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Solutions to selected problems

Chapter 1

1.1 Yes, because in this case even in the initial state some properties would not be deter-
mined and therefore also the properties of future states could not be precisely defined.
As a consequence, it would be also impossible to predict future properties.

1.2 Not necessarily. In principle, one can imagine the existence of a “discrete” world.
However, it would still be necessary to have some laws allowing to infer determinis-
tically a future (or past) state from a given initial (or final) state.

1.4 Consider the Jacobi identity (Eq. (1.10d)) and take h = H . The first two terms of the
rhs are then identically zero and therefore

{H , { f , g}} = 0.

1.5 ℘(45◦) = 1. ℘(135◦) = 0. As a matter of fact, since the component states |v〉 and
|h〉 are equally wighted in the superposition (1.79), the latter represents the state
of a photon with polarization oriented at 45◦ relative to the horizontal axis. On the
contrary, such a state will not pass the filter at 135◦ as this orientation is orthogonal
to the polarization of the state (1.79).

1.6 Since | j〉 and |k〉 are elements of an orthonormal basis, we have 〈 j | k〉 for j �= k
and 0 1 for j = k.

1.7 P̂k |ψ〉 = ck |k〉.
1.9 The norm of the vector |ϕ〉 = ck |k〉 is ‖ ϕ ‖= |ck |2. It is ‖ ϕ ‖≤ 1 since∑N

j=1 |c j |2 = 1, being ‖ ϕ ‖= 1 if and only if c j = δ jk . Physically this means that
the projector acts as a filter and therefore it selects a subensemble of the initial
ensemble.

1.10 Let us assume that |ξ 〉 is in an n-dimensional Hilbert space and expand it as

|ξ 〉 =
∑

j

c j | j〉 ,

where | j〉 is an orthonormal basis for this space. It is then easy to show that

(
c∗1 c∗2 . . . c∗n

)⎛⎜⎜⎝
c1

c2

. . .

cn

⎞⎟⎟⎠ = 1,

since
∑n

j=1

∣∣c j
∣∣2 = 1 according to the normalization condition.

1.11 We can imagine of having N “boxes” (one for each oscillator) each of them with a
certain number of energy quanta ε(ν). We are able to calculate wE , which becomes
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the total number of different ways in which we can arrange the nε quanta among the
N oscillators (or boxes), i.e. the total number of permutations of the quanta nε plus
the N − 1 partitions1

wE = (N − 1+ nε)!

(N − 1)! nε!
	 (N + nε)N+nε

N N nnε
ε

,

where in the last equality we have made use of the Stirling formula

m!	 mme−m
√

2πm,

which is a very good approximation for large m. Consequently, the total entropy is
given by

SN
B = kB N

[(
1+ nε

N

)
ln (N + nε)− ln N − nε

N
ln nε

]
.

By making use of Eq. (1.62), we obtain the desired result.
1.12 In order to find the solution, let us first compute the differential

∂SN
B

∂U
= ∂SN

B

∂N Ē
= 1

N

∂SN
B

∂ Ē

= kB

ε

[
ln

(
1+ Ē

ε

)
− ln

Ē

ε

]
= kB

ε
ln

Ē + ε
Ē

= 1

T
.

From the last equality it follows that

Ē + ε
Ē

= eε/kB T ,

and, finally,

Ē = ε

eε/kBT − 1
.

1.13 Applying the Carnot theorem to the upper triangle in Fig. 1.19 we obtain

(nv)2 =
(

hνs

c

)2

+
(

hνi

c

)2

− 2
hνs

c

hνi

c
cos θ .

On the other hand energy conservation (Eq. (1.70)) yields

mv2 = 2h (νi − νs).

In order to eliminate v, we multiply this last equation times m and equate the resulting
rhs to the rhs of the momentum conservation equation and obtain

νi − νs = h

2mc2

(
ν2

s + ν2
i − 2νsνi cos θ

)
.

1 See [Huang 1963, 181–82].
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Now, since the wavelength of the scattered photon is only slightly larger than the
original one, we have

νi 	 νs → ν2
i 	 ν2

s 	 νiνs .

Consequently,

νi − νs = h

mc2
νiνs (1− cos θ).

Replacing νi = c
λi

and νs = c
λs

we finally obtain

λs − λi = h

mc
(1− cos θ) = 2h

mc
sin2 θ

2
.

Chapter 2

2.1 Take e.g. Ô ′ = Î − Ô .
2.2 ( 〈h | ψ〉

〈v | ψ〉
)
=
[ 〈h | b〉 〈h | b⊥〉
〈v | b〉 〈v | b⊥〉

]( 〈b | ψ〉
〈b⊥ | ψ〉

)
=
( 〈h | b〉 〈b | ψ〉 + 〈h | b⊥〉 〈b⊥ | ψ〉
〈v | b〉 〈b | ψ〉 + 〈v | b⊥〉 〈b⊥ | ψ〉

)
=
( 〈h | ψ〉
〈v | ψ〉

)
.

The last passage is due to the well-known property of projectors

|b 〉 〈b | + |b⊥ 〉 〈b⊥ | = P̂b + P̂b⊥ = Î .

2.3 Let us write the transposed conjugate of Û :

Û † =
[ 〈h | b〉∗ 〈v | b〉∗
〈h | b⊥〉∗ 〈v | b⊥〉∗

]
=
[ 〈b | h〉 〈b | v〉
〈b⊥ | h〉 〈b⊥ | v〉

]
.

Then we have

ÛÛ † =
[ 〈h | b〉 〈h | b⊥〉
〈v | b〉 〈v | b⊥〉

] [ 〈b | h〉 〈b | v〉
〈b⊥ | h〉 〈b⊥ | v〉

]
=
[ 〈h | b〉 〈b | h〉 + 〈h | b⊥〉 〈b⊥ | h〉 〈h | b〉 〈b | v〉 + 〈h | b⊥〉 〈b⊥ | v〉
〈v | b〉 〈b | h〉 + 〈v | b⊥〉 〈b⊥ | h〉 〈v | b〉 〈b | v〉 + 〈v | b⊥〉 〈b⊥ | v〉

]
=
[ 〈h | (|b〉 〈b | + |b⊥〉 〈b⊥ |) |h〉 〈h | (|b〉 〈b | + |b⊥〉 〈b⊥ |) |v〉
〈v | (|b〉 〈b | + |b⊥〉 〈b⊥ |) |h〉 〈v | (|b〉 〈b | + |b⊥〉 〈b⊥ |) |v〉

]
=
[ 〈h | h〉 〈h | v〉
〈v | h〉 〈v | v〉

]
=
[

1 0
0 1

]
= Î ,

since (|b〉 〈b | + |b⊥〉 〈b⊥ |) = Î . Similarly it can be shown that Û †Û = Î .
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2.6 From the condition of unitarity

Ô Ô† =
[

a b
c d

] [
a∗ c∗
b∗ d∗

]
=
[ |a|2 + |b|2 ac∗ + bd∗

a∗c + b∗d |c|2 + |d|2
]

=
[

1 0
0 1

]
we derive the following relations

|a|2 + |b|2 = 1,

|c|2 + |d|2 = 1,

ac∗ + bd∗ = 0.

