By the Monotonicity Theorem, we

obtain «a, § as follows:
® ae(c,x)and g'(a) <0,
® 3 (x,d)and g'(8) > 0.
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Convexity Test — Proof TP S
First, suppose f” >0 on /. Let ¢,d € | with ¢ < d. Consider
f(d) — f(c)

g(x)="f(c)+ f(x —c) — f(x), for x € (c,d).

Note that g(c) = g(d) = 0. Further, g’ = —f”" <0 andso g’ is a
decreasing function.

We wish to show that for each x € (¢, d), g(x) > 0. Suppose that
g(x) < 0 at some point x € (c, d). By the Monotonicity Theorem, we
obtain «a, § as follows:

® ae(c,x)and g'(a) <0,
® 3 (x,d)and g'(8) > 0.

This contradicts g’ being a decreasing function. Hence g(x) < 0 is
impossible, and f is convex.
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Convexity Test — Proof TP S
First, suppose f” >0 on /. Let ¢,d € | with ¢ < d. Consider
f(d)— f
g(x)="f(c)+ M(X —¢) — f(x), for x € (¢, d).

d—c

Note that g(c) = g(d) = 0. Further, g’ = —f”" <0 andso g’ is a
decreasing function.

We wish to show that for each x € (¢, d), g(x) > 0. Suppose that
g(x) < 0 at some point x € (c, d). By the Monotonicity Theorem, we
obtain «a, § as follows:

® ae(c,x)and g'(a) <0,
® 3 (x,d)and g'(8) > 0.

This contradicts g’ being a decreasing function. Hence g(x) < 0 is
impossible, and f is convex.
If £/ < 0on I, apply the first part to —f.
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Convexity Test — Proof TP S
First, suppose f” >0 on /. Let ¢,d € | with ¢ < d. Consider
f(d)— f
g(x)="f(c)+ M(X —c) — f(x), for x € (c,d).

d—c

Note that g(c) = g(d) = 0. Further, g’ = —f”" <0 andso g’ is a
decreasing function.

We wish to show that for each x € (¢, d), g(x) > 0. Suppose that
g(x) < 0 at some point x € (c, d). By the Monotonicity Theorem, we
obtain «a, § as follows:

® ae(c,x)and g'(a) <0,
® 3 (x,d)and g'(8) > 0.

This contradicts g’ being a decreasing function. Hence g(x) < 0 is
impossible, and f is convex.

If £/ < 0on I, apply the first part to —f.

For the third part, suppose f”(c) > 0. Then, by continuity, 7 > 0 in an
interval | centered at c. So f is convex on | and c is not an inflection
point.
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Convexity Test — Proof TP S
First, suppose f” >0 on /. Let ¢,d € | with ¢ < d. Consider
f(d)— f
g(x)="f(c)+ M(X —c) — f(x), for x € (c,d).

d—c

Note that g(c) = g(d) = 0. Further, g’ = —f”" <0 andso g’ is a
decreasing function.

We wish to show that for each x € (¢, d), g(x) > 0. Suppose that
g(x) < 0 at some point x € (c, d). By the Monotonicity Theorem, we
obtain «a, § as follows:

® ae(c,x)and g'(a) <0,
® 3 (x,d)and g'(8) > 0.

This contradicts g’ being a decreasing function. Hence g(x) < 0 is
impossible, and f is convex.

If £/ < 0on I, apply the first part to —f.

For the third part, suppose f”(c) > 0. Then, by continuity, 7 > 0 in an
interval | centered at c. So f is convex on | and c is not an inflection
point.This rules out /(c) > 0. We can similarly rule out (c) < 0.
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Theorem 10

Let f have a critical point at ¢ and f” be continuous in an open
interval containing c. Then

® 7"(c) > 0 implies there is a local minimum at c.

® 1"(c) < 0 implies there is a local maximum at c.
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Second Derivative Test O SAMBRIDGE
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Theorem 10

Let f have a critical point at ¢ and f” be continuous in an open
interval containing c. Then

® 7"(c) > 0 implies there is a local minimum at c.

® 1"(c) < 0 implies there is a local maximum at c.

Proof. Let f”(c) > 0. By continuity, f” > 0 in an open interval
containing c.
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Second Derivative Test & GAMBRIDGE

Theorem 10

Let f have a critical point at ¢ and f" be continuous in an open
interval containing c. Then

® 7"(c) > 0 implies there is a local minimum at c.

® 1"(c) < 0 implies there is a local maximum at c.

Proof. Let f”(c) > 0. By continuity, f” > 0 in an open interval
containing c.
Then f' is strictly increasing in that interval.
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Theorem 10

Let f have a critical point at ¢ and f" be continuous in an open
interval containing c. Then

® 7"(c) > 0 implies there is a local minimum at c.

® 1"(c) < 0 implies there is a local maximum at c.

