
Problems for Chapter 13 of ‘Ultra Low Power Bioelectronics’ 
 
Problem 13.1 
The circuit in Figure P13.1 yields a second-order filter. Assume all transconductance 
amplifiers have a linear range of VL, zero offset, and infinite dc gain (i.e., ro can be 
neglected). Each amplifier has N devices worth of white noise. 
 

 
Figure P13.1: A second-order filter circuit 

 
a) Draw a block diagram including the input-referred noise PSD of each 

amplifier. 
b) Find the transfer function H(s) from vIN to vOUT. What are the τ and Q of the 

filter? When does the filter go unstable? 
c) Find the transfer function from each noise source to the output in terms of 

H(s). 
d) Find the output voltage PSD of the filter, <vo

2>/Δf. Simplify your algebraic 
expression as much as possible. Try to express all results (especially any Gm 
ratios) in terms of Q, α and, |H(s)|2. 

e) Find the total output noise of the filter, <vo
2>, and show that it reduces to the 

following expression: 2 2

1 (1 )2
4 1 (1 )

LNqV
C Q

α α
α α
⎡ ⎤+
+⎢ ⎥− −⎣ ⎦

 

Now write down the minimum detectable signal, amin, at f90 (the frequency at 
which the phase shift between the input and output of the filter is -90°).  

f) Explain what causes the total output noise of this filter to vary with Q while 
that of the second-order filter shown in Figure 13.8 (c) does not. Given a 
constant Q, how does <vo

2> vary with α (for values of α between 0 and 1)? 
If α = 0.5, for what values of Q is the noise of this filter less than that of the 
filter in the text? If your result is non-physical, say so. 

g) Find the transfer function from vIN to the differential input voltage of each 
OTA in terms of τ, Q, and H(s).  

h) Using these transfer functions, find the maximum acceptable input 
amplitude, amax, at f90 as a function of VL and Q. Here amax is the largest input 
amplitude for which the differential input voltage across each transconductor 
is less than VL. For α  = 0.5, which OTA limits amax as Q varies? 



i) MATLAB: Find amax/amin at f90 as a function of Q for two filters: the one 
shown in Figure P13.1 and the topology shown in Figure 13.8 (c). Plot your 
results using MATLAB over a range of Q’s from 0.1 to 100. Which filter has 
more dynamic range? 

 
Problem 13.2 
Consider the gyrator circuit shown in Figure 13.3 (b).  

a) Assume that the dc current through the transistor is 10 µA, and that it is wide 
enough to remain in subthreshold. What is its small-signal transconductance 
gm, assuming that κ = 0.7? 

b) We want the gyrator to behave as an inductor of value L = 100 µH. What is 
the required value of the time constant RCτ = ? 

c) What is the minimum frequency at which the gyrator circuit behaves as an 
acceptable inductor? For the purposes of this problem, an acceptable 
inductor must have a quality factor 1Q ≥ . 

d) We want the circuit to behave as an acceptable inductor over at least two 
decades, i.e., a frequency range of 100:1. What values of R and C would you 
pick to meet this requirement? 

 
Problem 13.3 
An important characteristic of any filter is group delay. It is a measure of the time 
taken by a signal to propagate through the filter. Frequency-dependent group delay 
results in phase distortion (think of what happens to a pulse if different frequency 
components of the pulse are subjected to different amounts of delay). Group delay is 
defined as 

,g
φτ
ω
∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

 

where φ  is the phase of the frequency response. 
 
Consider the canonical second-order band-pass filter. Its transfer function is given by 
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a) Show that the group delay of this filter is given by 
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b) Plot the group delay function for 1τ =  and Q = 1, 2 and 4. Will the amount 
of phase distortion increase or decrease as Q increases? 

c) What is the group delay at the center frequency 0 1/ω τ= ? Is there an 
intuitive physical explanation for your result? 

d) What is the group delay at very low and very high frequencies 
( 0ω → andω →∞ , respectively)? 

Now consider the canonical second-order resonant low-pass filter, which has a 
transfer function given by 
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e) Find the group delay of the low-pass filter as a function of frequency. [Hint: 
you do not need to do any math. Use existing knowledge to solve the 
problem.] 

 
Problem 13.4 
Consider the resonant low-pass filter shown in Figure 13.8 (c). 

a) Write down the transfer function Vout(s)/ Vin(s) in canonical form. Show that 
while the transfer function between Vin(s) and Vout(s) is a resonant low-pass 
transfer function, the transfer function between Vin(s) and V1(s) is band-pass. 

b) Based on your findings in part a), what modifications would you make to 
this circuit in order to use it as a band-pass filter? [Hint: you don’t need to 
modify the topology of the circuit.] 

c) Find the bias current of both transconductors as a function of the center 
frequency and quality factor of the filter. You may assume that the linear 
range of both transconductors is VL, a constant. 

d) How would the linear range, noise, and dynamic range of the filter be 
changed by the modifications you made in part b)? 