Similarly, from the condition of Hermiticity[
a b
c d

]
=
[

a∗ c∗
b∗ d∗

]
we obtain that a and d are real and that c = b∗. Collecting these results, we derive
that b(a + d) and a2 = d2. From these relations it follows either that a = d, and in
this case b = 0 and Ô is a multiple of identity, or that a = −d, and in this case we
have

Ô =
[

a b
b∗ −a

]
,

2.7 The solution of the problem is〈
b
∣∣∣ÔP

∣∣∣ b〉 = ( 〈v | c∗v + 〈h | c∗h
)
(|v〉 〈v | − |h〉 〈h |) (cv |v〉 + ch |h〉 )

= ( 〈v | c∗v + 〈h | c∗h
)
(cv |v〉 − ch |h〉 )

= |cv|2 − |ch |2.

2.8 Let us take a generic ket |ψ〉 . Then,

Ô |ψ〉 =
∑

j

Ô
∣∣o j
〉 〈

o j | ψ
〉

=
∑

j

o j
∣∣o j
〉 〈

o j | ψ
〉

=
∑

j

o j P̂j |ψ〉 ,

where the
∣∣o j
〉

are eigenkets of Ô . Since these equalities must be valid for any |ψ〉 ,
it follows that Ô =∑ j o j P̂j .

2.9 We proceed as follows:
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(a) Let us take the usual basis

|b1〉 =
(

1
0

)
, |b2〉 =

(
0
1

)
We have to find the vectors |o1〉 and |o2〉 and the (complex) numbers o1 and o2

such that

Ô |o1〉 = o1 |o1〉 ,

Ô |o2〉 = o2 |o2〉 .

The characteristic polynomial is given by∣∣∣∣ λ ı
−ı λ

∣∣∣∣ = λ2 − 1,

whose zeros (eigenvalues) are λ1,2 = ±1. Let us take the eigenvalues o1 = +1
and o2 = −1. Rewriting explicitely the first eigenvalue equation, we must have[

0 −ı
ı 0

](
o1

1
o2

1

)
=
(

o1
1

o2
1

)
that yields o2

1 = ıo1
1. The normalized eigenvector |o1〉 will then given by

|o1〉 = 1√
2

(
1
ı

)
.

With a similar procedure we find

|o2〉 = 1√
2

(
1
−ı

)
.

Notice that Ô is Hermitian, |o1〉 and |o2〉 are orthogonal, i.e. 〈o1 | o2〉 = 0.
We have constructed the eigenvectors so that they are also normalized, that
is
〈
o j | ok

〉 = δ jk . In other words, {|o1〉 , |o2〉 } is an orthonormal basis on the
bidimensional Hilbert space.

(b) The diagonalizing matrix is simply given by

Û = 1√
2

[
1 1
ı −ı

]
.

Finally, the diagonal form of Ô is

Ô
′ = Û † ÔÛ

= 1

2

[
1 −ı
1 +ı

] [
0 −ı
ı 0

] [
1 1
ı −ı

]
= 1

2

[
1 −ı
1 +ı

] [
1 −1
ı ı

]
= 1

2

[
2 0
0 −2

]
=
[

1 0
0 −1

]
.
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2.10 The result is

9

16
N .

2.15 The momentum eigenfunctions in the momentum representation are

ϕ̃p0 (px ) = 1√
2π

∫
dxe−

ı
h̄ px x

ϕp0 (x)

= 1√
2π

∫
dxe−

ı
h̄ (px−p0)x

= δ(px − p0).

2.16 The position eigenfunctions in the momentum representation are

ϕ̃x0 (px ) = 1√
2π

∫
dxe−

ı
h̄ px x

ϕx0 (x)

= 1√
2π

∫
dxe−

ı
h̄ px x

δ(x − x0)

= 1√
2π

e−
ı
h̄ px x0 .

In the general case we have

ϕ̃x (px ) = 1√
2π

e−
ı
h̄ px x .

2.17 We proceed as follows:∫ +∞

−∞
dpx |ψ̃(px )|2 =

∫ +∞

−∞
dpx ψ̃(px )ψ̃∗(px )

=
∫ +∞

−∞
dpx

1√
2π

∫ +∞

−∞
dxψ(x)e−

ı
h̄ px x 1√

2π

∫ +∞

−∞
dx ′ψ∗(x ′)e

ı
h̄ px x ′

=
∫ +∞

−∞
dx
∫ +∞

−∞
dx ′ψ(x)ψ∗(x ′) 1

2π

∫ +∞

−∞
dpx e

ı
h̄ px (x−x ′)

=
∫ +∞

−∞
dx
∫ +∞

−∞
dx ′ψ(x)ψ∗(x ′)δ(x − x ′)

=
∫ +∞

−∞
dx |ψ(x)|2.

2.18 First, calculate

xψ(x) = 1√
2π

∫ +∞

−∞
dpx xψ̃(px )e

ı
h̄ px x

= 1√
2π
ψ̃(px )

h̄

ı
e

ı
h̄ px x

∣∣∣∣+∞−∞ − 1√
2π

∫ +∞

−∞
dpx

h̄

ı
e

ı
h̄ px x ∂ψ̃(px )

∂px

= ı h̄√
2π

∫ +∞

−∞
dpx e

ı
h̄ px x ∂ψ̃(px )

∂px
,
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where we have made use of the inverse Fourier transform (2.150a) and of integration
by parts. If we substitute this result into the definition of the expectation value of x̂ ,
we obtain

〈x̂〉 =
∫ +∞

−∞
dxψ∗(x)

1√
2π

∫ +∞

−∞
dpx ı h̄e

ı
h̄ px x ∂ψ̃(px )

∂px

=
∫ +∞

−∞
dpx

[
1√
2π

∫ +∞

−∞
dxψ∗(x)e

ı
h̄ px x

]
ı h̄
∂ψ̃(px )

∂px

=
∫ +∞

−∞
dpx ψ̃

∗(px )ı h̄
∂ψ̃(px )

∂px
.

