RAIN [Rainfall Analysis and INterpolation]

RAIN is a suite of deterministic and stochastic spatial interpolation methods developed by Dr.
Ramesh Teegavarapu, Assistant Professor, Florida Aflantic University, Boca Raton, Florida, 33431,
USA. Dr. Teegavarapu is leader of the Hydrosystems Research Laboratory (HRL) located in the
Department of Civil, Environmental and Geomatics Engineering, FAU. The software provided is
useful for estimation of missing precipitation data at a location. K-fold cross validation is possible
by stafion selection option. For help with the software: mail to rteegava@fau.edu or
ramesh@civil.fau.edu. Details of some of the interpolations methods that are available in this
software are provided in the manual. The manual will be updated as soon as enhancements are
made to the software. Installation of the software requires specific steps to be followed. These
are detailed in the “instructions-for-installation.pdf” document. Few screenshots of the RAIN
software are provided below.
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Figure Al. Main Screen Shot of RAIN software
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Figure A2. Interpolation methods available in RAIN software
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Figure A3. Interpolation methods in RAIN software
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Figure A4. Voronoi polygons created using RAIN software
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B Kriging (Spherical Semi-Variogram)
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Figure AS5. Results screen of RAIN software

DATA Preparation for RAIN

The RAIN software requires few basic files to be provided by user. All files are ASCII text files. All
these files are tab or space separated

Files required are:

File Type Details Number of rows Number of
Name Columns
“allxy.txt"” ASCII - space or Two columns with X | Number of statfions Two
tab separated. and Y coordinates
“caldata.txt” ASCII - space or Calibration data Number of fime Total number of
tab separated. intervals stations
“valdata.txt” ASCII - space or Validation data Number of time Total number of
tab separated. intervals stations
“pcor.txt” ASCII - space or Single column data | Number of stations | One

tab separated.

file
with station
numbers
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Example files are provided with the software.
METHODS

1. Inverse Distance (Reciprocal Distance) Method

The models developed in this study are compared with the reciprocal-distance (i.e., traditional
inverse distance weighting) method that is most commonly used for estimation of missing
precipitation data. The reciprocal distance method for estimation of missing value of an

observation at base station, ¢im, using the observed values at other stations is given by:

n ns-1
errr: (Xm’ym):ZWj(X’y)gjn (Xj’yj) vn (AT)
j=1
-1
1 ns-1 _f .
w, (X, y)=—-+1>.d, Vj (A2)
dm,j j=1

where ns-1 is the number of stations; Hij is the observation at station j , dm, is the distance from

the location of station j to the base station m; and fis the exponent referred to as friction
distance (Vieux, 2001) that ranges from 1.0 to 6.0.

2. Inverse Exponential Weighting Method (IEWM)

The IEWM uses a negative exponential function replacing the reciprocal-distance as weight in
the traditional IWDM. IEWM is commonly used in the field of quantitative geography for surface
generation. The weighting factor in IDWM, dm;*, is replaced by e*dy,; in the equation 51. The
most commonly used value for k is two, and usually several values are tested before arriving at a
final acceptable value that improves the performance of method for estimation. In the current
study a value of two is used.

ns—1
2 :e—(de,j)g_
J
n j=1
m = ns—1

o~ (2dm )
2

~

(A3)
3. Single Best Estimator (SBE)
The single best estimator (SBE) is one of the simplest methods for estimating missing precipitation

data. Data from the gauge “closest” to the gauge with missing data are used for estimation.
This closest station can be selected by Euclidean distance or based on the strongest positive
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correlation. The availability of historical data again is essenfial to use this estimator.

