Chapter 2: HF and High Data-Rate Systems
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Radio Transceiver Example

[-DATA

-+ I-DAC
N bits

N bits
-1 Q-DAC

Q-DATA

RF

I-MIXER __LPE

Q-MIXER LPF



16-QAM Fiberoptic Transceiver Example
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Electronic circuits:
wireless vs. fiberoptic communications systems
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Radio vs. Broadband Fiber Circuits

* |nput/Output vs. Output return loss (S params)
» Receiver Sensitivity @ BER and SNR (Q)

* Linear LNA vs. linear TIA

» NF vs. equivalent input noise current

> (Non)Linear PA vs. Non-Linear TX drivers

» P_(average) vs. V_ (p-p)

* Frequency conversion vs. MUX/DeMUX
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Modulation Schemes

*» |Information modulates carrier

t)=A t+
» Amplitude s >+ COE(V(U 2

* Frequency —
» Phase
» Modulation schemes

» Analog
» Digital
» Digital preferred because of

» Robustness to noise, interference, fading
» Ease of error correction and encryption



Digital Modulation Schemes
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Binary data encoding formats
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Spectral content of RZ and NRZ encoded
binary data
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M-ary PSK and QAM

» M-ary PSK has constant amplitude

s;(t)=Acos(w,t+dq,)
where

/
=27
F 1TM

fori=0,1,2 ..M-1, M = 2™ and n is the number of bits per
symbol.

> M-ary QAM s, (t)=a,cos(w,t)+b,sin(w,t)
Ex. 64QAM

. 1+2d,+44d, L 1+2d,+4d.

(a,, b )=|(~1) (=1)7

7 7
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M-ary PSK, QAM

» Generation

» By up-conversion

» By direct modulation
» Detection: coherent only

» QAM modulation systems need very linear power

amplifiers
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Transmitter Architectures

» The transmitter generates the modulated carrier signal
» Key components

» carrier synthesizer

* modulator,

» power amplifier (PA)
* Modulation of carrier

» by upconversion (linear)

» directly, in amplitude, frequency, phase or pulse-width
» Direct modulation can be linear or non-linear (RF-DAC)
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Direct Upconversion Transmitter

LPF

I-DATA
—~>_| 0.f
DS
N bitd g
cos(ooLO t)
LO
00
90°
fo =t sin(0, )
N bitg —~><_|0.f,
AR
N b
Q-DATA Q

LPF

s(t):(a,+ij)e_ijot:a,cos(wLOFt)+stin(wLot)
» An RF filter (not shown) must be placed before PA

» a,and b, are analog baseband signals

LO frequency pulling by PA => need lots of buffering
between LO and PA

*
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Single-Sideband, 2-step Upconversion

* Most common Ler L@!A H f
its —~>¢_|0.f, e f o)
. . - I-DAC R =~ K >

v« LO pulllng IS I_Q_./\/ a o 0f, fH_T £t \/

relieved L0 l = =~
« Additional IF oas Bh s

filtering ;@__ = O:B C )0
» Stringent o

lInearity specs

se(t)=(a+jb,)e’“"'=a,cos(w,t)+b,sin(w,t)

a b
s(t):[a,cos(w,Ft)erQsin(w,Ft)]cos(wmzt):Elcos(wRFt)Jr?Qsin(wRFt)

+a by .
TICOS[((ULOZ_I_(U”:)t]+?QSIn[<wLOZ+w/F)t]
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Direct Modulation Transmitter
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Receiver Architectures

> Tuned homodyne receiver (also known as a direct

detection receiver) (Earliest)

® (Super) Heterodyne receiver (Reginald Aubrey

Fessenden, 1906, Brant Rock Massachusetts)

» Direct Conversion (Zero-IF) Receiver
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Direct Detection Receivers

