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Solutions

Problem 1.1 (p. 26)

a. (i) A is the ground; B is you. (ii) 𝐅ground on you. (iii) The force of you on the
ground: 𝐅you on ground. (iv) downward.

b. (i) A is the earth; B is the stone. (ii) 𝐅earth on stone. (iii) The gravitational force
of the stone on the earth: 𝐅stone on earth. (iv) upward.

c. (i) A is the branch; B is the cherry. (ii) 𝐅branch on cherry. (iii) The force of the
cherry on the branch: 𝐅stone on earth. (iv) downward.

d. (i) A is the air; B is the hummingbird. (ii) 𝐅air on hummingbird. (iii) The force
of the hummingbird on the air: 𝐅hummingbird on air. (iv) downward.
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Problem 1.2 (p. 26)

a. passive, electromagnetic, and short range

b. active, gravitational, long range

c. passive, electromagnetic, and short range

d. passive, electromagnetic, and short range

Problem 1.3 (p. 26)

The units are

kg−1 m3 s−2 × kg
m2 , (S.1)

which simplify to m s−2.
The powers of ten are

10−11 × 1024

(106)2 , (S.2)

so the exponent of 10 is
−11 + 24 − 2 × 6 = 1. (S.3)

So the powers of 10 contribute 101.
And the mantissas are

7 × 6
6.42 . (S.4)

The 6.4 in the denominator is almost exactly √40, so the mantissas contribute
≈ 42/40 or roughly 1. Thus, the three-stage calculation gives, approximately,

1×101 m s−2. (S.5)
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Problem 1.4 (p. 27)

With approximate values for the moon’s mass and its orbital radius,

𝐹𝑔 ≈

𝐺

7×10−11 kg−1 m3 s−2⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ ×
𝑚moon

7×1022 kg⏞⏞⏞⏞⏞ ×
𝑚earth

6×1024 kg⏞⏞⏞⏞⏞

( 4×108 m⏟⏟⏟⏟⏟
𝑟earth–moon

)2 . (S.6)

A three-stage calculation (units, powers of ten, and mantissas) gives
𝐹𝑔 ≈ 2 ×1020 N. (S.7)

It’s roughly 1/200th of the gravitational force of the sun on the earth. Although
the moon’s mass is a minuscule fraction of the sun’s mass, the moon’s relative
proximity to the earth makes its gravitational force on the earth much greater
than a minuscule fraction of the sun’s gravitational force on the earth.

Problem 1.5 (p. 27)

The comparison is between
𝐺𝑚earth

𝑅2
earth

≈ 7×10−11 kg−1 m3 s−2 × 6×1024 kg
(6.4×106 m)2 (S.8)

and
𝐺𝑚earth

𝑅2
earth

≈ 7×10−11 kg−1 m3 s−2 × 6×1024 kg
(6.4×106 m + 200 km)2 . (S.9)

In other words, the distance 𝑟 increased by 200 kilometers, a 3-percent increase
on the baseline distance of 6400 kilometers (6.4 × 106 meters). Due to the
exponent of −2 on the distance (representing an inverse-square force law), the
result is a 6-percent decrease in 𝑔.

That fractional-change argument is a bit telegraphic. But a brute-force nu-
merical calculation confirms it. The 𝑔 at sea level, from (S.8), is 10.25 meters
per second squared. The 𝑔 in low-earth orbit, from (S.9), is 9.64 meters per sec-
ond squared, which is 5.95 percent smaller than the 𝑔 at sea level. (The 𝑔 at sea
level from (S.8) is somewhat different from the standard value of 9.8 meters
per second squared due to its use of approximate values of the earth’s mass and
radius.)
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Problem 1.6 (p. 27)

In college, I captained our dormitory’s Ultimate Frisbee team when we played
against a team with Eric Heiden, the Olympic speed skater. Although it was
many years after his 1980 Winter Olympics gold-medal performances, he was
still an imposing athlete. His arms were thicker than my thighs, his thighs
were thicker than my torso, and he could run faster than the wind. I use a
faded mental picture of him as my model as I make rough guesses for a speed
skater’s mass (for calculating dynamic friction), speed, and cross-sectional
area: 𝑚 ∼ 100 kilograms (probably an overestimate), 𝑣 ∼ 10–15 meters per
second (skating is probably slightly more efficient than running on land, where a
10-meters-per-second speed was once a world-record pace), and 𝐴 ∼ 0.5 square
meters.

Then the drag force is
𝐹drag ∼ 1 kg m−3 × (14 m s−1)2 × 0.5 m2 ∼ 100 N. (S.10)

The dynamic-friction force depends on the normal force. For a skater whose
center of mass is moving mostly horizontally (which anyway is more efficient),
𝑁 ≈ 𝑚𝑔, so

𝐹𝜇 = 𝜇𝑁 ≈ 𝜇𝑚𝑔 ≈ 0.001 × 100 kg × 10 m s−2 = 1 N. (S.11)

The drag force is 100 times larger than the friction!

Problem 1.7 (p. 27)

It’s the static-friction force of the box on the hill. It points down the slope.
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Problem 1.8 (p. 27)

a.
𝐹𝑔 ≈

𝐺

7×10−11 kg−1 m3 s−2⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ ×
𝑚earth

6×1024 kg⏞⏞⏞⏞⏞ ×
𝑚electron

9×10−31 kg⏞⏞⏞⏞⏞

( 6.4×106 m⏟⏟⏟⏟⏟
𝑅earth

)2

≈ 10−29 N

b.
𝐹𝑔 ≈

𝐺

7×10−11 kg−1 m3 s−2⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ ×
𝑚1

60 kg⏞ ×
𝑚2

60 kg⏞

( 1.3×107 m⏟⏟⏟⏟⏟
2𝑅earth

)2

≈ 1.5×10−21 N

c. 𝐹drag ∼ 0.3 kg m−3
⏟⏟⏟⏟⏟
𝜌high-altitude air

×( 250 m s−1⏟⏟⏟⏟⏟
𝑣

)2 × 40 m2⏟
𝐴cs

∼ 106 N.

d.
𝐹𝑔 ≈

𝐺

7×10−11 kg−1 m3 s−2⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ ×
𝑚sun

2 ×1030 kg⏞⏞⏞⏞⏞ ×
𝑚Sirius

4×1030 kg⏞⏞⏞⏞⏞

( 8×1016 m⏟⏟⏟⏟⏟
𝑑sun–Sirius

)2

≈ 1017 N
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Problem 2.1 (p. 38)

Ask which kind of fundamental force such a force would be. It cannot be gravi-
tational because any gravitational force points downward (to the center of the
earth). It cannot be electromagnetic because the ball isn’t in contact with any-
thing. And it’s definitely not a nuclear force. So, it’s none of the four fundamen-
tal types of force – so, it’s not a force at all and doesn’t belong on the freebody
diagram.
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Problem 2.2 (p. 38)

In labeling the forces on the track (Figure S.1) and on the earth (Figure S.2), I
use “earth” when the earth–ground participates in a gravitational interaction
and “ground” when it participates in a contact (electromagnetic) interaction.

Fearth on track

Fcar on track

Fground on track,1 Fground on track,2

Figure S.1 Freebody diagram of the track. The gravitational force, 𝐅earth on track, is
drawn with its tip at the center of mass of the track as reminder that this force is a
long-range or body force.

For the freebody diagram of the earth (including the ground as part of the earth):

Ftrack on earth

Fcar on earth

Ftrack on ground

Figure S.2 Freebody diagram of the earth. As a reminder that 𝐅track on earth and
𝐅car on earth are long-range or body forces (they are gravitational forces), they are
drawn with their tail or tip, respectively, at the earth’s center of mass.
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Problem 3.1 (p. 46)

Figure S.3 shows the rod lattices drawn for the same two positions of the earth
in its orbit as shown in the text.

earth’s
orbit

r
gr

g

Figure S.3 The rotating and translating frame of the earth in orbit around the sun.
These lattices change their location and orientation.

In comparison to the frame moving with the center of the earth but not rotating
with the earth, these lattices also change their orientation (which you can see by
the changing orientation of the “r” and “g” rods that label the frame’s two axes).

Problem 3.2 (p. 46)

As seen from the accelerating train, the rock still has its northward speed of
30 meters per second. But, its backward (westward) speed is now, due to the
train’s acceleration, not constant at 40 meters per second. Instead, that speed
is changing. Thus, what was once a straight path tilted backward at roughly 55
degrees becomes a curved path that curves ever-more backward.

As an illustration, imagine that the train’s acceleration is 4 meters per second
squared forward (eastward). This acceleration is quite large for a train, but the
exaggeration makes the curved nature of the path evident. Figure S.4 shows the
resulting path as seen from the train frame.

θ

Figure S.4 The path of the rock, as seen in the train frame. As the train travels ever
faster eastward, the rock’s path approaches due west.

The rock participates in no (horizontal) interactions, yet it moves in a curved
line (in the horizontal plane), meaning that its velocity isn’t constant. Thus, the
accelerating-train frame isn’t an inertial frame.
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Problem 5.1 (p. 84)

I sometimes find such a triangle hard to analyze because it hangs in midair
(Figure S.5a) rather than lying with one leg horizontal and the other vertical.
Thus, let’s rotate it so that it lies in this more familiar orientation (Figure S.5b).

hill
θ

θ

θ 90◦−θ
Fg
⊥

Fg
‖

Fg

Fg
⊥

Fg
‖

Fg

θ

(a) (b)

Figure S.5 Right triangles for resolving the gravitational force into parallel and
perpendicular portions. (a) This triangle’s hypotenuse is (with the addition of a
downward arrow) the gravitational force. However, this orientation is unfamiliar,
making the trigonometry harder to see. (b) The same triangle has been rotated so
that one leg is horizontal, the other leg is vertical, and the hypotenuse is tilted.
Because of the changed direction, the hypotenuse is no longer the gravitational
force itself, but its length is still 𝐹g.

From trigonometry, the altitude over the hypotenuse is sin 𝜃, so 𝐹g
∥ = 𝐹g sin 𝜃.

Because 𝐹g = 𝑚𝑔,
𝐹g

∥ = 𝑚𝑔 sin 𝜃. (S.12)

Similarly, the base over the hypotenuse is cos 𝜃, so
𝐹g

⊥ = 𝑚𝑔 cos 𝜃. (S.13)
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Problem 5.2 (p. 84)

First I analyze the new slope and with no dynamic friction. The contact force,
calculated in (5.10), becomes

𝐹contact = 𝑚𝑔 cos 20∘⏟
≈0.9

≈ 630 N. (S.14)

The drag force, calculated in (5.11), becomes
𝐹drag = 𝑚𝑔 sin 20∘⏟

≈1/3
≈ 230 N. (S.15)

My terminal speed, calculated in (5.12), becomes

𝑣 ∼ √𝐹drag

𝜌𝐴cs
≈ √ 230 N

1 kg m−3 × 0.25 m2 = √920 m s−1 ≈ 30 m s−1 (S.16)

(roughly 65 miles or 110 kilometers per hour). It’s still fast sledding, but it feels
plausible for sledding without air drag down an infinitely long hill (the infinite
length lets me reach my terminal speed).

In symbols, for the contact force, (5.10) and (S.14) generalize to
𝐹contact = 𝑚𝑔 cos 𝜃. (S.17)

Similarly, for the drag force at the terminal speed, (5.11) and (S.15) generalize
to

𝐹drag = 𝑚𝑔 sin 𝜃. (S.18)

For the terminal speed, (5.12) and (S.16) generalize to

𝑣 ∼ √𝐹drag

𝜌𝐴cs
= √𝑚𝑔 sin 𝜃

𝜌𝐴cs
. (S.19)

Now I include dynamic friction. It doesn’t affect the normal (perpendicular)
portion 𝐍 of the contact force, whose magnitude is still roughly 630 newtons. It
does, however, make the contact force have a parallel portion with magnitude

𝐹𝜇 = 𝜇𝑁 ≈ 0.3 × 630 N ≈ 190 N. (S.20)

The parallel portion 𝐅𝜇 and the drag force together balance the parallel portion
of the gravitational force. Thus, the drag force (at my terminal speed) is smaller
than it was without dynamic friction.

𝐹drag = 𝑚𝑔 sin 𝜃 − 𝐹𝜇 ≈ 230 N − 190 N = 40 N. (S.21)

The terminal speed, calculated for the 30-degree slope in (5.14), becomes

𝑣 ∼ √ 40 N
1 kg m−3 × 0.25 m2 = √160 m s−1 ≈ 13 m s−1 (S.22)

(roughly 28 miles or 45 kilometers per hour). That speed matches my experience
reasonably sledding down a nearby long hill after a snowstorm.
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Problem 5.3 (p. 84)

In this special case, strings 1 and 3 exert only vertical forces on the knot. However,
string 2’s force on the knot has a horizontal portion. Because neither string 1
nor string 3 can balance this horizontal portion, the knot would have a nonzero
net force – very bad! The only way out is for string 2 to have zero tension
(𝑇2 = 0), which makes the troublesome horizontal portion also zero. Then
string 1 and string 3 act like one longer string, and the tension is 𝑚𝑔 throughout
it (𝑇1 = 𝑇3 = 𝑚𝑔).

Now compare these predictions with the calculations.
The calculated string tensions in (5.19) give, when 𝜃3 = 90∘,

𝑇1 = 𝑚𝑔;

𝑇2 = 𝑚𝑔 0
sin(𝜃2 + 90∘) ;

𝑇3 = 𝑚𝑔 cos 𝜃2
sin(𝜃2 + 90∘) .

(S.23)

The repeated form sin(𝜃2 +90∘) can be simplified using a trigonometry identity,
slightly massaged. Start with the fundamental symmetry relation between sine
and cosine:

sin(90∘ − 𝜃) = cos 𝜃. (S.24)

Now replace 𝜃 by −𝜃2:
sin(90∘ + 𝜃2) = cos(−𝜃2). (S.25)

But cosine is a symmetry function – namely, cos 𝑥 = cos(−𝑥). So
sin(90∘ + 𝜃2) = cos 𝜃2. (S.26)

With this simplification, the special-case tensions in (S.23) become
𝑇1 = 𝑚𝑔;

𝑇2 = 𝑚𝑔 0
cos 𝜃2

= 0;

𝑇3 = 𝑚𝑔 cos 𝜃2
cos 𝜃2

= 𝑚𝑔.

