9780521869638so0l CUP/AUL November 6, 2008 18:21 Page-1

Solutions to selected problems

Chapter 1

1.1

1.2

14

1.5

1.6

1.7
1.9

1.10

111

Yes, because in this case even in the initial state some properties would not be deter-
mined and therefore also the properties of future states could not be precisely defined.
As a consequence, it would be also impossible to predict future properties.

Not necessarily. In principle, one can imagine the existence of a “discrete” world.
However, it would still be necessary to have some laws allowing to infer determinis-
tically a future (or past) state from a given initial (or final) state.

Consider the Jacobi identity (Eq. (1.10d)) and take & = H. The first two terms of the
rhs are then identically zero and therefore

{H.{f.&}}=0.

£(45°) = 1. 9(135°) = 0. As a matter of fact, since the component states |v) and
| h) are equally wighted in the superposition (1.79), the latter represents the state
of a photon with polarization oriented at 45° relative to the horizontal axis. On the
contrary, such a state will not pass the filter at 135° as this orientation is orthogonal
to the polarization of the state (1.79).

Since | j) and | k) are elements of an orthonormal basis, we have (j | k) for j # k
and 0 1 for j = k.

Prlyr) = cklk).

The norm of the vector |@) = cklk) is | @ ||=|cx|> It is | ¢ ||<1 since

Z?]:l |cj|2 =1, being || ¢ [|=1if and only if ¢; = § ;. Physically this means that
the projector acts as a filter and therefore it selects a subensemble of the initial
ensemble.

Let us assume that | &) is in an n-dimensional Hilbert space and expand it as

1€) =) ¢jli)s
J

where | j) is an orthonormal basis for this space. It is then easy to show that

. 2 . o .
since 27:1 |c j’ = 1 according to the normalization condition.
We can imagine of having N “boxes” (one for each oscillator) each of them with a
certain number of energy quanta €(v). We are able to calculate wg, which becomes
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1.12

1.13

the total number of different ways in which we can arrange the n, quanta among the
N oscillators (or boxes), i.e. the total number of permutations of the quanta n, plus
the N — 1 partitions!

(N —1+ne)! (N +ne)Ntne
WEg = ~
EZ" N Ding NVl

El

where in the last equality we have made use of the Stirling formula
m!>~mme " 2mm,

which is a very good approximation for large m. Consequently, the total entropy is
given by

SN =k N[(1+"i)1n(N+n )—InN — " 1nn ]
B — KB N € N €l
By making use of Eq. (1.62), we obtain the desired result.
In order to find the solution, let us first compute the differential

0Sy oSy 198y
3U ~ ONE N 9E

k E E
=—B[ln(l+—>—ln—]
€ € €

kg E+ 1
= —1In

€ E T
From the last equality it follows that

E_‘_'Ff _ o</kaT,
E
and, finally,
F—_ ¢
ee/kBT -1

Applying the Carnot theorem to the upper triangle in Fig. 1.19 we obtain

2 N 2 .
(nv)? = (_hv5> + <_hv,> - 2hvs hvi cosf.
c

Cc c c

On the other hand energy conservation (Eq. (1.70)) yields
mv* = 2h (vi — vy).

In order to eliminate v, we multiply this last equation times m and equate the resulting
rhs to the rhs of the momentum conservation equation and obtain

h
Vi — Vg = —— (v2 +v2 — 2v50; cos@).
2mc2 \F !

I See [Huang 1963, 181-82].
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Now, since the wavelength of the scattered photon is only slightly larger than the
original one, we have

v vy —> v?:vszzvivs.

Consequently,

Vi — Vg = —=VjVs (1 —cosH).
mc

=L

Replacing v; = - and vy = 5 we finally obtain

h 2h ., 0
As —Ai = — (1 —cosf) = — sin” —.
mc mc 2
Chapter 2
2.1 Takee.g. O’ =1 — O.
2.2

—

Ol

==

~—
|

[(hlb) (MM)}( 1) )
(v b) (v]by) (brlv)
=<<h|b><b|w>+<h|bl><bj_|w)>
Wbyl y)+ v b) (b )
:<<
(

hlv) >

vliy) )

The last passage is due to the well-known property of projectors
b)) (bl +1bL) (brl=Py+ Py =1.

2.3 Let us write the transposed conjugate of U:

U*:[ (h|b)*  (v]|b)* }:[ (bl h)y (b]v) }
(h1b1)* (wlb)* (bilh) (bilv) |

Then we have
[ (h| b) <h|b¢>][ (bl hy (b|v) }
| (v b) (v|by) (bl hy (br|v)

[ (| BY(b| h)+ (h|bL)(by]|h) <h|b><b|v)+(h|b¢>(bllv)}
v b) (bl h)+v|br) b h) (v[b)(b|v)+ (v]byi)(bL]|v)

L

[ (h1(D) (b1 +1b1) (bLDIR)  (RI(1B) (BI+1b1) (bL])v) }
(I b) (bI+1bL) (bLDIh)  (vI(b) (bI+bL) (bL])[v)

h| h)

[ | (hlv)y ] _[1 0
| (wlh) (wlv) | [0 1

_i

00 =

—_——_— T

since (|b) (b|+ |by) (b1 |) = I. Similarly it can be shown that Uto =1.
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2.6 From the condition of unitarity

AA.I.__a b a* c*
0o Tl d][b* d*

[ lal> + |b]®  ac* + bd*
| a*c+b*d c|? +d?

_ 1 0
L0 1
we derive the following relations
lal® + B> =1,
lcl* +1d|* = 1,
ac® +bd* = 0.

Similarly, from the condition of Hermiticity

a b | [ a* c*

c d | | b d
we obtain that @ and d are real and that ¢ = b*. Collecting these results, we derive
that b(a + d) and a® = d?. From these relations it follows either that ¢ = d, and in

this case » = 0 and O is a multiple of identity, or that a = —d, and in this case we
have

2.7 The solution of the problem is

(b|0r]b) = (wlct+ thlc) Av) w1 = 1h) (1) (eu o) +cn 1))
= ((vlc) + (hlcp) (colv) —cn|h))
|2

2
= |col” = fenl™

2.8 Let us take a generic ket | ¢). Then,
O1y) =3 _0|oj){o; 1)
J
= oiloj){oj 1 ¥)
J

= ZOjﬁj ),
J

where the ]o j> are eigenkets of O. Since these equalities must be valid for any |¢),
it follows that O =} 0, P;.
2.9 We proceed as follows:
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()

(b)

Let us take the usual basis

w=(3). w=(9)

We have to find the vectors |01) and |o02) and the (complex) numbers o and 07
such that

O lo1) =o1lo1),

0102) =02]02) .

The characteristic polynomial is given by

=221,

Aol
-1 A

whose zeros (eigenvalues) are A1, = £1. Let us take the eigenvalues 01 = +1
and 0o = —1. Rewriting explicitely the first eigenvalue equation, we must have

-

that yields 0% = 10%. The normalized eigenvector |01) will then given by

With a similar procedure we find

o-3(2)

Notice that O is Hermitian, |o1) and |oz) are orthogonal, i.e. {01 ] 0z) =0.
We have constructed the eigenvectors so that they are also normalized, that
is <0/- | ok) = 0 jk. In other words, {|o1) ,|02)} is an orthonormal basis on the
bidimensional Hilbert space.

The diagonalizing matrix is simply given by

=5l -]

Finally, the diagonal form of 0 is
o' =060

I = 0 —1 11
2l 1+ 1 0 1 =l
[ = 1 -1

2L 1+ U1

_1 [2 0] _[1 o
200 2] L0 -1
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2.10 The result is
9
16

2.15 The momentum eigenfunctions in the momentum representation are

- 1 L
Opo(pPx) = E/dxe TP py (x)

1 / —L(pe—
— dxe 7 DPx—Po)X
V21
= 3(px — po)-

2.16 The position eigenfunctions in the momentum representation are
7 1 -5 DPxXx
(pxo(px) = \/T_TL' dxe T @xo(x)

= L/‘dxe_%px%(x — x0)
V2

— 1 e~ % PxX0 .
2
In the general case we have
@x(py) = e  BP

Var

2.17 We proceed as follows:

“+o00 B “+o00 B B
f dp: ¥ (p)* = f dpx ¥ (p )V (px)

—0Q
/m / dxyr(e hr f+°od GO
X X)e —_— X X )e :
\/ 27‘[ —00
+o00 +o0 1 +o00 . ,
2/ dxf dx’W(x)lp*(x’)—/ dpyeiPrE=x)
—o0 oo 2

—00

+o00 +00
=/ dx/ dx' Y)Y (xHs(x — x)

400
_ / x|y (o).

—00

2.18 First, calculate

+o0o
P (x) = % f dpxx i (p)eh P
3 KO h L 3
_ ;-,P,\x dx hpxx
f‘“ )e @ o
/ i 0T

Opx
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where we have made use of the inverse Fourier transform (2.150a) and of integration
by parts. If we substitute this result into the definition of the expectation value of %,

we obtain
+oo 1 +oo , YV
(%) :/ dxyr*(x) / dpxlheﬁp"x%

—00 \/_ Px
+oo I
:/ [\/_/ dxlll*(x)e;lp”}zh—angX)

+00
:/ xl//(x)hllf(l?x)

This has to be equal to the expectation value of X computed in the momentum
representation, i.e.

+oo B 5
() = / Apx B (PR (p).

—00

By comparison, we find

oY (px
() = n TP,

Opx
2.19 We have

P() | px) = |x) (x| py) = op(x)[x),

where ¢, (x) | x) is the eigenfunction of the momentum operator corresponding to the
eigenvalue p,, that is

elﬁpxx

1
Pp(x) = N

This shows that the action of the position projector P(x) onto the momentum eigen-
vector | py) (in which the position is completely undetermined) selects the position
eigenvector | x) with a weight that is given by ¢,(x).

2.22 The delta function can be obtained as a limit of a normalized Gaussian

_x
e 242

1
Ja(x) = «/ﬂa >

with a > 0, that is
8(x) = lim f,(x).
a—0
Then, we have
8%(x) = lim f2(x)
a—0

. 1 K2
= lim se «a
a—02ma

(S
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from which we obtain

+o00 1 +o00 1 2
2 . -
/ dxé“(x) = Z_f dx lim —e o

oo T J oo a—0 a?
1 1 00 K2
= — lim —/ dxe a
27 a—0 a? —00
27T a—0a

224 AxAE > i,
2.26 The solution is given by

[A A]_h d . _h 0
D> f(X) —Taf(x) l—f(x)a

h h 0 h 0

=Zf O+ @) = = f@)
1 1 0x 1 0x
ho, .

=27
1

2.30 WithT =0 and R = 1 we have
A) = —%e"”(m +e14y),

which, up to the irrelevant global phase factor, corresponds to the state |1). With
T =1 and R = 0, we have

1
= —(—13) +1]4)),
| fo) ﬁ( 13) +114)

which corresponds to the state |2) . Finally, with T =R =1/ «/E, we have

1
[ fi2) =5 [= (1+€9)13) +1 (1 =) 14)]
= i[i<—|3> 1) — o= (3) +1 |4>)]
V2LV2 V2
1
= 5 (1) = 111).

2.31 The examination of Sec. 2.4 shows that there are cases in which an event occurs
(a certain detector clicks, a state of affairs described by the proposition ¢) and not
withstanding the object system is neither in the state expressed by the proposition a’,
nor in the state expressed by the proposition a”. This means that, in these cases, it is
true that

[cn (@ va )] A=[(crd)V(crd”)),

from which we easily derive that it is also true that —=[(c Aa’) V (¢ A a”)] and,
therefore, that

—(cAd) and —(cAd")
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are also true. This means that, in the first case, either ¢ or @’ must be false, and, in
the second case either ¢ or a”. However, we have assumed c to be true. Then, both
a’ and a” are false. This means that we have a situation in which a’ v a” is true (by
definition) but also both —a’ and —a” are. By substituting a’ to —a’ as well as a” to
—a" we obtain that also — (a’ Aa” ) is true, which is the desired result.

Chapter 3

3.2 Itis straightforward to prove the result given the linearity of the Schrédinger equation.
33 ¥(x) = #ei’k". These are the plane waves described in Subsecs. 2.2.4 and 2.2.6.
They are doubly degenerate: in fact, the plus and minus signs correspond to “waves”

moving from left to right and from right to left, respectively, both having the same

... h2K2
positive energy E = =5, -.

3.4 Attime fo = 0 and ¢ we have

T(pe.0) =Y cPPu(pe) and F(pet) =Y e 7O (py)

where

Un(px) = (px | ¥)  and  Pu(pe,t) = (p | Y1)

3.5 Let us rewrite Eq. (3.26) as

Y1) =Y calt)n(x),

from which we obtain

[ axtwenr = [ ax 3 e ouim Y o

= Y e [ dri

= Yleaol = Y |55 e, 00
=Y leaO)P = 1.
where
/ dx i (W () = S
3.7 We have

E
(1) = / dke(k)e'®*= D where wp = — = h—.



9780521869638so0l CUP/AUL November 6, 2008 18:21 Page-10

10 Solutions to selected problems

3.10 First let us compute the mean value of the position?
a
(%) = f dx iy (Ox (%)

0

a

2
—/dxx sin’ (ﬂx)
a a

0

nmw

2a

= Wfdyysinzy
0
a

=3
where we have made use of the fact that we are in the position representation and that
¥ (x) = ¥,(x), as well as the mean value of the square of the position3
a
R 2 . nm
<x2> = - / dxx? sin? (—x)
a a
0

nmw

2
= %/dyyz sin? y
0
a> 1 /a2
=5 30Gs)
Analogously, we calculate the mean value of the momentum

. 2 r . (/hT d . /nmw
(px) = —zh—/dx sin (—x) — sin (—x)
a a 0x a
0

a
2h nm . /nw nmw
= —— [ dxsin|{—x)cos|{—x
a a a a

and of the square of the momentum

a

2 92
<ﬁ)25> == / dx sin <ﬂx> — sin (Ex)
a a 9x2 a

0
a
2h2% n272 . o (AT
=—— dx sin (—x)
a a a
0

2 See [Gradstein/Ryshik 1981, 3.821].
3 See [Gradstein/Ryshik 1981, 2.631.2].
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h’n 1<nn ) ) (nn ) (nn ) e
= —(—x) —sin{—x)cos|{—x
2a’7 |2\ a a a 0
h?n?
- 4a?
Then, we calculate the uncertainties of position and momentum
1 1

Ape =" A
= <> X =0\ ~= — =5 5>
Px =75, 12 22n2

and finally obtain the uncertainty relation
AxA ho| [n2m?
X ==
Px 2 3

Since the square root is certainly a growing function of n for n > 1, in order to verify
that the uncertainty relation is always satisfied it is sufficient to prove that, forn = 1,

itis >1. A direct calculation shows that

2
T 2—1136
V3

3.11 The three-dimensional stationary Schrodinger equation for the wave function in the

position representation reads as

e 92 92
5 a2 a2 ) V 2 > 9 9 = E ) N .
2m <8x2 + dy? + 812) Vx| ¥y, VX, y.2)

For a particle in a “cubic” box, we have V(x,y,z) = 0 inside the box, so that the

previous equation becomes

9> 92
2m <8x2 ay2 372

2

) ¥(x,y,2) = EY(x,y,2).

with the boundary conditions
for x <0, x>a; y<0,y>b; z<0,z>c.

lﬁ(x, Yy, Z) = Oa
This problem is separable, i.e. H= I-AI] (x)+ ﬁz(y) + P}3(z), where
. n* 92
Hyi(x) = —%m,

and similar expressions for ﬁz(y) and 1:13(@. In

v(x,y,2) = vV v@0 - v,

and
E=E+E,+E,.

