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RAIN [Rainfall Analysis and INterpolation] 

RAIN is a suite of deterministic and stochastic spatial interpolation methods developed by Dr. 

Ramesh Teegavarapu, Assistant Professor, Florida Atlantic University, Boca Raton, Florida, 33431, 

USA. Dr. Teegavarapu is leader of the Hydrosystems Research Laboratory (HRL) located in the 

Department of Civil, Environmental and Geomatics Engineering, FAU. The software provided is 

useful for estimation of missing precipitation data at a location. K-fold cross validation is possible 

by station selection option.  For help with the software: mail to rteegava@fau.edu  or 

ramesh@civil.fau.edu.  Details of some of the interpolations methods that are available in this 

software are provided in the manual. The manual will be updated as soon as enhancements are 

made to the software. Installation of the software requires specific steps to be followed. These 

are detailed in the “instructions-for-installation.pdf” document. Few screenshots of the RAIN 

software are provided below. 

 

 

 

Figure A1. Main Screen Shot of RAIN software 
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Figure A2. Interpolation methods available in RAIN software 
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Figure A3. Interpolation methods in RAIN software 
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Figure A4. Voronoi polygons created using RAIN software 
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Figure A5. Results screen of RAIN software 

 

DATA Preparation for RAIN 

The RAIN software requires few basic files to be provided by user. All files are ASCII text files. All 

these files are tab or space separated  

 

Files required are: 

 

File 

Name 

Type Details Number of rows Number of 

Columns 

“allxy.txt” ASCII – space or 

tab separated. 

Two columns with X 

and Y coordinates 

Number of stations  Two 

“caldata.txt” ASCII – space or 

tab separated. 

Calibration data Number of time 

intervals 

Total number of 

stations 

“valdata.txt” ASCII – space or 

tab separated. 

Validation data Number of time 

intervals 

Total number of 

stations 

“pcor.txt” ASCII – space or 

tab separated. 

Single column data 

file  

with station 

numbers 

Number of stations One  
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Example files are provided with the software. 

METHODS 

1. Inverse Distance (Reciprocal Distance) Method 

 

The models developed in this study are compared with the reciprocal-distance (i.e., traditional 

inverse distance weighting) method that is most commonly used for estimation of missing 

precipitation data. The reciprocal distance method for estimation of missing value of an 

observation at base station,
m

i , using the observed values at other stations is given by: 
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where ns-1 is the number of stations; 
j

i  is the observation at station j , dm,j is the distance from 

the location of station  j to the base station  m; and  f is the exponent  referred to as friction 

distance (Vieux, 2001) that ranges from 1.0 to 6.0.  

2. Inverse Exponential Weighting Method (IEWM) 

The IEWM uses a negative exponential function replacing the reciprocal-distance as weight in 

the traditional IWDM.  IEWM is commonly used in the field of quantitative geography for surface 

generation. The weighting factor in IDWM, dm,j–k,  is replaced by e-kdm,j in the equation 51. The 

most commonly used value for k is two, and usually several values are tested before arriving at a 

final acceptable value that improves the performance of method for estimation. In the current 

study a value of two is used. 
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3. Single Best Estimator (SBE) 

 

The single best estimator (SBE) is one of the simplest methods for estimating missing precipitation 

data.  Data from the gauge “closest” to the gauge with missing data are used for estimation. 

This closest station can be selected by Euclidean distance or based on the strongest positive 
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correlation. The availability of historical data again is essential to use this estimator. 
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4. Gauge Mean Estimator (GME) 

 

Estimating missing precipitation values by this method is an arithmetic average of all the gauges 

reporting observed rainfall. The method is a special case of inverse distance weighting and 

correlation coefficient weighting where all the weights are raised to an exponent of zero. This 

method fails at estimating missing precipitation values in two situations: 1) when precipitation is 

measured at all or a few other stations but no precipitation actually occurred at the base station 

and 2) when precipitation occurred at the base station and no precipitation is measured or 

occurred at all the other stations. In case 1, the method provides a positive estimate, while in 

reality zero precipitation occurred at the base station. It is impossible to estimate non-zero 

precipitation values in the second case since the observations at all the other stations are zero.  

Data from other sources (e.g. radar-based precipitation estimates) could be used in this situation 

to estimate missing values. 
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5. Natural Neighbor Interpolation (NN) 

 

Natural neighbor interpolation is referred to as area-stealing or Sibson interpolation. The natural 

neighbors of any point are those associated with neighboring Voronoi (Thiessen) polygons. These 

are constructed using two steps. In the first step, a Voronoi diagram is initially constructed based 

on all rain gauge stations excluding the station with missing precipitation data. In the second 

step, the location (point) of the rain gauge with missing precipitation data is then added to all 

other points (rain gauges) and a new Voronoi polygon is created. The two sets of polygons from 

two steps are overlaid on top of the each other. The proportions of overlaps among these new 

polygons and the initial polygons are then used as the weights.  
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6. Normal Ratio Method 

Traditional normal ratio method is also tested for estimation and for comparison purposes. The 

normal ratio method for estimating missing data at base station is given by: 
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where 
n

m̂ is the estimated value of the observation at the base station  m; ns-1 is the number of 

stations; θj is the observation at station  j, θam and θaj are average annual precipitation values at 

the base station and at station j, respectively. The average annual precipitation values are 

obtained from long-term historical data. 