+ Simplest, no VCO/PLL S(t)=A(t)cos(wget)
« Large gain (>50dB) RF
tuned amplifier => unstable \L§ 3\3 :
x Tunable RF filters difficult to
integrate -
2 2 2 2 /Af/A<t)2 \
[A,s(t)F=AA(t) cos’ (wy.t)= [1+/cos<2wRFt)]
A, = receiver voltage gain \\ - o
» Digital: Bandpass A \L% /\4»
x power hungry T 4

» needs VCO
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Superheterodyne Receivers

s(t)=A(t)cos|wpt+x(t)]
» Single step

* Two step y Bt e
 robust, - PO e
1 o of o £ al
« many filters, difficult .
to integrate in IC
cos(w,ot)

fre=fro—fr O foe=F o+1,

S(t)=A(t)cos|wgt+a(t)|cos(w,,t)= >

Al(t)

TCOS[w,Ft—o((t)]
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Image Rejection Superheterodyne Receivers
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Direct Conversion (0-IF) Receivers

Double-sideband

L
RF

|Q downconversion
Similar to Hartley

| £ % fe

X

e TS

0 f f

RF

LPF

| DEMOD |—»

AMP

Q-MIXER LPF

S(t) = g cos(WrEt) + sti N(Wppt)

v

Simple & easy to
Integrate

LO leakage,
pulling, self-mixing

Sensitivity to 1/f
noise, even order
non-linearity

Noise figure
degradation in
monostatic radar
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26



Transceiver Specification
» Receiver specification
* Frequency, gain
» Dynamic range
» Noise figure, noise temperature, sensitivity
* Linearity
* PLL phase noise
* Transmitter specification
» Qutput power
* Error Vector Magnitude (EVM)
» Power Spectral Density (PSD) mask, or ACPR
» Noise
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Fundamental Limitations of Dynamic Range

A

Voltage Breakdown voltage

"‘I Dynamic range
Dynamic Range 1y compressed as data
— rates increase

R

Noise floor

>
Bandwidth
Emphasizes need for low-noise

28



Noise

Determines the threshold for minimum signal detection.
Noise can be introduced in receiver in two ways

@ From the external environment through antenna or signal source

Impedance

* By internal generation in receiver’s own circuitry
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Common Types of Noise Generated in Circuits

@ Thermal noise — KTAf .

@ caused by the random vibration and motion of carriers due to T.
» its spectral density kT is constant up to at least 100 GHz.

@ Shot noise - occurs in active devices

» due to quantum, random nature of carriers crossing potential

barriers.
» |ts spectral density 2g/ is constant up to high frequencies

@ Flicker noise — occurs in active devices and sometimes in resistors,

and its spectral density follows the 7/f law.
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Available Noise Power

Is the power that can be transferred from a noise source to

a conjugately-matched load, whose temperature is 0 °K,
and thus unable to reflect back noise power.

Although counter-intuitive, the available noise power from
a device/circuit/body/antenna does not depend on its

size. -
P Vi, 4AKTRAf

available — - = kT A f
4R 4R

T may be

» 290 °K (terrestrial antenna)
» 30 .. 50 °K (satellite antenna)

» > 290 °K for noise diode or PIN diode (signal and
noise source impedance are not equal)
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2-Port Noise Factor, Noise Figure

F= = =1+ —
SNR GP. GN. NF=10log,,F
N,+GN,
F is the degradation of the signal-to-noise ratio as the

signal passes through the two-port.

G is the power gain of the two-port

N is the input noise power (usually the noise floor)

available from the antenna

P _is the input signal power

N_is the noise power added by the two-port
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Two-Port Noise Temperature

N
2 SRRL (F-1)XT=T,
T

N=k TAf T =
° kGAf

» T _lis the equivalent noise temperature of the 2-port.

» T is the ambient temperature of the signal source

» The noise figure is a function of the ambient temperature.