(S.27)

These results agree with the predictions, which increases our confidence in the
general formulas (5.19).
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Problem 5.4 (p. 84)

It’s not possible. The proof is by contradiction. Assume that it is possible: that
we are moving at the same velocity without accelerating. The parallel portion of
the contact force is dynamic friction, which opposes the velocity. Because our
velocities are the same, the friction forces on us point in the same direction. If
this force balances the string force on one of us, it cannot do so on the other of
us. Thus, at least one of us must be accelerating. But that conclusion contradicts
the assumption. Therefore, the assumption (that it’s possible) is false.

Problem 5.5 (p. 85)

To redo an analysis, use as much of the original analysis as possible, thinking
about what in it remains the same and what must change to reflect the new
conditions.

The string force on me and the strong force on you still have equal magnitude
– otherwise the string would have a nonzero net force on it (impossible for a
nonaccelerating body, whether or not it’s massless, and impossible for a massless
body, whether or not it’s accelerating). Thus, the static-friction force on you and
on me also have equal magnitudes (because the static-friction force balances
the string force).

But the gravitational force on me is now twice as large as on you. The normal
force balances the gravitational force, so the normal force on me is twice as
large as the normal force on you. The contact force is the normal force plus the
static-friction force, so the contact force on me and on you are no longer mirror
images of one another.

Figure S.6 shows our freebody diagrams. In this new situation where I have
double your mass, I lean less than you do (when our masses were equal, we
leaned equally). As I mentioned in the original analysis, the lean cannot be
calculated using only Newton’s laws; it requires also the ideas of torque and
angular momentum. But everyday experience should convince you that my lean
would be less than yours and that, if it were the same as yours, I would fall over
backward. As an easier and extreme case, imagine playing tug-of-war against
an extremely dense slab – imagine neutron-star matter in the shape of a person
or of the obelisk in Stanley Kubrick’s film “2001: A Space Odyssey.” The slab
would remain upright: No matter how hard you pull, you couldn’t tip it over.
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2mg

Fground

Fstring

mg

Fground

Fstring

(a) (b)

Figure S.6 Freebody diagrams of the contestants. (a) My freebody diagram. My
mass has become 2𝑚, which doubles the gravitational force and changes the con-
tact force in magnitude (it gets stronger) and direction (it gets more vertical). (b)
Freebody diagram of you (your mass is still 𝑚), which hasn’t changed.

The string’s freebody diagram doesn’t change (Figure S.7a). And the earth’s
freebody diagram changes to reflect the changes in our freebody diagrams
(Figure S.7b).

FT FT

2mg

mg

F
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e
on

ground F yo
u on

gro
un

d

(a) (b)

Figure S.7 The remaining freebody diagrams. (a) The freebody diagram of the
string (which hasn’t changed). (b) The freebody diagram of the earth (which
changes to reflect the changes in the contact and gravitational forces on me).

Figure S.8 shows all four freebody diagrams and the interactions, which neces-
sarily cross diagrams.
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me you

string

earth

Figure S.8 All four freebody diagrams showing the third-law pairs (connected
with dashed lines).

Problem 5.6 (p. 85)

The key word here is “consistent.” When the rope gets mass and a gravitational
force but the diagrams otherwise remain unchanged, then the rope’s freebody
diagram shows a nonzero net force: The vertical gravitational force cannot be
balanced by either contact force, so the net force on the rope is downward. Thus,
the rope would accelerate downward, which contradicts the assumption of no
acceleration.

To fix this problem, the contact forces on the rope must have upward portions
that, taken together, balance the gravitational force. In other words, the rope
sags. Another way of getting to the same conclusion is to discard, for a moment,
the assumption of no acceleration. Then, the rope accelerates downward until it
sags just the right amount to make the net force zero.

The contact forces on us from the rope are, by Newton’s third law, equal and
opposite to the contact forces on the rope. Thus, the rope forces (on us) have
downward portions.

Besides the change to the orientations of these four forces, the other change
is a new third-law pair, from the gravitational interaction between the rope and
the earth.

Figures S.9 and S.10 show the resulting freebody diagrams.
The remaining freebody diagrams. (a) Freebody diagram of the sagging rope,

with the contact forces on it pointing slightly upward. (b) Freebody diagram of
the string.

Figure S.11 shows all four diagrams showing the third-law pairs crossing
between diagrams.
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mg

Fground

Frope

mg

Fground

Frope

(a) (b)

Figure S.9 Freebody diagrams when we pull on a rope (a string with mass). Be-
cause the rope sags, the contact force of the rope on either of us points slightly
downward (the contact force of either of us on the rope points slightly upward, to
balance gravity). (a) My freebody diagram. (b) Your freebody diagram.

FT FT

mropeg

Figure S.10 tug-of-war-rope-correct-fbd-of-earth.pdf

Problem 5.7 (p. 85)

Pulley 2 is the interesting one because it movable: Unlike the pivot of pulley 1 and
of Problem 5.10, pulley 2’s pivot does not prevent the pulley from moving. Thus,
pulley 2 (considered as including its pivot, which moves with it) experiences
two forces: from the main pulley string and from the short string holding up the
mass.

The short string has tension 𝑚𝑔, so it exerts a force 𝑚𝑔 downward on the pulley.
To find the effect of the main string: In the solution to Problem 5.10, you saw

that a string with tension 𝑚𝑔 exerted a force with magnitude 2𝑚𝑔 on the pulley
around which it was wrapped in the same configuration as the string around this
pulley. Thus, the main string exerts a force 2𝑇 upward.

Because the pulley is massless, no gravitational force acts on it, and the two
contact forces are the only forces. Also because the pulley is massless (and
because it’s not accelerating), the two contact forces balance. Thus,

2𝑇 = 𝑚𝑔 (S.28)

and

𝑇 = 𝑚𝑔
2 . (S.29)

Amazingly, 𝑇 is less than 𝑚𝑔. And that result is the reason for this pulley
arrangement. It allows you to lift a mass using a force much smaller than the
gravitational force on the mass. This factor-of-2 benefit comes with a factor-of-2
cost: To raise the mass by a distance 𝑦, you must pull the string by a distance 2𝑦.

225 225

225 225



16 Sanjoy Mahajan

2019-07-15 22:14:19 UTC / rev 8fa6480578af

me you

rope

earth

Figure S.11 All four freebody diagrams, with third-law pairs connected by dashed
paths.

Problem 5.8 (p. 85)

a. To make the freebody diagrams, start with the top block because you know
its freebody diagram already (Figure S.12a): It’s the freebody diagram of
a body sitting on the ground, with the middle block playing the role of the
ground. The top block participates in two interactions: the gravitational
interaction with the earth and the contact interaction with the middle block.
The result is a two-force diagram, where the contact force balances the
gravitational force, leaving the block with no net force and therefore no
acceleration. Thus, each force has magnitude 𝑚𝑔/3.

Now you can make the diagram for the middle block (Figure S.12b).
It’s similar to the diagram for the top block, but there is a second contact
interaction (and therefore an additional force): with the top block. One side
of this interaction is the contact force on the top block, which has magnitude
𝑚𝑔/3. In symbols,

𝐅middle on top = 𝑚𝑔
3 upward. (S.30)

From Newton’s third law,

𝐅top on middle = −𝐅middle on top = 𝑚𝑔
3 downward. (S.31)

The top block presses the middle block downward.

What’s the magnitude of the other contact force?

The three forces, including the contact force from the bottom block, add to
zero. Two of these forces are the gravitational force, 𝑚𝑔/3 downward, and
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(a) (b) (c)

Figure S.12 Freebody diagrams of the blocks. (a) The top block (with the other
blocks in ghostly outline, per step 3 of the freebody-diagram procedure in Sec-
tion 2.1). It’s just a body sitting on the ground (with that role played by the middle
block), so it experiences the usual two forces that balance. (b) The middle block.
Unlike the top block, this block experiences the contact force on its head pushing
it down. This force and the gravitational force are balanced by the upward contact
force from the bottom block. (c) The bottom block. The gravitational force and the
downward contact force, twice as large as the analogous force on the middle block,
are balanced by the full-strength upward contact force from the ground.

the contact force from above, also 𝑚𝑔/3 downward. Thus, the third force
must be 2𝑚𝑔/3 upward. Now the middle block’s diagram is complete.

For the bottom block (Figure S.12c), the reasoning follows the same struc-
ture as for the middle block. The gravitational force is still 𝑚𝑔/3 downward.
The two contact forces acting on it are from the middle block, providing
2𝑚𝑔/3 downward, and from the ground, providing 𝑚𝑔 upward.

Thus, going downward from head to toe, each piece of you feels ever
stronger compressive forces acting at its top and bottom surfaces. The rate
of increase of these forces depends on 𝑚 and 𝑔. This increasing stress, includ-
ing its rate of increase, provides the familiar feeling of being earth-bound
creatures confined to the earth by gravity. It’s what our bones grew to expect.
Changes in this distribution of forces – whether by changing 𝑔 (for example,
going to another planet) or by changing the contact forces (for example, by
going into orbit) – create strange internal feelings to which astronauts learn
slowly to adapt.

The fourth and final diagram is for the earth. The earth participates in three
long-range, gravitational interactions, one with each block. The earth – in
particular, its surface, the ground – also participates in the contact interaction
with the bottom block. Thus, four forces act on the earth (Figure S.13).

The gravitational forces are each 𝑚𝑔/3 upward – by Newton’s third law.
The contact force is 𝑚𝑔 downward – again by Newton’s third law. The sum
of these forces (the net force) is zero. Thus, the earth does not accelerate.
Indeed, it’s squeezed between the gravitational forces and the contact forces
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mg

Figure S.13 The freebody diagram of the earth (taken to include the ground). It
participates in four interactions – three gravitational and one contact – and there-
fore experiences four forces. The three gravitational forces, each 𝑚𝑔/3 upward,
together balance the contact force, which is 𝑚𝑔 upward.

(just as you are, although the one-piece model of the earth does not make
this squeezing as clear as does the three-piece model of a person).

b. The next problem is to identify pairs of forces that are “equal and opposite”
– that is, have the same magnitude but opposite directions – and decide, for
each pair, whether it’s so due to the second or the third law. Only the third-
law pairs get connected by dashed lines.

The rule for determining which law to apply is simple. If the two forces
are two sides of a single interaction, in which case they necessarily act on
separate bodies, then they are equal and opposite due to Newton’s third law.
If the two forces act on the same body and the body isn’t accelerating, then
they are equal and opposite due to Newton’s second law.

I’ve started the analysis, by pairing up the eight 𝑚𝑔/3 forces.
a. the contact force on the top block,
b. the 𝑚𝑔/3 contact force on the middle block,
c. the gravitational force on the top block,
d. the gravitational force of the top block on the earth,
e. the gravitational force on the middle block,
f. the gravitational force of the middle block on the earth,
g. the gravitational force on the bottom block, and
h. the gravitational force of the bottom block on the earth.

In this group, the first two forces are the two sides of the contact interaction
between the top and middle blocks, so they are connected by Newton’s third
law. The first and third forces both act on the same block, and produce the
zero net force on it, so they are connected by Newton’s second law. The third
and fourth forces are the two sides of the gravitational interaction between
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the top block and the earth, so they are equal and opposite due to Newton’s
third law. Similarly, the fifth and sixth forces are equal and opposite due to
Newton’s third law, as are the seventh and eight forces.

Problem 5.9 (p. 86)

Let the tension be 𝑇1 on the left end and 𝑇2 on the right end (where 𝑇1 ≠ 𝑇2).
The string’s freebody diagram is show in Figure S.14.

FT1 FT2

Figure S.14 The freebody diagram of a (straight) string where the tension varies
from 𝑇1 to 𝑇2. By assumption, 𝑇1 ≠ 𝑇2, so the two forces don’t balance.

The two contact forces don’t balance, giving a nonzero net force on the string.
The result is infinite acceleration, which is a contradiction. Thus, in this case of
a string with contact forces only at its ends, the two tensions must be equal.

I haven’t yet used the assumption that the string is frictionless. It’s needed
when I try to rescue the preceding situation by placing the string in contact with
other objects, in order to prevent it from accelerating. These contacts produce
a contact force on the string (which need not be at either end). However, the
string is frictionless, so the contact force has no parallel portion and is therefore
perpendicular to the string. This perpendicular force cannot balance the net
horizontal force. Thus, the string still has an infinite acceleration.

In short, the tensions at the two ends must be equal.
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mg mg

Figure S.15 An incomplete freebody diagram of the string. The string experiences
a nonzero net force, which gives it an infinite acceleration. Thus, the diagram lacks
at least one force.

Problem 5.10 (p. 86)

Following my own advice, I first make a freebody diagram of the string. The
tension in the string is 𝑚𝑔, and the contact interaction at each end produces a
downward force 𝑚𝑔 at each end (Figure S.15).

An easy trap to fall into, having landing there myself, is to think that this
diagram is complete. However, it cannot be, as it implies a nonzero net force on
the string, which (by definition) is massless and therefore would get an infinite
acceleration. Very bad!

To find the missing force that prevents the infinite acceleration, I let the world
reason for me. I imagine that the string does accelerate as directed by the two
downward tension forces. In other words, the string starts accelerating downward.
Then I ask myself, “What body prevents this downward acceleration?” In other
words, why doesn’t it just jet ever faster downward? Answer: The pulley!

Thus, the missing force is the contact force of the pulley (Figure S.16). In
order to balance the two tension forces, it must be 2𝑚𝑔 upward. Now the string’s
freebody diagram is complete: Each of its three contact interactions, with the
two masses and with the pulley, has contributed one of the three forces acting
on it.

mg mg

2mg

Figure S.16 The complete freebody diagram of the string. The contact force of the
pulley makes the net force zero and prevents the string from accelerating.
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Now I can make the freebody diagram of the pulley (Figure S.17). It experiences
a gravitational force 𝑚pulley𝑔 downward. It also experiences the other side of the
string–pulley interaction, which produces a contact force 2𝑚𝑔 downward. But
the story cannot end there, or the pulley would have only downward forces on
it. Although it has mass and therefore wouldn’t have an infinite acceleration, it
still would accelerate downward.

mpulleyg

2mg

Fpivot on pulley

Figure S.17 The freebody diagram of the pulley. The force of the pivot on the
pulley actually acts at the center of the wheel (at the pivot). However, I have placed
it with its tip at the edge of the wheel for two reasons. First, it doesn’t overlap
the gravitational force. Second, its new location reminds us that it’s a contact force
(based on the convention that a contact force has its tip or tail at the body’s surface).

What body prevents this acceleration (and resulting motion)?

The pivot! Thus, I forgot the contact force of the pivot on the pulley; in other
words, I forgot the pivot–pulley interaction. Because the net force on the pulley
is zero, this contact force must be (2𝑚 + 𝑚pulley)𝑔 upward.