This has to be equal to the expectation value of x̂ computed in the momentum
representation, i.e.

〈x̂〉 =
∫ +∞

−∞
dpx ψ̃

∗(px )x̂ψ̃(px ).

By comparison, we find

x̂ψ̃(px ) = ı h̄
∂ψ̃(px )

∂px
.

2.19 We have

P̂(x) | px 〉 = | x〉 〈x | px 〉 = ϕp(x) | x〉,
where ϕp(x) | x〉 is the eigenfunction of the momentum operator corresponding to the
eigenvalue px , that is

ϕp(x) = 1√
2π

e
ı
h̄ px x .

This shows that the action of the position projector P̂(x) onto the momentum eigen-
vector | px 〉 (in which the position is completely undetermined) selects the position
eigenvector | x〉 with a weight that is given by ϕp(x).

2.22 The delta function can be obtained as a limit of a normalized Gaussian

fa(x) = 1√
2πa

e
− x2

2a2 ,

with a > 0, that is

δ(x) = lim
a→0

fa(x).

Then, we have

δ2(x) = lim
a→0

f 2
a (x)

= lim
a→0

1

2πa2
e
− x2

a2 ,
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from which we obtain∫ +∞

−∞
dxδ2(x) = 1

2π

∫ +∞

−∞
dx lim

a→0

1

a2
e
− x2

a2

= 1

2π
lim
a→0

1

a2

∫ +∞

−∞
dxe

− x2

a2

= 1

2
√
π

lim
a→0

1

a
= +∞.

2.24 xE ≥ 1
2

h̄ p0
m .

2.26 The solution is given by[
p̂x , f (x̂)

] = h̄

ı

∂

∂x
f (x̂)− h̄

ı
f (x̂)

∂

∂x

= h̄

ı
f ′(x̂)+ h̄

ı
f (x̂)

∂

∂x
− h̄

ı
f (x̂)

∂

∂x

= h̄

ı
f ′(x̂)

2.30 With T = 0 and R = 1 we have

| f1〉 = − 1√
2

eıφ (|3〉 + ı |4〉),

which, up to the irrelevant global phase factor, corresponds to the state |1〉 . With
T = 1 and R = 0, we have

| f0〉 = 1√
2
(− |3〉 + ı |4〉),

which corresponds to the state |2〉 . Finally, with T = R = 1/
√

2, we have∣∣ f1/2
〉 = 1

2

[− (1+ eıφ) |3〉 + ı
(
1− eıφ) |4〉 ]

= 1√
2

[
1√
2
(− |3〉 + ı |4〉 )− 1√

2
eıφ (|3〉 + ı |4〉)

]
= 1√

2

(| f0〉 − eıφ | f1〉
)
.

2.31 The examination of Sec. 2.4 shows that there are cases in which an event occurs
(a certain detector clicks, a state of affairs described by the proposition c) and not
withstanding the object system is neither in the state expressed by the proposition a′,
nor in the state expressed by the proposition a′′. This means that, in these cases, it is
true that [

c ∧ (a′ ∨ a′′
)] ∧ ¬ [(c ∧ a′

) ∨ (c ∧ a′′
))

,

from which we easily derive that it is also true that ¬ [(c ∧ a′
) ∨ (c ∧ a′′

)]
and,

therefore, that

¬ (c ∧ a′
)

and ¬ (c ∧ a′′
)
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are also true. This means that, in the first case, either c or a′ must be false, and, in
the second case either c or a′′. However, we have assumed c to be true. Then, both
a′ and a′′ are false. This means that we have a situation in which a′ ∨ a′′ is true (by
definition) but also both ¬a′ and ¬a′′ are. By substituting a′ to ¬a′ as well as a′′ to
¬a′′ we obtain that also ¬ (a′ ∧ a′′

)
is true, which is the desired result.

Chapter 3

3.2 It is straightforward to prove the result given the linearity of the Schrödinger equation.
3.3 ψ(x) = 1√

2π
e±ıkx . These are the plane waves described in Subsecs. 2.2.4 and 2.2.6.

They are doubly degenerate: in fact, the plus and minus signs correspond to “waves”
moving from left to right and from right to left, respectively, both having the same

positive energy E = h̄2k2

2m .
3.4 At time t0 = 0 and t we have

ψ̃(px , 0) =
∑

n

c(0)
n ψ̃n(px ) and ψ̃(px , t) =

∑
n

e−
ı
h̄ Ent c(0)

n ψ̃n(px )

where

ψ̃n(px ) = 〈px | ψn〉 and ψ̃n(px , t) = 〈px | ψ(t)〉.

3.5 Let us rewrite Eq. (3.26) as

ψ(x , t) =
∑

n

cn(t)ψn(x),

from which we obtain∫
dx |ψ(x , t)|2 =

∫
dx
∑

m

c∗m(t)ψ∗m(x)
∑

n

cn(t)ψn(x)

=
∑
n,m

cn(t)c∗m(t)
∫

dxψ∗m(x)ψn(x)

=
∑

n

|cn(t)|2 =
∑

n

∣∣∣e− ı
h̄ Ent cn(0)

∣∣∣2
=
∑

n

|cn(0)|2 = 1.

where ∫
dxψ∗m(x)ψn(x) = δn,m .

3.7 We have

ψ(t) =
∫

dkc(k)eı(kx−ωk t), where ωk = E

h̄
= h̄

k2

2m
.
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3.10 First let us compute the mean value of the position2

〈
x̂
〉 = a∫

0

dxψ∗n (x)xψn(x)

= 2

a

a∫
0

dxx sin2
(nπ

a
x
)

= 2a

(nπ )2

nπ∫
0

dyy sin2 y

= a

2
,

where we have made use of the fact that we are in the position representation and that
ψ∗n (x) = ψn(x), as well as the mean value of the square of the position3

〈
x̂2
〉
= 2

a

a∫
0

dxx2 sin2
(nπ

a
x
)

= 2a2

(nπ )3

nπ∫
0

dyy2 sin2 y

= a2

3
− 1

2

( a

nπ

)2
.