The required solution therefore reduces to

Yoy, (6,3, = Y@ - 420 - v (@),
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with

D) = \/g sin (“x ).
D= \/g sin (=),
00 = 2sin (1),

and
£ Th?
x = 2ma2nx’
Y 2mp2TY
E nh?
T ame2

3.12 Referring to Fig. 3.8(b), the transformation effected by an asymmetric beam splitter
should satisfy the following constraints:

A 1 T
(o) (n )
N 0 iR
% (1)(7)
The requirement of unitarity leads us to the final form

N T R*
UBS:[;R T* }

U |y) = ef’lffﬁtzcj' |v)) = cheféE"l |vj),
J J

3.13 We have

where use has been made of the eigenvalue equation
H|yj) = Ej|v;).
Now, it is clear that
cj(t)y=cje FEIt £0, if ¢; £0.

Furthermore, we also have that the probabilities of the energy eigenvalues g;(¢) =

2 . .
|c | (t)| = ;(0) are constant under time evolution.
Note that, in the case of beam-splitting (see Subsec. 3.5.2), the vectors

oe(1) e (?)



13

9780521869638so0l CUP/AUL November 6, 2008 18:21 Page-13

Solutions to selected problems

are neither eigenvectors of the beam-splitter unitary transformation

N 1 1 1

=il 1)
nor of the Hermnitian operator O that is the generator of the transformation, i.e.
Ugs = ¢'0. This is the reason why certain superposition states of the basis vectors
|1) and |2) may be transformed into | 1) or |2) under the umtary transformation
0135. For instance, the state \/» (| 1) —11]2)) is transformed by UBS into | 1).

3.14 This result may be proved by taking into account the uniqueness of the unitary

transformation U' = U ~I(its deterministic nature). If this connection had to be not

completely clear, see Sec. 15.2.
3.15 We have

A% =0 A%0, = U/ 0,A5 = AS,

since HS = H commutes with [}t =e
3.17 We have to show that
[[0.6').4] =o.

The explicit calculation is

—
)
)

SN——"
X

[
I

—
QS
Q)
=

[

|

—
Q)

9)
>

[—

since H commutes with both O and O’
3.19 We can proceed as follows:

zh%h/f(t)h zhjeﬁHO’wa))

th [Elfloe;*ﬁ"t () s + 6’%19(”% Illf(t)>s]

[~ A0}, + 0y A 1)

= [0 o+ Ul 11| Doy 1900,

= Up [~ Bo+ B Onos 190
0}, U, 1Y)

= A0 1y 1),

3.22 Given any two operators O and O’ such that [0, O'] = —1h, it is straightforward to
prove that (see Prob. 2.25)

[0", 0’] = —mhO" !,
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Using this result, we may compute the commutator

= =
oo
:_Z(w-[)] hfi—1
= !
= an Y S
ot (—D!
:ah 3 (la)ni‘n
= (n)!
— ahelaf

Therefore,

which yields the desired result.

Chapter 4

4.1 The energy levels are

o ) ) JThz l'2 12 k2
E(l’JJC):Ex(l)+Ey(J)+Ez(k)=% p+ﬁ+c_2 ,

and the wave functions are given by

wuﬂm=wawgww&ﬁaﬁﬁwm(f{%m(ﬂ&)m(EQ)
abc a b c

4.3 (a) The normalization coefficients V"1 and N_ may be derived from the continuity
of the wave function and its first derivative at x = 0, that is,

¥_(0) = ¥_(0),
¥ (0) =y (0),

from which we obtain the conditions

Ny =1+NMN_,
KNy =ky — ko N_.
A simple calculation yields the desired result
ky — ki
R
2ks

T
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(b)

44 (a)

Equations (4.29), together with the previous result, yield

T? % |~/\/'+|2 _ 4k ko
RZ  N_P2 (ko —k1)?

\%
4/1-%

\% \%
2-Y_ o f1- %

)

from which we finally obtain that T2/R? = 16/15.

It should also be noted that, when E = V|, the ratio T2 /R2 vanishes, and we
have a total reflection of the particle at the potential barrier. However, even in this
case (and also for E < Vj), there is a non-zero probability of finding the particle
in the classically forbidden region. Nevertheless, this probability exponentially
vanishes with x.

For E > Vj, the wave function is

for x <0, Yp(x)= etkix | pg—imathkix
for 0<x <a, yux)=Be™ + B,

for x >a, Ymx)= Ce™*,
where
1 1
ki = =v2mE, k)= ;—_l\/Zm(E — Vo).
The constants A, B, B/, and C may be derived from the conditions
¥1(0) = ym(0),  Yy(0) = 1/,1/1(0),
Y@ = ym(a). @) = Yya),
which yield

1+A=B+B,
ki —kiA =kyB —kyB,
Be'k2d 4 Blemthea — Cetha,
ko Be'k2? — sz,e_lkZ” = k;Cehre,

From these conditions we obtain

KB—k? .
17t sin(koa)
A — 1K2

K4k3 . ’
2 cos(kpa) — 1 =2 sin(kpa)
k1k2
In this case, we have

CZ
RZ=|A> and T?= kl% =|CJ%.
1



16

9780521869638so0l CUP/AUL November 6, 2008 18:21 Page-16

Solutions to selected problems

4.6

4.7

4.8

From T2 + R? = 1, we immediatly obtain
T> = |C)* =1 — |A]?
212
_ 4k3k3 ’
422 + (k2 — 12)” sin(kaa)

(b) For E < Vj, k becomes pure imaginary, which implies that the wave func-
tion decreases exponentially in region II. The expression for the transmission
coefficient may be obtained from the previous result if one replaces ky by 1«3,
where

1
K2 = E\/2m(V0 —E).

We may use an inductive argument. First, we have to verify that Eq. (4.70) is satisfied
for n = 0 (see Eq. (4.69)). Then, in order to solve the problem, it suffices to show that,
if Eq. (4.70) is assumed to be valid for n, i.e.

(n+ Dh
Xnn+l = —7 >
2mw
then it is also satisfied for n + 1. We rewrite Eq. (4.68) fon + 1

h
2 2
Xyl n@nntl + X1 pyo@ni2,n41 = %’

from which, be using the relations w,4+2,+1 = w and W, n+1 = —w, we can derive

[(n+2)h
Xn+ln+2 =\ —~— >
2mw
that completes the argument.

There at least two simple ways to obtain this result, both of which do not involve
anything but straightforward calculations. The first method is direct inspection of
Eq. (4.60). In fact, if k = n, we have that w,; = 0 and therefore x,; = 0. The other
method starts from the definition of

+00 +00
tun = (1), = lnfiln) = [ dxviemeo = [ avvion,

where we recall that ¥,,(x) = (x | n) is the n-th harmonic oscillator (real) eigenfunc-
tion. These eigenfucntions are either odd or even functions of x. As a consequence,
the integrand of the last equality in the previous equation is necessarily odd, hence
the integral over the whole line is zero.

We have

) URE
(n | x| n) = /dx (n] %) (x psln) = /dx%(x);awn(x).

Without loss of generality, we may choose the eigenfunctions to be real. Then,

g d
(n|px|n) = 7] XY () =Y ().
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Integrating by parts the previous expression, we arrive at the desired result. The same
result nay be obtained taking into account the fact that the first derivative of an even
(odd) function is odd (even).

4.9 We have
I:A,&T] = % <w2 [)?,)?] +i1w [fc,x] —w [)?, )2] + [)2, )2])
= 1+
=——|X, X
h
1 rn A ~
= _g [Xapx = I’

where we have made use of the fact that [é, é] = 0, that [é, é/] = — [é/, é] (see

Egs. (2.94) and (2.97)), and that [)2, ﬁx] = 1h.
4.10 Starting from Eqgs. (4.73), we can write the product

ANt m A 2 A b
aa (a)x + Lx) (a)x . Lx)

~ 2he
1 p? .
(o 2 )

1 (1 5., p? 1
_hw<2mwx tom) T
where we have made use of the fact that

A

=P and [ﬁx,f] = —1h.
m

From the above expression and the commutator (Eq. (4.74)) we can derive
N | ~ h
H = ho (Ez&' - 5) and H = 70) (&&T +&T&).

4.11 We have
and

4.12 We have
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4.13

4.14

and
[az,eﬁ ] = aaat —ataa

—aaa’ —aa'a +aa

a
ala.a'|+]a.a']a =24,
which can be both generalized by induction. We prove only the first one. Assuming
that the relation

n
o)) =iy

holds for a given n, we have to prove that it also holds for n + 1, that is
)] =a ) e - )
=a(a' ) at = (a) aa" + (&*)" aat — (a*)" ata
=[a.@)']a" + (@) [a.]
(@) 4 @) e ()

Again, we prove this relation by induction. From the second of Egs. (4.85) we
immediately obtain

1) =a'0).

Assuming that the relation holds for a given n, we must prove that it holds for n + 1

as well, that is,
n+1
(@)

n+1) = —=——10).
| ) (n+1)!| )
In fact, we have
+1
) i (@)
0) = 0
./(n—i—l)!l > vn+1 /n! )
= iy =ln+1)
n—+1

We must have

Using the formula*

+00
[Taveer = [T
0 a

4 See [Gradstein/Ryshik 1981, 3.325].
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with «/mw/h = a, we obtain, taking N real for simplicity and without loss of
generality (see Property (iv) of Subsec. 3.2.2),

me\ ¥
wh)

(i) The first six Hermite polynomials are

4.16

Ho(¢) =1, Hi(¢) =2¢,
Hy(0) =4¢% —2, H3(@) =8¢ —12¢,
Ha(2) = 162 — 4872 + 12, Hs(¢) = 32¢° — 16023 + 120¢.

(iii) We limit ourselves to derive the third recursion relation. Let us start from direct
differentiation of the n-th order Hermite polynomial, that is

d 2 d" 2 2 dntl
_ — (—1\" ¢ - _ 1\ ¢
d;H@)_( 1)"2¢e d;"e +(=D"e

_4‘2
d§n+l e

— -y et L
_ =
= 20H,(¢) — Hyg1 (0).

n+1

2 a2 d —¢2
e (-1 e —d§n+l e
(iv) We start from

d2

d
dngn(C) = 2nEHn—1(C) =4n (n — 1) Hy—2(0),

where we have made use of the first recursion relation in (iii) twice. Replacing
the first and the second derivatives into the differential equation as above, we
obtain an identity.

4.17 We write the Schrodinger equation as

T oot 2
= Uo) + 2=
dx 2 h2
and make the change of variable § = x_ /"z*. The resulting equation is
d2

2F
E‘ME) + (% —~ 52) ¥ (§) = 0.

It is now convenient to consider the asymptotic behavior of (£): for large |& |2, we
may neglect 2E /hw with respect to £2 and the asymptotic solutions of

2

d—gzvf@ =&y

are (&) = e*f */2_ Due to the finiteness condition of ¥ (&) for § — o0, we have to
discard the solution ¥ (&) = 2 Asa consequence, it is natural to make the ansatz

2
V(E) = e T (),
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and obtain for ¢(£) the differential equation

e . d (k| —o
g% (1) Jmor=0

The solutions of the previous equation with the condition that ¢(&) be finite for finite
values of & and that it grow at most as a power of & for & — +oo0 exist only for inte-
ger values of n = E/hw — 1/2 > 0 and are given by the Hermite polynomials (see
Prob. 4.16) up to a normalization factor. This gives the eigenvalues (Eq. (4.72)) and
eigenfunctions (Eq. (4.97)), and represents an alternative solution of the harmonic
oscillator problem.’

4.19 It is always interesting to make a comparison between the quantum results and the
corresponding classical ones. In the case of the harmonic oscillator, this is enlightning
and relatively straightforward. As we shall see later (in Chs. 9 and 10), however, in
general the classical limit in quantum mechanics is far from being obvious.

The equation of motion for a one-dimensional classical harmonic oscillator® is

Xxc1(t) = A sin(wt + ¢),
from which
Xc1(t) = Aw cos(wt + @).

The total energy of the system is then given by

1 1
Eg= Em ( + a)zxg]) = Emszz,
that yields A = \/2E.|/(mw?). In order to obtain the classical mean values, instead
of averaging — as in the quantum-mechanical case — over the ensemble, we have to
average over a time period of the motion (t = 27 /w). We have

xcl = 0’ JTCCI = 05

whereas
T
- _A .2
X% = — | dtsin“(wt + ¢)
T
0
T
_ A2 dtl —cos[2(wt + ¢)] A? _ Eq
T 2 T2 me?
0
and

- 1
(P2)y = m’%y 2A2a)2m2 =mE.

5 See [Landau/Lifshitz 1976b, Ch. 3].
6 See [Goldstein 1950, Chs. 8-9]
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4.20

4.21

Next, we calculate the corresponding quantum-mechanical mean values. We have
(see Probs. 4.7 and 4.8)

(X)y, = (Px)y, =0,
and
@, = (o [2]n) = Se 1k 1
=(n|%|n+ 1)(nk+ L[#|n)+(n|%]n = 1){n — 1|%|n)

Zh(n+1)+ hn E,

2mw 2mw  mw?’

where we have made use of Eq. (4.70). Similarly,
([3)2()% = <n ﬁjzc n> =m? <n n>
- o4 ]
k

2
=m E LWnkXnkl WknXkn
k

)'62

1 1
= Ema)h n+1D+ Ema)hn =mkE,.

The results above show a complete correspondence between the classical and the
quantum expectation values. This result is valid in this particular case but, due to the
Ehrenfest theorem (see Sec. 3.7), it cannot be generalized.

Using the results of the Prob. 4.19 and Eqgs. (2.184), we immediatly have

A A =" =n + 1
X+ n->J.
Yn Yn Px @ 2

Here, it is clear that the harmonic oscillator is an exceptional case: the Gaussian wave
function of the ground state saturates the uncertainty relation (Ay, x - Ay, px = fi/2),
as happens for all coherent states (the subject of Subsec. 13.4.2). This ensures that
the lower bound of the uncertainty product given by Heisenberg relation is the best
constraint attainable.