 
Problem 13.5 
The linear range of active filters limits the largest signal swings that they can handle. 
A strategy for increasing the linear range of any active filter is shown in Figure P13.5 
(a). The signal is passed through an attenuator of value 1/K, where K > 1, before being 
sent through the filter, and gained up by a value K afterwards. If the attenuator and 
gain blocks are frequency-independent it should be clear that the overall transfer 
function between Vin and Vout is unchanged, but that the filter itself sees signals that 
are K times smaller than before. This problem considers a second-order band-pass 
filter that uses this linear-range extension technique. The circuit is shown in Figure 
P13.5 (b). It is based on the band-pass filter that you developed in Problem 13.4 (you 
are advised to complete Problem 13.4 before attempting this problem), but also 
implements the linear-range extension technique. Assume that A is a constant. 

a) Explain intuitively which parts of the circuit of Figure P13.5 (b) carry out the 
functions of the attenuator and the amplifier shown in Figure P13.5 (a). What 
is the value of K? 



 
Figure P13.5: (a) A generic idea for increasing the linear range of any active filter, 

and (b) a second-order band-pass filter that uses this idea. 
 

b) Will this circuit work in real life? If not, how would you modify it to make it 
work? [Hint: think about the dc voltage of node v2.] 

c) Let us assume that you have solved the dc-voltage problem described in part 
b). Draw a small-signal block diagram that describes the filter. 

d) Using your block diagram, show that the transfer function H(s) = 
Vout(s)/Vin(s) is that of a canonical second-order band-pass filter. Find the 
center frequency and quality factor (1/τ and Q, respectively) of this filter as 
a function of Gm1, Gm2, A and C. 

e) Find the total bias current of both transconductors as a function of τ and Q. 
You may assume that the linear range of both transconductors is VL, a 
constant. 

f) Assume that each transconductor contributes N devices of noise, i.e., that the 
output shot noise PSD is 2 BNqI , where BI is the steady-state bias current 
through each noisy transistor. Show that the total output noise of the filter 
when flicker noise is negligible is given by 
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g) What is the maximum input signal amplitude that can be handled by the 
filter? Explain any assumptions that you make. 

h) What is the maximum signal-to-noise ratio (SNR) at the output of the filter? 
i) Assume that this circuit and the simpler one analyzed in Problem 13.4 have 

the same transfer function and maximum allowable input amplitude. Now 
compare their performance based on the following metrics: output noise, 
maximum output SNR, layout area, and power consumption. 

j) Based on the analysis in part i), what are the advantages and disadvantages 
of the linear-range extension technique proposed in this problem? 

 



Problem 13.6 
Consider the filter circuit shown in Figure P13.6. 

 
Figure P13.6: A filter circuit. 

 
a) Compute the transfer function of the filter from Vin(s) to Vout(s) as a function 

of the transconductances and capacitances in the circuit. 
b) Rewrite the transfer function found in part a) in canonical form and find the 

peak gain A, time constant τ , and quality factor Q in terms of circuit 
parameters. What type of filter is implemented by this circuit? 

c) Map this circuit to a passive RLC prototype by element replacement. Use this 
prototype to intuitively explain the function of each transconductor. 

d) Repeat parts a) and b) for the transfer function between Vin(s) and V1(s). 
e) Draw a small-signal block diagram of the filter. 
f) Assume that each transconductor contributes N devices of noise, i.e., that the 

output shot noise PSD is 2NqIB, where IB is the steady-state bias current 
through each noisy transistor. Also assume that the linear range of all 
transconductors is VL, a constant. Now use the block diagram from part e) to 
show that the total output noise of the filter when flicker noise is negligible 
is given by 
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Use the following definitions while deriving this formula: /C Gττ = , 

1C Cβ= , 2 /C C β= , 2mG Gτα=  and 3 /mG Gτ α= . 
g) What is the amplitude of the smallest input signal that can be detected by this 

filter? 
h) What is the amplitude of the largest input signal that can be handled by this 

filter? Explain any assumptions that you make. 
i) Find the total bias current consumed by the filter as a function of Gτ , LV and 

dimensionless parameters. 
j) MATLAB: Imagine that you are designing this filter for an analog circuit 

design company and that the required values ofτ and Q are fixed by 
management. Now assume A ,α , and β  are constants and pick values that 
result in reasonable trade-offs between dynamic range, layout area and 
power consumption. 



k) Repeat part j), but now allow one dimensionless circuit parameter to vary as 
a function of signal amplitude. Which parameter would you vary, if any? 
Explain how your scheme would improve performance. 