Analogously, we calculate the mean value of the momentum

〈
p̂x
〉 = −ı h̄

2

a

a∫
0

dx sin
(nπ

a
x
) ∂
∂x

sin
(nπ

a
x
)

= 2h̄

ıa

nπ

a

a∫
0

dx sin
(nπ

a
x
)

cos
(nπ

a
x
)

= h

2ıa

[
− 1

2π
cos

(
2nπ

a
x

)]a

0

= 0,

and of the square of the momentum〈
p̂2

x

〉
= −h̄2 2

a

a∫
0

dx sin
(nπ

a
x
) ∂2

∂x2
sin
(nπ

a
x
)

= 2h̄2

a

n2π2

a2

a∫
0

dx sin2
(nπ

a
x
)

2 See [Gradstein/Ryshik 1981, 3.821].
3 See [Gradstein/Ryshik 1981, 2.631.2].
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= h2n

2a2π

[
1

2

(nπ

a
x
)
− sin

(nπ

a
x
)

cos
(nπ

a
x
)]nπ

0

= h2n2

4a2
.

Then, we calculate the uncertainties of position and momentum

px = nh

2a
, x = a

√
1

12
− 1

2n2π2
,

and finally obtain the uncertainty relation

xpx = h̄

2

⎡⎣√n2π2

3
− 2

⎤⎦.

Since the square root is certainly a growing function of n for n ≥ 1, in order to verify
that the uncertainty relation is always satisfied it is sufficient to prove that, for n = 1,
it is ≥1. A direct calculation shows that√

π2

3
− 2 = 1.136.

3.11 The three-dimensional stationary Schrödinger equation for the wave function in the
position representation reads as[

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+ V (x , y, z)

]
ψ(x , y, z) = Eψ(x , y, z).

For a particle in a “cubic” box, we have V (x , y, z) = 0 inside the box, so that the
previous equation becomes

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ψ(x , y, z) = Eψ(x , y, z).

with the boundary conditions

ψ(x , y, z) = 0, for x < 0, x > a ; y < 0, y > b ; z < 0, z > c.

This problem is separable, i.e. Ĥ = Ĥ1(x)+ Ĥ2(y)+ Ĥ3(z), where

Ĥ1(x) = − h̄2

2m

∂2

∂x2
,

and similar expressions for Ĥ2(y) and Ĥ3(z). In

ψ(x , y, z) = ψ (1)(x) · ψ (2)(y) · ψ (3)(z),

and

E = Ex + Ey + Ez .

The required solution therefore reduces to

ψnx ,ny ,nz (x , y, z) = ψ (1)
nx

(x) · ψ (2)
ny

(y) · ψ (3)
nz

(z),
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with

ψ (1)
nx

(x) =
√

2

a
sin
(nxπ

a
x
)

,

ψ (2)
ny

(y) =
√

2

b
sin
(nyπ

b
y
)

,

ψ (3)
nz

(z) =
√

2

c
sin
(nzπ

c
z
)

,

and

Enx =
π h̄2

2ma2
n2

x ,

Eny =
π h̄2

2mb2
n2

y ,

Enz =
π h̄2

2mc2
n2

z .

3.12 Referring to Fig. 3.8(b), the transformation effected by an asymmetric beam splitter
should satisfy the following constraints:

ÛBS

(
1
0

)
∝
(

T
ıR,

)
ÛBS

(
0
1

)
∝
(

ıR
T

)
.

The requirement of unitarity leads us to the final form

ÛBS =
[

T ıR∗
ıR T∗

]
.

3.13 We have

Ût |ψ〉 = e−
ı
h̄ Ĥ t

∑
j

c j
∣∣ψ j

〉 =∑
j

c j e
− ı

h̄ E j t
∣∣ψ j

〉
,

where use has been made of the eigenvalue equation

Ĥ
∣∣ψ j

〉 = E j
∣∣ψ j

〉
.

Now, it is clear that

c j (t) = c j e
− ı

h̄ E j t �= 0, if c j �= 0.

Furthermore, we also have that the probabilities of the energy eigenvalues ℘ j (t) =∣∣c j (t)
∣∣2 = ℘ j (0) are constant under time evolution.

Note that, in the case of beam-splitting (see Subsec. 3.5.2), the vectors

|1〉 =
(

1
0

)
and |2〉 =

(
0
1

)
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are neither eigenvectors of the beam-splitter unitary transformation

ÛBS = 1√
2

[
1 ı
ı 1

]
.

nor of the Hermnitian operator Ô that is the generator of the transformation, i.e.

ÛBS = eı Ô . This is the reason why certain superposition states of the basis vectors
|1〉 and |2〉 may be transformed into |1〉 or |2〉 under the unitary transformation
ÛBS. For instance, the state 1√

2
(|1〉 − ı |2〉 ) is transformed by ÛBS into |1〉 .

3.14 This result may be proved by taking into account the uniqueness of the unitary
transformation Û † = Û−1(its deterministic nature). If this connection had to be not
completely clear, see Sec. 15.2.

3.15 We have

ĤH(t) = Û †
t ĤSÛt = Û †

t Ût ĤS = ĤS,

since ĤS = Ĥ commutes with Ût = e−
ı
h̄ Ĥ t .

3.17 We have to show that [[
Ô , Ô ′), Ĥ

]
= 0.

The explicit calculation is[[
Ô , Ô ′), Ĥ

]
=
[

Ô Ô ′, Ĥ
]
−
[

Ô ′ Ô , Ĥ
]

= Ô Ô ′ Ĥ − Ĥ Ô Ô ′ − Ô ′ Ô Ĥ + Ĥ Ô ′ Ô
= Ĥ Ô Ô ′ − Ĥ Ô Ô ′ − Ĥ Ô ′ Ô + Ĥ Ô ′ Ô
= 0,

since Ĥ commutes with both Ô and Ô ′.
3.19 We can proceed as follows:

ı h̄
d

dt
|ψ(t)〉 I = ı h̄

d

dt
e

ı
h̄ Ĥ0t |ψ(t)〉S

= ı h̄

[
ı

h̄
Ĥ0e

ı
h̄ Ĥ0t |ψ(t)〉S + e

ı
h̄ Ĥ0t d

dt
|ψ(t)〉S

]
=
[
−Ĥ0Û †

H0,t + Û †
H0,t Ĥ

]
|ψ(t)〉S

=
[
−Û †

H0,t Ĥ0 + Û †
H0,t Ĥ

]
ÛH0,t |ψ(t)〉 I

= Û †
H0,t

[
−Ĥ0 + Ĥ

]
ÛH0,t |ψ(t)〉 I

= Û †
H0,t ĤIÛH0,t |ψ(t)〉 I

= Ĥ I
I (t) |ψ(t)〉 I .