Under the harmonic-oscillator Hamiltonian

A A1

any initial state

() = caln)

n

evolves according to

1Y) = e FH |y (0)) .



9780521869638so0l CUP/AUL November 6, 2008 18:21 Page-22

22 Solutions to selected problems

After one period T = 2 /w, we have
(D)) = FAT [y ()
=Y e )
n
= Y
n

=e " [Y(0).
4.22 Let us explicitly derive the x-component of Eq. (4.127). Then, we have

il mvy + SAX,

with vy = X, while we have

oL aU e 0A, 04, A,

x = —ea - (va + UYW + vz¥>,
from which we derive (Eq. (1.15))

d ed aU e Ay 0A, 0A;
mEUX + ZEAX = —ea s <vx§ + vyW + v, o )

But, making use of Eq. (4.139), we have

dA A A A 0A

dtx _ 3; (Uxa_;+v},a—;+vza—;>.

Collecting these results together, we obtain

[ 0A, 0U 0Ay dA,

T T e T M

dA, dA, IA, aAZ}

Uy TV TV TV

[ 0A, 0U 0A,  0A; 9A; DA,
=e|— —— =y | = - +u | —— .
| ot 0x T\ 0x ay 0x 0z

Notice that this result corresponds to the x-component of Eq. (4.127), i.e.

42U 24 )+ vxB)
ar = dx ar " ¢ v

since the explicit expression for v x B is given by

vxB= vx(VxA)
0A, 0A; 0A, 0A;
Wl——-——) v |—————)|t

ox ay 0z ax
0A d0A, 0A 0A

+ | vz e Uy —= - = J
ay 0z ax ay
0A 0A 0A 04,

o (P _ 24 (24 94 1y
0z 0x dy 0z

One may proceed in a similar way to derive the expressions for the y and z
components.
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Chapter 5
5.2 Equation (2.117) states that

/dXWs’(X)f/);(X) =8¢ —-§),
where @g(x) = (x | ). It follows that, for &’ = £ and p = |&) (£ |, we have
H@:/M@Mﬂ:m
5.5 It confirms that there is no unitary transformation from a pure density matrix to
a mixtures, since unitary transformations preserve scalar products (and therefore

probabilities). This is a further formulation of the measurement problem.
5.6 Let us first compute the density matrix

A 111 1
p”WW“E[ll]
Its characteristic equation, Det (,5 Y ) =0,is

1 2
— ) —==0o,
2 4

from which we easily obtain the solutions

We can now compute the eigenvectors, which are

I+)=—\}§(Ih)+lv)),
1

—) = —(lh) —|v)).

=) ﬁ(H [v))

The diagonalized form of p is then:

~ ~ 1 0]
U150 = :
=0 0]
where
~ 1 b
U=— b .
vaL b =1 ]
If we indicate with P; the diagonalized form of p, it is easy to show that ,6, has the
form
A . 1 A
p = RS

where P is the projector complementary to Pr.
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5.7

5.8

5.9

5.10

5.11

5.12

It is possible to write | W) 1, = [¥) | ® | @) ,, with
1 1
[v)1=—=(h);+1v)) and —= @), =(h)s+|v))).
V)i N 1 NG ®)2 2 2

It is easy to verify that, if the entangled state | W) |, could be written as a product
state of | ¥) ; and | ¢) ,, we should have

chy = cpe,  and  cyp = CyCy,.

Now, in order to obtain the entangled state | W) ;, we must also have ¢;,c;, = cyc, =0.
However, this would imply that either c;, or ¢; and either ¢, or ¢, be equal to zero,
which contradicts the the fact that neither cj, nor c,; can be zero.

The state | V) |, can be rewritten as (see Prob. 5.7)
1 1
[W)12=—=(h)1 +1v)1) @ —= (Ih)2 + |v)2).
12 \/5 1 1 \/E 2 2

The reduced density matrices are therefore given by

N 1
01 =§(|h>1+|v)1)(1 (hl1+1 (WD,

1
@2=5(|h>2+|v>2)(2 (h]+2 (),

which both describe pure states.
Let us write the factorized state as

pPrz=1¥)1 (VI®Ile)a (ol

The first reduced density matrix is
o1=1v) 1 (WI®> ,ilehiel i
J
‘2

=¥} (Wl |l e
J

=1 W1 e =1 i,
J

if | ) , is normalized and where {| j) } is an arbitrary basis in the Hilbert space of the
system.
The reduced density matrix is

by = [ lcool* + lerol>  coochy + croch ]
cgycor + ot leor|* + len?

It is given again by the sum of the diagonal elements of the matrix (5.45) when one
interchanges the second and third row and the second and the third column.
The matrix C is given by

(@

Il
Sl
[\S)
1
—_ O
O o
| I
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5.14

and it is clear that C = CT. Let us now compute

A A ~ea L1100
Tt = 2
cc _CC_2|:O 1i|,

which is a multiple of the identity operator. Its eigenvalues are degenerate and both
1/2. Since these are cg, we have that ¢, = 1/ V2. Morevoer, we are free to choose
the eigenvectors of CC"and C*C, since any vector is eigenvector of the identity. In
particular, we choose

[Va) = | wa) =%(|0) +11)),

1
|vg) = [wg) = —= 10) = [1)).

V2
Therefore, we can write
B
W) = cnlva) lwy)
= i(|01> la) —1B)1B))
= 7 ,

with
1
la) lo) = §(|0> [0) + 1) [1) +10) [1) +1[1) |0)),

1
[BY18) =5 0} 10) + 1) [1) —10) [1) —[1) |0}).

It is easy to verify that from the two previous equations one obtains again

1
|W) = —(0) | 1) +1[1)10)),
V2
as expected. From our calculations, the two unitary matrices are easily derived (they
are the matrices whose column vectors are the two vectors | v,) and | w,) ), that is

~ ~ 1 1 1

-r-gl )
It is finally straightforward to verify that, given these matrices, Eq. (5.51) holds.
The fact that the density operator corresponding to the center of a (n+ 1)-
dimensional (hyper-)sphere is always given by %IA , where n is the number of
dimensions of the system, can be easily understood by considering that the trace
of a density matrix is always equal to 1 (see Property (1.41a)), and the fact that any
density matrix may be written as p = Z;': LW I3j, where again, if 0 is a mixture, n
are the dimensions of the system.
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Chapter 6

6.2 Writing 2= iﬁ + I:g + I:%, we have [I:x, ﬁz] = [ix, f,% +i§], since [I:x, I:%] =0.
Moreover,

[ix, Li] =L,L

L
On the other hand, proceeding in an analogous way, we have
[£022) = <un (LyLe 4 LoLy) = 1n[ iy L]
’ +
A a2 R
In conclusion [L x» L ] = 0. It is easy to verify that this result holds true also for L,

and L 2, which proves the desired result.
6.4 Making use of Properties (2.97) and (2.99), and of Eq. (2.174), we obtain

and, similarly,

I:iz’ﬁx] = [xl’y’lax] - [)A’Iaxsl;x]
[

6.6 For any state vector | ) we have (see also Eq. (4.63))
WIZiv) = (wiif) (Law) = o

Along the same lines, we also have (| l? | ¥) > 0 which, together with the previous
equation, proves the result.
6.7 Making use of Egs. (6.6) and (6.7), it is straightforward to obtain

(L] = [fh oy | = [ 1 [ )] = ody £ 6 =+,
[fe i ] = [+ idde = idy | = = [1d ]+ i) = 21,
0] = [Bd+dd) | = [P0 ]+ [R] =0

6.9 Starting from Eq. (6.30), we apply /_ to both sides. Since [_ |1,1) =k |I,1 — 1), we
have

IR0 =10+ Dk|L,1—1).
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6.10

6.11

6.12

Given that /_ and 12 commute (see Eq. (6.24)), we finally obtain
Pk|LI—1) =10+ Dk|LI—1),

which proves the desired result. Successively applying the lowering operator I_ as
above, we obtain Eq. (6.31) for any m,.
In the case of [, we have

LI, —=1) =—|1,-1),
from which the first matrix follows. For i+, we have
I 11,1) =0,
[ 11,0) =v21[1,1),
L 11,-1) =V211,0),
from which the second matrix follows. Finally, for I we have
I_11,1) =+/211,0),
11,00 =~21,-1),
I_11,-1) =0,

from which the third matrix follows.

Making use of Egs. (6.32)—(6.33), we have
cos¢sinf singsing  cosf
a(r,¢,0) 1sing 1cos¢g 0
8— = "7 sin@ r sin@
(x,y,z) cos ¢ cos 6 sin ¢ cos 6 __sinf
r r r

To solve this problem one could use the transformations (6.33) and the partial
derivatives (see Prob. 6.11) to transform by brute force the Laplacian
R S
T oy a2
from Cartesian to spherical coordinates and the desired result then would follow
straightforwardly.
However, there is a more elegant and “physical” solution of the problem. Let us
start from the simple equation (see Eq. (2.134))

B’ =P+ By + P2
L L
=—h|—=+-—+-— ) =-KA.
( ax2 = 9y? 972
On the other hand, we also have (in the following a summation over repeated indices
is understood) (see Eq. (6.3))

2 202 _ (2w 5)? 25 Fob
L* = 1"l = (F x p)” = €ijilj Pr€iabFa Pb

= 7 PP Pb (€ijk€iab)-
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Since €;jk€iab = 8jadkp — 8jbOka, We then have
L2 = 7} piFapudjadis — Fj PiFaPbd jbdka

= FjpiFj Pk — Fj PkfkPj

=7 (P i+ [Pr7]) B = (Bifj + [y Be]) i
i (Fjr — 1th i) px — (PxFj + thdji) Frpj
i7jPkPk — thijpj — priyijpj — 1thiy pr

J
— P92 —1hF - p— (p-F) (F- p) —1hF - .

On the other hand,

0 x 0 0 y 0 0 0
ax ror dy rar 9z ror
Therefore,
" . h 0
r-p:l—rg.

From the previous equations, we obtain

R ILr. . n A
p2=—2[( p)° —uhi-p+ 2]

L
_ _32_2a+i2
- ar2  ror  r2)

Together with the first equation, we finally obtain
¥ 28 P

ar2  ror r?

19 [, 12
—— =) = =,
r2 dr ar r2
which proves the desired result.
It is interesting to note that the equation

A =

R L. . " oA 7
p2=r—2[(r'p)2—1hr-p+L2]

bears an important physical meaning: dividing both sides of the equation by 2m,
we have that the total energy of a point-like free quantum particle in the three-
dimensional case (p*/2m) may be interpreted as the sum of three terms. The first
term, i.e.
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6.14

(F-p)°
2mr?

represents an element of the radial part of the energy. The second term,

>

tht - P
C 2mr?’
is a typical quantum-mechanical term that arises from the commutators between posi-
tion and momentum in the derivation above,’ and is the other element of the radial

part. The last term, i.e.
]:2
2mr?’
is the angular part of the total energy.
We start from Eq. (6.59) and write, form =l and m’ = I’,

_/‘dQY;z/(ff)’@)Yu((b,@) = &1

The lhs of the previous equation turns out to be

2r g1 pm
f do / do sin 00}, (0)0(0).
0 2t Jo

Now, since

w11
/ deo 5 =&y,
0 T

we must also have
g
Iy = / do sin6®;;(0)0,(0) = 1.
0

On the other hand,

T 3
In = |N|2/ do (sing)* ! = 2|/\/’|2/ d6 (sin )2+ |
0

0
Since?
/g df (sing)? 1 = _@ntt
0 QI+
then
Q!
I =2 N> ——,
0 =2 T

from which it follows that

B /(21+1)!!_L/(2l+1)!
VI = 202D 2 2

7 This term vanishes in the classical limit # — 0 (see Pr. 2.3: p. 72).
8 See [Gradstein/Ryshik 1981, 3.621.4].
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The latter result may be proved by induction (it is trivially true for / = 1, and, if it is
true for [, it is also true for [ + 1).

6.16 A spherically symmetric Hamiltonian is of the type (6.84). On the other hand, 12 is
the angular part of the Laplacian (see Eq. (6.55)). If one bears in mind the explicit
expression of the Laplacian in spherical coordinates (Eq. (6.255)), it is clear that

[ﬁz,iz] - [V(r),iz] —o.
Concerning l}, we have
(020 = [ 52+ 32+ 2. %5y — i
= [32.55,] — [2.95<] = [2.] by — [ 5. 5] b
= —2uhpypy +2hpypx =0,
where we have made use of the result of Prob. 2.23. Moreover,
[P0 = [#+ 52+ 22 %5, — 9
= = [#.95:] + [ 2] = =9 [ 5| + 2[5 5y
= —2hyx + 2thxy =0,

where we have made use of the result of Prob. 2.26, and that completes the argument.
6.17 We know from Prob. 6.16 that [, commutes with p? and #2. In turn, this means

(53 + 53] = 107 - 52] =0,
[z},ﬁ + 92] - [z},# - 22] =0,

since fz commutes with both p, and z (see Eq. (6.2c)). This completes the proof.
6.20 We explicitly derive the commutation relation [6x, 6),] = 216, and leave the remain-
ing to the reader. We have

o0 31 3
221[(1) —01}
= 26..

6.22 We prove the result for 6, and leave to the reader the calculation involving &,. The
characteristic equation for 6y is

det(&x—kf)=k2—1=0,

which gives the eigenvalues A1 = £1. We write the eigenvectors as

a c
|T)x=<b>’ and I¢)x=<d)-
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The conditions (6.158a) imply a = b and d = —c, so that we finally arrive at the
normalized eigenvectors

=5 (1) =5 [(o )+ (1)]= 5 0mer100
e S R

6.23 It is very easy to show that

G =11 (=1 (-

For calculating 6, and &y, we need to use Egs. (6.159), that is,

1
8x=§(IT)x<TI—I¢>x<¢I)
1
= LN 1D) GO U) = (D =102 = ( D]
=M =1
and
. 1
6y =5 (1IN, (11 =11), ()

1
=z[(|T>z+l|¢>Z)(Z<TI—lZ(il)—(lﬁz—l|¢>Z)(Z(T|+lZ(il)]
=1 (=M I+ L)

A comparison with the matricial expressions of the vectors | 1), and |]), gives
immediately the Pauli matrices.