𝐹pivot on pulley = (2𝑚 + 𝑚pulley)𝑔. (S.32)

My drawing is slightly misleading about the point of application of 𝐅pivot on pulley.
It actually acts at the middle of the pulley (rather than at the bottom of the pulley
wheel, as shown in the diagram). But if I had drawn it there, it would have
looked like an upward, long-range force (antigravity).
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Problem 5.11 (p. 86)

From (5.23), the pressure 𝑝 versus “depth” ℎ below the top of the atmosphere is
𝑝 = 𝜌0𝑔ℎ, (S.33)

where 𝜌0 is the sea-level density and where 𝑝0, the pressure at the top of the
pool, disappeared because it’s zero. When ℎ = 𝐻, the pressure 𝑝 is the sea-level
pressure. Thus,

𝐻 = 𝑝sea level
𝜌0𝑔 , (S.34)

so

𝐻 ≈
105 Pa⏟
𝑝sea level

1.2 kg m−3
⏟⏟⏟⏟⏟

𝜌0

× 10 m s−2⏟
𝑔

= 8×103 m, (S.35)

or 8 kilometers (a little lower than Mount Everest). For the sea-level density,
I’ve used the more accurate value of 1.2 kilograms per cubic meter, rather than
the convenient but rough value of 1 kilogram per cubic meter, in order to get an
estimate of 𝐻 accurate enough to use in the more realistic model of Problem 5.15.

In that more realistic model, the air density decreases with height. The atmos-
phere then doesn’t abruptly disappear at 8 kilometers. Rather, it fades slowly
with height and, by 8 kilometers, has decreased significantly in density and pres-
sure (roughly by a factor of 3).

Problem 5.12 (p. 86)

a. As with ropes, make a freebody diagram of a segment of the cable. In
particular, take a segment of length 𝑧 starting at the bottom of the cable.
It participates in two interactions: the long-range, gravitational interaction
with the earth and the short-range, contact interaction with the rest of the
cable.

Thus, it experiences two forces (Figure S.18). The gravitational force is
𝑚𝑔 downward, where 𝑚 is the segment’s mass. The segment has volume
𝐴𝑧, so it has mass 𝜌𝐴𝑧. Thus, the gravitational force is 𝜌𝐴𝑧𝑔 downward.
Meanwhile, the contact force points upward and has magnitude 𝑇(𝑧).
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cut

T (z)

ρAzg

z

Figure S.18 The freebody diagram of a segment of the cable. The segment, which
starts at the bottom of the cable, has length 𝑧 and mass 𝜌𝐴𝑧. It experiences two
forces: the gravitational force and the contact force from the cable above it.

The cable segment isn’t accelerating, so the two forces balance:
𝑇(𝑧) = 𝜌𝐴𝑧𝑔. (S.36)

This formula is similar to the pressure in the lake given by (5.23), as it
should be. Newton’s laws don’t care whether the substance in question is
a solid, such as the steel in this cable, or a liquid, such as the water in the
lake. The main difference between tension and pressure is that the tension
includes a factor for area whereas pressure is akin to force per area. Thus,
the tension (S.36) contains a factor of 𝐴 absent from the pressure (5.23).

b. Based on the tension in (S.36), the maximum tension is when 𝑧 is a maximum,
at the top of the cable where 𝑧 = 𝑙. Thus,

𝑇max = 𝜌𝐴𝑙𝑔. (S.37)

The maximum tensile stress 𝜎max is 𝑇max/𝐴, so
𝜎max = 𝜌𝑙𝑔. (S.38)

Solving for 𝑙 in terms of 𝜎max,

𝑙 = 𝜎max
𝜌𝑔 . (S.39)

For steel, the breaking strength is roughly 109 pascals, and 𝜌 is roughly
7×103 kilograms per cubic meter (7 times denser than water). With those
values, the cable’s maximum length is
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𝑙 ≈ 109 Pa
7×103 kg m−3 × 10 m s−2 ≈ 1.4×104 m, (S.40)

or about 14 kilometers.
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(a) (b)

Figure S.19 The two views of the freebody diagram for bicycling with wind. (a)
The side view, showing the forces’ 𝑥𝑧 portions. (b) The top view, showing the
forces’ 𝑥𝑦 portions.

Problem 5.13 (p. 87)

The wind has no effect on the gravitational force, whose two views therefore do
not change: The side view shows the entire gravitational force, and the top view
shows no force.

In contrast, wind does affect the other two forces. As usual, it’s easiest to
consider the passive forces – here, the contact force of the ground – after con-
sidering the other forces. Thus, first consider the effect of the wind on the drag
force.

Drag is the contact force of the air on the body, and it opposes the body’s
motion relative to the air. The wind means that the air is moving (to the north).
Thus, the bicycle’s motion relative to the air is east and south, and the drag force
will point west and north (whereas without wind it pointed purely west).

The third force, the contact force, balances the other two forces (the bicycle
isn’t accelerating). Thus, its downward portion balances the gravitational force,
and its planar portion (its portion in the 𝑥𝑦 plane) balances the drag force. So,
the contact force points mostly downward, somewhat east, and slightly south.

Its side view shows only the downward portion. Its top view shows only the
planar portion.

Putting the preceding points into the freebody diagram gives the two views
(Figure S.19).

An unusual feature of the arrows is worth noting: The drag force (on the side
view) and the contact force (on the top view) do not have their tips at the edge
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of the body, even though these forces are short range. The reason is that the
surface is two-dimensional.

The drag force, at least with the direction and placement for it that I’ve chosen,
acts on the body’s side surface, at a point slightly behind the front of the body.
(In the top view, you can see where that point is.) Thus, on the side view, the
drag force’s tip looks like it’s within the body.

Similarly, the contact force also acts at the body’s surface, in particular at its
bottom surface. Thus, in the top view, the contact force has its tip inside the
body (and its tail, because its 𝑥𝑦 portion isn’t large).
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thrust

lift

drag

Fearth on plane

Figure S.21 The vector sum of the gravitational force and the three portions of the
contact force (lift, drag, and thrust).

Fearth on air

Fplane on air

Fground on air

Figure S.22 The freebody diagram of the air. The air interacts with three other
bodies: the earth (gravity), the plane (contact), and the ground (contact). Thus, it
experiences three forces. The gravitational force and the downward contact force
(from the plane) balance the upward contact force (from the ground).

Problem 5.14 (p. 87)

a. the plane interacts with only two other bodies: the earth and the air. Thus,
the new force 𝐅air on plane, contributed by the plane’s interaction with the air,
is the second and only other force (Figure S.20). Because the plane isn’t
accelerating, the two forces balance.
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Fearth on plane

Fair on plane

Figure S.20 The complete freebody diagram for the plane. The missing force was
due to its interaction with the air.

If the plane were climbing at a steady rate, it would still be moving at constant
velocity (the velocity just would have an upward portion). Thus, the two
forces on the plane still would balance and the freebody diagram would look
the same.

b. Lift points upward, and thrust and drag point horizontally (Figure S.21).
Because the sum of these three forces is upward (to balance gravity), thrust
and drag must balance.

c. The air interacts with three bodies: (1) the earth (in a long-range, gravita-
tional interaction), (2) the plane (in a short-range, contact interaction), and
(3) the ground (in the other short-range, contact interaction). Thus, three
forces act on the air (Figure S.22).

a. 𝐅earth on air. This force, because the air is assumed to have one-half the
mass of the plane, is one-half of 𝐅earth on plane. This force easy to forget
because air is invisible (a belief that I held in abeyance while I lived in
Los Angeles). How can gravity act on an invisible body? But it does!
Gravity sees everything.

b. 𝐅plane on air. This force isn’t so easy to forget, but its direction isn’t obvious,
especially if one thinks of the air as the whole atmosphere or even just as
a giant box of air that extends above the plane. But this force is the third-
law counterpart of 𝐅air on plane. So, the two forces are equal and opposite,
meaning that 𝐅plane on air points downward.

c. 𝐅ground on air. This force, which I find even easier to forget than I do
𝐅earth on air, is the third-law counterpart of 𝐅air on ground, which itself is
the pressure force of the air on the ground. Thus, neither force is zero!
In particular, 𝐅ground on air points upward and, because the air isn’t accel-
erating, must balance the other two downward forces on the air.

Now for the freebody diagram of the earth (which includes the ground). It
participates in three interactions: (1) the long-range, gravitational interaction
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with the plane; (2) the long-range, gravitational interaction with the air;
and (3) the short-range, contact interaction with the air. Thus, it experiences
three forces: 𝐅plane on earth, 𝐅air on earth, 𝐅air on ground (Figure S.23). Each force
is a third-law counterpart, and therefore equal and opposite, to a force on
one of the two preceding freebody diagrams.

Fplane on earth

Fair on earth

Fair on ground

Figure S.23 The freebody diagram of the earth. It interacts with three other bodies:
the plane (gravity), the air (gravity), and the air again (contact with the ground).
Thus, it experiences three forces.

d. Figure S.24 shows the three freebody diagrams with the third-law pairs
connected by labeled dashed paths.

air

earth

earth
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Figure S.24 All the freebody diagrams together with third-law pairs connected by
dashed lines.
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Problem 5.15 (p. 88)

a. Like the tube of lake water, this tube of air experiences two contact forces,
an upward one on its bottom surface and a downward one on its top surface,
and one long-range force, the gravitational force. Also like the tube of lake
water, the contact force on its side is zero by symmetry.

The upward contact force is a pressure force with magnitude 𝑝(𝑧)𝐴. The
downward contact force is a pressure force with magnitude 𝑝(𝑧 + Δ𝑧)𝐴 (the
+Δ𝑧 accounts for the pressure being different at the top of the slab).

The gravitational force is 𝑔Δ𝑚 downward, where Δ𝑚 is the slab’s mass.
Its mass is the its volume 𝐴Δ𝑧 times the air density 𝜌.

Δ𝑚 = 𝐴Δ𝑧. (S.41)

This calculation is why the slab has to be thin. If the slab were thick, the
density would vary too much from top to bottom, and we wouldn’t know
what density to use. (For the tube of lake water, where I assumed that water
was incompressible, the density was fixed and the slab could be as thick as
needed.)

With the mass given in (S.41), the gravitational force has magnitude
𝐹𝑔 = 𝑔Δ𝑚 = 𝜌𝐴𝑔Δ𝑧. (S.42)

Like the tube of lake water, the slab has zero acceleration, so the net
force on it must be zero. Thus, sum of the two contact forces balances the
gravitational force. As an equation for vertical components (with upward as
the positive direction),

𝑝(𝑧)𝐴 − 𝑝(𝑧 + Δ𝑧)𝐴 − 𝜌𝐴Δ𝑧 = 0. (S.43)

The common factor of 𝐴 divides out and leaves
𝑝(𝑧) − 𝑝(𝑧 + Δ𝑧) = 𝜌𝑔Δ𝑧. (S.44)

Because Δ𝑝 is 𝑝(𝑧 + Δ𝑧) − 𝑝(𝑧),
Δ𝑝 = −𝜌𝑔Δ𝑧. (S.45)

Finally, we can eliminate the interloper quantity 𝜌 by using the ideal-gas
law (5.26). Then,

Δ𝑝 = −𝑚molar𝑔
𝑅𝑇 𝑝Δ𝑧. (S.46)

b. With the thin-slab approximation

Δ𝑝 ≈ 𝑑𝑝
𝑑𝑧 Δ𝑧, (S.47)

the relation (S.46) between Δ𝑝 and Δ𝑧 becomes
𝑑𝑝
𝑑𝑧 = −𝑚molar𝑔

𝑅𝑇 𝑝. (S.48)
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c. This first-order, linear differential equation is the equation of exponential
decay. Its solution is

𝑝 = 𝑝0𝑒− 𝑚molar𝑔𝑧
𝑅𝑇 , (S.49)

where 𝑝0 is the pressure at sea level (𝑧 = 0).
To confirm this solution, substitute it into the differential equation (S.48).

The left side, which is the 𝑧 derivative of 𝑝, becomes

−𝑝0
𝑚molar𝑔

𝑅𝑇 𝑒− 𝑚molar𝑔𝑧
𝑅𝑇 . (S.50)

The solution (S.49) greatly simplifies this derivative, which becomes
𝑚molar𝑔

𝑅𝑇 𝑝. (S.51)

This result is just the right side of the differential equation (S.48). So, its
two sides are equal, which confirms the proposed solution.

d. The main idea here for the ideal-gas law (5.26) here is that the density and
pressure are proportional. Thus, they both decay exponentially with the same
dependence on height.

𝜌 = 𝜌0𝑒− 𝑚molar𝑔𝑧
𝑅𝑇 . (S.52)

e. The ratio 𝜌/𝜌0 is determined by the value of the quantity
𝑚molar𝑔𝑧

𝑅𝑇 (S.53)

in the exponent of (S.52). Putting in the numerical values, including that
𝑧 = 10 kilometers,

𝑚molar𝑔𝑧
𝑅𝑇 ≈ 3×10−2 kg mol−1 × 10 m s−2 × 104 m

8 J mol−1 K−1 × 300 K
= 1.25. (S.54)

Thus,
𝜌
𝜌0

≈ 𝑒−1.25 ≈ 0.3. (S.55)

Thus, at 10 kilometers, the air is about 30 percent as dense as at sea level.
At the scale height of 𝐻 ≈ 8 kilometers, the ratio in the exponent is even

easier to estimate:

𝑚molar𝑔𝑧
𝑅𝑇 ≈ 3×10−2 kg mol−1 × 10 m s−2 × 8×103 m

8 J mol−1 K−1 × 300 K
= 1. (S.56)

Despite all the approximate values that I used in this estimate, the result,
that the ratio is 1, is exact: The scale height is defined as the height at which
this ratio becomes 1. With this ratio equal to 1, the density ratio is 1/𝑒 or
about 36 percent.
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Figure S.25 shows the graphs of density versus height in three models
of the atmosphere. The constant-density model of Problem 5.11 is the blue
curve; the density is its sea-level value until 𝐻, where it drops abruptly to
zero. The isothermal model of this problem, whose prediction is given in
(S.52), is the red curve. And the actual atmosphere (actually, the so-called
US Standard Atmosphere, which models the actual atmosphere closely)
is the black, dashed curve. The isothermal model is remarkably accurate.
(The actual density is slightly higher than predicted by the isothermal model
because the temperature falls with altitude, and colder air is denser.)