3.22 Given any two operators Ô and Ô ′ such that [Ô , Ô ′] = −ı h̄, it is straightforward to
prove that (see Prob. 2.25) [

Ôn , Ô ′] = −nı h̄ Ôn−1.



9780521869638sol CUP/AUL November 6, 2008 18:21 Page-14

14 Solut ions to selected problems
�

Using this result, we may compute the commutator

[
eıαt̂ , Ĥ

]
=
⎡⎣ ∞∑

j=0

(ıα) j

j!
t̂ j , Ĥ

⎤⎦ = ∞∑
j=0

(ıα) j

j!

[
t̂ , Ĥ

]

= −
∞∑
j=1

(ıα) j

j!
j ı h̄t̂ j−1

= αh̄
∞∑
j=1

(ıα) j−1

( j − 1)!
t̂ j−1

= αh̄
∞∑

n=0

(ıα)n

(n)!
t̂ n

= αh̄eıαt̂ .

Therefore,

Ĥeıαt̂ = eıαt̂ Ĥ − αh̄eıαt̂ ,

which yields the desired result.

Chapter 4

4.1 The energy levels are

E(i , j , k) = Ex (i)+ Ey( j)+ Ez(k) = π h̄2

2m

(
i2

a2
+ j2

b2
+ k2

c2

)
,

and the wave functions are given by

ψi , j ,k(r) = ψi (x)ψ j (y)ψk(z) =
√

8

abc
sin

(
iπ

a
x

)
sin

(
jπ

b
y

)
sin

(
kπ

c
z

)
.

4.3 (a) The normalization coefficients N+ and N− may be derived from the continuity
of the wave function and its first derivative at x = 0, that is,

ψ< (0) = ψ> (0),

ψ
′
<

(0) = ψ ′
>

(0),

from which we obtain the conditions

N+ = 1+N−,

k1N+ = k2 − k2N−.

A simple calculation yields the desired result

N− = k2 − k1

k1 + k2
,

N+ = 2k2

k1 + k2
.
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(b) Equations (4.29), together with the previous result, yield

T2

R2
=

k1
k2
|N+|2
|N−|2

= 4k1k2

(k2 − k1)2

=
4
√

1− V0
E

2− V0
E − 2

√
1− V0

E

,

from which we finally obtain that T2/R2 = 16/15.
It should also be noted that, when E = V0, the ratio T2/R2 vanishes, and we

have a total reflection of the particle at the potential barrier. However, even in this
case (and also for E < V0), there is a non-zero probability of finding the particle
in the classically forbidden region. Nevertheless, this probability exponentially
vanishes with x .

4.4 (a) For E > V0, the wave function is

for x ≤ 0, ψI(x) = eık1x + Ae−imathk1x ,

for 0 ≤ x ≤ a, ψII(x) = Beık2x + B
′
e−ık2x ,

for x ≥ a, ψIII(x) = Ceık1x ,

where

k1 = 1

h̄

√
2m E , k2 = 1

h̄

√
2m(E − V0).

The constants A, B, B
′
, and C may be derived from the conditions

ψI(0) = ψII(0), ψ
′
I (0) = ψ ′

II(0),

ψII(a) = ψIII(a), ψ
′
II(a) = ψ ′

III(a),

which yield

1+ A = B + B
′
,

k1 − k1 A = k2 B − k2 B
′
,

Beık2a + B
′
e−ık2a = Ceık1a ,

k2 Beık2a − k2 B
′
e−ık2a = k1Ceık1a .

From these conditions we obtain

A = ı
k2

2−k2
1

k1k2
sin(k2a)

2 cos(k2a)− ı
k2

1+k2
2

k1k2
sin(k2a)

.

In this case, we have

R2 = |A|2 and T2 = k1
|C |2
k1

= |C |2 .
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From T2 + R2 = 1, we immediatly obtain

T2 = |C |2 = 1− |A|2

= 4k2
1k2

2

4k2
1k2

2 +
(
k2

1 − k2
2

)2
sin2(k2a)

.

(b) For E < V0, k2 becomes pure imaginary, which implies that the wave func-
tion decreases exponentially in region II. The expression for the transmission
coefficient may be obtained from the previous result if one replaces k2 by ıκ2,
where

κ2 = 1

h̄

√
2m(V0 − E).

4.6 We may use an inductive argument. First, we have to verify that Eq. (4.70) is satisfied
for n = 0 (see Eq. (4.69)). Then, in order to solve the problem, it suffices to show that,
if Eq. (4.70) is assumed to be valid for n, i.e.

xn,n+1 =
√

(n + 1)h̄

2mω
,

then it is also satisfied for n + 1. We rewrite Eq. (4.68) fo n + 1

x2
n+1,nωn,n+1 + x2

n+1,n+2ωn+2,n+1 = h̄

2m
,

from which, be using the relations ωn+2,n+1 = ω and ωn,n+1 = −ω, we can derive

xn+1,n+2 =
√

(n + 2)h̄

2mω
,

that completes the argument.
4.7 There at least two simple ways to obtain this result, both of which do not involve

anything but straightforward calculations. The first method is direct inspection of
Eq. (4.60). In fact, if k = n, we have that ωnk = 0 and therefore xnk = 0. The other
method starts from the definition of

xnn =
〈
x̂
〉
n =

〈
n
∣∣x̂∣∣ n〉 = +∞∫

−∞
dx ψ∗n (x)xψn(x) =

+∞∫
−∞

dx ψ2
n (x)x ,

where we recall that ψn(x) = 〈x | n〉 is the n-th harmonic oscillator (real) eigenfunc-
tion. These eigenfucntions are either odd or even functions of x . As a consequence,
the integrand of the last equality in the previous equation is necessarily odd, hence
the integral over the whole line is zero.