Noise figure measurements must specify the ambient

temperature at which the measurement occurred.
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Friis' Cascaded Noise Factor/Temperature

F,—1 F—1
F=F,+ +..4
Ga, Ga,xXGa,X...Ga,_,
T _-I- _|_ Ta2 _|_ _|_ Tan o . 7
=Tt e, " " GaxGa,x. . Ga . How do we derive it
CF-1 ,
M=— M = noise measure
o— —p| ——o0 © —0O
F Ga F Ga F Ga
1 2 2 n n
O—— QO 0 O 0




Receiver Noise Floor and Sensitivity

» Noise floor defined at the output of the receiver, before
the decision circuit or demodulator

Noise floor =kT AfGF
G= overall gain of the receiver gain
F = receiver noise factor
» Receiver sensitivity, S,

» specified for a certain bit error rate

» depends on the receiver F(T ) and required SNR,, of
the detector

S=F-SNR_, -k-T-Af= SNR,, -k-T-Af

-
1+—=
=
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Link Between BER and SNR

1

=

E s the bit energy
N_is the one-sided noise power

density
Bn Is the noise bandwidth: wAf/2

Rb Is the data rate

O >> 1 Error

1.0} Nominal 1
\E E o Rb 1.0

-1.0] Nominal 0

1>> 0 Error

BER vs C/N
0.01
0.001 -
0.0001
e 16QAM
W 1E0 | BroK
[11]
1E-07 —
1E-08 - -
1E-09 -
1E-10 ¥
5 10 15 20 25 30
CIN(dB)
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SNR vs. Modulation Scheme

Modulation
OOK-NRZ
4L FSK
QPSK
8PSK
16QAM
64QAM

Efficiency’
1.0 (1) bits
1.5 (2) bits
1.6 (2) bits
2.5 (3) bits
3.2 (4) bits
5.0 (6) bits

SNR@BER=10
13 dB
17 dB
14 dB
19 dB
21 dB
27 dB

*)Bandwidth efficiency = data rate/bandwidth = (ideal)

R,
Af


mailto:SNR@BER

Receiver Sensitivity Examples

5-GHz Wireless LAN System

> NF =6 dB, B=20 MHz, QPSK => SNR =14 dB

S.(BER=1E-6)=-174 dBm +6+10log 22ﬁk& +14=-174+6+73+14=-81dBm
Z

60-GHz, 1.5-Gb/s Wireless LAN System
*» NF=9dB, B=1GHz QPSK =>SNR =14 dB

1GHz
1Hz

S.(BER=1E-6)=-174 dBm +9+10log +14=-174+9+90+14=-61dBm

12-GHz, HDTV satellite receiver
» T=30°K, NF=1dB, B=6MHz, 64QAM=>SNR=27dB

6 MHz
1Hz

S.(BER=1E-6)=-184 dBm +3.5+10log +27=-184+3.5+68+27=-85.5dBm
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Equivalent Noise Current and Receiver
Sensitivity in Fiber Systems

5= 1 exp|-Q%/2

BER~

! R

v2m  Q
* Qs the eye quality factor

» /™ is the equivalent input

noise current of the

fiberoptic receiver

* R s the photodiode
responsivity (A/W)

There is a direct link between
Q and the bit error rate BER

vap

B R
BER

1.00E-01 4

1.00E-03

1.00E-05

1.00E-07 AN

1.00E-09 \\\\*\\\\

1.00E-11

1.00E-13 I~

1.00E-15 ‘\.\\\\w

<85 B3 -31 29

Optical Power, P[dBm]
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Linearity Figures of Merit

Third Order Intercept Point

Poi(dBm) 1 dB compression
oP3|— ————— = = =\—- = = ;/

-~
= |  P.=P,cos(w,t)+P,cos(w,t)

OIP1

Ip =G-P,cos(w,t)+G-P, cos(w,t)
I
Pws=P5C0s (2w, —w,)t+P,cos(2w,—w,)t

: Minimum
D
R)é?]argltt Detectable
9 Signal
i Noise Floor
KTAfFG 1 , -~
: > P (dBm)

KTAfF P1dB 1P3
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Linearity and Distortion

» The 1-dB compression point: P __

» Third-order intercept point: /IP3, OIP3

» Second-order intercept point //P2 (critical in O-IF
receivers)
» Broadband measures of linearity
» Total Harmonic Distortion (THD) = the sum of the

powers of all the harmonics, except the fundamental
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Equations for lIP_ and DR

» /IP_can be obtained graphically using dB scales

» Qutput dynamic range with respect to the n-th spur

1
1—=

DR, =
n

(NP, —IM.)