0

1

ρ
/ρ

0

0 5 10
z (km)

actual

isothermal model

constant-density model

H

Figure S.25 A comparison of the constant-density and isothermal models against
the actual atmosphere. The curves plot density versus height above sea level (with
density measured relative to the sea-level density). The isothermal model is close
to the actual model.
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Problem 6.1 (p. 114)

a. The particle spends much time backtracking (the second straight segment
undoes the first). Thus, its travels farther than the distance between points A
and B. Thus, 𝑣avg, which has distance traveled in the numerator, is going to
be greater than |𝐯avg|, which has the A–B distance in the numerator. For this
reason,

𝑣avg ≥ |𝐯avg| (S.57)

(with equality only when the path is a straight line and the particle never
reverses).

b. I calculate 𝐯avg first (from which |𝐯avg| follows). The numerator, the displace-
ment, is the same as in the example. The duration is increased by the time
required to travel the two straight segments. For the first segment, the extra
time is

3 m
10 m s−1 = 0.3 s. (S.58)

For the second segment, it’s
3 m

12 m s−1 = 0.25 s. (S.59)

Thus,

𝐯avg = 2 m downward
2
7 s + 0.3 s + 0.25 s

≈ 2.4 m s−1 downward. (S.60)

Thus,
|𝐯avg| ≈ 2.4 m s−1. (S.61)

For the average speed, the duration also increases as calculated above, but
the numerator also increases (to include the length of the two segments):

𝑣avg ≈

extra

6 m⏞ +𝜋 m
2
7 s + 0.3 s + 0.25 s

≈ 10.9 m s−1. (S.62)

As it should be, the average speed lies between the lowest and highest speed,
10 and 12 meters per second, respectively. The average is slightly lower than
the midpoint of 11 meters per second because the particle spends slightly
less time on the second segment (where it moves faster) than on the first
segment.
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Problem 6.2 (p. 115)

For all the parts of this problem, the average and instantaneous accelerations
are the same, so you can calculate an average acceleration for any convenient
time interval.
a. Taking the quantities in the order 𝐚, 𝑎, and 𝑎𝑥:

i. The acceleration vector 𝐚 has magnitude 1 meter per second squared.
But its direction requires a bit of care. The train starts at 100 meters per
second to the left. As mentioned in the problem, 5 seconds later, the train
is moving 105 meters per second, also to the left. Thus,

Δ𝐯 = 5 m s−1 to the left. (S.63)

Using the Δ𝐯 form of the average acceleration (6.22),

𝐚avg ≡ Δ𝐯
Δ𝑡 = 5 m s−1 to the left

5 s = 1 m s−2 to the left. (S.64)

Because the acceleration is constant, the average acceleration is the (in-
stantaneous) acceleration. Thus,

𝐚 = 1 m s−2 to the left. (S.65)

ii. As predicted, 𝐚 has magnitude
𝑎 = 1 m s−2. (S.66)

iii.𝑎𝑥 is the component of 𝐚, which points to the left. The positive 𝑥 direction
is to the right, so 𝑎𝑥 is negative. Thus,

𝑎𝑥 = −1 m s−2. (S.67)

b. Again, compute the average acceleration 𝐚avg, and the other quantities follow
from it. I imagine waiting 5 seconds. Then the train is moving 90 meters
per second to the left. Thus,

Δ𝐯 = 𝐯after − 𝐯before

= 90 m s−1 to the left − 100 m s−1 to the left
= −10 m s−1 to the left.

(S.68)

Alternatively, and with one fewer minus sign,
Δ𝐯 = 10 m s−1 to the right. (S.69)

Thus,

𝐚avg ≡ Δ𝐯
Δ𝑡 = 10 m s−1 to the right

5 s = 2 m s−2 to the right. (S.70)

i. 𝐚 is, because the acceleration is constant, equal to 𝐚avg.
𝐚 = 2 m s−2 to the right. (S.71)
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ii. 𝑎 is the magnitude of 𝐚.
𝑎 = 2 m s−2. (S.72)

iii.𝑎𝑥 is the 𝑥 component of 𝐚. Because 𝐚 points in the positive 𝑥 direction,
𝑎𝑥 is positive.

𝑎𝑥 = +2 m s−2. (S.73)

c. This situation has no minus-sign traps. However, for completeness and just
to be sure, I follow the full procedure that starts with finding 𝐚avg. In 5
seconds, the car is moving 65 meters per second to the right. Thus,

Δ𝐯 = 𝐯after − 𝐯before

= 65 m s−1 to the right − 50 m s−1 to the right
= 15 m s−1 to the right.

(S.74)

Thus,

𝐚avg ≡ Δ𝐯
Δ𝑡 = 15 m s−1 to the right

5 s = 3 m s−2 to the right. (S.75)

i. 𝐚 is, because the acceleration is constant, equal to 𝐚avg.
𝐚 = 3 m s−2 to the right. (S.76)

ii. 𝑎 is the magnitude of 𝐚.
𝑎 = 3 m s−2. (S.77)

iii.𝑎𝑥 is the 𝑥 component of 𝐚. Because 𝐚 points in the positive 𝑥 direction,
𝑎𝑥 is positive.

𝑎𝑥 = +3 m s−2. (S.78)

d. This car is, wisely, losing speed: After 5 seconds, it’s moving 35 meters per
second to the right (a much safer speed). Thus,

Δ𝐯 = 𝐯after − 𝐯before

= 35 m s−1 to the right − 50 m s−1 to the right
= −15 m s−1 to the right.

(S.79)

With one fewer minus sign,
Δ𝐯 = 15 m s−1 to the left. (S.80)

Then,

𝐚avg ≡ Δ𝐯
Δ𝑡 = 15 m s−1 to the left

5 s = 3 m s−2 to the left. (S.81)

i. 𝐚 is, because the acceleration is constant, equal to 𝐚avg.
𝐚 = 3 m s−2 to the left. (S.82)
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ii. 𝑎 is the magnitude of 𝐚.
𝑎 = 3 m s−2. (S.83)

iii.𝑎𝑥 is the 𝑥 component of 𝐚. Because 𝐚 points in the negative 𝑥 direction,
𝑎𝑥 is negative.

𝑎𝑥 = −3 m s−2. (S.84)

e. For this situation, I wait only 1 second (to avoid the minus sign that would
result if I waited for 5 seconds). Then the ball is moving 10 meters per
second upward. The Δ𝐯 is Thus,

Δ𝐯 = 𝐯after − 𝐯before

= 10 m s−1 upward − 20 m s−1 upward
= −10 m s−1 upward.

(S.85)

With one fewer minus sign,
Δ𝐯 = 10 m s−1 downward. (S.86)

Then,

𝐚avg ≡ Δ𝐯
Δ𝑡 = 10 m s−1 downward

1 s = 10 m s−2 downward. (S.87)

i. 𝐚 is, because the acceleration is constant, equal to 𝐚avg.
𝐚 = 10 m s−2 downward. (S.88)

ii. 𝑎 is the magnitude of 𝐚.
𝑎 = 10 m s−2. (S.89)

iii.𝑎𝑥 is the 𝑥 component of 𝐚. Because 𝐚 points perpendicular to the 𝑥
direction,

𝑎𝑥 = 0. (S.90)
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Problem 6.3 (p. 115)

Because the earth moves at constant speed, its acceleration points inward and is
perpendicular to its motion (to its velocity). The magnitude of the perpendicular,
and here the entire, acceleration is 𝑣2/𝑟, where 𝑣 is the earth’s orbital speed and
𝑟 is its orbital radius. The orbital speed is 30 kilometers per second, from (6.14),
and is also worth memorizing because it’s such a useful quantity and such a
round number (in metric units). Using

𝑟 = 1 AU ≈ 1.5×1011 m, (S.91)

𝑎 = 𝑣2

𝑟 ≈ (3×104 m s−1)2

1.5×1011 m
= 6×10−3 m s−2. (S.92)

It’s a tiny acceleration (comparing it, for example, to 𝑔)!
You can check this result by calculating it using the gravitational force of the

sun on the earth (Section 1.4) along with the earth’s mass.
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Problem 6.4 (p. 115)

Imagine a right-moving bob just before and just after point C, with the two
imagined locations symmetric around point C. The bob’s location just before
point C is to the left and slight above point C. Its velocity, always tangent to the
circle, points mostly to the right and slightly downward (Figure S.26). Just after
point C, the velocity points again mostly to the right but now slightly upward.

vstart

vend
∆v

Figure S.26 Calculating Δ𝐯 around point C (for a right-moving bob). In contrast to
Figure 6.12, for calculating Δ𝐯 for a left-moving bob, these velocities point mostly
to the right. Similarly Figure 6.12, however, the starting velocity points slightly
downward, and the ending velocity points slightly upward. Thus, the difference
Δ𝐯 is the same as for the left-moving bob!

Because of symmetry, these before-and-after speeds are identical. So, the two
velocity vectors making up Δ𝐯, namely 𝐯start and 𝐯end, have the same length.
Their difference,

Δ𝐯 ≡ 𝐯end − 𝐯start, (S.93)

points upward – just as it did for the left-moving bob. Thus, the acceleration
points upward or inward, as it should for circular motion at constant speed
(which describes the motion around point C).

Problem 6.5 (p. 115)

This right-moving bob, just before point B, is climbing the hill toward point B. Its
velocity, always tangent to the circle, points upward and to the right. Its velocity
just after point B points slightly more upward. If this change of direction in 𝐯, a
counterclockwise rotation, were the whole cause of Δ𝐯, then the acceleration
would point directly inward along the string (befitting circular motion at constant
speed).

However, as you know from the corresponding analysis of the left-moving
bob (redrawn in Figure S.27a), the story isn’t complete. For this bob slows down
as it travels uphill along the circular path. Thus, it moves slower after point B
than it does before point B. So, the velocity not only rotates (counterclockwise),
it also shrinks.
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vstart

vend

∆v
vstart

vend

∆v

(a) (b)

Figure S.27 Calculating Δ𝐯 at point B. (a) Left-moving bob. This diagram is a
copy of Figure 6.13a from the text. (b) Right-moving bob. This bob is moving
to the right (and slightly upward). The resulting Δ𝐯 is identical to the Δ𝐯 for the
left-moving bob.

The resulting difference Δ𝐯 is the same as it was for the left-moving bob (Fig-
ure S.27b). This equality, which is suggested by the graphical calculation, has
the following proof. Changing from a left-moving to a right-moving bob changes
two parts of the Δ𝐯 calculation.

First, the change swaps the meaning of start and end: For the left-moving bob,
the starting location was just to the right of point B, which is the ending location
for the right-moving bob. Similarly, for the left-moving bob, the ending location
was just to the left of point B, which is the starting location for the right-moving
bob.

Second, the change negates the velocities: at a given location, the left-moving
bob has the opposite velocity to the right-moving bob (both are tangent to the
circle but along different directions).

To summarize these relations symbolically,

𝐯left-moving
start = −𝐯right-moving

end ;

𝐯left-moving
end = −𝐯right-moving

start .
(S.94)

Thus, the calculation of Δ𝐯, as
Δ𝐯 ≡ 𝐯end − 𝐯start, (S.95)

gets changed in two ways. First, the two terms switch places; this change intro-
duces a factor of −1. Second, each velocity gets negated; this change introduces
another factor of −1. The result is a factor of (−1)2 or 1: Thus, Δ𝐯 doesn’t
change.

Having Δ𝐯, we can split it into parallel and perpendicular portions (Fig-
ure S.28). Because Δ𝐯 hasn’t changed and because the velocity for the left-
moving bob and the velocity for the right-moving bob lie along the same line
(though in opposite directions), the splitting produces identical portions and
therefore identical 𝐚∥ and 𝐚⊥ (which are just the respective portions divided by
the time interval Δ𝑡).
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∆v‖
∆v⊥

∆v

Figure S.28 Splitting Δ𝐯 at point B into parallel and perpendicular components.
The split is identical for left- and right-moving bobs. Thus, this figure is just a copy
of Figure 6.13b.

However, for the right-moving bob, Δ𝐯∥ and 𝐚∥ point opposite to the velocity: 𝐚∥
points downhill and tangent to the circle, whereas the velocity points uphill and
tangent to the circle. According to (6.59), the relation between 𝐚∥ and 𝐯 is

𝐚∥ = 𝑑𝑣
𝑑𝑡 along 𝐯. (S.96)

Therefore, 𝑑𝑣/𝑑𝑡 must be negative. And it’s: At point B, the right-moving bob
is climbing the hill and is therefore slowing down.

Problem 6.6 (p. 115)

The claim, here made explicit but not simplified by giving the car’s velocity a
known direction, talks about the change in the car’s speed. And changing speed
appears in the parallel component of acceleration:

𝑎∥ = 𝑑𝑣
𝑑𝑡 . (S.97)

Going backward from instantaneous rate of change (𝑑𝑣/𝑑𝑡) to average rate of
change (undoing the limit Δ𝑡 → 0),

(𝑎∥)avg = Δ𝑣
Δ𝑡 . (S.98)

The claim specifies Δ𝑣 (60 mph) and a Δ𝑡 (4 seconds), so

(𝑎∥)avg = 60 mph
4 s = 15 mph s−1. (S.99)

If the salesman knew he were speaking to a physics student, he might have said
to her, “This car’s parallel component of acceleration, averaged over the first 4
seconds after it races off, is 15 miles per hour every second (or roughly 7 meters
per second squared).” But that salesman wouldn’t sell many cars.
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Problem 7.1 (p. 165)

The toast falls for a time given by (7.3):

𝑡fall = √2ℎ
𝑔 . (S.100)

Because its acceleration is constant and has magnitude 𝑔, its speed at impact is
𝑔𝑡fall:

𝑣impact = 𝑔𝑡fall = 𝑔 × √2ℎ
𝑔 = √2𝑔ℎ. (S.101)

For ℎ ≈ 0.6 meters (standard table height),

𝑣impact ≈ √2 × 10 m s−2 × 0.6 m ≈ 3.5 m s−1. (S.102)

This result is consistent with the free-fall time of 0.35 seconds (calculated in
(7.3) for the same height). With an acceleration of 10 meters per second squared
downward, the velocity will change by

10 m s−2 downward × 0.35 s = 3.5 m s−1 downward. (S.103)

Thus, after starting from rest, the toast hits with an impact velocity of 3.5 meters
per second downward.