Proof. Let f”(c) > 0. By continuity, f” > 0 in an open interval
containing c.

Then f’ is strictly increasing in that interval.

Hence f’ changes from negative to positive at ¢, and there is a
local minimum at ¢ (by the First Derivative Test).
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Theorem 10

Let f have a critical point at ¢ and f" be continuous in an open
interval containing c. Then

® 7"(c) > 0 implies there is a local minimum at c.

® 1"(c) < 0 implies there is a local maximum at c.

Proof. Let f”(c) > 0. By continuity, f” > 0 in an open interval
containing c.

Then f’ is strictly increasing in that interval.

Hence f’ changes from negative to positive at ¢, and there is a
local minimum at ¢ (by the First Derivative Test).

For the second part, apply the first part to —f. O

Amber Habib Calculus



Extreme Values and Monotonicity Derivative Tests and Curve Sketching

000000000000 00000000000 e0000
BEBE CAMBRIDGE
EXa m ple ‘ 4 g\IVERSITY PRESS

Let f(x) = x?e*X. We saw earlier that this has a local maximum at —2
and a local (as WeII as absolute) minimum at 0.

f'(x) = (x2 +2x)e" = f'(x) = (X2 + 4x + 2)e*
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Let f(x) = x?e*X. We saw earlier that this has a local maximum at —2
and a local (as WeII as absolute) minimum at 0.

f'(x) = (x* +2x)e° = f"(x) = (x* + 4x + 2)e*
We identify the possible inflection points.
f'(c)=0 < *+4c+2=0 < c=-2+V2~ -3.4,-06.

[ x<—2-V2 | 2-V2<x<-24+V2[x>-2+2
F7(x) T - T
Convexity Convex Concave Convex
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Let f(x) = x?e*X. We saw earlier that this has a local maximum at —2
and a local (as WeII as absolute) minimum at 0.

f'(x) = (x* +2x)e° = f"(x) = (x* + 4x + 2)e*
We identify the possible inflection points.
f'(c)=0 < *+4c+2=0 < c=-2+V2~ -3.4,-06.

[ x<—2-V2 | 2-V2<x<-24+V2[x>-2+2

) T = +
Convexity Convex Concave Convex
Note that f”/(—2) = —2e~2 < 0 confirms the local maximum at —2 and
f""(0) = 2 > 0 confirms the local minimum at 0.

0.8
06

S
/ 0.
|
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Curve Sketching

We have seen how first and second derivative calculations can give
us key features of a graph.

We can capture all the essential aspects of a function’s behaviour
by supplementing these with the following: domain, axis-intercepts,
points of discontinuity, symmetry (even, odd, periodic),
asymptotes (vertical, horizontal, slant).

Let's demonstrate this with an example.
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Example

X
Consider f(x) = arctan | ——
onsider f(x) = arctan (x+ T

Domain: The domain is R\ {—1}. Note also that f(x) € (—7/2,7/2).
Intercepts: The function is zero at x = 1. It cuts the y-axis at

y = f(0) = arctan(—1) = —7/4.

Symmetry: We have f(2) = arctan(1/3) and f(—2) = arctan(3). They
are positive and unequal (arctan is 1-1) so f(x) is neither even nor odd.
Vertical Asymptotes: As f(x) is continuous on its domain, the only

possibility of vertical asymptotes is at x = —1. So we calculate the
one-sided limits there:
. x—1 . t=2 . x—1 T
lim = lim —— = —00 = lim arctan =——,
x——1+x +1 t—04+ t x——1+ x+1 2
. x—1 . t42 . x—1 0
lim = lim —— =00 = |lim arctan| —— | = —.
x—=—-1—-x+1 t=0+ t x——1— x+1 2
Since the limits are finite there isn’t a vertical asymptote at x = —1.
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Example - continued

Horizontal Asymptotes:

-1 -1
lim <X 1) =1 = lim arctan (i—&—l) = arctan(l) = %a

X—> 00

jim (X1 — i fan [ X2 tan(1) = ~
m = Im arctan | —— = arctan = —.
X——00 X—|—1 X——00 x+1 4

Therefore y = 7/4 is a horizontal asymptote on both sides.
Critical Points:

x—1\ _ (x +1)° (x+1)=(x=1)
dxarctan<x+1> = (X+1)2+(X_1)2X (x +1)?
1
= 2T

There are no critical points. In fact f/(x) > 0 and so f is strictly
increasing on (—oo, —1) and also on (—1, c0).
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Example - continued

- i 1 —2x
Codxx2+1 0 (x2+1)2

We have f’(x) > 0 for x < 0 and ”(x) < 0 for x > 0.
So f is convex on (—oo, —1) and on (—1,0).

Convexity: "'(x)

It is concave on (0, 00). The only inflection point is x = 0.

Here is the graph of f.
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