* Spurious signals due to an interferer I, must be C dB below

the sensitivity level (C = margin)
nl—(S,—C)

IM =S,—C => IIP =
n—1
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Example of lIP3 spec derivation

o |.=1 =-38dBm, S =-60 dBm, C = 14 dB, f.= 64 GHz,
f =62GHz => IM3 at 60GHz

P> 3><(—38)—2(—60—14) _ —1112H—74 — _20dBm

* The most relaxed I[IP3 requirement is in the absence of
an interferer. Eg. in OFDM systems, the sub-carriers can
interfere with each other:

|.=1=-60 dBm, S, = -60dBm, C = 40dB, f.= 60.005GHz,
f2=60.O1GHz => M3 at 60GHz

3% (—60)—(—60—40) 40

IP,> =—60+—=—40dBm
2 2




Linearity of a Chain Two-Ports

1 1 Ga, Ga,Ga, Ga, Ga,...Ga,_,
= + + + ...+
IP3 1IP3; 1IP3, 1P3, P33,

1 1 1 1 1
+

= - -
OIP3 OIP3, Ga,OIP3,, Ga, Ga, ,OIP3 Ga, ... Ga, OIP3,

O—— — O O—
IIP3l Ga1 OlF’31 IIP32 Ga2 OIP32' o IIP3n Gan
O— QO ——O O—

Ga is the available power gain of stage i (i.e. power gain

when its input and output are conjugately matched to the

impedance of the preceding and of the following stages.

OIP3



Dynamic Range in Cascaded 2-Ports

Designing for maximum dynamic range:

*» Make the noise level at the output of the first stage
match that at the input of the second, third ... stages.

» Each stage contributes noise and distortion equally.

o BN DS :\/Fz—l IP3,
1
F Ga, 3 Ga, F, IIP3,
o— o0 O
wps, ors, P F,—11IP3,
- Ga =
KTBF, /" GakTBF, il "\ F, IIp3,
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PLL Phase Noise: L

* | =a broadening of the | ___ Desired
. LO
oscillator spectrum

Phase
« noise

» Measured as noise power in
dBc/Hz in a 1-Hz band at an Unwanted  Signal
offset frequency f_relative to gl N

the carrier power and

frequency f_.. |

IF IF

Noisy LO

» Degrades the receiver sensitivity by raising the noise floor
and adding rms phase error

» Degrades transmitter EVM

» Affects velocity resolution in automotive cruise control radar
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Ex. of PLL Phase Noise Impact

@ A phase noise of -100dBc/Hz over a bandwidth of 5 MHz
results in a rms phase error

0, .~y2LAf=0.0316rads=1.81°

@ QOsclllator phase noise mixes with an undesired signal and is
downconverted to the IF/baseband raising the noise floor and
dictating how closely adjacent channels may be spaced

* Formula that gives maximum allowed phase noise to achieve
adjacent channel rejection of C dB for an interference power /

L(f )=P(dBm)—C(dB)—1(dBm)—10log(Af),(dBc/Hz)
In a 60-GHz radio with P=-60 dBm, C=14 dB, [=-38dBm, Af=2.1GHz,
fm = 2.1 GHz, L(2.1GHz) =<-128.5 dBc/Hz
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Transmitter Specification

o QOutput power in dBm (Vpp/SOQ) in fiber systems

» EVM = distortion in the transmitted signal constellation

» measured with an ideal IQ receiver

1000

— 1 * *
EVM—\/looo.P > [(=1%P+(Q-Q*)