Problem 7.2 (p. 165)

This distance is the plane’s average speed times the time spent taxiing:
𝑑 = 𝑣avg𝑡. (S.104)

Like the freely falling stone, the 747 had a constant acceleration and started
from rest. Thus, its average speed is just one-half of its final speed, which I
had estimated as 80 meters per second. Meanwhile, it spent roughly 40 seconds
taxiing. So,

𝑑 ≈ 1
2 × 80 m s−1
⏟⏟⏟⏟⏟⏟⏟

𝑣avg

× 40 s = 1600 m. (S.105)

It’s 1.6 kilometers or almost exactly 1 mile: Runways that handle long-distance
flights need to be long.
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Problem 7.3 (p. 166)

a. The stone loses 10 meters per second of speed every second, so its speed is
zero after 2 seconds.

b. No! The only force on the stone, whether rising or falling, is the gravitational
force. During the stone’s upward journey, this force points opposite to the
stone’s direction of motion. This situation is another reminder that force is
connected not to velocity but rather to acceleration. Similarly, at the end of
the upward journey, when the stone is at its maximum height, its velocity
is zero (zero motion) yet the only force on it points downward. Force and
velocity have no necessary connection.

c. Its speed decreases steadily from 20 to 0 meters per second, so its average
speed is 10 meters per second. Its average velocity is 10 meters per second
upward. Because its acceleration is constant, its average acceleration is its
acceleration: 10 meters per second squared downward.

d. On its upward journey, its average speed is 10 meters per second, and it
travels for 2 seconds. Thus, it travels 20 meters.

e. Its downward journey is the mirror image of the upward journey: Its speed
starts at zero and increases steadily, at 10 meters per second per second, for
2 seconds. Then it has traveled 20 meters downward. Thus, 4 seconds after
its launch the stone has returned to its launch height.

f. Because the upward and downward journeys have the same duration, the
round-trip average speed is the average of the downward and upward average
speeds. Each was 10 meters per second, so the round-trip average speed is
also 10 meters per second.

The average velocity is the displacement divided by the journey time.
Because the displacement is zero for a round trip, the average velocity is
also zero. This result agrees with a direct calculation. On the upward journey,
the average velocity is 10 meters per second upward. On the downward
journey, it’s 10 meters per second downward. The average of the two average
velocities is zero. (Don’t forget that, in computing their average, their sum
is a vector sum.)

The stone’s acceleration is constant, so its average acceleration is its
acceleration: 10 meters per second squared downward. This result agrees
with a direct calculation using the definition of 𝐚avg in (6.22):

𝐚avg ≡ Δ𝐯
Δ𝑡 . (S.106)
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Here, the velocity started at 20 meters per second upward and ended at 20
meters per second downward. Thus,

Δ𝐯 = 20 m s−1 downward − 20 m s−1 upward
= 40 m s−1 downward.

(S.107)

With Δ𝑡 = 4 seconds,

𝐚avg ≡ Δ𝐯
Δ𝑡 = 40 m s−1 downward

4 s = 10 m s−2 downward. (S.108)
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Problem 7.4 (p. 166)

a. Each mass’s freebody diagram has an upward, contact force 𝐅𝑇 (Figure S.29).
(These two tension forces are the same on each mass because the tension is
constant throughout the string.) Meanwhile, each mass also experiences a
gravitational force.

m1

FT

m1g

m2

FT

m2g

(a) (b)

Figure S.29 Freebody diagrams for (a) 𝑚1 and (b) 𝑚2.

b. We know something, but not everything, about the forces: We know the grav-
itational forces, but not the tension force. We also know something, but not
everything, about the motion. We know that the upward acceleration of 𝑚1
is the same as the downward acceleration of 𝑚2 (otherwise the string would
change its length, which it doesn’t). We don’t know what this acceleration is.
So, this problem is a mixture of type C (calculating) and type I (inferring).

With 𝑎𝑧 as the upward component of 𝑚1’s acceleration and applying
Newton’s second law to 𝑚1 to infer 𝑎𝑧:

𝑎𝑧 = 𝑇 − 𝑚1𝑔
𝑚1

. (S.109)

In applying the second law to 𝑚2, careful with the signs. Now 𝑎𝑧 is the
downward component of its acceleration. Thus,

𝑎𝑧 = 𝑚2𝑔 − 𝑇
𝑚2

. (S.110)

Now comes the algebra: Equate the two routes to getting 𝑎𝑧, via (S.109)
and (S.110), to get an equation for 𝑇.

𝑇 − 𝑚1𝑔
𝑚1

= 𝑚2𝑔 − 𝑇
𝑚2

. (S.111)

To solve for 𝑇, cross-multiply.

254 254

254 254



A Student’s Guide to Newton’s Laws of Motion 45

2019-07-15 22:14:19 UTC / rev 8fa6480578af

𝑚2𝑇 − 𝑚1𝑚2𝑔 = 𝑚1𝑚2𝑔 − 𝑚1𝑇. (S.112)

Its solution is

𝑇 = 2𝑚1𝑚2
𝑚1 + 𝑚2

𝑔. (S.113)

Once 𝑇 is known, then either equation for 𝑎𝑧, (S.110) or (S.109), deter-
mines 𝑎𝑧. Using (S.109), one route through the algebra is as follows.

𝑎𝑧 = 𝑇 − 𝑚1𝑔
𝑚1

(dividing by 𝑚1 term by term) = 𝑇
𝑚1

− 𝑔

(substituting for 𝑇 from (S.113)) = 2𝑚2
𝑚1 + 𝑚2

𝑔 − 𝑔

(factoring out 𝑔) = [ 2𝑚2
𝑚1 + 𝑚2

− 1] 𝑔

(making a common denominator) = [ 2𝑚2
𝑚1 + 𝑚2

− 𝑚1 + 𝑚2
𝑚1 + 𝑚2

] 𝑔

(subtracting) = [2𝑚2 − (𝑚1 + 𝑚2)
𝑚1 + 𝑚2

] 𝑔

(simplifying) = 𝑚2 − 𝑚1
𝑚1 + 𝑚2

𝑔.

(S.114)

As a check that 𝑇 is correct: If we substitute 𝑇 from (S.113) into the 𝑎𝑧
equation due to the 𝑚2 freebody diagram, namely into (S.110), we should
get this same 𝑎𝑧.

𝑎𝑧 = 𝑚2𝑔 − 𝑇
𝑚2

(after dividing by 𝑚2 term by term) = 𝑔 − 𝑇
𝑚2

(after substituting for 𝑇 from (S.113)) = 𝑔 − 2𝑚1
𝑚1 + 𝑚2

𝑔

(after factoring out 𝑔) = [1 − 2𝑚1
𝑚1 + 𝑚2

] 𝑔

(after making a common denominator) = [𝑚1 + 𝑚2
𝑚1 + 𝑚2

− 2𝑚1
𝑚1 + 𝑚2

] 𝑔

(after simplifying) = 𝑚2 − 𝑚1
𝑚1 + 𝑚2

𝑔,

(S.115)

so 𝑎𝑧 is the same by either route.

c. It’s easy to do algebra on autopilot and end up with nonsense without re-
alizing it. Thus, now it’s time to check that the results for 𝑇 and 𝑎𝑧 make
physical sense.
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i. Another check on 𝑇 and 𝑎𝑧 is whether they work in the easy case 𝑚1 = 𝑚2.
For 𝑇, in (S.113), the easy case gives, using 𝑚 for either 𝑚1 or 𝑚2 (because
they are equal),

𝑇 = 2𝑚2

2𝑚 𝑔 = 𝑚𝑔, (S.116)

which agrees with the analysis in Section 5.6.3.
For 𝑎𝑧, in (S.114), the easy case gives

𝑎𝑧 = 𝑚2 − 𝑚1
𝑚1 + 𝑚2

𝑔 = 0
2𝑚 𝑔 = 0. (S.117)

This result also agrees with the analysis in Section 5.6.3, where we found
that, in an equal-mass Atwood machine, the masses could move only at
constant speed (which need not be zero!).

ii. Finally, we check whether the general result for 𝑎𝑧 has the correct sign
when 𝑚1 > 𝑚2 and when 𝑚1 < 𝑚2. When 𝑚1 > 𝑚2, then 𝑚2 cannot
fully hold 𝑚1 back, so 𝑚1 wins the tug-of-war and accelerates downward.
Thus, 𝑎𝑧, which is the upward component of 𝑚1’s acceleration, should be
negative. And it’s: In (S.114), the numerator 𝑚2 − 𝑚1 is negative, which
makes 𝑎𝑧 negative.

Similarly, when 𝑚1 < 𝑚2, then 𝑚1 cannot fully hold 𝑚2 back, so 𝑚2
wins the tug-of-war and accelerates downward. Thus, 𝑚1 accelerates
upward, meaning that 𝑎𝑧 should be positive. And it is: In (S.114), the
numerator 𝑚2 − 𝑚1 is positive, which makes 𝑎𝑧 positive.

(Passing the preceding tests doesn’t guarantee that 𝑇 and 𝑎𝑧 are correct.
However, it does guarantee that, if they are wrong, at least they are not
nonsense.)
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ground

desk

coin v0

Figure S.30 A coin launched horizontally from a desk.

Problem 7.5 (p. 166)

a. To illustrate the first caveat, launch a coin of mass 𝑚 horizontally with speed
𝑣0 from a desk and ignore air resistance (Figure S.30). Once the coin no
longer touches the desk, it experiences only one force, the gravitational force
𝑚𝑔 downward. Thus, its acceleration is simply 𝑔 downward – a constant.

However, its speed, which starts at 𝑣0, does not change steadily – as the
following calculation shows. Its speed 𝑣 is the Pythagorean sum of the 𝑥
component 𝑣𝑥 and the 𝑦 component 𝑣𝑦.

𝑣 = √𝑣2
𝑥 + 𝑣2

𝑦 . (S.118)

𝑣𝑥 is always 𝑣0, the initial speed (the coin’s initial velocity was purely hori-
zontal). Meanwhile, 𝑣𝑦 is 𝑔𝑡. So,

𝑣 = √𝑣2
0 + (𝑔𝑡)2. (S.119)

Although the speed increases, it does not increase steadily (at a constant
rate). Figure S.31 shows a graph of 𝑣, calculated for a coin launched from a
standard-height desk (0.75 meters) with the correct initial speed (roughly
1.9 meters per second) so that it lands 0.75 meters beyond the desk.

After impact, at around 0.4 seconds after launch, the 𝑣 curve becomes
dashed because of its subjunctive, or hypothetical, nature: If there were
no ground (for example, launching the coin off a cliff), then 𝑣 would keep
increasing beyond the impact speed of roughly 4.3 meters per second.

b. An example of one-dimensional motion where 𝐚 is constant yet the speed
does not change steadily: the stone of Problem 7.3. Its acceleration is always
𝑔 downward, so it’s constant. However, its speed, which decreases during the
upward journey, then increases during the downward journey. In each half
of the journey, whether upward or downward, the speed changes steadily.
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Figure S.31 The coin’s speed versus time. The coin speeds up (the curve is in-
creasing), though not steadily (the curve isn’t a straight line). If the ground were
not there, the coin’s speed would keep increasing beyond its speed at the impact
time.

However, because of the change of direction at the top of the stone’s trajec-
tory, the stone’s speed for the whole journey does not change steadily (the
graph of 𝑣 versus 𝑡 has a kink at the top of the journey).

Problem 7.6 (p. 166)

The contact force’s magnitude is the Pythagorean sum of 𝑚𝑔 and 𝑚𝑎 (the mag-
nitudes of its two perpendicular portions):

𝐹contact = √(𝑚𝑔)2 + (𝑚𝑎)2 = 𝑚√𝑔2 + 𝑎2. (S.120)

Problem 7.7 (p. 166)

a. In free fall themselves, the three internal blocks accelerate downward, to-
ward the earth, with acceleration magnitude 𝑔 (Figure S.32). Each block
also experiences a gravitational force 𝑚𝑔 downward. Thus, by itself, the
gravitational force on each block causes, and explains, each block’s accel-
eration. So, any other forces on the block must add to zero (otherwise they
would make the acceleration different from free fall).
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m/3

m/3

m/3

Figure S.32 A person freely falling toward the earth. The person is modeled as
three blocks in a stack.

To find out whether any other forces even exist, start with the bottom block.
Besides its gravitational interaction with the earth, it participates in only
one other interaction: with the middle block. Thus, the only other possible
force on the bottom block is the contact force of the middle block – which
must therefore be zero. In summary, the bottom block must experience only
a gravitational force (Figure S.33a).

mg/3 mg/3

mg/3

mg/3

(a) (b)

Figure S.33 The freebody diagrams of (a) any of the three blocks and (b) the earth.

By almost the same argument, the top block must also experience only a
gravitational force.

Finally, consider the middle block. It participates in two contact interac-
tions: with the bottom block and with the top block. Thus, it experiences
two contact forces, one from the bottom block and one from the top block.
But, by the third law, the contact force of the bottom block is zero: It’s the
third-law counterpart of the contact force of the middle block on the bottom
block, which, we just showed, must be zero. Therefore, with no possible
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force to balance it, the contact force of the top block must also be zero. Thus,
the middle block also experiences only a gravitational force.

To summarize the freebody diagrams of the three blocks: They are identi-
cal and are the freebody diagram of a freely falling stone.

To make the earth’s freebody diagram, either (1) just draw the third-law
counterpart of each force on the three blocks, or (2) start from first principles
by considering the interactions in which the earth participates.

For practice, let’s start from first principles. The earth, even including the
ground, touches no other bodies. Thus, it participates in only long-range,
gravitational interactions: the gravitational interactions with the three blocks.
Thus, it experiences three forces (Figure S.33b): the gravitational forces of
the three blocks. Each force points upward and, like its third-law counterpart
the force on the block, has magnitude 𝑚𝑔/3.

b. Now that the freebody diagrams are complete, we come to the most important
step: interpreting them. The blocks’ freebody diagrams, which show no
contact forces between the blocks, tell you that the internal forces in you are
zero. In contrast, when you stand on the ground, the internal forces increase
in magnitude from zero at your head to 𝑚𝑔 at your toes. Thus, when you step
off that diving board and go into free fall – or, more accurately described,
into free gravitational motion – these internal forces vanish. Thus, you feel
funny (a more extreme version of the feeling when zooming downhill on a
roller-coaster ride).

If these forces are absent for a long time, your bones don’t experience the
forces that signal them to repair and grow as normal. You may wonder how
the forces could be absent for a long time; after all, the interval between
jumping off a dividing board and reaching the water lasts, at most, a matter
of seconds.