0., =0, sens—1,Vvn (Ad)

4. Gauge Mean Estimator (GME)

Estimating missing precipitation values by this method is an arithmetic average of all the gauges
reporting observed rainfall. The method is a special case of inverse distance weighting and
correlation coefficient weighting where all the weights are raised to an exponent of zero. This
method fails at estimating missing precipitation values in two situations: 1) when precipitation is
measured at all or a few other stations but no precipitation actually occurred at the base station
and 2) when precipitafion occurred at the base station and no precipitation is measured or
occurred at all the other stations. In case 1, the method provides a positive estimate, while in
reality zero precipitation occurred at the base station. It is impossible to estimate non-zero
precipitation values in the second case since the observations at all the other stations are zero.
Data from other sources (e.g. radar-based precipitation estimates) could be used in this situation
to estimate missing values.

ns—1
2.9
Nns —1 (A5)

5. Natural Neighbor Interpolation (NN)

Natural neighbor interpolation is referred to as area-stealing or Sibson interpolation. The natural
neighbors of any point are those associated with neighboring Voronoi (Thiessen) polygons. These
are constructed using two steps. In the first step, a Voronoi diagram is initially constructed based
on all rain gauge statfions excluding the station with missing precipitation data. In the second
step, the location (point) of the rain gauge with missing precipitation data is then added to all
other points (rain gauges) and a new Voronoi polygon is created. The two sets of polygons from
two steps are overlaid on top of the each other. The proportions of overlaps among these new
polygons and the initial polygons are then used as the weights.

] (A6)
ns—1
On =| D W, ;0] vn
=1 (A7)

6. Normal Ratio Method
Traditional normal ratio method is also tested for estimation and for comparison purposes. The
normal ratio method for estimating missing data at base station is given by:

R ea ns-1 "
on =—" —L 1 vn A8
ns—1 JZ_; g7 (A8
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where ém” is the estimated value of the observation at the base station m; ns-1 is the number of

stations; 6; is the observation aft station |, 69m and 69 are average annual precipitation values at
the base station and aft station j, respectively. The average annual precipitation values are
obtained from long-term historical data.

7. Multiple Linear Regression (MLR)

A multiple regression model can be developed using observations at stations (as predictors) and
missing data to be estimated as dependent variable. The MLR model is given by:

ns—1

AN n

(9m =ao+Zl9j O[j vn (A9)
j=1

where, «;is the coefficient (or weight) for station j and a,is the constant term. There are few
disadvantages of using MLR in the current context of estimating missing precipitation data
without any stipulated conditions: (1) no constant (¢, ) and non-negative coefficients (aj ). A

constant positive value of precipitation is always realized when the MLR is used for estimation
when the constant term is included and also the non-negative coefficients (or weights) will result
in negative precipitation values.

8. Variants of Multiple Regression

Two variants of multiple linear regression methods that include; 1) step-wise regression and 2)
robust regression are also evaluated in this study. These variants are generally not used earlier in
the literature for estimation of missing data. Step-wise regression is a systematic method for
adding and removing variables from a multiple linear regression model based on their statistical
significance tested through F-statistic. The robust regression uses a method with iteratfively
reweighted least squares with a bi-square weighting function. The former regression helps in
selecting the optimal number of variables in the multiple regression and the latter improves the
regression by reducing the influence of the outliers than the original least-squares method.

9. Nonnegative least-squares (NLS)

Nonnegative constraints requirements to obtain positive weights can be enforced using the
nonlinear least square constraint formulation defined by equation A10.

2 ;
Minimize Hé’,—na,- —0n|, VNJ (A10)
Subject to:
aj 0 Vv (ATT)
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The formulation minimizes the norm given by the equation A10 with constraint on the weights
(inequality A11). This formulation provides nonnegative optimal coefficients when solved. The
solution obtained from NLS is obviously better than that of multiple linear regression model as
negative precipitation values are not possible using this model. However both MLR and NLS lack
the conceptual superiority of models which allow the use of any objective function in any
functional.

10. Trend Surface Models

Trend surface models use polynomial functions of different degrees to fit the surfaces to
observations in space. Smooth and irregular surfaces may result depending on the nature of the
polynomial or the degree of the polynomial adopted for the surface. Trend surface models using
linear, quadratic and cubic functional forms are described by the equations A12, A13 and Al4.
The locatfion of the observation points is specified by x and y coordinates (in Cartesian

coordinate system) and parameters (&; {i = 0...9}) of the trend surface models can be estimated

using any non-linear least square regression optimization procedure.