EYM
avg i=1 o

Pavg = average power of the constellation, —- -

(1*,Q*) are the complex coordinates of the i*

measured symbol, and (1,Q) are the complex % o)

coordinates of the nearest constellation point.
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Power Spectral Density Mask, ACPR

» PSD (eye mask in fiber) is specified in dB relative to the
signal power in the center of the channel to prevent
unwanted emissions into adjacent channels

0 dBr

20 dBr
/ \ -25 dBr

mal

-30 dBr

+
N —
) o)

+
L 0 g o & ff (GHz)
~ - o o

» Adjacent Channel Power Ratio (ACPR) is another
parameter specified in dB: 10log10.

*» Ex: <-20 dBc for 16 QAM, <-43 dB for 64 QAM
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Transmitter noise

Transmitter noise (jJitter), mostly from PLL, degrades EVM.

In fiberoptic transmitters the maximum allowed jitter of the
output eye is specified

o,

N

/ //--\\ \\
v / /\\\
1 /7?3‘)‘5 )

RN\
BN\,
4 \\\\—%///

rd
14 ~
— 12
i S —
Jd 10 L ]
4 80 HA-Ban ‘ ‘ - 80
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o e | o
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!
’
- o 7 4

222222

VARV 2 I ISR S Y
/S e e | m owm N\

\
NN s -

[Sims by A. Balteanu]

Phase Noise [dBc]
N

L \.
|
o N N (o] [o¢]

Phase Noise Profile = list(100kHz, T [
X dB, TMHz, (X-20) dB, 100MHz, %0 8 w0 75 70 e o AR
_140 dB) In Band Phase Noise [dB]
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* Wireless and wireline systems
* Modulation schemes

» Transceliver architectures

* Transceiver specification
 Link Budget

* Phased Arrays

@ Other wireless systems

» Baseband data formats and analysis
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Link Budget. LB

Describes the combined transmitter, antenna, and receiver

performance
2

A

LB=Prx=5, PRX(d):PTXGTXGRX A7 d

A Is the wavelength

d is the distance between the TX and RX >>A

P, is the power at the receiver input
P_, is the power at the transmitter output
G_, is the gain of the TX antenna (dBi)
G,, Is the gain of the RX antenna (dBi)

EIRP = P_ G_, effective isotropic radiated power (dBmi)

TX —TX
52



Example: 60-GHz Link Budget

* 2-m 60-GHz link at 4 Gb/s with Af of 2 GHz
* QPSK modulation, SNR =14 dB, NF =7 dB
S.=—174dBm+10log,,(2x10%)+7dB+14dB=—174+93+7+14=—60dBm

» P,.=10dBm, G =G_=8dBi,A=5mm

A

LFS=20-lo ——|=74dB
1o 41cd

P =P_+G_-LFS+G_, =10+8-74+8=-48dBm

IB=P_ —S =-48 dBm + 60 dBm = 12 dB
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Channel Capacity
» Shannon's channel capacity, C [b/s]

C=Af-log,(1+SNR)
» Fundamental limit for single TX-RX systems
* Improved with spatial diversity:multiple TX, RX)
» Multiple-Input-Multiple-Output (MIMO)
» all channels are statistically independent

» require nonlinear data processing to improve
SNR => expensive

*» Phased Arrays

* at least part of TX, RX is shared
» Linear: delay + sum processing
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Phase Array

» Used in Marconi's 1901 transatlantic radio transmission

» First electronically steered phased arrays in WWII

Truetime delay Phase delay
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Variable phase vs. variable group delay

Phase
Ph
$ Constant phase shift aASG(::OHStant group delay

difference

\> f difference . f

§

Group Delay

Group Delay
A

| -
f . £
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Properties of Phased Arrays (i)
» The signal before reaching the delay cell /