Don’t forget orbits! An astronaut in orbit is in free gravitational motion.
To help me remember this situation, I try to say “free gravitational motion”
rather than “free fall.” For it’s hard to remember that an astronaut, a satellite,
and the moon are even falling, let alone falling freely – even though they are,
which was Newton’s great insight. He realized that the motion of an apple in
its fall and the motion of the moon in its orbit are described by one and the
same law of gravitation, called therefore the law of universal gravitation.

c. The earth, in contrast to when you stand on the ground, now has a net upward
force on it (with magnitude 𝑚𝑔). Thus, the earth accelerates upward, albeit
slowly! Just as you are in free gravitational motion toward the earth, the
earth is in free gravitational motion toward you.
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Problem 7.8 (p. 167)

Look at the pendulum motion of Section 6.5. There, except at the extremes of
the motion, 𝐚⊥ is nonzero. In particular, at point C, the acceleration is purely
perpendicular. Although the pendulum bob moved in a circle because of the
pendulum string, the particular cause is irrelevant. All that matters for 𝐚 and 𝐚⊥ is
the motion itself. Thus, if we can construct a hill that produces the same motion,
then 𝐚⊥ will also be nonzero. And we can: Make the hill a large skateboarding
park or, more mundanely, a hemispherical bowl. A body sliding down the bowl
(“downhill”) will have a nonzero 𝐚⊥.

In particular, from (6.61),

𝐚⊥ = 𝑣2

𝑟curvature
inward, (S.121)

where 𝑣 is the body’s speed and 𝑟curvature is the hill’s radius of curvature. Thus,
keeping 𝐚⊥ zero requires either the trivial case 𝑣 = 0 (no motion at all) or, more
interestingly, making 𝑟curvature infinity – which is the description of a straight
line.
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Problem 7.9 (p. 167)

Such problems can be tricky for an important reason: It’s not obvious how
to represent the string’s angle in the language of Newton’s laws and forces.
Let’s start, therefore, with the effect of the string seen through Newton’s laws.
The string, through the contact interaction between the string and the mass,
contributes a tension, or contact, force on the mass. This force points along the
string: The direction of this force is the direction of the string.

Thus, the goal of the problem is to find the direction of the tension force. The
problem is then of type I, inferring force from motion. (It may also of type C,
inferring motion from force, if we don’t know everything about the motion. Let’s
see.) Thus, we know what to do: Make a freebody diagram of the mass and
include on it what we know of the mass’s motion.

The mass, yoked to your motion, accelerates downhill with acceleration
𝑔 sin 𝜃. Thus, we know everything that we need to know about the mass’s motion
(making the problem purely of type I). First, Newton’s laws concern themselves
with a body’s acceleration, which here we know. Second, although particular
forces could depend on a body’s velocity or position, here they don’t. (The most
common such force is air resistance, which depends on the body’s velocity, but
here air resistance is assumed to be zero.) So, even though we don’t know the
mass’s velocity, we don’t need to know it.

As for the forces, the mass experiences two: the gravitational force and the
tension force.

Its freebody diagram, including the motion description, is then identical to
the freebody diagram of you in Section 7.1.4 as you slid down a frictionless hill.
There, you accelerated downhill with an acceleration magnitude 𝑔 sin 𝜃. You
also experienced two forces, a gravitational force and a contact force. Thus, the
tension force here must be the same as the contact force there (𝐍) – which had
magnitude 𝑚𝑔 cos 𝜃 and pointed perpendicularly to the hill.

Thus, the tension force, and therefore the string, also points perpendicularly
to the hill (Figure S.34). This 90-degree angle with the hill means an angle of 𝜃
with the vertical.
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Figure S.34 A pendulum accelerating downhill. The string hangs perpendicularly
to the hill.

Problem 7.10 (p. 167)

a. At point A, the satellite’s distance from the planet is an extremum (a maxi-
mum or a minimum). Equivalently, the satellite’s velocity is perpendicular
to the line pointing toward the planet. For if the velocity weren’t perpendic-
ular to that line, the satellite’s distance from the planet would be changing
(either increasing or decreasing), meaning that the distance would not be an
extremum – a contradiction.

Thus, the satellite’s velocity and its acceleration, which points toward
the planet (along the gravitational force), are perpendicular (Figure S.35a).
Therefore, 𝐚∥ is zero, and so, therefore, is 𝑑𝑣/𝑑𝑡. In other words, at point A,
the satellite’s speed is neither increasing nor decreasing – it’s an extremum,
either a maximum or a minimum. (It actually is a minimum.)

Aa

C

a‖

a⊥
a

v
D

a‖

a⊥a

v

(a) (b) (c)

Figure S.35 The acceleration and velocity of the satellite orbiting counterclock-
wise. (a) At point A. (b) At point C. (c) At point D.
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b. At point C, the satellite’s acceleration points, as always, toward the planet
– directly upward on the diagram (Figure S.35b). The velocity points, as
always, straight ahead – on the diagram, to the left and slightly downward.
Thus, 𝐚∥, the parallel portion of the acceleration, points backward (opposite
to the velocity). In other words, 𝑑𝑣/𝑑𝑡 is negative, and satellite’s speed is
decreasing. And it should be: The satellite is getting farther away from the
sun, so, as it fights the sun’s gravity, it loses speed.

At point D (Figure S.35c), the situation is similar to point C. The satellite,
as it recedes from the planet, is slowing down. Correspondingly, 𝐚∥ points
backward (opposite to the satellite’s velocity).

If the satellite orbits clockwise rather than counterclockwise, that change affects
𝐯 but leaves 𝐚 alone. The acceleration is determined by the gravitational force,
which depends only on the satellite’s position (not on its velocity). Thus, 𝐚∥ is
unaffected. However, because 𝐯 gets flipped by the change of orbital direction,
so does whether 𝐚∥ is along or opposite to 𝐯.

Thus, at point A, where 𝐚∥ was zero (in the counterclockwise orbit), it’s still
zero, and the speed is an extremum. Meanwhile, at points C and D, 𝐚∥ and 𝐯 are
now aligned, and the satellite is speeding up.

Problem 7.11 (p. 167)

In thinking about both situations, I find it helpful to describe the forces and
acceleration using their forward (straight ahead of the car), inward (toward
the center), and outward (away from the center) portions.

a. The car’s acceleration, which before was purely inward (no 𝐚∥) and reflected
its constant-speed motion, now has a forward, parallel portion reflecting
its increasing speed. Thus, the net force, the cause of this acceleration,
must acquire a forward portion (Figure S.36a). (The acceleration’s inward,
perpendicular portion doesn’t change because its magnitude is 𝑣2/𝑅 and 𝑣
hasn’t changed.)

One source of this forward portion could be a reduction in 𝐹drag (as the
drag force points backward). However, the car’s speed hasn’t (yet) changed,
so neither has 𝐹drag. The only other source of the forward portion is the
frictional force 𝐟. Thus, its forward portion also grows.

Once you know the forces roughly in magnitude and direction, you can
place them onto the freebody diagram (Figure S.36b)
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Figure S.36 (a) The vector sum modified so that the net force has a forward portion
(which speeds up the car). (b) The modified freebody diagram.

For the extra curious. When you look closely at the freebody diagram, you’ll
see that 𝐅net’s tail lies slightly ahead of the car’s center of mass. Also, 𝐟’s
line of application, which before passed through the car’s center of mass,
now passes slightly ahead of the car’s center of mass (and through 𝐅net’s
tail). These shifts relative to the original situation do not affect the car’s
acceleration and are not determined by Newton’s laws. Thus, you can pretend
that you never noticed them.

However, in case you are curious about their origin: These shifts do affect
the car’s rate of rotation (about its center of mass) – a topic touched upon in
Section 8.2. Before, when the car moved at constant speed around the circle,
its rate of rotation was constant, which is why 𝐟’s line of application passed
through the center of mass. Such forces are said to produce no torque and
don’t change a body’s rate of rotation. Now, however, with the car increasing
its speed, its rate of rotation is also increasing. This increase requires a
torque, which is produced by force whose line of application is offset from
the center of mass. (This explanation will help you with Problem 8.1.)

b. In this situation, where the car’s speed has finished doubling and is back
to being constant, the net force is purely inward. However, compared to
the original situation, it’s four times larger: Its magnitude, 𝑚𝑣2/𝑟curvature,
is proportional to 𝑣2 and 𝑣 has doubled. Meanwhile, the drag force still
points backward, but it too is proportional to 𝑣2, so it’s four times larger. The
frictional force 𝑓, being the difference of the net force and the drag force,
must therefore also be four times larger (than in the original situation).

Thus, the freebody diagram and the vector sum look identical in shape
to the original freebody diagram and vector sum, except that all the force
arrows become four times longer.
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Problem 7.12 (p. 167)

a. To avoid being too negative, let’s start with what’s correct. First, the gravi-
tational force is present and points downward. Second, the two (allegedly)
actual forces, the gravitational and the centrifugal forces, add up to the net
force. Finally, the ground is drawn with a dashed line (rather than a solid
line), which is a reminder that the cyclist is, for this diagram, to be freed
from the ground.

b. However, the diagram has many problems. First, as discussed in Section 1.5.1,
the centrifugal force does not exist (Section 1.5.1). Therefore, it shouldn’t
appear on the diagram.

Second, the net force has downward and outward portions. Neither portion
is correct. According to Newton’s second law, a downward portion means
that the acceleration has a downward portion. The cyclist would be accel-
erating toward, and therefore into, the ground! An outward portion is also
impossible. For it implies an outward acceleration portion – which is math-
ematically impossible. Such a portion would be a perpendicular portion of
the acceleration, but the perpendicular portion, if it’s nonzero, points inward
– as summarized in point 6 of Section 6.6. Said another way, the cyclist’s
velocity is changing from coming directly at you, as in the diagram, to com-
ing mostly at you but also slightly to the left. Thus, its change in velocity is
to the left – that is, inward.

c. With such fundamental errors in the diagram, just make a new one from
scratch, while keeping in mind the diagram’s two correct features: that the
gravitational force points down and that the actual forces must add up to the
net force.

The cyclist participates in two interactions: the gravitational interaction
with the earth and a contact interaction with the ground. Thus, the cyclist
experiences two forces: the downward, gravitational force (already in mind
and applied at the center of mass) and the contact force of the ground (applied
at the point of contact).

These two forces, as the only forces, must add to the net force. To find the
direction of the net force, find the direction of the acceleration. For a body
in circular motion at constant speed, such as this cyclist, the acceleration
points inward. Thus, the net force also points inward (Figure S.37).
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Figure S.37 The corrected freebody diagram.

Problem 7.13 (p. 168)

Perhaps the first step in making these freebody diagrams correctly is to get the
net force correct. From the second law, the net force is proportional to the car’s
acceleration (shown in Figure 6.10).

Its acceleration at each point was the subject of Section 6.4, on constant-speed
motion around an ellipse. In summary, because the car’s speed is constant, its
acceleration is purely perpendicular (𝐚∥ = 0). Furthermore, the farther away
the point from the center, the smaller the path’s radius of curvature there and
therefore the greater the acceleration magnitude.

The net force is the sum of the two actual forces in the horizontal plane: the
frictional force from the road (𝐟) and the drag force (𝐅drag). (The gravitational
force and the normal force are vertical, so they won’t appear on the diagram.
They also balance; considered together, they wouldn’t contribute to the net force
anyway.) Because the car’s speed is constant, so is the drag-force magnitude.
Thus, the drag force cannot account for the changes in the net force. Rather,
those changes are the result of changes in 𝐟 (Figure S.38). As a passive force, it
adjusts itself to whatever it needs to be in order to keep the car on the track.

If the car drives clockwise (rather than counterclockwise) at the same speed
as in the preceding discussion, the net force doesn’t change: 𝐚∥ is still zero; and
|𝐚⊥|, which is 𝑣2/𝑟curvature, also doesn’t change because neither 𝑣 nor 𝑟curvature
change. Meanwhile, the drag force, whose magnitude depends on 𝑣, keeps its
magnitude but flips its direction (Figure S.39). And the frictional force from
the road, as a passive force, adjusts accordingly in order to keep the car on the
track.
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Figure S.38 Freebody diagrams of the car at various points (for counterclockwise
motion).
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Figure S.39 Freebody diagrams of the car at various points (for clockwise mo-
tion).

Problem 7.14 (p. 168)

a. This pendulum bob and the bob in the pendulum accelerometer experience
the same two forces: a gravitational force and a contact force (the tension
force). They also have the same acceleration, purely horizontal. Thus, they
share the same relation between the tilt angle 𝜃 and the horizontal accelera-
tion magnitude 𝑎:

tan 𝜃 = 𝑎
𝑔 . (S.122)

Here, with uniform circular motion, 𝑎 = 𝑣2/𝑅, where 𝑅 is the radius of the
circle. From right-angle trigonometry, 𝑅 = 𝑙 sin 𝜃 (Figure S.40).

Thus,

tan 𝜃 = 𝑣2

𝑔𝑙 sin 𝜃 . (S.123)

Solving for 𝑣 and replacing tan 𝜃 with sin 𝜃/cos 𝜃,
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θ

Figure S.40 The right triangle formed by the vertical, by the radius of the circle,
and by the string.

𝑣 = √𝑔𝑙sin
2𝜃

cos 𝜃 = √ 𝑔𝑙
cos 𝜃 sin 𝜃. (S.124)

b. Because the bob moves at constant speed, the period is easy:

𝑇 = circumference
𝑣 == 2𝜋𝑅

𝑣 . (S.125)

With 𝑅 = 𝑙 sin 𝜃 and using 𝑣 from (S.124),

𝑇 = 2𝜋𝑙 sin 𝜃
√𝑔𝑙/cos 𝜃 sin 𝜃

= 2𝜋√ 𝑙
𝑔

√cos 𝜃. (S.126)

c. When 𝜃 is small, cos 𝜃 ≈ 1. So, the period (S.126) becomes

𝑇 ≈ 2𝜋√ 𝑙
𝑔 . (S.127)

And this period is indeed what you find for a (small-amplitude) pendulum
after solving difficult differential equations!
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Problem 7.15 (p. 169)

Air resistance has two related effects. First, reflecting that I am slowing down
at the bottom of the arc, my acceleration gets a horizontal (parallel) portion.
Second, air resistance results in two new forces appearing on my freebody
diagram: air resistance itself and a passive, static-friction force at my feet.

However, these two effects change neither my vertical (perpendicular) accel-
eration nor the two vertical forces acting on me. The gravitational force is still
𝑚𝑔 downward, and the normal force, which adjusts itself to produce the inward
acceleration required to keep me moving along the arc, is still given by (7.53),

𝑁 − 𝑚𝑔⏟
𝐹net

𝑦

→ 𝑚𝑎CM
𝑦 . (S.128)

I have added a subscript 𝑦 to 𝑎CM in order to clarify that only its vertical compo-
nent matters. (Without air resistance, this clarification was not strictly necessary
because 𝐚 was purely vertical.)