6.24 That Pauli matrices are Hermitian can be immediatly recognized by inspection. This
property immediately shows that 6/2 = ] for j=x,5z

6.25 We proceed as follows:

’ 1 1 ’
600 =aoussf = |5 000) + 5 000, | 1

= {léjkn&n + i5jk] fjfk/

= 1€jkn £ [iOn + 18,0 f 1

:l(fxf’)&—i—(f‘f’)f.
6.27 It is sufficient to consider the form

1 e \2 Hh*9r p? ,

— +—B) — — —— 4+ % — jis,B — E | enP¥tr:d =0.
|:2m <17x Pt 2m 3y?  2m Mz ¢ ()

6.28 For the electron we have g~ —2 (see Eq. (6.169) and comments), and [

(Eq. (6.173)) becomes
eh

i=—t
mc
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6.29

6.30
6.31

6.34

Therefore, the energy eigenvalues (6.179) may be rewritten as

)4
2m’

1
E:(n—}—z—i—sZ)ha)B.—i—

Given the harmonic-oscillator character of the Schrodinger equation (6.176), we may
take full advantage of the eigenfunctions (4.97), with a suitable change of notation.
We finally obtain

mwg i T 1 0= mep mwg
on(y)=\——) 27 2(n!) e o Huy | —yo)/ —— |-
wh h

The first part is trivial. For the second part notice that ) . does not commute with il,z.
We prove the results for the states (6.193c) and (6.194). The derivation for the other
two cases is straightforward. Since §, = §1, + §», and

R 1 . 1
sk;'T)k,z:§|T>k,z and sk;|¢>k,z:_§|i«)k,zs

we have

110 _ 1 1 1 1 1 _0
sz |1, )12—3[(§—§)|T)1|¢)2+(— +§>|¢)1|T>2:|— )

2
oo L1 1o .\
5210, )12—ﬁ[(§—§>|ﬁ1|¢>2—(—§+§>|¢)1|T>z]— .

Concerning the total spin, we first notice that

§2=§%+§%+2§1'§2

3 A n A nn
=3 + 251852, + 51,852 +S1_82,,
which can be derived by explicit substitution of §1,, $2, , §12 and 522 from Eqgs. (6.149)

and (6.190). By direct application of the operator §> above onto the two desired states,
we obtain

§210,0) 1, =0,
§211,0) 1, =2,

that proves the requested result.
We know that

(a)? = (¢?) - (9)?
+ +7 2

= /d¢1/f*(¢)¢21ﬁ(¢)— /d¢1ﬁ*(¢)¢¢(¢)

-7 —T
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6.35

With the change of variable ¢ + n = &, we have

+ —+ +
Fan = / dEVHEEY(E) + 7 / dEV*EEVE) — 20 / dEV* E)EY(E)

= (8%} = 2n6) + 0.

As a consequence, f(n) represents a parabola as a function of 7 and its minimum
value (corresponding to the vertex of the parabola) is obtained for n = (£) and is
equal to (£2) — (£)?, that is to (A¢)?.

From the equation

(840)-(8,0) = 3 |w1[0.0T1w)

ki

we derive for the uncertainty product of x and y components of the angular momen-
tum, when we suppose to obtain the outcome 7m; in a measurement of J;, the
formula

Ay |a K2

() - (8gdy) = 5 |1 [de i iwr | = S {w || w) = m, 5

This result, together with the fact that the maximum value of m is j while the length
of the j-vectoris o/j(j + 1), forces us to conclude that the angular momentum vector
can never point exactly in the z-direction. Stated in other terms, since the z-direction
is arbitrary, the orientation of the angular momentum is always intrinsically uncertain.

It is also possible to derive a finer estimate of the J, and f), uncertainties.” In fact,
we have (see Egs. (2.184))

83 g = (v |G = lilv)|v)
= {i2), ~{idi, = (72), -
and similarly Alzpjy = < fy2>w Therefore, we have
07}, = {52), + (), + (2),
= A+ AL Jy +m?.
Since <j2>¢ = j(j + 1), we obtain

ALjr+ ALy =2+ j—m?

I

In the case in which m; = j we have that Azwjx + A%bjy =j.

9 See [Edmonds 1957, 18-19].
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Chapter 7
7.1 Multiplying Eq. (7.14) on the left by <r§“r$f)r§3) ‘ it follows that

A 1 3 2) 3
U[l;23\lf(l‘fs ),rff), r(C )y = \IJ(r%”rE )rg ),

where \I"(rg)rg)rgf)) is the wave function given by the scalar product

\Il(rg)rg)rgf)) = <r9)r§32)r§,3) | \IJ>
7.3 It is impossible: it would be a violation of Pauli exclusion principle.
7.6 The position—-momentum uncertainty relation (2.190) states that
ApyAx >~ h.
On the other hand,
Apy = \/;x ~ 2mE.

Substituting E = KgT (see Subsec. 1.5.1) in the previous equation, we finally obtain

h
V2mkgT’

which is the so-called thermal wavelength.

Ax >~

Chapter 8

8.2 The mean value of P calculated on the output state is given by

’ A / 1
(v [P|v) =5 car=r@nun ai-12 enan -2

1

-1 =0.

5 (L)

The mean value of P’ calculated on the input state is given by

A 1 1
(1]7]1) = <1|[5<|1> — 2 (41 2D = 5 (11D +12) <1|+<2|>]|1>

={1 ! 1 1{(—1)( )1 1)=0
= > D@5 1) =0.
8.3 A generic two-dimensional state | ¢) may be expanded as

6 6
|g) =cos 2 |1) +e’¢sin§|2),

where 6 and ¢ are the polar and azimuthal angles of the Poincaré sphere, respectively.
Let us consider the transformation (8.4). The input state | 1) corresponds to the north
pole, i.e. to 8 = 0 (¢ is not defined). On the contrary, the output state |1/f’> lies on
the equator of the Poincaré sphere and corresponds to 8 = 7 /2, ¢ = 7 /2. In a similar
way, we can show that the input state |2) (south pole, & = ) is transformed into an
equator state (0 = m/2). We may then conclude that the considered transformation
performs a 7 /2 rotation on the polar angle of the Poincaré sphere.
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8.4 Consider a transformation ¢/ such that ‘1#) =U | ). After some time we shall

have | %) — [¥(1) = e 71 |y) and o) > [v'w) = oA '), A being the
Hamiltonian of the system. If the symmetry under the transformation 2 must be con-
served, then ‘ w/ (t)) must be also equal to U | ¥(¢)) . Combining the previous equations
we obtain on one hand

') = T ),
and, on the other hand,
W) =te i |y

In conclusion, for the symmetry to be conserved, the operator 1 must commute with
the Hamiltonian.
8.5 The hypothesis is that we have [0, 0/] =1h and that O and O are unitarily

transformed. Then, we have

060000 — 0007000 =000 07 —00 607
20[ é]

=00 = [0,0’].

You may have recognized that we have already solved this problem in Subsec. 3.5.1.

8.6 It is evident that, if U (a) represents a continuous transformation, a/2 exists and
U (a) = U (a /2)0 (a/2). Now, U (a/2) can be either unitary or antiunitary. However,
the square of both a unitary operator and an antiunitary operator must be a unitary oper-
ator (see Properties (8.11)). Therefore, U (a) is unitary (see also the Stone theorem:
p. 122).

Chapter 9

9.1 After a unitary time-evolution U,, the density matrix p is transformed into

such that

so that, if ,6(% = po, then we also have
,5,2 = /3t-
9.2 The part of ﬁg M related to the system is already diagonal, that is, taking into account
the third Pauli’s matrix (6.154),

A 2 0
1+0Z5=|:0 Oi|.
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9.3

9.5

9.6

9.7

Concerning 6*XM, we calculate the determinant of the first Pauli’s matrix
o 0 1
GM = .
1 0

A N[ -a
det(oﬂ—u)=‘1 A’:ﬂ—l,

Then

i.e. A12 = %£1. In other words, the action of 8XM on its eigenkets IT))/CV‘, |¢)§M is
sMIM=InM MM =10

It follows than that (see Eqs. (6.158a) and Prob. 6.22)

= () = ()

Since a density matrix is a Hermitian operator (see Sec. 5.2), its eigenstates form a
basis in the Hilbert space (see Th. 2.2). In this basis it is apparent that the off-diagonal
terms of the density matrix are exactly zero.
We have

1
V2
In the limit of a perfect overlap between [y4(f)) and [ (¢)), we have
(¥4 @) | ¥, (1)) = 1, and it follows that

lo(0) = —= (IV1@) 11) 2 + 1Y) 1) )

1
s =y wanwar( () (1 1),

where | (1)) = [y (1)) = ¥, (1)).
By making use of the relations (see Eq. (6.147), (4.87), and the first of Eq. (4.85),
respectively)

(1+6) 1) =11,
a0y =0,
do|N) =+/N|N —1),

| =

we derive
(N |fisa| N = 1)11) =& VN,
which yields
€4 VN, ~ 1.
(1) In order to diagonalize the Hamiltonian it suffices to substitute the definitions
(9.215) into Eq. (9.61), so as to obtain
il (b) = %%‘ (1-+6) (Bibo — i)



9780521869638so0l CUP/AUL November 6, 2008 18:21 Page-37

37

Solutions to selected problems

(ii)

The eigenstates of A S A(l;) will be given by

1 A% ~p N—v
190511) = <= (B) (51) 10111,
with
ﬁgA<13>|v>b|¢>=%‘(2v—N)|v>b|¢>.

Taking advantage of the expression

where

and

the initial state can be written as

|\I/SA(IO)>=(%>NN ( ) 57) o8y
o) ;my T

_ 1 _1\N—v W
‘(ﬁ) v;( DV e 0519).

Inserting this expression into Eq. (9.67) and making use of the above eigenvalue
equation for Hg ,(b), we obtain

N! v—N)t
|‘I’SA(I)>—C+|:< ) Z( % e ”>|v>b]|¢>

~IN) |¢> .
In order to obtain the final state (9.68), it is necessary to transform back to the

physical states |ag) , |ay), i.e. from |v), to |n). The transformation is standard
but rather cumbersome, and requires some relabeling.
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9.8

9.9

9.10

VATIRS 12 | /IZ>
> 2> 1

, 11> N 1> / 11>

| N s

1>/1 2> 1> 2> 1> < >,

Stirling’s formula states that, for large m,

1
In(m!)>~mlnm —m + Elnm.

Taking only the first two (dominant) terms of this expansion, and substituting the
resulting approximation

m! >~ mme ™

into Eq. (9.73), one obtains Oy = 1.

With reference to the above figure, we label by |1) the input state, that is trans-
mitted at the first and at each subsequent beam splitter, and by |2) the state that is
reflected at the first beam splitter and then transmitted at each subsequent beam split-
ter. Using the generic mapping derived in the solution of Prob. 3.12, we may write
the transformation at the first beam splitter as

1) = T|1) +:R|2),

where, for the sake of simplicity, we have assumed R and T to be real. The subsequent
two mirrors and beam splitter induce the transformations
TI1) » T(T|1) +:R]|2)),
iIR|2) —» —R (@R |[1) +T|2)).

Collecting these results, we have
TI1) +1R|2) 1 (T2 —R2) |1) — 2RT|2).
This means that, after two beam splitters, the state has become

|Out>2=lC0S£|1> —sin£|2),
N N

where R = cos /2N and T = sinm/2N. It follows that, after N beam splitters (with
N even), we shall have

lout) , occos%ll) +sin%|2) =[2).

In order to prove that §; is a density operator it is sufficient to show that p; = ,6;(
and Tr(p;) = 1.

Since p is a density operator and therefore p = 5", the first condition is immedi-
ately verified. In order to verify the second condition we use the cyclic property of
the trace and the fact that 13]2 =P ' to obtain
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Tr(ﬁjﬁﬁj> TI‘<,5 A]2> Tr(,ﬁ Aj)
Tr(p;) = N T T AN T A
Tr <,0Pj) Tr (,on> Tr (,o j)

9.11 In this case we have, using Eq (9.110),

T(ﬁ,-) =|v) (] p; |v) (v] =sin® 6 |v) (v].
Similarly, using the cyclic property of the trace (see Prob. 5.4), we obtain
Tr[7 (p;)] =Tr [ﬁvﬁiﬁv] =Tr [ﬁvﬁl] =(v]p;|v) = sin® 6,

where we have used the obvious fact that 133 = f’v (see Eq (1.41b)). The desired
result immediately follows from the latter two equations.

9.12 The problem can be solved by making repeated use of the cyclic property of the trace
and the linearity of the trace operation, that is,

Tr [[37* (é)] =Tr [,6 > é,jéék}
k

k
:ZTr
k

= ZTI’ 0Al9k,52§]j
k

= S T [0p]0
k

9.13 From Eq. (9.122) and from the fact that Tr[,éf] = 1 it follows that

5o(xm)Tr [l?’l(xm)ﬁiw(xm)] =1,

from which, by the cyclic property of the trace, it further follows that
Cm) = Tr [T Cen)d i) |
On the other hand, according to Eq. (9.120)
) = Tr | ECon)fi |,
and therefore we have
Tr [&T(xm)é(xm),ai] =Tr [E(xm)ﬁi].