 

7. Multiple Linear Regression (MLR) 

 

A multiple regression model can be developed using observations at stations (as predictors) and 

missing data to be estimated as dependent variable. The MLR model is given by: 
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where, j is the coefficient (or weight) for station j and o is the constant term. There are few 

disadvantages of using MLR in the current context of estimating missing precipitation data 

without any stipulated conditions: (1) no constant ( o ) and non-negative coefficients (  j ). A 

constant positive value of precipitation is always realized when the MLR is used for estimation 

when the constant term is included and also the non-negative coefficients (or weights) will result 

in negative precipitation values.  

 

8. Variants of Multiple Regression 

 

Two variants of multiple linear regression methods that include; 1) step-wise regression and 2) 

robust regression are also evaluated in this study. These variants are generally not used earlier in 

the literature for estimation of missing data. Step-wise regression is a systematic method for 

adding and removing variables from a multiple linear regression model based on their statistical 

significance tested through F-statistic. The robust regression uses a method with iteratively 

reweighted least squares with a bi-square weighting function. The former regression helps in 

selecting the optimal number of variables in the multiple regression and the latter improves the 

regression by reducing the influence of the outliers than the original least-squares method. 

9. Nonnegative least-squares (NLS)  

Nonnegative constraints requirements to obtain positive weights can be enforced using the 

nonlinear least square constraint formulation defined by equation A10. 

Minimize n,j n
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The formulation minimizes the norm given by the equation A10 with constraint on the weights 

(inequality A11). This formulation provides nonnegative optimal coefficients when solved. The 

solution obtained from NLS is obviously better than that of multiple linear regression model as 

negative precipitation values are not possible using this model. However both MLR and NLS lack 

the conceptual superiority of models which allow the use of any objective function in any 

functional.  

 

10. Trend Surface Models  

 

Trend surface models use polynomial functions of different degrees to fit the surfaces to 

observations in space. Smooth and irregular surfaces may result depending on the nature of the 

polynomial or the degree of the polynomial adopted for the surface. Trend surface models using 

linear, quadratic and cubic functional forms are described by the equations A12, A13 and A14. 

The location of the observation points is specified by x and y coordinates (in Cartesian 

coordinate system) and parameters (  i {i = 0...9}) of the trend surface models can be estimated 

using any non-linear least square regression optimization procedure. 
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The applicability of trend surface models for estimation of missing precipitation data for different 

time intervals requires generation of a surface for each time interval. A nonlinear regression 

approach is used for obtaining the coefficients in equations A12, A13 and A14.  

 

11. Thin Plate Splines  

 

Thin plate splines as exact spatial interpolators can be used to create surfaces that can help 

estimate values at a location in space. The expression for the thin-spline surface is given by: 
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where d is the distance from the point where the estimate is required,  o , 1  and 2 , and kj  are 

the parameters to be estimated based on data from the ns-1 control points. Thin-plate splines 

have the same disadvantages as trend surface methods and for multi-time period estimation of 

missing precipitation data, the thin-splines need to be fitted for every time interval.  

 

12. Thin Plate Splines with Tension 
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Thin plate splines with tension belong to the group of radial basis functions and are useful for 

fitting surface to values that vary smoothly in a spatial domain. They are variants of thin-plate 

splines that incorporate a tension parameter that allow controlling the shapes of membranes 

passing through control points. The equation for estimation of missing precipitation value (
n

m̂ ) is 

given by equation A16: 

n

m̂     ∑      
    
                                                      (A16)    

 

where    represents the trend function, and        is the basis function. The basis function value 

is obtained by using equation A17. 

 

 (  )  
 

           *  (
   

 
)           +              (A17) 

 

The variables   and    need to be estimated,     is the distance between the station at which 

missing data are prevalent and any other station. The variable    is the tension (or weight) 

parameter,     is a constant (Euler’s constant equal to 0.577215) and    is the modified Bessel 

function. When the tension parameter is set close to zero, the results from this method 

approximate to those from a thin plate spline method.  

 

13. Geostatistical Spatial Interpolation  

 

The methods developed in the current study are also compared with stochastic interpolation 

methods investigated in the previous studies. Ordinary kriging models using four different 

authorized semi-variograms are compared with all other methods developed in this study. 

Ordinary kriging is widely recognized as a stochastic interpolation method for surface 

interpolation based on scalar measurements at different locations. Kriging is an optimal surface 

interpolation method based on spatially dependent variance.    

 

 13.1 Semi-Variogram Modeling 

 

The degree of spatial dependence in the kriging method generally is expressed using a semi-

variogram. The expression generally used to estimate the semi-variogram is given by  
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where  γ(d) is the semi-variance which is defined over observations θi and θj lagged successively 

by distance d. Surface interpolation using kriging depends on the semi-variogram model that is 

selected which must be fitted with a theoretical form that can be used to estimate the semi-

variogram values at arbitrary separation distance values. Depending on the shape of semi-

variogram, several mathematical models are possible, including linear, spherical, circular, 

exponential and Gaussian formulations. A typical semi-variogram is shown in Figure A1 with the 

definition of sill and range.   
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13.2 Semi-Variogram Models 

 

Several semi-variogram models generally are tested before selecting a particular one. The three 

most widely used semi-variogram models (spherical, exponential, Gaussian and circular) are 

given by equations A19, A20, A21 and A22. 
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The parameters Co, d, and a are referred to as nugget, distance, and range. The weights 

obtained from kriging equations are used estimate the missing precipitation data at base station 

using equation A23. 
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THIS SOFTWARE IS INTENDED FOR ACADEMIC USE ONLY AND MAY NOT USED FOR 

INDUSTRY, CONSULTING OR FOR PROFIT PURPOSES. 