With the assumption that my speed at the bottom of the arc is unaffected by
adding the air resistance (perhaps I start higher or get an extra push at the start),
𝑎CM

𝑦 now is the same as 𝑎CM before. Thus, 𝑁, which is my weight, is still 1.4𝑚𝑔.
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Problem 7.16 (p. 169)

a. The perpendicular (vertical) portion of your acceleration points downward
and has magnitude 𝑣2/𝑟curvature. As with the analysis of my weight while
swinging, this acceleration is produced by the two vertical forces: the gravita-
tional force and the normal force. However, your perpendicular acceleration
points downward rather than upward. Thus, with upward as the positive 𝑦
direction and being careful with the signs:

𝑎𝑦 = − 𝑣2

𝑟curvature
, (S.129)

and

𝑁 − 𝑚𝑔⏟
𝐹net

𝑦

→ 𝑚𝑎𝑦 = − 𝑚𝑣2

𝑟curvature
. (S.130)

Thus, your weight 𝑁 is

𝑁 = 𝑚 (𝑔 − 𝑣2

𝑟curvature
) . (S.131)

With 𝑣 = 5 meters per second and 𝑟curvature = 5 meters (the track height of
10 meters is irrelevant!),

𝑣2

𝑟curvature
= 5 m s−1 × 5 m s−1

5 m = 5 m s−2, (S.132)

which is approximately 0.5𝑔. Thus,
𝑁 ≈ 0.5𝑚𝑔. (S.133)

This reduction in your weight is the physics description of the roller-coaster
feeling.

b. A seat belt provides an attractive normal force (particularly if you represent
it mentally as velcro or glue clasping you to the seat). Thus, a seat belt makes
𝐍 point downward. At the threshold speed where you start needing a seat
belt, 𝐍 is zero. Setting 𝑁 = 0 in (S.131) gives

𝑔 = 𝑣2

𝑟curvature
, (S.134)

or

𝑣 = √𝑔𝑟curvature ≈ √10 m s−2 × 5 m ≈ 7 m s−1 (S.135)

(about 25 kilometers or 15 miles per hour).
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Problem 7.17 (p. 169)

Don’t make this question harder than it needs to be! You’re standing peacefully
on a kind of ground (admittedly, a slightly shaky ground). Thus, the normal
force on you is 𝑚𝑔 upward, and your weight is 𝑚𝑔.

Problem 7.18 (p. 169)

This skier and scale are zooming down a frictionless hill with acceleration 𝑔 sin 𝜃
down the hill. The skier’s freebody diagram is therefore the same as yours when
you slid down the frictionless ramp (Section 7.1.4). Thus, two forces act on you:
a gravitational force 𝑚𝑔 downward and a contact force 𝑚𝑔 cos 𝜃 perpendicular
to the hill. (Their sum, 𝑚𝑔 sin 𝜃 down the hill, causes your acceleration.)

Because the scale lies parallel to the hill, the contact force is also perpendicular
to the scale. Thus, the scale displays 𝑚𝑔 cos 𝜃.

When the skier is skiing at his or her terminal speed, it’s once again the
situation of constant-speed sledding down a frictionless slope (Section 5.5.1).
Now the skier’s acceleration is zero. Air resistance balances the parallel portion
of the gravitational force. Because the hill is frictionless, the contact force is
still normal to the hill, and it still balances the perpendicular portion of gravity.
Thus, it still has magnitude 𝑚𝑔 cos 𝜃 – which is the skier’s weight.

272 272

272 272



A Student’s Guide to Newton’s Laws of Motion 63

2019-07-15 22:14:19 UTC / rev 8fa6480578af

Problem 7.19 (p. 170)

a. The rider’s perpendicular acceleration is 𝑣2/𝑟curvature downward. This accel-
eration is caused by two downward forces: the gravitational force and the
normal force of the scale. Thus, from the second law (for the vertical com-
ponents of force and acceleration)

−𝑁 − 𝑚𝑔 = − 𝑚𝑣2

𝑟curvature
. (S.136)

For my sanity, I get rid of all those awful minus signs (equivalently, I use a
coordinate system in which downward is the positive 𝑦 direction).

𝑁 + 𝑚𝑔 = 𝑚𝑣2

𝑟curvature
. (S.137)

Thus,

𝑁 = 𝑚 ( 𝑣2

𝑟curvature
− 𝑔) . (S.138)

With the given values,
𝑣2

𝑟curvature
= 15 m s−1 × 15 m s−1

15 m = 15 m s−2, (S.139)

which is approximately 1.5𝑔. Thus,
𝑁 ≈ 𝑚(1.5𝑔 − −𝑔) = 0.5𝑚𝑔 ≈ 0.5 × 60 kg × 10 m s−2 = 300 N.(S.140)

i. A positive scale reading means that the scale pushes on the rider and, by
third law, that the rider pushes equally hard on the scale. Thus, the rider
is “stuck” to the scale and needs no seat belt to stay there. Even after
solving many such problems, I still find this physical consequence hard
to believe!

ii. The rider stays in the car because the car, which follows the path of the
track, “falls” faster than the rider would when subject only to gravity.
That is, the track is more sharply curved than the rider’s path would be
in free gravitational motion (at 15 meters per second horizontally). Thus,
the track pushes the rider downward (and no seat belt is needed).

b. At the bottom of the loop, the rider’s perpendicular acceleration is upward,
as is the normal force. But the gravitational force is still downward. Thus,
the vertical-component equation is

+𝑁 − 𝑚𝑔 = + 𝑚𝑣2

𝑟curvature
. (S.141)
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(It has the same form as the equation describing my scale reading while
swinging.) With the given values,

𝑣2

𝑟curvature
= 25 m s−1 × 25 m s−1

15 m s−1 ≈ 42 m s−2 ≈ 4.2𝑔. (S.142)

Thus,

𝑁 = 𝑚 ( 𝑣2

𝑟curvature
+ 𝑔) ≈ 5.2𝑚𝑔. (S.143)

With 𝑚 = 60 kg,
𝑁 ≈ 5.2 × 60 kg × 10 m s−2 ≈ 3100 N. (S.144)

Such a high normal force – in colloquial terms, a high 𝑔 force – is exciting
for a short time but debilitating if it lasts too long (as it nearly did on the
Gemini 8 mission, where the spacecraft malfunctioned and was spinning
rapidly, but Neil Armstrong managed to pilot it to safety).

Problem 7.20 (p. 170)

This horizontal portion points forward and causes your forward acceleration –
necessary for you to remain on the accelerating wedge (which itself has a forward
acceleration). To see the effect another way, imagine reducing this portion to
zero by oiling the scale. As it moves ever faster down the hill, it would slide out
from under your feet.
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Problem 7.21 (p. 170)

In order to understand, we need to go back to the drawing board! Here, the
drawing board is what we know about force: The net external force is mass
times acceleration (Newton’s second law). To find the external forces, we use
our recipe of starting with the ball’s interactions. The ball, while it’s contact
with the table, participates in two interactions: a gravitational one with the
earth and an electromagnetic one with the table. Thus, there are two forces, the
gravitational force with magnitude 𝑚𝑔 and pointing downward, and a contact
(or normal) force pointing upward with (unknown) magnitude 𝑁.

Thus, 𝑁 − 𝑚𝑔 is the vertical component of the acceleration. That leads to the
next question: What’s the acceleration? Here is one possible analysis. Accelera-
tion is defined as the derivative of the velocity,

𝐚 = 𝑑𝐯
𝑑𝑡 . (S.145)

Because we are studying the moment, or instant, when the ball is just stationary
on the ground, the velocity is zero. Because the derivative of a number, including
zero, is zero, the acceleration is also zero.

What do you think of this analysis?

It’s rubbish! If generalized, it would lead to nonsense everywhere. At any instant,
for any object, the velocity is just a number (and units, such as meters per
second). Thus, acceleration would always be zero. That nonsense conclusion
should encourage us to find the flaw.

It’s in confusing a momentarily zero velocity with a velocity that is a constant
zero. If you set the ball on the table, and it sits there, then its velocity is a constant
zero, and its derivative is also zero. In that case, the acceleration is zero, so the
two external forces add to zero. And they do: The normal force balances the
gravitational force.

In that case! In the case of the bouncing ball, the story is different. To see
what happens, let’s approximate the instantaneous acceleration with the average
acceleration. We’ll need only an approximate value anyway in order to decide
on the contact force.

Thus,

𝐚 ∼ Δ𝐯
Δ𝑡 . (S.146)

For the change in velocity, we need to know the velocity at two instants. We
know it approximately when the ball first touches the table, and also when the
ball first leaves contact with the table. With the idea of energy conservation,
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touched on in the chapter on what comes next, Chapter 8, you can predict it. But
here we need just an approximate value, and home experiments should convince
you that it’s about 1 meter per second, give or take a factor of 2. It thus starts
out at 1 meter per second downward, and ends up at 1 meter per second upward.
The difference (end minus start) is 2 meters per second up.

The denominator is trickier. It’s the time interval between these two veloc-
ity instants. Thus, it’s the time in which the ball remains in contact with the
table. There are several ways to get an idea of this time. The first, the crudest
but simplest, is to note that it’s not perceptible. That is, the bounce seems to
happen instantly. Thus, it’s well below the typical human perception threshold
of, say, 100 milliseconds. Let’s guess that it’s below 10 milliseconds. Then the
acceleration is about 200 meters per seconds squared, upward. That is about
20𝑔. So, the net force is 20𝑚𝑔 (upward), making the normal force roughly the
same (it’s 21𝑚𝑔, but having made such crude estimates, it’s dangerous to give
the results spurious precision).

A slightly more accurate estimate of the contact time comes from the follow-
ing idea. At the first time instant, the bottom of the ball has just reached the table.
The top of the ball, however, has no knowledge of this event, and keeps falling –
thereby compressing the ball. Eventually, however, the bottom of the ball tells
the top, “Stop! We’ve hit bottom here, and there’s no more room.” Then the top
stops, turns around, and starts moving upward. The time required for the top to
receive this message is roughly the contact time.

But what kind of message is it? It’s a sound wave! And sound travels at
about 5 kilometers per second in steel. If the ball has a diameter of, say 1 or 2
centimeters (the upper end of this range is a big ball bearing), the contact time
is roughly

Δ𝑡 ∼ 2 cm
5 km/s ≈ 5 𝜇s. (S.147)

Let’s round this time to the nearest power of 10 and call it 10 microseconds.
Now we can estimate the acceleration:

𝐚 ∼ Δ𝐯
Δ𝑡 . (S.148)

With Δ𝑣 about 2 meters per second or, rounded to the closest power of 10, about
1 meter per second, and Δ𝐯 therefore 1 meter per second upward, 𝐚 becomes
105 meters per second squared. This acceleration is 104 times the gravitational
acceleration (and in the opposite direction). Thus, the net force is roughly 104𝑚𝑔
upward, as is the contact force and the weight of the ball during the bounce.

It turns out that this simple estimate is mostly right. Because the ball is spher-
ical, rather than a rod (whose cross-section does not change as it compresses
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during contact), the acceleration and net force are slightly smaller. The correc-
tion factor is roughly

( speed of sound in steel
impact speed )

1/5
. (S.149)

In this example, that ratio is

(5 km s−1

1 m s−1 )
1/5

∼ 5. (S.150)

Thus, the net force is roughly a few thousand 𝑚𝑔 upward.
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Problem 7.22 (p. 170)

At all three points, the ball participates in one long-range interaction, the gravi-
tational interaction with the earth. Thus, it experiences a gravitational force 𝑚𝑔
downward. At all three points, the ball also participates in a short-range, contact
interaction with the air. Thus, it experiences a drag force opposite to its velocity.
Finally, at point C, the ball also participates in a second short-range, contact
interaction – with the ground. Thus, at point C, it experiences a third force, the
contact force of the ground. Because the ball–ground contact is frictionless, this
contact force has no horizontal portion (no static or dynamic friction). Thus, the
contact force points (directly) upward.

The preceding discussion specifies the forces and their directions. The next
task before drawing the diagrams is to order the forces by magnitude. Three of
the forces, the gravitational forces, have magnitude 𝑚𝑔 (where 𝑚 is the ball’s
mass).

Where do the other forces lie relative to this magnitude?

On a solid rubber ball, which is quite massive for its size, the drag force is weaker
than the gravitational force. (This ordering could be reversed for a hollow plastic
ball, as estimated in Section 1.3.3.)

But how do the three drag forces rank among themselves? Drag’s magnitude
increases with speed. The ball moves the fastest at point A, where the ball has
fallen far but not yet lost speed in the first bounce nor in the battle against drag
from point A to point C. It moves slowest at point B, the peak of the trajectory,
having lost all its vertical velocity fighting gravity. At point C, its speed is in
between. Thus, drag is the largest at point A, is next at point C, and the smallest
at point B (and all are smaller than 𝑚𝑔).

The final force is the normal force 𝐍 acting on the ball at point C. Because
rubber is far less stiff than steel, 𝑁 is not so large as 104𝑚𝑔, which was the
normal-force magnitude estimated in (7.41) for a steel ball bouncing from a
table. Even so, 𝑁 is far larger than 𝑚𝑔. (If you want to reduce 𝑁 to only a few
times larger than 𝑚𝑔, imagine dropping a giant, squishy, and light foam ball
from not very high.)

Thus, the forces ordered from weakest to strongest are 𝐅B
drag, 𝐅C

drag, 𝐅A
drag, the

three gravitational forces, and 𝐍. Now you can draw the freebody diagrams
(Figure S.41).
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Figure S.41 Freebody diagrams of the ball at various points.
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Problem 7.23 (p. 171)

a. In region 1 of Figure 7.35, the elevator is sitting waiting patiently for me to
decide where I want to go.

In region 2, the weight dropped: from 134 “grams,” meaning from
0.134 kg⏟

134 g

×10 m s−2 = 1.34 N, (S.151)

to 101 “grams” (1.01 newtons). To determine what kind of elevator motion
resulted in this reduction, imagine the extreme case of an elevator in free
gravitational motion (in free fall). As in an orbiting spacecraft, the food
would be weightless. In reality, the food didn’t become weightless, but its
weight did first drop. Thus, the accelerator was partly in free gravitational
motion (partly in free fall) – what you’d expect from an elevator starting its
descent from the sixth floor and picking up speed (accelerating downward).

Thus, in region 2, 𝑣𝑧 < 0 and 𝑎𝑧 < 0.
In region 3, the weight is back to normal (134 “grams”). Thus, 𝑎𝑧 = 0

and, therefore, 𝑣𝑧 isn’t changing. So, 𝑣𝑧 is still negative.
In region 4, as the elevator approaches the first floor, the weight rises,

indicating an upward acceleration: 𝑎𝑧 > 0. However, the elevator is still
descending: 𝑣𝑧 < 0.