O =g, +& (X)+&5(Y) vn
(A12)
2 2 2
On =& +&/ (X)+&,(Y)+& (X)+&,(Xy)+&5(y")  Vn
(A13)
6n = &5+ () +5 () + 25 0C) +8,00) +6(y) + 6] (X) + ] (CY) + £, (97) + 5 (y°) ¥
(A14)
The applicability of frend surface models for estimation of missing precipitation data for different

time intervals requires generation of a surface for each time interval. A nonlinear regression
approach is used for obtaining the coefficients in equations A12, A13 and Al4.

11. Thin Plate Splines

Thin plate splines as exact spatial interpolators can be used to create surfaces that can help
estimate values at a location in space. The expression for the thin-spline surface is given by:

ns—1

I 2

o =gl +gl”(x)+g§(y)+ZKjdj vn Al5)
-1

where dis the distance from the point where the estimate is required, ¢, , & and &,, and k; are

the parameters to be estimated based on data from the ns-1 conftrol points. Thin-plate splines
have the same disadvantages as trend surface methods and for multi-time period estimation of
missing precipitation data, the thin-splines need to be fitted for every time interval.

12. Thin Plate Splines with Tension
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Thin plate splines with tension belong to the group of radial basis functions and are useful for
fitting surface to values that vary smoothly in a spatial domain. They are variants of thin-plate
splines that incorporate a tension parameter that allow conftrolling the shapes of membranes
passing through control points. The equation for estimation of missing precipitation value (én:) is

given by equation Al6:

On =9+ X511 A, R(d)),  Vn (A16)

where 9, represents the frend function, and R(d;),, is the basis function. The basis function value
is obtained by using equation Al7.

R(4), = 375 [0 (“2) + ¢ + ko (dym)|  wn (A17)

The variables ¥ and 4; need to be estimated, d; is the distance between the station at which
missing data are prevalent and any other station. The variable 7 is the tension (or weight)
parameter, ¢ is a constant (Euler's constant equal to 0.577215) and k, is the modified Bessel
function. When the tension parameter is set close to zero, the results from this method
approximate to those from a thin plate spline method.

13. Geostatistical Spatial Interpolation

The methods developed in the current study are also compared with stochastic interpolation
methods investigated in the previous studies. Ordinary kriging models using four different
authorized semi-variograms are compared with all other methods developed in this study.
Ordinary kriging is widely recognized as a stochastic interpolation method for surface
interpolation based on scalar measurements at different locations. Kriging is an optimal surface
interpolation method based on spatially dependent variance.

13.1 Semi-Variogram Modeling

The degree of spatial dependence in the kriging method generally is expressed using a semi-
variogram. The expression generally used to estimate the semi-variogram is given by

1 2
E ) — @. 8
2n(d) dij=d (gl QJ) (A] )

r(d) =
where y(d) is the semi-variance which is defined over observations 6; and 6;lagged successively
by distance d. Surface interpolation using kriging depends on the semi-variogram model that is
selected which must be fitted with a theoretical form that can be used fo estimate the semi-
variogram values at arbifrary separation distance values. Depending on the shape of semi-
variogram, several mathematical models are possible, including linear, spherical, circular,
exponential and Gaussian formulations. A typical semi-variogram is shown in Figure Al with the
definition of sill and range.
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13.2 Semi-Variogram Models

Several semi-variogram models generally are tested before selecting a particular one. The three
most widely used semi-variogram models (spherical, exponential, Gaussian and circular) are
given by equations A19, A20, A21 and A22.

y(d), =C,+C, %—o 5[‘;') (A19)
y(d), =C,+C,|1—exp —?j (A20)
2
7(d), =C, +C 1-exp - J (A21)

y(d)y = Cy + Cy [1 —Zcos™1 (¢ /1 - "’—2] (A22)

The parameters Co, d, and a are referred to as nugget, distance, and range. The weights
obtained from kriging equations are used estimate the missing precipitation data at base station
using equation A23.

ns—1
=D 4;6] vn
I= (A23)

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THIS SOFTWARE IS INTENDED FOR ACADEMIC USE ONLY AND MAY NOT USED FOR
INDUSTRY, CONSULTING OR FOR PROFIT PURPOSES.
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