 
Problem 13.7 
This problem requires the use of a circuit simulator such as SPICE. Consider the 
simple first-order low-pass filter circuit shown in Figure 13.2 (c). 

a) Assume that the transconductor contributes N devices of noise, i.e., that the 
output shot noise PSD is 2qNIB, where IB is the steady-state bias current 
through each noisy transistor. Also assume that the linear range of the 
transconductor is VL, a constant. Prove that the total output noise of the filter 
when flicker noise is negligible is given by 

2

4
L

no
NqV

v
C

=  

b) Implement the transconductor in two ways: using a five-transistor OTA, and 
a wide-linear-range (WLR) OTA (as in Figure 12.2 of Chapter 12). Bias 
each OTA in subthreshold, and perform a dc I-V simulation to find its linear 
range. 

c) Use the same bias current as in part b), and set C = 1 pF. Now find the total 
output noise of the filter in two cases: using the five-transistor OTA, and 
using the WLR OTA. Verify that the formula you derived in part a) correctly 
predicts the noise of both filters. [Note: noise simulations are usually very 
accurate. If you end up with a significant discrepancy between theory and 
simulation, you are probably doing something wrong.] 

d) Feed a sinusoidal input signals of frequency 0.2ωc into each low-pass filter 
circuit analyzed in part c), where ωc is the cutoff frequency of the filter in 
question. Plot the total harmonic distortion (THD) at the output of both 
filters as the input amplitude increases between 0 and 2 V. 

e) Repeat part d) for input frequencies equal to ωc and 5ωc, and explain your 
results. 

 
Problem 13.8 
This problem requires the use of a circuit simulator such as SPICE.  Real 
transconductors have finite dc gain, i.e., they are not ideal current sources but have a 
finite output impedance Ro. One effect of finite dc gain is to lower the quality factors 
of practical high-Q filters relative to those obtained with ideal transconductors. 

a) Consider the resonant low-pass filter shown in Figure 13.8 (c). Implement 
each transconductor using your favorite subthreshold OTA, and hook them 
up to create the filter. Assume C1 = C2 = 1 pF, and use Equation (13.18) to 
set the two OTA bias currents such that the predicted values ofτ and Q are 
0.1 ms and 1, respectively. Note that we expect the DC gain of this filter to 
be ADC = 1 (independent of all other parameters). 

b) Perform small-signal ac simulations on your filter and find the actual values 
of ADC, τ and Q. Repeat your simulations for various values of Q between 1 
and 10. Remember that you must re-bias your filter every time! 

c) Plot the theoretically-expected values of ADC, τ, and Q versus what you 
actually obtained from your simulations. Explain your results. Do the 
simulated values of Q and ADC fit Equation (13.33)? 



d) Repeat parts a), b) and c), but for the low-pass filter shown in Figure 13.12 
(b). 

e) Based on the results of your simulations, which circuit would you use in 
applications where high values of Q are required? 

 
Problem 13.9 
This problem requires the use of a circuit simulator such as SPICE.  The fact that 
OTA I-V curves have saturating nonlinearities means that the effective 
transconductance decreases as the amplitude of the differential input signal increases. 
As a result, the center frequency and other parameters of Gm-C filters can change with 
signal amplitude. This problem investigates such effects. 

a) Consider the band-pass filter that you analyzed in Problem 13.4. Implement 
each transconductor using your favorite subthreshold OTA, and hook them 
up to create the filter. Assume C1 = C2 = 1 pF, and use Equation (13.18) to 
set the two OTA bias currents such that the predicted values of τ and Q are 
0.1 ms and 5, respectively. Note that we expect the peak gain of this filter to 
be A0 = 1 (independent of all other parameters). 

b) Feed sinusoidal input signals of amplitudes varying between 0 and 
2 /LV Q into your filter, where LV is the linear range of the OTAs. Perform a 
transient simulation at each amplitude level to find the actual values of A0 

and τ as a function of input amplitude. [Hint: the easiest way to obtain 0A  
and τ from transient simulations is to use ‘chirp’ inputs with slowly changing 
frequencies. Keep the input amplitude constant with time, but gradually 
sweep the frequency up (rising chirp) or down (falling chirp).] 

c) Plot the theoretically-expected values of A0 and τ versus what you actually 
obtained from simulations using rising chirps. Is there an intuitive 
explanation for your results? 

d) Repeat part c) by simulating with falling chirps instead. Are there significant 
differences between the two sets of simulation results? 

 
Problem 13.10 
For the –s2 –plane geometry of Figure 13.14 (c), prove all results in the last column of 
Table 13.2.  
 