Since the previous equation must hold for any p;, this implies that 3 )P () =
E ().
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9.14 Using expressions (9.125) and (9.127b), we have

+oo +o0
N I A1 oAl
| st (ss |6 ] s5) = [ dsmpton) (x51 o Bt B x5)
) 7+<>o
/ dx (x| / dxs [pCmlxs)]? s (x5l
=
< i [ dx Lo xg]F g )

Given that (xs | y) = 8(xs — y), where | y) is an arbitrary eigenstate of x, we finally

obtain
oo +o0
[ dxasten ss |8 wn|xs) = [ dimptlzs) (xs]5] x5
Ea e
= (xs [pi] xs)-

9.15 The first beam splitter, the mirror M1, and the phase shifter induce the following
transformation on the initial state | 1) :

BSI,M1,pS 1
= — (1)

[1) —-12)),

which, after the second mirror and BS3, becomes

L s (i ) - 12)

The final state, after BS2, can be written as

lf) = f[tel¢ff(ll +112)) —e’¢\/1—nl3>—%(lll>+|2))}

— et - )1 - L (e _ VT
=5 (V=111 =5 (Vn+1)12) 5

[\

The detection probabilities can then be calulated as follows:

1
= - 1)
_1 /1 cos ¢
—Z( +1)—T,
1 /1 €os ¢
692—1( +1)+T,
1 —n
23 = .

l\) ‘
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In the case in which n = 1, we have

1 X

= _(1— — =,
©1 2( cos ¢) sm2
1 ¢

- - — cosZ 2
2 2( + cos ¢) = cos >

3 =0,

whereas, when n = 0, we obtain

P1 =82 =

= =

3

9.18 It is easy to show that

By =3 [BF +nBP — i (B - BY)]
_|:}1(1+77)—‘/TECOS¢ %(l—n)+t‘/7ﬁsin¢j|
B %(l—n)—l%ﬁsimb }T(l~|—n)+*/7ﬁcos¢ '

By = L [B7 +nB] + i (BY - #Y)]

La4n+Ycosg L1 —n— 1% sing
Ta—m+1sing L 4+n—Lcosg |
. sp 11— 1 -1

1 _ P _ n
By=(—n Bl =" [_1 : ]

Now, we need to calculate the three expectations for the three detectors, that is

p1=(10) 417(14"7)—\/7500%) i(l—n)+l*/7ﬁsin¢ <1)
%(l—n)—l*/?ﬁsinq& %(1—{-7})—{-400&;& 0

_l _ﬁcos¢>

=1 0)|: }T(1+n)+*/7ﬁcos¢ }T(l—n)—l%ﬁsin¢:|< 1)

La—p+1¥sing L1 +m—Lcoso 0
1 J/1cos ¢
= - D+ X"
4(n+)+ 3
and
l—-n[ 1 -1 1
=0t (0)
_1-n
=

which fit with the previous calculations.
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9.19 The proof of completeness is straightforward. Indeed,
. ~ . 114 N L~ L~
By + Ey+ B3 = 5[Pf+npf—ﬁ(P2"—P}’)]
J R A A . .
+5[Pf+nPf+ﬁ(P2"—Pl")]+(1—n)Pf

=P +nP] + Pl —nPl

>

I
~>

The proof of the non-commutability of the above effects is more cumbersome. We
here only consider the non-commutability between E; and E3. In order to simplify
the proof, we take n = 1/2. Then,

s Bl 2 (py_pv\pP_ 2 pP(pY _ pY
I:El,EZ:I:Z[E(Pl_P2)Pd__d<Pl_P2>
1

S

2
172 /.« n 2 am /sy s
z_[— 2P1V—1>P7’——Pf(2P1V—1>
412 V2
I (S
——PP(2PV—I)+—(2PV—I>PP]
2u 1 ﬁ 1 u
L (5vpP _ sPpY
:2\/§(P1 PP - BT BY),

which, as a direct calculation with the explicit expressions (9.133) and (9.137) of the
involved projectors shows, does not vanish (see also Eq. (2.90)). The formal reason
for this result lies in the fact that projectors 131V and ﬁup belong to different sets.
9.20 See the original paper [de Muynck et al. 1991].
9.21 We are looking for the N functions P, (D) which make the quantity

N
€ = [ 4Dy RDI, @)

j=1
as small as possible. These probability functions are evidently subject to the
conditions

N
0<p, =<1 > p, D)=L
j=1

It is clear that the average cost will be minimum if the integrand in the rhs of the
first equation is chosen to be as small as possible for each data point D € R". This
procedure corresponds to the choice, at each data point D, of the hypothesis for which
the risk R;(D) is smallest. In practice, at each point D for which Ry(D) < R;(D)
(Vj #k), we choose

on D) =1, oy (D)=0.

This is the required solution.
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9.23

9.24

9.25

In order to render the solution more compact, and to facilitate the comparison with
the quantum case, we may also introduce the function

L(D) = min R;(D),
J

so that we may rewrite our solution in the form
[R;j(D) — L(D)] gy, (D) =0,
R;(D)—L([D) > 0.

Finally, note that, by summing the first of the latter two equations over j, the function
L(D) may be rewritten as

N
LD) = ) R;(D)gp,, (D),

j=1

so that the minimum average cost can be simply expressed as

Cuin = [ _dDLD)

RD

In case of binary decision, detection operators commute, since EHl + EHO = [.The
Lagrange operator (see Eq. (9.177)) is given by

L= ﬁOEA'HO + 7%1 EHI,
and we have

Ro— L= Ro — Robwy — Ribyy, = (Ro— R,
Eq. (9.178a) now becomes
(7%0 - 7%]) Ew, En, = 0.

Since in general the operator 7@0 - 7@1 does not vanish, we again deal with projectors
because EHI and EHO must be orthogonal. In conclusion, in this case the optimal
POVM is given by a PVM.

In view of the symmetry of the expression (9.208), when it is integrated over the
hypersphere the terms with k # j vanish. Moreover, since Y ;_, |c,’<|2 = 1, we have

/ dS|C/|2_l/ dsi|cl|2_A2n
San ¢ nJs,, k=1 ¢ n’

which proves the result.
We have

ol 1))

because, for any state | @),

(e |o]e)=el ¥)I* < (0] o).
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Chapter 10

10.1

10.2

If the two values of E in Eq. (10.27) are equal, we must go to the second order for
removing the degeneracy. By multiplying from the left both sides of Eq. (10.9¢) by
(¥ | and (¥ |, we obtain

S0 (v [ ) — g £ = 0. e || v} i =0,
n n

where the prime on the summation symbol denotes omission of the two terms n = ¢
and n = [. Substitution of c,(,l) from Eq. (10.30) into the previous equations yields

~y 2 At A
NI NCICAIACD
o —E? |dg+ ) = d =0,
n E()_En n E()_En
(v |81 | ) (v || v w |8 [
I 1
1 n n q> ’(l n>
Z 0 dg + Z 0 ~E@ |d =0.
n E(O) - Ei(1 ) n E(O) - E}(1 )

Making use of the argument employed after Eq. (10.27), the analogues of
Egs. (10.28) are

(A N A A A
L o X o gD
N CAAAITAIA

=0.

2

0
= p0— )

Unless both of these conditions are satisfied, the degeneracy is removed in second
order. A generalization to higher orders and to the cases in which the “ground” state
is more than doubly degenerate is straightforward.

From Egs. (4.73), we obtain

f= -0 (a"+a).
2mw
and
4 BN (d | ot L emn )2 -2 st ) - )
b :(%> <a +4a'a’ + 6a +6(a> a”+ 12a a+4(a> a+6(a)

+ (&T>4 + 3),

where we have made use of the commutation relation aa' = 1 +a'a in order to
write the annihilation operators to the right of the creation operators.'? From the

10 Thjs way of ordering terms involving annihilation and creation operators is called normal ordering.
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previous equation we immediately infer that (n |£*|m) is different from zero only
whenm =n —4,n —2,n,n + 2,n + 4. In particular, we easily obtain
A\,
n> =|—) (6n”-+6n+3),

<n
2mw

(n el 2) = (5 ) can s 0 Vs D 59,

5&4

<n ‘x4‘ ot 4> - (%)2 SO+ D)+ 20+ 3+ 4).

In deriving the previous equations we have taken into account that, for example, in
the last one only the a* term survives.

10.3 Starting from Eq. (10.58) and using Eq. (10.62), we have

2w |B| i) o /

_ = / dt’e' @Rt sin wr’
1h PSS

<wk ‘I:I,/ I,//l> loo , Too ,
- _ [f dt' et wktoi’ _ / dt e @) i|
0 0

et > 1) =

1

(v
th
10.4 The problem is solved by considering that
e 1 = () (e )
=2 (¢ 4 e)

1ﬂ1> [el(wk1+w)too 1 =0 _ 1]

wi + w wy — W

t
= 4sin® x_
10.5 Hamilton equations (1.7) give
. Px
X=—,
m

p x = _V/(x)’
where V(x) is the potential energy of the one-dimensional Hamiltonian H =
p)zc /2m + V(x). Then, we have

s b VO _fO)

m m m

which is Newton’s law. Finally, we obtain

Y= ) _1dfdx Px )
m m dx dt m? '
10.6 Quantum-mechanically, Egs. (3.126) and (3.128) give

i= p =V,
m

from which it follows that
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10.8

Making use of the Heisenberg equation (3.108), we have

~

i = [8.8] = [r.A] = 5o |29, 53]

Now,
(£, 52] = F@IBE = BEFG) + P fOIpx = S B
= [f &), Px] Px + Px [fR), Pr] = th [/ X)Px + Pr f' (D)),

where we have taken advantage of the result given in Prob. 2.26. This proves the
final result.
If VW()?) is small, according to Egs. (10.117), one has

y= () - = BLE gy

= L (02 + monU) = const
T o2am \P e ) '

Applying Eq. (3.107) to the operator £> — ()E)z, one has

Srat = S =) = (5 (2 - 7))

Proceeding in a similar way, with (d/d t)oxz, one obtains
d? 2 2 5, 1 viiesv)\—a v
WUX_WUP_E X +x - (x) 5

where

is the square deviation of p, from its mean. If we replace V' in the last equation
with the first two terms of the expansion (10.116b), we arrive at

d? 2
2 o 2 _ " _2
ﬁax T m? ( p—mVe U")’

or, by taking into account that  is constant,

d2 2 4 2
d?O'x ~ E (1’] — VCNO'X>.

This last equation, within the approximation V"(%) ~ 0, is rather general.
In the case of the free particle, (%) performs a uniform rectilinear motion with
velocity ( ﬁx> /m, and the momentum square deviation remains exactly constant, i.e.

oy (1) = op(to) = 2mn.
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10.9

Morevoer, since

2 2
L0}
dr2 " m?

one rigorously obtains Eq. (10.119).
Finally, if the free wave packet is taken to be minimum at time 7, i.e.

00 0 (t0) = 7

then dxz(to) = (0and

1
2)2
Ax(t) = {[M(r@]%[%ﬁw (r—ro)] } .

The second “spreading” term of the rhs of the previous equation allows a classi-
cal interpretation of the free wave packet: a bunch of point-like particles-initally
contained within a small interval Ax(#y) about the average value ()? (to)). Since the
velocities of these particles are dispersed over an interval

Ap.(t
Av, = px(to)
m

about the group velocity of the packet

1
(ﬁx (IO)) s

vy = —
m

then particles initially located around the same point become uniformly distributed
over a band Avy - ¢ at time ¢, and the width of the band increases indefinitely.

The Hamiltonian of the harmonic oscillator is given by Eq. (4.48). Then,
Egs. (10.118) may be rewritten as

d . )7 d . A
o (x> = % and o (px> = —mw’ (x),
which imply
d> . . d* . R
L= -0?) wmd () =0 (5.

i.e. (%) and (p,) carry out sinusoidal oscillations of frequency /27 about the origin.
Moreover, we have VCH = ma)2, i.e.
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10.10

which show that 03 and 03 oscillate sinusoidally with frequency w/m about

2

o, =—— and o, =mn,
maw> p
respectively.
The conditions
2 2
d—02 =0 and d—az =0
dr?2* dr? P
require
2
2_ %
Ox = 55>
mew
or
2
o
n= £ = ma)zoxz.
m

As we see in Ch. 13, this is equivalent to the condition for a state to be coherent (see
Subsec. 13.4.2).

Consider the potential depicted in Fig. 10.4. When x < x;, we have V(x) = Vp =
const. Instead, when x > x1, V(x) is a positive function decreasing monotonically
from the positive value V(x1) to V(oo) = 0. The point of discontinuity x; and the
turning point x, divide the x-axis in regions I, II, and III. In order to find the trans-
mission coefficient, we must construct the solution of the Schrodinger equation
whose asymptotic form in region III represents a purely transmitted wave (in the
direction of increasing x). In that region, the WKB approximation will have the
form (10.134). The condition we impose upon its asymptotic form determines that
solution (to within a constant), that is, for x > x,

3 1w . 1 om
Y = A2 | cos / dx— —1— ) 41sin / dx———11,
X2 A 4 X A 4

where the phase 7 /4 has been added for the sake of computation. According to
Egs. (10.139), this solution extends to region II (where x; < x < x7) in the form

1 S | 1 o
Y1 = —1Ag exp (/ dx—) = —1rje’exp (—/ dx—),
x )‘q X1 )“q

X2 1
T = / dx—.
x] Aq

h ke V2mE = Vol
2m[V(x)) — E] 4 N h ’

in region I the solution of the Schrddinger equation may be written

where

If we define

)\q(xl) =

Y1 = Csin[k(x — x1) +6),
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10.11

where the constants C and § are obtained applying the continuity conditions to the
wave function and its logarithmic derivative at the point x;. One then finds that

and Csind = —1,/Aq(x1)e".
)\q(xl)

Given these results, one can calculate the transmission probabilities (see also Sub-
sec. 4.2.1). Finally, it should be noted that the present calculation is correct if V (x)
varies sufficiently slowly in regions II and III where the WKB approximation has
been made. This in turn requires that the barrier be at least several wavelengths thick
and that the trasmission probability be extremely small (< 107).

Even though following result can be cast in general terms, we shall limit ourselves
to a particle moving in one dimension. Let us start from Eq. (3.99) for the one-
dimensional case, i.e.

kcotd = —

Yix', 1) = /de(x/,t/;x,t)tp(x,t),

where we have omitted the 1 factor (see footnote 16, p. 390). In order to derive the
desired differential equation, we consider the case in which the time ¢’ is only an
infinitesimal interval € after 7, i.e. t' = t + €. Taking into account Eq. (10.191) and
the fact that for a small time interval € the action is approximately equal to € times
the Lagrangian, we have

X+X/ X—X/

+00
Y(x,t+¢€) :J%/ / dx/eei»,*L( 2 ,T)I/f(x/,t).

In the one-dimensional case with a potential V (x, ),
. I .,
L(x,x) = imx —V(x,t),
and

i m(x—x’)2 _L

x4x"
Yx,t+e)=— | dxlef” 2% e hgv( 2 ’t)l/f(x/,t).

Consider the first exponential in the previous equation: if x’ is appreciably different
from x, this factor oscillates very rapidly, making the integral over x’ vanish. Only
for x” values that are close to x do we obtain significant contributions. We therefore
make the substitution x” = x + 1, where we expect important contributions only for
small values of 1. This yields

+oo
! mr]2 n

Y(x.t +€) =% / dne 3 e KV OHI0 Y 4.1,

where the main contribution to the integral will come from values of 1 of the order
J/€. Expanding in power series the lhs up to first order in € and the rhs up to second
order in 7, we obtain
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1 ,3%Y
ot ax 27 ax2 |

+00
I//(x,t)-‘rG% = j%/ / dnelﬁ% [1 — %V(x,t)] |:1//(x,t)+n— +-n"—

where we have replaced €V (x + n/2,t) by €V (x,t), since the error is of order
higher than €. Let us consider the leading terms in both sides of the previous
equation. We have

L m r]2

—+00
vf(x,r):w(x,r)jiv / dnek %

In the limit as € approaches zero, the normalization factor A/ must be chosen so that
the equality holds. Since!!

“+o00

2 T
/ dxe™ = [——,
a

—00

where a is a complex number, we have

N <2mhe>é .
m

By making use of the integrals

and!?

we finally obtain the equality

e+ =yt - v nteon - 2TV

X, €e— =Y(x,t) — =Vi(x, X, 1) — ——.
ot h 2im 3x2

This equality holds to order € if ¥ (x, t) satisfies the differential equation

BN h? 9%y
= T T 5 Vv 1 5
"ot 2m axz T VDY

that is precisely the Schrodinger equation for a one-dimensional system. In a similar
way the same result can be obtained in more complicated contexts.