4.8 We have 〈
n
∣∣ p̂x
∣∣ n〉 = ∫ dx 〈n | x〉 〈x |px | n〉 =

∫
dxψ∗n (x)

h̄

ı

∂

∂x
ψn(x).

Without loss of generality, we may choose the eigenfunctions to be real. Then,〈
n
∣∣ p̂x
∣∣ n〉 = h̄

ı

∫
dxψn(x)

∂

∂x
ψn(x).
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Integrating by parts the previous expression, we arrive at the desired result. The same
result nay be obtained taking into account the fact that the first derivative of an even
(odd) function is odd (even).

4.9 We have [
â, â†

]
= m

2h̄ω

(
ω2 [x̂ , x̂

]+ ıω
[ ˆ̇x , x̂

]
− ıω

[
x̂ , ˆ̇x

]
+
[ ˆ̇x , ˆ̇x

])
= − ım

h̄

[
x̂ , ˆ̇x

]
= − ı

h̄

[
x̂ , p̂x

] = Î ,

where we have made use of the fact that
[

Ô , Ô
]
= 0, that

[
Ô , Ô ′

]
= −

[
Ô ′, Ô

]
(see

Eqs. (2.94) and (2.97)), and that
[
x̂ , p̂x

] = ı h̄.
4.10 Starting from Eqs. (4.73), we can write the product

ââ† = m

2h̄ω

(
ωx̂ + ı ˆ̇x

) (
ωx̂ − ı ˆ̇x

)
= 1

2h̄

(
mωx̂2 + p̂2

x

mω
+ ı

[
p̂x , x̂

])
= 1

h̄ω

(
1

2
mω2 x̂2 + p̂2

x

2m

)
+ 1

2
,

where we have made use of the fact that

ˆ̇x = p̂x

m
and

[
p̂x , x̂

] = −ı h̄.

From the above expression and the commutator (Eq. (4.74)) we can derive

Ĥ = h̄ω

(
ââ† − 1

2

)
and Ĥ = h̄ω

2

(
ââ† + â†â

)
.

4.11 We have [
â, N̂

]
=
[
â, â†â

]
= ââ†â − â†ââ

=
[
â, â†

]
â = â,

and [
â†, N̂

]
=
[
â†, â†â

]
= â†â†â − â†ââ†

= â†
[
â†, â

]
= −â†.

4.12 We have [
â,
(

â†
)2
]
= ââ†â† − â†â†â

= ââ†â† − â†ââ† + â†ââ† − â†â†â

=
[
â, â†

]
â† + â†

[
â, â†

]
= 2â†,
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and [
â2, â†

]
= âââ† − â†ââ

= âââ† − ââ†â + ââ†â − â†ââ

= â
[
â, â†

]
+
[
â, â†

]
â = 2â,

which can be both generalized by induction. We prove only the first one. Assuming
that the relation [

â,
(

â†
)n] = n(â†)n−1

holds for a given n, we have to prove that it also holds for n + 1, that is[
â,
(

â†
)n+1

]
= â

(
â†
)n

â† −
(

â†
)n

â†â

= â
(

â†
)n

â† −
(

â†
)n

ââ† +
(

â†
)n

ââ† −
(

â†
)n

â†â

=
[
â,
(

â†
)n]

â† +
(

â†
)n [

â, â†
]

= n
(

â†
)n +

(
â†
)n = (n + 1)

(
â†
)n

.

4.13 Again, we prove this relation by induction. From the second of Eqs. (4.85) we
immediately obtain

|1〉 = â† |0〉 .

Assuming that the relation holds for a given n, we must prove that it holds for n + 1
as well, that is,

|n + 1〉 =
(

â†
)n+1

√
(n + 1) !

|0〉 .

In fact, we have (
â†
)n+1

√
(n + 1) !

|0〉 = â†

√
n + 1

(
â†
)n

√
n!

|0〉

= â†

√
n + 1

|n〉 = |n + 1〉 .

4.14 We must have

1 = |N |2
∫ +∞

−∞
dxe−

mω
h̄ x2

.

Using the formula4 ∫ +∞

−∞
dye−ay2 =

√
π

a
,

4 See [Gradstein/Ryshik 1981, 3.325].
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with
√

mω/h̄ = a, we obtain, taking N real for simplicity and without loss of
generality (see Property (iv) of Subsec. 3.2.2),

N =
(

mω

π h̄

) 1
4

.

4.16 (i) The first six Hermite polynomials are

H0(ζ ) = 1, H1(ζ ) = 2ζ ,

H2(ζ ) = 4ζ 2 − 2, H3(ζ ) = 8ζ 3 − 12ζ ,

H4(ζ ) = 16ζ 4 − 48ζ 2 + 12, H5(ζ ) = 32ζ 5 − 160ζ 3 + 120ζ .

(iii) We limit ourselves to derive the third recursion relation. Let us start from direct
differentiation of the n-th order Hermite polynomial, that is

d

dζ
H(ζ ) = (−1)n 2ζeζ

2 dn

dζ n
e−ζ 2 + (−1)n eζ

2 dn+1

dζ n+1
e−ζ 2

= 2ζ (−1)n eζ
2 dn

dζ n
e−ζ 2 − (−1)n+1 eζ

2 dn+1

dζ n+1
e−ζ 2

= 2ζHn(ζ )− Hn+1(ζ ).

(iv) We start from

d2

dζ 2
Hn(ζ ) = 2n

d

dζ
Hn−1(ζ ) = 4n (n − 1)Hn−2(ζ ),

where we have made use of the first recursion relation in (iii) twice. Replacing
the first and the second derivatives into the differential equation as above, we
obtain an identity.

4.17 We write the Schrödinger equation as

d2

dx2
ψ(x)+ 2m

h̄2

(
E − 1

2
mω2x2

)
ψ(x) = 0,

and make the change of variable ξ = x
√

mω
h̄ . The resulting equation is

d2

dξ2
ψ(ξ )+

(
2E

h̄ω
− ξ2

)
ψ(ξ ) = 0.

It is now convenient to consider the asymptotic behavior of ψ(ξ ): for large |ξ |2, we
may neglect 2E/h̄ω with respect to ξ2 and the asymptotic solutions of

d2

dξ2
ψ(ξ ) = ξ2ψ

are ψ(ξ ) = e±ξ2/2. Due to the finiteness condition of ψ(ξ ) for ξ →±∞, we have to
discard the solution ψ(ξ ) = eξ

2/2. As a consequence, it is natural to make the ansatz

ψ(ξ ) = e−
ξ2

2 ϕ(ξ ),
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and obtain for ϕ(ξ ) the differential equation[
d2

dξ2
− 2ξ

d

dξ
+
(

2E

h̄ω
− 1

)]
ϕ(ξ ) = 0.

