Corrections to first printing of second edition of THE BANACH-TARSKI PARADOX, by G. Tomkowicz and S. Wagon

Errata

- p. xiii, Addendum to Foreword, last line: $13.13 \rightarrow 13.15$
- p. 12, line -4 of the proof: $\bigcup g_i(S^*)$ should be $\bigcup g_i(A_i^*)$
- p. 15, line 12: is \rightarrow is in
- p. 15 line 9 V_{σ}^{-} should be V_{τ}
- p. 15 line 10 V_{τ} should be V_{τ}^{-}
- p. 15 line 11 V_{τ}^- should be V_{σ}^-
- p. 20 line 8 (3, (0,1,2)) should be (3, (2,1,0))
- p. 52 line 7: S_{2-i} should be S_{3-i} ; twice.
- p. 52, line 13 after proof of 4.11, "weak Sierpinski" should be "weak Mycielski".
- p. 89, line 5: So V_i here should be V_i .
- p. 90, Proof of Claim line 4: s to s + 1 should be n to n + 1.
- p. 90, line 2, $M_{i_1} M_{i_2} \cdots M_{i_2}$ should be $M_{i_1} M_{i_2} \cdots M_{i_s}$
- p. 91. Conjecture 6.11 has been settled positively by Michael Elgersma and Stan Wagon.

Michael Elgersma and Stan Wagon, An asymptotically closed loop of tetrahedra, *The Mathematical Intelligencer*, 2017, to appear.

Michael Elgersma and Stan Wagon, The Quadrahelix: A nearly perfect loop of tetrahedra, https://arxiv.org/abs/1610.00280, submitted Oct 1, 2016.

p. 111, line before Thm. 7.18: §4.6 should be §4.5.

p. 112, line -6: [Myc258] \rightarrow [Myc58b]

Page 126. The question at the end of §8.1 regarding conditions on a metric space has been solved and the answer is YES. The paper, by G. Tomkowicz, has been submitted.

- p. 179, third line of the proof of 10.24: algebraically independent \rightarrow linearly independent.
- p. 208, line 6: 11.7, should be 11.8.
- p. 211, line -20. if κ bears a countably additive measure \rightarrow if κ bears a κ additive measure (meaning: the measure is additive for sets of size strictly less than κ)
- p. 275, line 10 mod $1 \rightarrow \text{mod } 1$
- p. 294, line -7, $14.5 \rightarrow 14.15$.
- p. 299, line 23: Note that by Theorem $15.2 \rightarrow$ Note that by Theorem 15.1
- p. 346 line 11. Ło should be Łoś

New work.

A. S. Marks and S. T. Unger, Borel circle squaring, Dec. 2016 preprint (https://arxiv.org/abs/1612.05833).

This paper shows that the famous circle-squaring of Laczkovich can be carried out with pieces that are Borel sets.

G. Tomkowicz, accepted

A. D. Taylor and S. Wagon, A Paradox Arising from the Elimination of a Paradox, Amer. Math. Monthly, to appear.

Code to Check