' [Gradstein/Ryshik 1981, 3.322.2].
12 [Gradstein/Ryshik 1981, 3.462.8].
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A

Chapter 11
11.4 We have:

lim y(x)=0, lim y(x)= 4o0.
x—+00 x—0F

Furthermore, studying the first and the second derivatives, we obtain a minimum at

(see figure above)
2a b2
XN=E\|—7T>—"7)
b da

3a  2b2
=——].
2 b 9a

and a flex at

11.5 The reduced mass is given by

from which we derive
Me —m Am

ne ne
nme

= T
In the case of the hydrogen atom (Z = 1), we have

Am

ne

~ 0.05%.



9780521869638so0l CUP/AUL November 6, 2008 18:21 Page-52

52 Solutions to selected problems

11.6 Starting from Egs. (11.13c) and (11.18), and making use of substitutions (11.21),
(11.23a), and (11.24), we have

ﬁI—Er__i[E h_za_Z_h_21(z+1)+Z_e2]
Ey  Eg " 2mar2 2m r? r
K Bt 92 r* 10+ Rm* Z
T Ey 2m2e*9r2 ' 2m2et 2 me2r
.22 r2id+1) A
=E-gsaty T Ty
- 193 110+ Z
:_E__T A~ ~7 T <>
2072 2 72 r

from which, for Z = 1, the desired result can be derived.
11.7 Substituting Eq. (11.27b), i.e.

2 2
gm=| -y W) ,a+br 1, ")
- 72 w w2 2 n? W2

20 +1 20+ HwW' 2w/ i
—(Jf)+(4f) — 2 |[f*lemaw,
nr rw nWw

and Eq. (11.26), i.e.
T W) = £
into Eq. (11.23b), we obtain

I+1 W' (W) a+12 1 (W) 20+1
ko owr (W)T e+ 1 (W)T 204D

0=
72 + w w2 72 n? w2 nr
L2EDW oW 12 D],
rw nW  n2 7 72

W2+ 2\ W 2/ 141
= W+<F QW+EQ'7JF

By multiplying by W7, we obtain finally the desired result.
11.8 Consider Eq. (11.30) with z = —y, that is,

d? d
_ — —y) —af(—y) =0.
yd(_y)zf( y)+(7/+y)d(_y)f( y) —af(=y)
It is easy to derive
—dz()+(+)—d()+ »=0
o =0,
ydyzgy yTy d(y)gy gV

where g(y) = f(—y), which shows that the solution of this equation has the form
g(y) = F(a;y;—y). For y = n we obtain the result (11.39).
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11.9

11.10

11.11

11.12

For each value of n, the possible values of / range from O to n — 1; moreover, for
each value of [ there are 2/ 4- 1 sublevels. The total number of degenerate states is
then given by

n—1

2 -1
Y@+ = %Jrn:nz,
1=0
since
ik _ m(m2+ 1)’
k=0
and
m
1=m.
k=0

We find Ryo(7) and leave the following ones to the reader. In this case, we have
n =1, =0. As a consequence (see Eq. (11.45)), we have co = 1, c¢; =0, and,
for any j > 1, ¢; = 0. This implies that (see Eq. (11.47)), W(n) =1, and (see
Eq. (11.26)) £(r) = Fe . Finally (see Eq. (11.19)), we obtain

Rio(F) e,

Again, we find the normalization factor for R1(7) and leave the others to the reader.
Denoting by AV the normalization factor for Rjo(r), we must have

—+00
N? / dre 0p? =1,
0
Integrating by parts, we obtain
+o00
/ dxe *x* =2,
0
which implies
r0\3 , »
2(3) V=1,
2
or
-3
N =2r, 2.

Again, we find the radial probability density corresponding to Ro(r) and leave the
others to the reader. We have
4r2

_or
P10(r) = —e 0.
o
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11.13 Using the explicit form of the radial wave functions (Eq. (11.51)), we find

() e N o R SR
())-5(6) )
<<:_O> >: w1+ ;) (+1)

Notice that the latter case is divergent for / = 0, but finite for / > 0. This is due to
the fact that R(0) # 0 only for [ = 0, and in this case the radial integral is divergent.
The previous results may be used to obtain an interesting consequence. We know
that, for a hydrogenoid atom,

and

c is the speed of light, and

o0=—1—
hic 137
is the fine-structure constant.

Moreover, the mean value of the kinetic energy becomes

() = (A) — (V) = By~ 25, = gm {1?),

v\ AT)  (Za\?
()= 0= (5

For most hydrogenoid atoms this ratio is small because Z is much smaller than 100.
11.14 Impose that the condition

so that

+o00 T 2
/drrzfde sin9fd¢|<pnlm(r,9,¢)|2 =1
0 0 0

is satisfied for ¢100, ¥200, ¥300-
11.15 Make use of Egs. (6.68)—(6.69) and Eqgs. (11.51) and impose the condition of
Prob. 11.14.
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11.16 The s-levels (I = 0) are obviously unaffected by the spin—orbit interaction, since

11.21

11.22

1-§ = 0 identically.

For the p-levels (I = 1), we have either j =1+ 1/2=3/20r j=1—-1/2=
1/2. In the former case, the energy correction is equal to x /2, whereas in the latter
it is simply given by —«, where k = x;=1(n).

Similarly, for the d-levels (I = 2), the correction is equal to k;=>(n) for j =5/2
and to —3k;—>(n)/2 for j = 3/2.

Finally, for the f-levels (I = 3), the correction is equal to 3x;—3(n)/2 for j = 7/2
and to —2«;—3(n) for j = 5/2.

It should be noted that the proportionality constant x grows as Z*. As a con-

sequence, the spin—orbit correction is particularly important in the case of heavy
atoms. For example, the spin—orbit correction to the 6p level of thallium (Z =
81, A = 204) gives rise to a shift of about 1500 O A in the wavelength of the radiation
emitted in the corresponding transition.
From the definitions (11.112), we immediatly infer that the unit of length is given by
ro. Moreover, the unit of mass is simply given by the electron mass m,, and the unit
of electron charge is equal to the opposite e of the electron charge. Finally, since the
physical dimensions of energy are given by

[E] = [m)[1)*[1] 2

we obtain
h4 [_2 mee4
Me—— = —,
“m2et? h?
where 1y is the atomic unit of time. From this it follows that

h3
meet’

fo =

We have

1
Eil) —/dl‘ldl‘ze 2Zr1 o= 2Zr2

27.”,2 —27Zr)
:—/drle Zz”/dm/dcose
r —|—r2 — 2ryracosé

cosf=—1

ZG
= —2271/dr1e722r1 /dr2r2 72Zr22 2 r1 +r2 — 2r1rpcosf
T rirn

cosf=1

276 1
= [ drje " /drzrze_zzrz— [(r1 +72) = |r1 —r2]]
T ri
226 —27Zr ri o)
dry ¢ |:f drze_zzr22r22 + / dr2r26_22r22r1i|,
s rl 0 rl

where 0 is the polar angle. From the previous equation, given that, if r, < rq, the
second integral in the square brackets is zero, we finally obtain
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226 00 672Zr1 r
E%l) = —167{/ drir / drye™2%2p2,
b4 0 r 0

where the extra factor 2 comes from the contribution of all the symmetric configu-
rations in which r» > r;. Now, we compute the previous integral by making use of
the expression'3

r | "o k
dxxe % = U _ gun Z n_ow
MnJrl k! Mnkar] ’
0 k=0

obtaining
2 2 2r r?
H 6 —2Zr —2Zr 1 1
E) =322% | 4 = - ! — 4L
I / rie [(22)3 ¢ <(2Z)3 taze " 22)}
5
=7
8
Chapter 12

12.2 The solution of the problem can be found by making use of the mathematical
identity
VA(f) =V [V(f9)]
=V [eVSf+fVg]
=gVif + fVPg+2V Vg,
for any pairs of functions f = f(x,y,z)and g = g(x,y,2).

12.3 Given the simplifications (12.16)—(12.21), by making use of the definition (12.10)
and of Eqs. (12.11) and (12.13), we obtain

Ny h2 Ny hz
2 % 2 7
[_ZM k+Vn+Eei|w(PrZ=§0r2’|:_Zm k+Vn+Eei|w,
k=1 k=1

from which the result is easily obtained, since the equality

N
n hz R
(2 |:_ Z MVI% + Vi + Eei| Y= E'(//@rz
k=1
must hold for any P
12.4 The change of variable (Eq. (12.27)) is equivalent to the following six changes of
coordinates:

. MmaX}y + mpx, _ mqyy +mpy, _ mazy + mpzy,
c — > c — ’ c —
mg + myp mg + myp mg + myp

X0 =X, = Xy YO= Y, =Yg 20=2p — Zgs

given r; = (x;,y;,2;) and 1y = (x;,y,,z;). Limiting ourselves to the x-
coordinate, we have

13 See [Gradstein/Ryshik 1981, 3.351].
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d _ 0x, 0 dxg 0 o myg d 0
dx;  O0xg 0xc Oxg0x0  mg +mp dx.  Oxo
d 0x, 0 dxg 0 mp 0 0

)

0xp - 0xp 0x, B_xba_xo T mg +my 9x, + dx0

from which we obtain

P omi 9 N 9? 2m,  0*
8x3 © (ma +mp)? 8x§ axg Mg + mp 3x:.0x0
32 m3 32 92 2mp 32

— =t :
ax}  (mg 4 mp)? 9x2 8x§ mg + myp 9x.0x0

Taking into account only the x-coordinate terms in the Laplacians of Eq. (12.24),
we have

2 92 2 92 h? 32 K% 9?

2mg 932 2mpox2  20mg +mp) 0x2  2m 3x2

Adding the similar terms for the y- and z-coordinates, we finally obtain the desired
result.
12.5 We may write

(A + A5) 0uCa)os(6,) = E@u(ra)py(ry),
ie.
bt Haa(ta) + 0a(ta) Hppp(tp) = E@a(ta)pp(rs).
This last equation leads to
E=E,+Ep,
provided that we have

ﬁa‘/}a(ra) = Eq04(ry),
Hppp(rp) = Eppp(rp).

12.8 See the figure below, which represents the Morse potential for a diatomic molecule.

A
V(r ab)
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12.9 Just make use of Eq. (12.48) to derive
d dr d

d
= —= = —ar——,
drgp  drgp dr dar

and, consequently,

d? d d 5. ( d _d? )
= =ar|\—+r—).
drgb drgp drgp dr dr?

12.11 In order to solve the problem, we need to make use of definitions (12.50), which
implies

o EVib N vanD]1
— [—( )+ ] ,

a2h2 n 5 ah

from which Eq. (12.55) is easily obtained.
12.12 Let us first rewrite Eq. (12.55) as

, 1 2D 1\? a?h?
EV®=_p — ) ha,| — — - ,
n +<"+2) N <"+2> 2m

where the last term represents the anharmonic correction of the Morse potential.
Comparing the first two terms with Eq. (12.42), we have

2D
wo = a,/ —.
m

Chapter 13
13.2 Inserting Eqgs. (13.3b), (13.9), and (13.8) into Eq. (13.1d), we obtain
1 92
V x(VxA)=———A.
X (V> A) c? 912

Using the mathematical identity
V x (Vx V)=V (V-.V) -V,
which holds for any vector V, and Eq. (13.7), we arrive at

1 92
VA = — —A,
c? 912

which is the desired result.
13.4 The expression (13.20a) for E(r, ¢) is calculated using Eq. (13.9) and making use of

the expansion

N 3 ~ r — N —1k-
A= ZCkI_Z [I:ak,lelk r okt + alt,le 1k rela)kt] e
k

+ I:&k,zelk‘reflwkl + &l'i’zefzk-reta)kl] 62} i
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13.5

from which we obtain easily the desired expression for the electric field. The
expression (13.20b) for B(r, ) is a bit more cumbersome to derive. We recall the
mathematical expression

v, Vv oV, V. v, vV,
Vv (D 0y, (D _3Ve) (9 9V,
ay 9z 9z ax ax ay

for any vector V, from which, taking into account that

ezk-r — el(kxx+kyy+kzz),
we have
V x (e’k're1) = 1k.e'*Ty — zkye’k'rk,
V x (e_’k'rel) = —1ke KTy +ikye Rk,
V x (e’k‘rez) = —1k,e'*T1 + 1k, e'* Tk,

V x (e_'k'rez) = +ik,e Ty — ke KTk,
Collecting these results together, we have

~ / A JT— ~ —_— r—
VxA=1 ch ”ame’(kr ot) _ altyle ter ‘”"’)] e
k

_ I:&k’zel(k-rfa)kl) N &11 2efl(k-r7wkt):| e }

! ~ k-r—awyt AT —i(kr—wkt
=1 ch [(ak’le'( r-okt) —ay e 1(kr—ox )> b;
k

+ (&k’zez(k‘r—wkt) _ &:( ze—t(k»r—wkt)> b2>,

since ky = ky = 0, by = e; and b, = —e; (see Eq. (13.21)), and where

C (e . hk \?
C, = _— = | —— .
K77 2¢13 2cPeg
Let us first compute the squares of the electric and magnetic fields

~ haw 2 N
2 _ k |2 okr _ (pF —ukr | A AT AT o
E° = E :26013 —adgae (“k,;\) € T akady; + o ai |
k.4

- nk 2 N
2 £2  ukr _ (oF kT A Af AT oA
B = Z el —ay ;e " — (“k,k) e akaay , +ay;dx |-
kA

Now, due to the periodic boundary conditions, we have

dreZZkT — 0
13 ’

1 2mny 1
dxelkxx — — 7T X x — 0’
1 1ky 0

and similarly for the other components.

since
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13.6

13.7

13.11

Substituting these results into Eq. (13.22) and using Eq. (13.2), we obtain
Eq. (13.23).