W t—(i—l)gsin(a )

5,(t)=G,;Acos < Sin(0,

* To compensate for the propagation delays

Ar=Ysin(o. )
C

» After summing node, signal scales linearly in N

sout(t):i GVAcos[w[t—(i—l)gsin(Gin)+iA T]||=NG,Acos|w(t+AT)]
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Phased Array Parameters

» Array gain (factor) =power gain of array divided by power
gain of single element

P_=(N/2)A%, P_ =N°G*A%/2,G=P_ /P, =NG?,
* Beam-pointing angle = angle of incidence for which the

array gain is maximized

0_=arcsin

EA T
d
*» Beam width = A/L where L = (N-1)d

Typically d =A/2
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Benefits of Phased Arrays

Increased signal level at receiver output (the aggregate

antenna gain increases N times)
Increased overall output power, scales with N
Increased EIRP which scales as N

Immunity to interferers, but only within the bandwidth of each

receiver and only after the signal-summation block,

iImmunity to multi-path fading through antenna diversity in
both RX and TX.

60



SNR and P_ , Improvement

Loppos -/

SNR A6, A !
MTTINGIVE 2V : /
/ where v ,=v , _ :
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&
o O

£ 388888

Ex. 60-GHz LOS, NLOS link budgets

LOS power analysis

NLOS power analysis

J EIRP= +30 — EIRP=+20dBm
— Tx ani=15dBi +20 — Tx ant=15dBi
. 8 PAs-9dB +10 8 PAs-odB
_| PA Tx=5dBm _| PATx=5dBm
1m path loss=68dB L im path loss-68dB
- -10
] _E“ —]
] _H“ —]
- Ap -
Rx anl_lmHi
-| 30.4m path loss=29.65dH Rx ant=15dBi -50 < 10.6m path loss=25 65d
(LOS exponent=2) . (NLOS exponant=2.5)
Shadowi NLOS SNR=17dB

| Shadowi I LOS SNA=13dB 70
. -73.650Bm |NF & imp. loss=10dB _gg _ NF & imp. loss=10dB

Thaermal noise=81.60dBm Thaermal noisa=81_&dBm
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Automotive Radar

°An FMCW Doppler radar = a direct conversion radio

TX ANT

VCO
hostile channel
DSP | BBM w,% -
/ f‘_
I X ANT

BBA

A/D

sLink Budget Equation
2
P — Ao I:)TX(':"TX(':"RX
e (47)°r"

G is the radar cross section of the target in m=.




FMCW Radar Waveforms

' /(?t\atlona}y\iarget - 1
. *Range =—cCTt
/ \// \/ \ 1 3 CATT
¥ RX T 2" T2t
*Velocity
e CAf,
Moving target 2Tosc

/\ /\ Af, = Doppler shift
£ VAN

c = speed of light




Radioastronomy and remote sensing

*\WW-band and D-Band “cameras” (“full body scanners”)

slow-noise, broadband receiver measuring “black-body”

radiation emitted by all bodies: P = KAfT

_—_t

Pixel Schematic

D-Band LNA opamp

.
L
%
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b
b
i
]
]
]
]

.‘1 Rrefé
Pixel Array T =

|

Reference: Pozar



Total Power Radiometers

T +T
A B .
T = antenna noise temperature
35 # NEP T A . .
G T, — T, = receiver noise temperature
T O : _ .
‘ I PR % éﬁ v | = system noise temperature
T=T T, < a = R = detector responsivity [V/W]
y NEP = noise equivalent power
TA+TB AfLF:—
2T
o oner 1 Vo= (KToAf KT AT )GR
S "R A L
MeasureE—o S X Tm\ O :
‘;o' 21— ?BD —>VO
Calibrate 4—o 8 —
TREF Af}F =
1
= AfLF:;
1 |AG]
AT =2 (T, +Tg) —
for T G