The solutions of the previous equation with the condition that ϕ(ξ ) be finite for finite
values of ξ and that it grow at most as a power of ξ for ξ →±∞ exist only for inte-
ger values of n = E/h̄ω − 1/2 ≥ 0 and are given by the Hermite polynomials (see
Prob. 4.16) up to a normalization factor. This gives the eigenvalues (Eq. (4.72)) and
eigenfunctions (Eq. (4.97)), and represents an alternative solution of the harmonic
oscillator problem.5

4.19 It is always interesting to make a comparison between the quantum results and the
corresponding classical ones. In the case of the harmonic oscillator, this is enlightning
and relatively straightforward. As we shall see later (in Chs. 9 and 10), however, in
general the classical limit in quantum mechanics is far from being obvious.
The equation of motion for a one-dimensional classical harmonic oscillator6 is

xcl(t) = A sin(ωt + φ),

from which

ẋcl(t) = Aω cos(ωt + φ).

The total energy of the system is then given by

Ecl = 1

2
m
(

ẋ2
cl + ω2x2

cl

)
= 1

2
mω2 A2,

that yields A = √2Ecl/(mω2). In order to obtain the classical mean values, instead
of averaging – as in the quantum-mechanical case – over the ensemble, we have to
average over a time period of the motion (τ = 2π/ω). We have

xcl = 0, ẋcl = 0,

whereas

x2
cl = A2

τ

τ∫
0

dt sin2(ωt + φ)

= A2

τ

τ∫
0

dt
1− cos[2(ωt + φ)]

2
= A2

2
= Ecl

mω2
,

and

(p2
x )cl = m2 ẋ

2
cl =

1

2
A2ω2m2 = m Ecl.

5 See [Landau/Lifshitz 1976b, Ch. 3].
6 See [Goldstein 1950, Chs. 8–9]
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Next, we calculate the corresponding quantum-mechanical mean values. We have
(see Probs. 4.7 and 4.8)

〈x̂〉ψn = 〈 p̂x 〉ψn = 0,

and

〈x̂2〉ψn =
〈
n
∣∣∣x̂2
∣∣∣ n〉 =∑

k

〈
n
∣∣x̂∣∣ k〉 〈k ∣∣x̂∣∣ n〉

= 〈n ∣∣x̂∣∣ n + 1
〉 〈

n + 1
∣∣x̂∣∣ n〉+ 〈n ∣∣x̂∣∣ n − 1

〉 〈
n − 1

∣∣x̂∣∣ n〉
= h̄(n + 1)

2mω
+ h̄n

2mω
= En

mω2
,

where we have made use of Eq. (4.70). Similarly,

〈 p̂2
x 〉ψn =

〈
n
∣∣∣ p̂2

x

∣∣∣ n〉 = m2
〈
n
∣∣∣ ˆ̇x2
∣∣∣ n〉

= m2
∑

k

〈
n
∣∣∣ ˆ̇x∣∣∣ k〉 〈k ∣∣∣ ˆ̇x∣∣∣ n〉

= m2
∑

k

ıωnk xnkıωkn xkn

= 1

2
mωh̄ (n + 1)+ 1

2
mωh̄n = m En .

The results above show a complete correspondence between the classical and the
quantum expectation values. This result is valid in this particular case but, due to the
Ehrenfest theorem (see Sec. 3.7), it cannot be generalized.

4.20 Using the results of the Prob. 4.19 and Eqs. (2.184), we immediatly have

ψn x ·ψn px = En

ω
= h̄

(
n + 1

2

)
.

Here, it is clear that the harmonic oscillator is an exceptional case: the Gaussian wave
function of the ground state saturates the uncertainty relation (ψn x ·ψn px = h̄/2),
as happens for all coherent states (the subject of Subsec. 13.4.2). This ensures that
the lower bound of the uncertainty product given by Heisenberg relation is the best
constraint attainable.

4.21 Under the harmonic-oscillator Hamiltonian

Ĥ = h̄ω

(
N̂ + 1

2

)
,

any initial state

|ψ(0)〉 =
∑

n

cn |n〉

evolves according to

|ψ(t)〉 = e−
ı
h̄ Ĥ t |ψ(0)〉 .
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After one period τ = 2π/ω, we have

|ψ(τ )〉 = e−
ı
h̄ Ĥτ |ψ(0)〉

=
∑

n

cne
−ıω

(
N̂+ 1

2

)
τ |n〉

=
∑

n

cne
−ı
(

n+ 1
2

)
2π |n〉

= e−ıπ |ψ(0)〉 .
4.22 Let us explicitly derive the x-component of Eq. (4.127). Then, we have

∂L

∂ ẋ
= mvx + e

c
Ax ,

with vx = ẋ , while we have

∂L

∂x
= −e

∂U

∂x
+ e

c

(
vx
∂Ax

∂x
+ vy

∂Ay

∂x
+ vz

∂Az

∂x

)
,

from which we derive (Eq. (1.15))

m
d

dt
vx + e

c

d

dt
Ax = −e

∂U

∂x
+ e

c

(
vx
∂Ax

∂x
+ vy

∂Ay

∂x
+ vz

∂Az

∂x

)
.

But, making use of Eq. (4.139), we have

d Ax

dt
= ∂Ax

∂t
+
(
vx
∂Ax

∂x
+ vy

∂Ax

∂y
+ vz

∂Ax

∂z

)
.

Collecting these results together, we obtain

m
d

dt
vx = e

[
−∂Ax

∂t
− ∂U

∂x
+ vx

∂Ax

∂x
− vx

∂Ax

∂x

−vy
∂Ax

∂y
− vz

∂Ax

∂z
+ vy

∂Ay

∂x
+ vz

∂Az

∂x

]
= e

[
−∂Ax

∂t
− ∂U

∂x
− vy

(
∂Ay

∂x
− ∂Ax

∂y

)
+ vz

(
∂Az

∂x
− ∂Ax

∂z

)]
.