As an analogy, imagine jumping from a table (if you try it at home, please
use a low table for safety). As you land and bend your knees, you push
hard against the ground, harder than you do when you hold yourself upright
against your normal weight. By the third law, the ground also pushes hard
on you (the other side of the interaction), giving you an upward acceleration
and slowing you down. The elevator, the scale, and the food on the scale
are going through the same process of slowing down. During it, they weigh
more than their normal weight.

Only in region 5 has the elevator arrived at the first floor. The weight has
returned to normal, meaning that 𝑎𝑧 is zero and the elevator has finished
slowing itself down. Thus, it has reached its final speed of zero (𝑣𝑧 = 0).

b. The maximum upward acceleration occurs in region 4, when the weight
reaches its peak of 167 “grams” or, in force units, 1.67 newtons. Symbol-
ically, Newton’s second law for the food, applied to upward components,
says (with 𝑁 as the normal force or weight):

𝑁 − 𝑚𝑔 → 𝑚𝑎𝑧. (S.152)

Thus,
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𝑎𝑧 = ( 𝑁
𝑚𝑔 − 1) 𝑔 = (𝑁 − 𝑚𝑔

𝑚𝑔 ) 𝑔. (S.153)

The product 𝑚𝑔 is the normal weight. Doing the calculation of the parenthe-
sized quantity using fake grams,

𝑁 − 𝑚𝑔
𝑚𝑔 = (167 − 134) “grams”

134 “grams” ≈ 0.25. (S.154)

Thus, the upward acceleration is about 0.25𝑔.

c. The downward acceleration reaches its maximum magnitude in the trough
in region 2. Using (S.153) there,

𝑎𝑧 ≈ (101 − 134) “grams”
133 “grams” 𝑔 ≈ −0.25𝑔. (S.155)

(The negative sign of 𝑎𝑧 is a welcome check on the labeling of region 2 in
item a.)

In thinking about why the weight dropped in region 2, I found myself thinking
about forces and causation. For I first reasoned that the elevator accelerating
downward caused the drop in the normal force (the weight). But that statement
seems to contradict the fundamental point about Newton’s laws that I have stated
often, maybe too often, in this book: that force causes acceleration and not vice
versa.

The seeming contradiction is reconciled through a slow-motion replay of the
causal sequence. It begins at the end of region 1, with the elevator, scale, and
food all at rest.

1. The tension force, from the steel cable holding up the elevator, drops (an
effect itself the result of a causal chain started by the elevator’s motor).

2. This upward force then can no longer balance downward gravitational force
on the elevator. Illustrating that (net) force causes acceleration, the elevator
starts accelerating downward.

3. Once the elevator has moved downward slightly, the spring interaction be-
tween the elevator floor the bottom of the scale drops in magnitude.

4. The upward, spring force on the scale no longer balances the two downward
forces on the scale: the gravitational force on the scale and the contact force
of the food. Illustrating again that (net) force causes acceleration, the scale
starts accelerating downward.

5. Rinse and repeat, as they say on shampoo bottles (so that you buy more sham-
poo). Once the scale has moved downward slightly, the spring interaction
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between it and the food drops in magnitude. In other words, the weight de-
creases.

In this sequence, steps 2 and 4 illustrate the Newtonian direction of causation: a
downward net force caused a downward acceleration.

However, steps 3 and 5 look like examples of the opposite direction of causa-
tion, whereby (downward) acceleration decreased a spring force’s magnitude.
In both cases, intervening steps were motion and, implicitly, a new position.
For example, in step 3, the scale’s downward acceleration led to its downward
motion, which led to its new position, slightly farther away from the food. And
this new position decompressed the chemical bonds in the food and the scale at
the contacting surface.

As formalized in (1.18), an (ideal) spring interaction’s strength is proportional
to the spring’s compression or extension. Thus, the strength drops, as does the
magnitude of the normal force on the food (because the normal force is one side
of the interaction).

Thus, this seemingly inverted causation results from a repulsive spring inter-
action and the relation between its (relative) position and interaction strength.
And the repulsive spring interaction, for a material-to-material contact, is the
result of Coulomb’s law of electrostatics. As the outer-shell electrons in the
food molecules at the contact and in the scale molecules at the contact increase
their separation, the repulsive force, being an inverse-square force, decreases in
magnitude.

Thus, when you think you’ve found an inverted causation where acceleration
seems to cause force, chercher la spring force (if you’ll pardon my French) and,
at its root, an electrostatic repulsion.
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Problem 7.24 (p. 172)

Before trying to demonstrate any result, make sure that the result is at least
plausible! This advice generalizes Wheeler’s First Moral Principle, introduced
in Section 6.3: “Never make a calculation until you already know the answer”
[22, p. 20].

Here, and often in other problems, the first and best way to check plausibility
is to check just the effect’s sign. If a quantity decreases, should it? If it increases,
should it? Or, if it remains fixed, should it?

Here, the claimed scale reading 𝑀𝑔 is less than the usual weight of (𝑀 + 𝑚)𝑔.
Thus, the check question becomes: Should sending the bees into free fall reduce
the scale reading (the weight)?

It should! To see why, make a sign-only comparison of the motion and forces
with their respective values in the original situation (when the bees had zero
acceleration).

For the motion: The composite body of box and bees, which before had zero
acceleration, now accelerates downward. For the composite body’s acceleration
– defined as its center-of-mass acceleration – is the weighted (sorry!) average of
its constituents’ accelerations. Although the box does not accelerate, the bees
accelerate downward – and, therefore, so does the composite body.

For the forces: Before, where the composite body had zero acceleration, the
two forces on it – the upward, normal force and the downward, gravitational
force – balanced. Thus, 𝑁 was equal to 𝐹𝑔. Now, where the composite body has
a downward acceleration, the upward force must be not quite strong enough to
balance the downward force. In other words, 𝑁 must be less than 𝐹𝑔. Because
𝐹𝑔 = (𝑀 + 𝑚)𝑔 (the usual weight), 𝑁 is now less than (𝑀 + 𝑚)𝑔 – making the
claim that 𝑁 = 𝑀𝑔 plausible.

Determining whether it’s also correct requires the full analysis. But now
you are ready for it. For in making the sign-only analysis, you determined the
structure of the full analysis. All that remains is to make it exact. Thus, there
are two questions to answer. What’s the composite body’s exact acceleration?
What’s the exact resulting 𝑁?

For the composite body’s center-of-mass acceleration, the weighted average
is

𝐚CM = 𝑀𝐚box + 𝑚𝐚bees
𝑀 + 𝑚 . (S.156)

The box is stationary, so 𝐚box = 0; and 𝐚bees = 𝑔 downward. Thus,

𝐚CM = 𝑚
𝑀 + 𝑚𝑔 downward. (S.157)
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Determining 𝑁 uses Newton’s second-a-half law. Only the vertical (𝑧) portions
or components matter here. Taking upward as the positive 𝑧 direction,

1
𝑀 + 𝑚 (𝑁 − (𝑀 + 𝑚)𝑔) → − 𝑚

𝑀 + 𝑚𝑔. (S.158)

Conveniently, the 𝑀 + 𝑚 denominator is in the left and right sides, so it cancels.
The resulting equation is

𝑁 − (𝑀 + 𝑚)𝑔 = −𝑚𝑔. (S.159)

Its solution is
𝑁 = 𝑀𝑔. (S.160)

The bees, who are now in free gravitational motion (in free fall) and are them-
selves weightless, now do not show up in the overall weight.

Figure S.42 shows the freebody diagram including the motion. 1

box and bees

Mg

(M+m)g aCM = m
M+m g

Figure S.42 The freebody diagram of the box and bees when the bees are in free
fall. The gravitational force is slightly stronger than the normal force. Thus, the
composite body’s center of mass has a downward acceleration. Although the box
itself has zero acceleration, the bees have a downward acceleration.

An interesting question arises from this freebody diagram. It shows that the
normal force, which is the passive force provided by the scale, adjusts itself
based on the acceleration of the bees. When the bees were hover (𝐚bees = 0), 𝑁
was (𝑀 + 𝑚)𝑔. Now, when the bees are in free gravitational motion (𝐚bees = 𝑔
downward), 𝑁 has magically become 𝑀𝑔.

How does the scale know the bees’ acceleration? The only body touching the
scale is the box, whose motion is independent of the bees’ acceleration (the box
stays motionless even as the bees’ change their acceleration). The scale and the
bees participate in some kind of an action-at-distance (long-range) interaction.

The explanation and mechanism is the air. To see how, follow the forces.
When the bees hover, the air exerts on them an upward force 𝑚𝑔 (balancing the
gravitational force on them). By Newton’s third law, the bees exert on the air a
downward force 𝑚𝑔. Despite this force, the air has zero acceleration – because
the box exerts on the air a balancing force 𝑚𝑔 upward.
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Warning! Even though this force is equal in magnitude and opposite in direc-
tion to the downward 𝑚𝑔 force that the bees exert on the air, these two forces are
not a third-law pair. Rather, their common magnitude and opposite direction are
a consequence of the second law and the requirement that the air not accelerate.

The third-law counterpart of the upward force experienced by the air is the
downward force of the air on the box. The normal force on the box (from the
scale) must compensate for this downward force, which has magnitude 𝑚𝑔;
otherwise the box would accelerate. Thus, 𝑁 isn’t merely 𝑀𝑔, which is enough
only to support the empty box, but also includes an 𝑚𝑔 term. Thus,

𝑁 = 𝑀𝑔 + 𝑚𝑔 = (𝑀 + 𝑚)𝑔. (S.161)

This story changes after the bees start their free gravitational motion (their
free fall). Now the air exerts no upward force on the bees and, therefore, no
downward force on the box. The 𝑚𝑔 term in (S.161) vanishes, making 𝑁 = 𝑀𝑔.

The air carries the action-at-a-distance interaction between the bees and the
box.

Microscopically, the box isn’t completely motionless. Rather, when the bees
hover, the box floor is slightly compressed by the extra pressure forces from
the air. When the bees start their free gravitational motion, these extra forces
disappear, and the box floor slightly uncompresses. These tiny changes, which
result in changes in the internal forces within the box floor and therefore in the
contact force on the scale, tell the scale what the normal force should be.
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Problem 7.25 (p. 172)

a. For finding 𝑇3, the right composite body joins all three sleds together and
has mass 𝑚123 = 𝑚1 + 𝑚2 + 𝑚3 and acceleration 𝑎 to the right. (Two strings
are part of the composite body, but they are massless.)

From Newton’s second-and-a-half law (7.44), the net external force on
the composite body must be 𝑚123𝑎. The external forces are three: the normal
force (without friction, the contact force is perpendicular to the ice); the
gravitational force, which balances the normal force; and tension force with
magnitude 𝑇3 and pointing to the right. Thus, the net external force, which
is 𝑇3 to the right, must equal 𝑚123𝑎.

𝑇3 = 𝑚123𝑎 = (𝑚1 + 𝑚2 + 𝑚3)𝑎. (S.162)

b. For finding 𝑇2, the right composite body joins the first two sleds and has mass
𝑚12 = 𝑚1 +𝑚2. Now just follow the argument in part (a) for finding 𝑇3. The
net external force on this composite body is 𝑇2 to the right: The string force
(on the 𝑚2 part) is the composite body’s only unbalanced external force.
From (7.44),

𝑇2 = (𝑚1 + 𝑚2)𝑎. (S.163)

c. For finding 𝑇1, the right body isn’t composite: It’s just the first sled, which
has mass 𝑚1. The net external force on this body is 𝑇1 to the right (the string
force is, again, the body’s only unbalanced external force). From (7.44),

𝑇1 = 𝑚1𝑎. (S.164)

The moral: It’s better to be the first string than the last string, which, in order to
accelerate the entire sled train, has the highest tension.
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Problem 8.1 (p. 191)

a. The line of action’s placement can be deduced from the effect of 𝐟 on the
car’s rotation. The first step is to determine what’s happening to the rotation
– in particular, to the rotation rate.

Imagine looking at the car from above, keeping yourself directly above
the car’s center of mass. But don’t rotate your head. In other words, the
origin of your reference frame (say, the bridge of your nose) accelerates –
like the car, it’s in uniform circular motion – but your reference frame does
not rotate about its origin (your eyes stay aligned left to right, say).

In your reference frame, how does the car’s motion look?

A body’s motion, fully described, includes two aspects: the motion of its
center of mass (translation) and its motion about its center of mass (rotation).

In your reference frame, the translation vanishes by design: The reference
frame tracks the car’s center of mass. Thus, the only possible remaining
motion is the car’s rotation (about its center of mass).

And you do see the car rotate. For example, when it’s at the 12 o’clock
position of the circle, it’s heading right (in the 3-o’clock direction). And
when it’s at the 3 o’clock position, it’s heading down (in the 6-o’clock
direction). For every full rotation around the circular track, the car makes
one full rotation about the vertical axis through its center of mass.

Because the car is moving at constant speed, its rate of rotation around
the track and, therefore, its rate of rotation around this axis are constant. A
constant rate of rotation, meaning zero angular acceleration, implies zero
net torque (about the vertical axis): Net torque causes angular acceleration.

Thus, all the forces acting on the car must combine to produce zero net
torque about the vertical axis. Without air resistance, three forces act on
the car: the gravitational force, the normal force, and 𝐟. The gravitational
force acts at the center of mass, so it produces no torque at all about any axis
through the center of mass, including the vertical axis. The normal force
might not act underneath the center of mass; however, as a vertical force, it
doesn’t affect the car’s rotation about the vertical axis (it doesn’t turn the
car).

Because neither the normal force nor the gravitational force affects the
car’s rotation around the vertical axis, 𝐟 is the only source of torque about
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this axis. To make this torque zero, 𝐟 must have zero lever arm: It’s line of
action must pass through the axis. This requirement is reflected in choice (ii).

b. When the car speeds up (accelerates), its rotation speed (about the same
vertical axis) increases. This increase is caused by a torque provided by 𝐟.
Its line of action should lie such that 𝐟 tries to spin up the car clockwise,
to augment the clockwise rotation rate. Thus, the line of action should lie
ahead of the center of mass: choice (iii).

c. When the car slows down (decelerates), its rotation speed decreases. This
decrease is also caused by a torque from 𝐟. Its line of action should lie such
that 𝐟 tries to spin up the car counterclockwise (to reduce the clockwise
rotation rate). Thus, the line of action should lie behind the center of mass:
choice (i).
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