In order to evaluate the trace in Eq. (13.32) it is easier to work in the energy
(number) representation, where
o . o0 1
28 = Y (n]e P |n) = Yo Pel)
n=0 n=>0
o0 L Bhaw
=iy (e_ﬁhw)n - 16 iﬂhw
n=0
(a) We have

1
InZ = —E,Bha) —1In (1 - e‘ﬁh“’>,
and, therefore,

d 1 how
(E) = —ﬁan: Ehw+el9’““——l

(b) The same result can be obtained by making use of the number distribution. In
fact, since the energy is diagonal in the number basis, we have

oo 1 e—ﬂ(n—&-%)hw
2 (” * 5) )

n=0

00
(E) = Z E,ppn =
n=0

how ad e—ﬁ(n-i—%)ha) hw > ne—ﬂ(”-ﬁ-%)hw

2Z(B) o Z(B) o
= he + hw (1 - e_ﬂh“’) ine_ﬂ”hw
2
n=0
hw hiw
=% T

where we have made use of the mathematical relation
o

. n_xn_l — i xn o ;
n=0 dx (1 _-x)

Take a generic matrix element of the operators ¢'% and e—'9 in the number basis.
Then, using Eq. (13.39), we have

@

- (nlm—1)=06,m—1 for m+#0
1 = ’
¢ )m> { 0 for m=0

and
(n e

m):(n|m+1)

= 5n,m+l-

*

Since for a Hermitian operator O we must have O, = O,

that e!¢ and e~'¢ are not Hermitian.

we have also proven
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13.12 Making use of Egs. (13.37) and (13.40), we have

13.14 In an eigenstate of the number operator we obviously have AN = 0. We also have

(n |cosg|n) =0,

<n ‘STITl(b‘ n) =0.
However,

1 | e
<n ‘C’O\s2¢>‘ n) =2 <n elPeld 4 elPe=1 | om1beld 4 omiPe1d

|

The same values can be derived for (n ‘sﬁ]%‘ n) This means that both Acos¢ and

)
if n#£0
if n=0"

ENIENTI

As/iﬁqb for n # 0 are equal to 1/+/2, which confirms that the phase is completely
undetermined for an eigenstate of the number operator (i.e. it corresponds to a
uniform phase distribution between 0 and 2r).

13.15 By using Eqgs. (13.20) and (13.17), one has

E —cp {I:&ez(krfwt) _ aTefl(k-rfwt):I el + I:&el(krfwt) _ aTefz(k'rfwt):I 02} ,

and

ﬁ =cp ”:ael(k-r—wt) _ aTe—z(k-r—wt)] k|ey — I:&ez(k-r—a)t) _ aTe—l(k-r—wt)] |k|e1} ,

ho \? ; hk \?
= an CR = 5
E=1\ 2e3 B =\ 2cel3

and we have made use of the fact that

where

b1 =k x e = |k|e2 and b2 =k x € = —|k|e1.

We also have
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By recalling that the vectors e; and e, are parallel to the x- and y-directions,
respectively, and that k is in the direction of z, the first commutator reads

A A ha)2 . ot 2
[EX,BX] = —2c€013 — (a —da ) N

and similarly for the other commutators.
13.16 The first equation is trivial, since, by using Eq. (13.49a), we immediately obtain

(a ‘&T&‘ a) = |a|?.
Analogously, we have
At ant A

<Ol a aa a (¥>
|a|2<a ata + 1‘05)
ol (1+1a),

Aan =l (1 + o) - laf*

2
=/ la|” = |el.

7). -

from which we obtain

13.17 Inverting Egs. (13.61), we obtain
S RO
a = _Z(Xl +lX2)7

5

. 1 - A
a' = —(X1 —1X»).

V2

Comparing with Egs. (4.73) we may identify X and X> as

P 3
= _— X,
: n
1
o 1 2
Xo=—— Dy.
2 <ma)h) Px

13.18 Let us first write an explicit expression for the uncertainties of the quadratures in
the coherent state | «) . Then we have

e 5] o)~ (e 1] )

1 . .
- \/E [<a ‘az +aa" +ata +(&T)2‘a>— (<a

A

X

Y2
Xl

Aozj\(l

A LA 2
i)

and
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13.19

where we have made use of Egs. (13.61). Now we know or may easily derive that

a' Ol) =a¥,

([a] o) = (a
(o |?| o) =o? (o
(a f a):|a|2, <a

Making use of these relations, we finally obtain

@92|a) =@,

a'a aa’

a> =1+ |af.

. 1
Ao X| = \/E [(e2 + 1+ + |a]? 4+ (@)?) — (@ +a*)?] =

Aaky = \/—é [(@2 = 1=l ~ la? + @)?) — @~ o)’]

To the first order in n we have

Now, we have that

= §%% — 2676 + A8,

from which Eq. (13.232) follows to the second order in 7.
For the proof of the general result, let us first compute the derivative of the lhs of
Eq. (13.232) with respect to n , that is,

Let us make use of the substitution O = e "7 ¢"5. Then, the previous equation
reads as

dO [ A »

= =[0.E]
dn [ §

If we denote the rhs of Eq. (13.232) as O, we easily see that, by computing again

the derivative with respect to n,

dd?;/ - [é/’é]'
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13.20

13.23

Now, the last two equations show that O and O’ satisfy the same differential equa-
tion. As a consequence, for any boundary condition O = O’ and the lhs and the rhs
of Eq. (13.232) are equal.

Let us first write!*

Ean = 100,
and compute its derivative with respect to n:
dd_né(ﬂ) = 070010 4 10§10’
= (0 + 0 OA/67"OA> E).
However, by making use of the results of Prob. 13.19 and of the fact that

[0.[0.67]=[0.[6.6]) =0

we obtain

which implies

d ~ A A7 A AT ~

ik =(0+0"+n[0.0])m.
é(n) is the solution of this differential equation for which 5(0) = 1. Since the com-
mutator [OA/, é] commutes with (é + (5,), by integrating the previous equation,
we finally obtain

Ea) = en((5+0”>e§[é’@’]

)

which, for n = 1, proves the desired result.
Let us consider an initial coherent state | «) . Its time evolution is given by

LAt

la,t) =e 77 |a),
where
N . 1
H=h a'a + —
w(a a—+ 2)

is the single-mode free-field harmonic-oscillator Hamiltonian. We want now to
verify that | «, t) is an eigenstate of the annihilation operator. We have

L L L L
“RA1 ) = o Rl A G~ AL

aloa,t) =ae o) .

To evaluate e 77" Ge~ #1" we use the formula (13.234),

000 =y 0,07 .
SR

14 See [Gardiner 1991, 138-39] and [Messiah 1958, 442].
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13.24

13.27

13.28

The evaluation of the first two terms of the infinite sum in the formula above with

A

0=—-w (&T& + %) tand O = 4 allows us to write

Q
Q

N X _ n
otiH G~ _Z( Lwt) PRp

n!
n

where we have also made use of the result of Prob. 4.11. Using this result, we obtain

LAt ot A al

A
ala,ty =e e o) =ae " Pe 17 )

=ae”' |a,1),
which shows that the initial coherent state |«) under time evolution remains a
coherent state, i.e. the state |, 1) = |a(t)) with eigenvalue a(r) = e,

Using the completeness relation (13.71) we have, for any state | ¥ r) of the radiation
field,

) = = [ data) @l v,
In particular, for a generic coherent state | 8) we have
|/3>=—/d2 (@l B) )
= —e —3181? /dzote o p—3laf? la) ,
T

where we have made use of expression (13.69).

Given the most general expression of the density matrix p = Y W | Wj) <Wj | with
3 jwj = 1 (see Eq. (5.20)) and { | ¥ j>} representing an orthonormal basis, we may
write

O(a, ™) ij alzﬂj <—ij

since | <oz | W./) 12 <1.
Any density matrix may be written as p = Zj w; |wj)(1,bj |, {| wj>} representing
an orthonormal basis. On the other hand we have > jwj = 1. Then, we may write

=

>

B
|

- ij(nl Vi)l m)
ij [ 1w (w1 m)]

IA

Making use of the fact that, for any real x and y, 2xy < x? 4 y2, we have

Sy o w3l w1l = 3 g0 [l 10 + s )]

J

Do willn L)+ 3wy s m)f
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Since

(el y)> <1 and |{y; | m)* <1,

we finally have

2

Zw] nlt/f]‘—i-ij 1//]|m <— Z
J

13.30 Using the 1dent1ty

1 +o00
— dxe'™ = 8(y),
27 J_ oo

we have
+oo 1 +o00 +00 pex!
/ dp,W(x, py) = — / dx’ <x +x' |,6| X — x’)f dper’ 7
—00 h J oo —00
= {x]3]2) = oo
Chapter 14

14.1 Let us write |R) =Zjaj\r,-), | Ro) :Zjaf/?|rj), and |Ry) =), j1|r]>
Then, we have

* *
= lol210) (01 Y a (a?) ) (i |+ et 21D (11l (a,l) ) (1 |
n,j n,j
+eoci 10) (113 al (a})* lra M |+ cger 11) (01 " ap (a?)* [ ) (rj |-
n,j n,j

Now, by tracing the reservoir out, we obtain the reduced density matrix

p° = Z(rk 55R rk>
k

0

[1)(
n n
* *
+aoct10) (11 Y al (a) +cler 1) 01 a (a?)
n n

2 2 5 5 .
The sums ), ‘ag‘ and ), ]a,ll] are the traces of Py and P, respectively, where

Po=1Ro) (Rol = 3" al (a9) [ra ) (rs ] Br = 1Ra) (Rat = Yt (ad) [ o,

n,j n,j

and, by the normalization condition, both are equal to 1. The terms )", a? (a,ll)* and
>, a) (ag)* are equal to (R | Ro) and (Rg | Ry), respectively. In fact,

(R1] Ro) = Za ( ) rjlrn)zgag(a,i)*,
(Ro | Ry) Za ( ) rjlrn):;a}l (ag)*.

Collecting these results and writing them in matrix form, we obtain Eq. (14.5).
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14.2 Tt is easy to see that

[é

0”] = Y 07,04 llml )k} = 07, O’ 181.8km
Im,jk

= Y010} = X 0},0 = 1e(076),
Im I.m
and

{j,k1O} = {7,k ) _ Ol m)

Im

= Z O1mé1,j0km = Ojk.

I,m

14.5 Let us write the density matrix 4 in terms of the expansion (13.92), that is,
R At nom
p:nZQn,m(a) a.
n,m

Then, we may write

n,m
n n
= 3 Qun (&) & Y mQun (37)
n,m n,m
s dPp
=d'p+ 5.

= atam +m&m—l

of Prob. 4.12. The final equality on the rhs of Eq. (14.53) may be derived by taking
into account the expansion (13.91) that yields

dp 0Q
o|l—|a)=m—.
da da
14.6 We have that
A nnt wian  aadp . dp. d*p >
T i T
o japa a>=<aa,0a+a — to+ = — ),
< da' da dada’
since
dp dp

By making use of the previous results we obtain the desired solution.
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14.8

14.9

‘We have that

2 _ 2,2, 2
§7 =5+, + 5]

= 'Oezg + 'OgZe + 20eg Pge — ng - pg,zre + 20eg0ge + o + pﬁg — 2PeePgg
- 10522 + ’0828 + 4pegPge — 4Peegg + 2peeLgg
=1+4 (,Oegpge - peepgg),

where we have made use of the fact that, since pe. + pgg = 1 (they are the diagonal
elements of the density matrix), also peze + pég + 2pcepge = 1. Now it is easy to
show that 1 4 4 (pegpge — Peepyg) is equal to one in the case of pure states and
strictly smaller than 1 in the case of mixtures. In fact, if p is a pure state, we must
have that Tr(,62) = 1. This means that the sum of the diagonal elements of ,52 must
be equal to 1, i.e.

,Ogg + PgePeg + PegPge + Peze =1,
from which it follows that
PgePeg = PeePgg>

which immediately gives the desired result.
In the case in which p is a mixture, we have that Tr(ﬁz) < 1, and, therefore, we also
must have that

ngg + PgePeg + PegPge + peze <1
from which it follows that
PgePeg < PeePgg>

from which it follows that 1 + 4 (peg0ge — Peepgg) < 1.
We recall that

6_le)y =lg), 6-1g) =0,

Gile) =0, G4lg) =le).

Then, we may calculate the time derivatives of the elements of p:




9780521869638so0l CUP/AUL November 6, 2008 18:21 Page-69

69 Solutions to selected problems

For the time derivative of the matrix element p.,, we have

pes = (e || ) = v (2(e 655+ | g) — (e |6:46-5] g) — e |96+6- &)
= —7(sl6-plg) = - (e]d] )
= ~VPeg-

The solutions of these differential equations are then given by

Pee(t) = €727 e, (0),
Peg(t) = 147" [pee(0) — 1),
Peg(t) = e V! Peg(0),

where, for deriving the second solution, we have used the following procedure:

Peg() = 1 — pee(t) = 1 — 2 p,e(0)
=1—e 2" [1 = pge(0)).

From these results, it follows that the time derivatives of the Bloch vector’s
components are

$x = peg + Pge = —V (Peg + Pge) = —Vsu,
$y =1 (o — ) = —17 (0o — psc) =~
Sz = Pee — Pgg = —2VPec — 2V Pee == —4Ypee = =2y (1 +57).

The solution of these differential equations are finally

sx(t) = e "5,(0),

sy(t) = 177" [ peg(0) — pge(0)] = €77"5,(0),

52(1) = peet) — pgg(t) = € pee(0) — 1 — €72V pge(0) + &2
=e M5 (0)+ e —1,

which are in agreement with Eqgs. (14.83).
14.10 This equation plays an important role and it can be proved in many ways. Let us call
L(&,n) the left-hand side and R(&, n) the right-hand side.
A first possibility is to verify that:
e Both terms are equal to the identity at £ = 0.
e Both terms satisfy the same differential equation

SLE M IR, 1)

The proof of the first equation is trivial (it is essentially the definition of the expo-

= (0 +nO"RE, ).

nential), while the proof of the second equation can be obtained by inspecting the

different terms.

Both the functions L(&,n) and R(£,n) satisfy the same first-order differential
equation with the same boundary condition and therefore they must be equal.
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A second proof can be obtained by performing the following steps:
e One verifies that, for small &,

REm =1+ (0 410" + 0@&).
e The function R(&, n) satisfies the semigroup property (see Sec. 8.4)
R(E1,mR(E2,n) = R(§1 + &2, 1),

as can be proved by combining the different terms present in the lhs.
The function L(&,n) trivially satisfies the same equations. The two properties
identify in a unique way the function and therefore the two functions must coincide.

However the most instructive (and constructing) way to verify Eq. (14.91) is to
check that the lhs and the rhs do coincide term by term in the Taylor expansion
around n = 0. The Taylor expansion of the rhs is trivial, so we have to compute the
Taylor expansion of the lhs. To this end it is convenient to notice that, for any real
8 # 0, we can write

L(E.n) = (eOH109%)5
In particular, we can write
L. n) = lim(eOF109%)F = lim(1 4 8(0 +n0')5.

