Exercises on Ch.15 Limit of stability and critical phenomena

15.3 Miscibility gaps. Exercise 1

15.5 Tri-critical points. Exercise 1

15.3 Miscibility gaps
Exercise 15.3.1
The following part of a binary phase diagram was obtained when one used a

thermodynamic database to calculate the hcp + liquid(L) equilibrium in a binary system.
The result looks strange. Try to find the explanation.
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Hint

The whole liquid boundary (the so-called liquidus) represents equilibrium with almost
pure B. Use that fact in order to examine how y; varies at the points of maximum and
minimum.

Solution

At the points of maximum and minimum we know (dug/dxg)rpn = 0. This looks like a
stability condition. We can find g, in the first group of conjugate variables in Table 9.2.
From its first row we can formulate the following stability condition: (d us/dzs)rpxs = 0. It
is evident that the maximum and minimum would fall at the same compositions even if
we had plotted the results with the z; axis instead of the x;; axis. We may conclude that
there is a liquid miscibility gap and its spinodal goes through the points of maximum and
minimum.

15.5 Tri-critical points
Exercise 15.5.1



Examine the possibility of having a tri-critical point in the 7,P phase diagram of a unary
system by trying to model a change from first-order to second-order transition.

Hint

From Exercise 15.3 we know that we must use a symmetric G,, function in order to
describe a second-order transition. It would thus be interesting to examine G, = g, +
(1/2)g.&” + (1/24)gee:&’ + (1/720)g:E°. In Section 15.2 it was used to describe a first-
order transition. Examine if the parameters can be adjusted to make &, for the ordered
state approach zero which could change the transition to second-order.

Solution

The expression for £ in Eq. 15.13 can approach zero if g.... = 0 but the expression for

dG,/d§ =0 1in Eq. 15.41 shows that it will happen only if g.. = 0 at the same time.
Suppose g:: and g:..: are both functions of 7"and P. It should then be possible that they
both go through zero in a point in the 7,P diagram. On the side where g.... <0 we have a
first-order transition (see thick line in the diagram) as already described in Section 15.2.
Where g > 0 the result will be much like the first case where we did not use the &° term
and were able to describe a second-order transition (dashed line).
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