Detector NEP

NEP(f) Typical NEP vs. frequency

A
characteristics for Il1-V, SiGe
and CMOS detectors

1/f region

)
A )
A )
‘
A )
A )
A )
A )
A )
)
A )
)
)

> log(1)
1/f corner

100Hz...10M Hz



Example of Total Radiometer

*04-GHz total power radiometer

2Af,,=10 GHz, G = 30dB (1000), T¢ = 400K and 1 = 20 mS,

This Is an outstanding resolution!

olf the LNA gain fluctuates by 0.05dB, AT, (p increases
dramatically to 4.62 K,

sFor most practical applications, a resolution of at least 0.5 K

IS considered necessary.



Dicke Radiometer

T +AT @
| -
Measure Y O - .
‘;0-—>'LNA 8 > 5—>§0—>V0
TREF —O 8 2 =
Variable '_|1

power noise

source = Control voltage V_

Reduces impact of 1/f noise and gain fluctuations



Fiber and Backplane Systems

sFiber
*Direct modulation ASK (OOK) transmitter

*Direct detection receiver

*New systems at 110+ Gb/s are based on QPSK and 16QAM
*Backplane and cable transceivers

*Unique example of a baseband system
*No carrier modulation

*NRZ or 4/8/128-PAM data transmission directly over
backplane or cable



Back-up



Amplitude Shift Keying

s(t)=m(t)cos(w,t) where m(t)=0,1

» m(t) = data signal
° cos(wt) = carrier
» (Generation:
» By upconversion: mixing data with carrier
» By direct modulation: oscillator+ on-off switch
» Demodulation

» Synchronously (coherent) by downconversion + low-
pass filter (LPF)

» Asynchronously (direct detection): square law or
envelope detector +LPF

73



Amplitude Shift Keying (ii)

Coherent demodulation (better performance, costlier)
v (t)=s(t)xcos(wyt)=m (t)cos’ (w,t)

1 m (t)

S m (t)|1+cos(2 th)]—>T
P = probability of error
In detector
E, = energy of signal
over 1 bit period in Ws
n, = noise power spectral
density in W/Hz
R, = datarate
Af= bandwidth

Eb
4n,

1
P =—erfc
€ 2

)
E,= [ s°(t)dt
t=0

1
P.,=—erfc
= 2

\/SNR Af
4 R,
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Amplitude Shift Keying (iii)

Direct detection (1dB worse SNR)

75



Frequency Shift Keying

» Carrier frequency switches between two values f., and
f,, generated with VCO, constant amplitude, no need
for linear power amplifier

s(t)=cos|(w,+m (t)Aw)t |
Where
= m(t) Is a binary data signal,
* Aw=2mAf and

o Af=f-f

B=2|Af+—

» Spectrum effective bandwidth

T= period of binary data signal

76



Frequency Shift Keying: Detector

cos(w t)

== » Coherent
—=) (synchronous)
cos(t) T m(t)
T 1 Eb
== Pe:Eerfc T
cos(w,t) Ny
(Dl
| T Env
g % det
cos(wt) — + m() e Direct detector
| T~ Env
i % det
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Phase Shift Keying

s(t)=m(t)cos(w,t)

Where m(t) is in polar NRZ format, i.e. m(t) =+/-1
» (Generation:
» mixing(upconversion) m(t) with carrier cos(wt)

» Direct phase (sign) modulation of differential VCO
signal

» As FSK, has constant amplitude, good with non-linear
power amplifiers
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Phase Shift Keying: Detection

» Only coherently (as coherent ASK)

v (t)=s(t)xcos(wyt)=m(t)cos’ (w,t)

%m(t)[1+cos(2wot)]—>#

» Difference from ASK: m(t) is polar, hence decision
threshold =0, does not depend on amplitude

Eb
nO
o P, Is 6 dB better than ASK and 3 dB better than FSK, but

ASK has 3 dB lower average transmit power

1
P =—erfc
€ 2

79
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