§—0 §—0
Without loss of generality we can evaluate the limit § — 0 by restricting to the
sequence of § where ¢ = £/§ is an integer. Using this definition of { we have

LE,n) = li 1+8(0 +1n0")).
& m = lim 4]7[{( +8(0 +n0")
j=1

We can now easily compute the expansion in powers of 1 of the previous formula:
the rhs is the product of terms linear in 5. Let us compute the coefficient of the order
n>. The term n”> may come from both the j-th and the [-th terms of the product
(where all the other factors give a contribution equal to 1/ 0). We thus find that the
coefficient of n? is just given by

LY []a+so| o [ a+so)o'| T]a+s0)
ji=1.¢j<l \\a=1,j—1 b=j+1,-1 c=I+1,¢
=8 Y (1480)7'0'(1+80) 720/ (1 +50) .
Jl=L¢5j<l

In the limit § — 0 each individual term in the sum over j and [ is irrelevant and we
can assume that both j and [ are of order §—!. We can thus substitute the sums with
integrals; neglecting terms going to zero with § we obtain

d d AE NCEIp A i
/ d&/ d&(14+60)5 0 (1+60)" 5 0'14+60) 7 .
0 31
We can now perform the limit § — 0 and obtain

3 £ A X )
/ d&; / d& 510 0/ 6276100 (§/ o6 =82)0
0 &
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which is essential the result stated in Eq. (14.91) for k = 2, apart from a redefinition
of the integration variables. It should be clear to the reader how to generalize the
result to higher (and lower) values of k.

The same result could also be obtained starting from path integral representation
(see Sec. 10.8) for the function L(&, n), but we shall not show this further derivation.
We should note that all the proofs presented here have a rather formal character: we
are implicitly assuming that the rhs of Eq. (14.91) is a convergent series (and that
the lhs exists). If not (the perturbative expansion is often not convergent), the rhs
should be interpreted as an asymptotic expansion (see also Secs. 10.1-10.2).

14.11 Let us start from the identity

p=1v) Yl

Time derivation leads to

where

Then, we have

5.
I

=S = 3=

14.13 First, the reader may verify that the exponential e™* 5177 s equal to 1 for even values
of j (j = 2k) and to —: for odd values of j (j = 2k + 1). Then, we have

\a\z

00 T2
R A 2%) N P
e ijzg)a m [Zml +Z( 1) T )!I +1)
e
—e % |:(1+1)Z 512K+ - z)Z il
00 052k+1 2k+1
+‘“”§W'”‘*”‘“*”?m' 2% + 1) |,

where we have made use of the identities 2=14+:+1—7and -21 =1 —1 —
(1 + 1). Now we group the first and last terms, and the second and third terms of the
rhs, so as to obtain
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14.15

[e%e} — lt'z o k
67%Zaje L1 |]):L (l_l) 7#2“_ (]+l)ei#
= J! V2 P «/F V2
> |k>]
= VR
=L (% 1o) +eF|-))
V2 ’
where we have made use of the mathematical identity
(1x1) _ i
V2

and of the fact that (see Eq. (13.58))

_la? o (o)
e zkgﬁm | +a) .

Any distance between two elements a,b has to satisfy four well-known prop-
erties. The property d(a,a) = 0 is easily satisfied by the Fubini-Study distance,
since |[(Y | 1/f])|2 = 1. Similarly, the Fubini—Study distance is always positive
when the two states are different except the trivial case in which the difference
is only given by the global phase, since |(y1 | ¥2)|> < 1. Also the property that
d(a,b) = d(b,a), since | (V1 | ¥2)|*> = |(¥2 | ¥1)|?, Finally, the triangular property
d(a,b) + d(b, c) > d(a,c) is also satisfied. Indeed we have

\/1 — (1 | ¢2)|2+\/1 — (W2l ¥3)1* = \/1 — (1 | ¥3)I%.

To prove this, it suffices to assume, without loss of generality, that the involved state
vectors are normalized and real. Then, consider that

Y1) — [¥2) P =221 | ¥2),

from which it follows that it suffices to multiply both the lhs and the rhs of the above
inequality so as to obtain

[ = [¥2) |+ 1 12) — [3) | = 1) — [ ¥3) |,

which is satisfied, since it is an instance of the triangular inequality (see also
Subsec. 2.3.2)

la| + |b] = la + b].

When applying the definition of the Fubini—Study distance to the distance between
the coherent states in Box 14.1, we must make use of the square modulus
(Eq. (13.70)), so that

dfs — \/1 . e—|ae'¢—ae*’¢|2 —/1— 674\042 sin2¢_

Expanding in power series to the first-order in sin ¢ for ¢ < 1, we obtain

dfs >~ 2|a|sing = d.
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Chapter 15

15.1
15.7

15.9

15.11

If you do not succeed, please refer to the quoted specialized literature.
It is easy to prove that (see also Prob. 13.21)

MpDipl") = DipT1DL) Doyl 9™
DTy

= Dyp(—1D)"[y")

= (=" |y,

from which the solution follows.
First of all, we note that the exponential factor et may be rewritten as
e Erei=ior) We start from Eq. (15.59), which then turns to

+00

1 s
Wiey, o) = — f dedg;e® Croi=sion y (g, &),

—00
Changing the variables according to
1 £ sinf d s 1
———=¢sinf an = —
V2 V2

we also have d&,d§&; = %|§|d§d9, and, using Eq. (15.64), we may rewrite the W-
function as

£ = L cosH,

1 +o00 T
W(ar,ai):m / dé—/d9|§|efl\/§{(ol,'Sin9+a,<COSG)Xp(§,9)'

—0 0

Making the inverse Fourier transform of Eq. (15.61), that is,

Xo(£.6) = / dXp(X,0)e'EX,

and inserting this into the previous equation, we finally obtain

+00 +

o0
1 n - -~
Wier, i) = 55 f dx / dg f 401 (X, By X ~V2ter costausind)]
0
Jo

We sketch the main steps of the derivation. First, since all the basis states in
Eq. (15.71) are orthogonal, perform the square modulus of Eq. (15.72), so as to
obtain (see Sec. 9.9)

Pet.9) = Y |Veu®)]”
n=0
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Then, make use of the following facts:

o

2 2
D lenilP =1 leol?,
n=0

1(z—2%) =-23@), z€C,
2sinf cosf = sin 20,
1 + cos 26
> .

cos2 6 =

Chapter 16

16.1 From Egs. (16.3)—(16.5) we have
+00
\Ij(xl ’ xz) = L / dpe%(x1 _XZ+XO)1)
2w

—00
+00

%_/ dxé(x; — x)8(x — xp + xp)

d(x1 — x2 +x0) =

h
V2w
| +00 +00
= — / dx8(x1 — x) / dpeilﬁ(xfxzﬂ")p
2
—00 —00
+00

1
= E/ dx e (x2)@x (x1).

16.4 Letustake|g) = | k) asan element of a complete set of orthogonal vectors {| < j) }.

Then, by Eq. (16.27), and by the fact that each <13§_/ >(p cannot be negative, we
immediately have that for any j # k all <13§j >¢ vanish.

16.6 Since <I3§] >(p = <13§2>(p = 0, then the rhs of Eq. (16.29) vanishes, which in turn
implies that <I31/,l)w = <13‘”2>¢ = 0. Writing, e.g., | ¥1) as the linear combination

Y1) =cils1) +c2lsa),

with arbitrary c1, ¢z, we obtain the desired result.
16.8 The problem is solved when considering that (see Egs. (6.154))

. 01 0 — 10
cra=dad g | Tl o | Y% 0 1
1 1 1

and

N 0 1 0 — I 0
b20b =0 | | 0L+by[z . L+bz[0 o L,

The expectation value on the singlet state (16.12) of the product of these two scalar
products gives nine terms, of which the first three have the form
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JA axby [ 0 1 0 1
(\IIO |axbxalx02x| ‘I’0> = (Vo ﬁ [ 10 :|1 |: 1 0 :|2

A03), (), (0),=(5),]
= () o (5), () (1))

= (Vo |—axby| Wo) = —axby.
Similar calculations show that we also have
(\IJO |ayby61y62y| \IJ()> = —ayb, and (\I—’o |azbz&1z&2z} \I/()> = —a;b,.

The six cross terms are instead all zero. Indeed, we have

A A o axby 0 —1 1 O
(Wo |axby61x62y| Wo) = (o NG [( i >1®< 0 )2—< 0 >1®( l )j

axby

Y [(1 0)1®(0 1)2_(0 ])1

(
(3, (0),e(0)
1/, 0/, 0/, v/,
axby
== [-(1-1) =1 (=) =0,

and similarly for all other cross terms, so that we may finally conclude that

(24
—_
=]
~—
)
—

(Wo |(61-a) (62:b)| Wo) = —(axby + ayby +a:b;) = —a-b.

16.9 The solution is obtained when one considers that, for any integrable function f(x),

we have
def(x> s/dx|f(x>|,

and [Ap(MAc(A) — 1] = 1 — Ap(M)Ac(M)
16.10 We have that

(a’,p) = / drAp(M)Ay(W)Bp(W) =1-38
A

:/ dkp(k)—/ drp()).
At A

Since

/ drp() + / drp() = 1,
At A~

we immediately obtain the desired result.
16.11 Making use of Eq. (16.65), we have that

+d?»,O(?»)Aa/(X)Bw(k)—/ drp(X)Aa (M) By (1),

/A d3p() By (1) By (h) = /

A
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16.12

16.13

which together with the fact that

/M dAp(X)Bp(2)Byy (1) = /A dip(M)Aa (M) Biy (1) — /Af drp(A)Aa (M) By (1),
allows us to derive

| oy = [ drotacBy ) =2 [ dipGou By
Now, we also have that

/Ad)»p(?»)Aa/(K)Bb/(K) - 2/[\7 drp(A)Ag (1) By (2)

Z/Adkp(k)Aa/()»)Bb/()»)—2f drp(A)|Ag (1) By (M)].

Since Ay (A)By (1) = %1, these results, together with Egs. (16.66) and (16.62), give
the desired solution.
Let us do the substitution a’ = b’ in inequality (16.69) in its formulation:

| (a,b) — (a,b’)| <2+ (a’,b') +(a’,b).
Since
(b',b') = —1,

the result is easily obtained.
By making use of Eq. (16.53), let us first rewrite Eq. (16.55) as

(a,b) —(a,b') = /dlp(k) [Aa(A)Bp(A) (1 £ Ag (1) By (1))]

- / drp(A) [Aa(V) By (L) (1 £ Ay () Bp(L)).
Since we have that
[Aa)]* = 1> Aa(M)Bp(A), Aa(A)Biy(L),

which implies both
/d)»p(?») [Aa(A)Bp(2) (1 £ Ag(1)By (1))] < /d)»p()») (I £ Aa (M) By (1))

/dkp(k) [Aa() By (A) (1 £ Aw () Bp(M)] = /dkp(k) (I £ Aa(1)Bn(2)),
we also have
| (a,b) —{a,b')| < /dkp(k) (I+£ Ax(M)By (1) + / drp(A) (1 £ Aa (1) Bb(21)),
which amounts to
| (a,b) — (a,b’)| <2 +(a’,b') £ (a’,b),

from which the CHSH inequality follows.
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16.14 From Egs. (16.73), (16.75), and (16.172) we obtain

16.19

—1 < m2(,a,b) — w2(%, a,b') + w12(%, ', b) + m12(2, 2’ b)
- 7[1()\'9 a/) - 772()\, b) S O’

where in Egs. (16.171) we have taken

with j={a,a’},
1= {b,b’},

xp = (A, J),

vk = mr(A,1),  with

and X = Y = 1. Integrating this inequality over A with the probability distribution
p», and using Eqgs. (16.74), yields

—1 < pi2(a,b) — pra(a,b) + pi2(a’,b) + p12(a’,b) — pi(@") — pa(b) <0,

which may be rewritten as Eq. (16.76).

The three-particle interference in the GHSZ state (Eq. (16.143)) is evidenced by the
sine term in Eq. (16.144a), which represents the probability that the three particles
are detected at D1, D2, and D3. In order to test if the two-particle interference
is present, we have to consider the probability that two detectors (say D2 and
D3) click independently of what happens in the third arm of the inteferometer. In
this case, for instance, we have to sum Eqgs. (16.144a) and (16.144b) and obtain
p]g’zm (¢1, P2, p3) = 1/4, which is independent of the phases ¢, ¢2, and ¢s3.

Chapter 17

17.2

17.8

In the case of pure states, we have p = P = | br) (bx |, which means that in
Eq. (17.4) we have wyd ji, with the consequence that the diagonal matrix has only
an element different from zero, namely w; = 1. This proves the result because the
logarithmic function of 1 is 0.

Applying one of the unitary operators (17.73) to the corresponding state of particle
3 as represented in Eq. (17.71), we recover the information contained in particle 1,
which may be rewritten in the form

c1+c/0
0/, 1

Indeed,
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17.10

17.11

17.12

In the case of the first measurement outcome (the singlet one), the state of particle
3 is the same as of particle 1 except for an irrelevant phase factor, so that Bob
need do nothing further to reproduce the state of 1. In the three other cases, Bob
must apply one of the unitary operators Us, U3, Uy — corresponding, respectively,
to 180° rotations around the z-, x-, y-axes — in order to convert the state of 3 into the
state of 1. What Bob must do, obviously depends on the (classical) communication
of Alice’s result.

The most direct algorithm that can be used to factorize an integer number of / dig-
its consists of checking whether the integer is divisible by each number from 2 to
VM = V10!, Therefore, this algorithm requires a number of steps given by

N ~vM = 10!,

which shows that the growth is exponential. For example, if / us equal to 100 dec-
imal digits, even if the time required for a division is very small (say, 1072 s), the
total time required to factorize the original number is

1~10"9 %1072 = 10303,

i.e. 10'3 times the age of the universe. Of course, in the example above we have not
chosen the most efficient algorithm. As a matter of fact, the best known classical
algorithm takes a time of the order of 10" (i.e. it is sub-exponential).

The state (17.109) on which we want to evaluate the Boolean function may be
rewritten as

1 1
5 10y +11)(0) = 1)) = 5 (J00) —[01) +[10) —|11)).

Now, we evaluate each of the four components of the state above for each of the

four possible Boolean functions f; (j = 1,...,4),1i.e.
Si: 100) —[01) +]10) —|11) = (|0) |1>)(|0>—|1
fri 101) =100) +[11) —[10) = (J0) E+[1)) (1) —10)),
f3: 100) —01) +|11) —|10) = (|0) E |1>)(|0>—|1)),
fa: 101) —]00) + [10) —|11) = (]0) 1) a1 -

This leads to the desired solution.
The distance between p; and p, is given by

1
—Tr|p; — p
5 |01 — P2l

1
°T —9)-6
1 | (r—s)- o

d(b\lﬁ 152)

= —|r —s|,
2| |

since (r — s) - 6 has eigenvalues +|r — s|, so that we obtain

Tr| (r—s)-o| =2|r —s|.
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In other words, we have the important result that the distance between two single
qubit states is equal to one half the Euclidean distance between them on the Bloch

sphere. Since rotation on the Bloch sphere leaves this distance unaffected, unitary
transformations preserve it, i.e.

d(lal’ 152) = d(ﬁlal 0+, U,OA20T)
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