Notice that this result corresponds to the x-component of Eq. (4.127), i.e.

d

dt
px = e

(
− ∂
∂x

U− ∂

∂t
Ax

)
+ e

c
(v× B)x ,

since the explicit expression for v× B is given by

v× B = v× (∇ × A)

=
[
vy

(
∂Ay

∂x
− ∂Ax

∂y

)
− vz

(
∂Ax

∂z
− ∂Az

∂x

)]
ı

+
[
vz

(
∂Az

∂y
− ∂Ay

∂z

)
− vx

(
∂Ay

∂x
− ∂Ax

∂y

)]
j

+
[
vx

(
∂Ax

∂z
− ∂Az

∂x

)
− vy

(
∂Az

∂y
− ∂Ay

∂z

)]
k.

One may proceed in a similar way to derive the expressions for the y and z
components.
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Chapter 5

5.2 Equation (2.117) states that∫
dxϕξ ′ (x)ϕ∗ξ (x) = δ(ξ − ξ ′),

where ϕξ (x) = 〈x | ξ 〉. It follows that, for ξ ′ = ξ and ρ̂ = |ξ 〉 〈ξ |, we have

Tr
(
ρ̂
) = ∫ dx

〈
x
∣∣ρ̂∣∣ x

〉 = ∞.

5.5 It confirms that there is no unitary transformation from a pure density matrix to
a mixtures, since unitary transformations preserve scalar products (and therefore
probabilities). This is a further formulation of the measurement problem.

5.6 Let us first compute the density matrix

ρ̂ = |ψ〉 〈ψ | = 1

2

[
1 1
1 1

]
.

Its characteristic equation, Det
(
ρ̂ − λ Î

)
= 0, is(

1

2
− λ

)2

− 1

4
= 0,

from which we easily obtain the solutions

λ1 = 1, λ2 = 0.

We can now compute the eigenvectors, which are

|+〉 = 1√
2
(|h〉 + |v〉 ),

|−〉 = 1√
2
(|h〉 − |v〉 ).

The diagonalized form of ρ̂ is then:

Û−1ρ̂Û =
[

1 0
0 0

]
,

where

Û = 1√
2

[
1 1
1 −1

]
.

If we indicate with P̂1 the diagonalized form of ρ̂, it is easy to show that ρ̂
′

has the
form

ρ̂
′ = 1

2
P̂1 + 1

2
P̂2,

where P̂2 is the projector complementary to P̂1.
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5.7 It is possible to write |�〉 12 = |ψ〉 1 ⊗ |ϕ〉 2, with

|ψ〉 1 =
1√
2

(|h〉 1 + |v〉 1) and
1√
2
|ϕ〉 2 = (|h〉 2 + |v〉 2).

5.8 It is easy to verify that, if the entangled state |�〉 12 could be written as a product
state of |ψ〉 1 and |ϕ〉 2, we should have

chv = chc′v and cvh = cvc
′
h .

Now, in order to obtain the entangled state |�〉 12, we must also have chc′h = cvc′v = 0.
However, this would imply that either ch or c′h and either cv or c′v be equal to zero,
which contradicts the the fact that neither chv nor cvh can be zero.

5.9 The state |�〉 12 can be rewritten as (see Prob. 5.7)

|�〉 12 = 1√
2
(|h〉 1 + |v〉 1)⊗ 1√

2
(|h〉 2 + |v〉 2).

The reduced density matrices are therefore given by

�̂1 = 1

2
(|h〉 1 + |v〉 1) (1 〈h | + 1 〈v |),

�̂2 = 1

2
(|h〉 2 + |v〉 2) (2 〈h | + 2 〈v |),

which both describe pure states.
5.10 Let us write the factorized state as

ρ̂12 = |ψ〉 1 〈ψ | ⊗ |ϕ〉 2 〈ϕ | .
The first reduced density matrix is

�̂1 = |ψ〉 1 〈ψ | ⊗
∑

j
2〈 j | ϕ〉2 〈ϕ | j〉2

= |ψ〉 1 〈ψ | ⊗
∑

j

∣∣∣2〈 j | ϕ〉2
∣∣∣2

= |ψ〉 1 〈ψ | ⊗
∑

j

∣∣c j
∣∣2 = |ψ〉 1 〈ψ |,

if |ϕ〉 2 is normalized and where {| j〉 } is an arbitrary basis in the Hilbert space of the
system.

5.11 The reduced density matrix is

�̂2 =
[ |c00|2 + |c10|2 c00c∗01 + c10c∗11

c∗00c01 + c∗10c11 |c01|2 + |c11|2
]

.

It is given again by the sum of the diagonal elements of the matrix (5.45) when one
interchanges the second and third row and the second and the third column.

5.12 The matrix Ĉ is given by

Ĉ = 1√
2

[
0 1
1 0

]
,
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and it is clear that Ĉ = Ĉ†. Let us now compute

ĈĈ† = Ĉ†Ĉ = 1

2

[
1 0
0 1

]
,

which is a multiple of the identity operator. Its eigenvalues are degenerate and both
1/2. Since these are c2

n , we have that cn = ±1/
√

2. Morevoer, we are free to choose
the eigenvectors of ĈĈ† and Ĉ†Ĉ , since any vector is eigenvector of the identity. In
particular, we choose

|vα〉 = |wα〉 = 1√
2
(|0〉 + |1〉 ),

∣∣vβ 〉 = ∣∣wβ 〉 = 1√
2
(|0〉 − |1〉 ).

Therefore, we can write

|�〉 =
β∑

n=α
cn |vn〉 |wn〉

= 1√
2
(|α〉 |α〉 − |β〉 |β〉 ),

with

|α〉 |α〉 = 1

2
(|0〉 |0〉 + |1〉 |1〉 + |0〉 |1〉 + |1〉 |0〉 ),

|β〉 |β〉 = 1

2
(|0〉 |0〉 + |1〉 |1〉 − |0〉 |1〉 − |1〉 |0〉 ).

It is easy to verify that from the two previous equations one obtains again

|�〉 = 1√
2
(|0〉 |1〉 + |1〉 |0〉 ),

as expected. From our calculations, the two unitary matrices are easily derived (they
are the matrices whose column vectors are the two vectors |vn〉 and |wn〉 ), that is

Û = Û ′ = 1√
2

[
1 1
1 −1

]
.

It is finally straightforward to verify that, given these matrices, Eq. (5.51) holds.
5.14 The fact that the density operator corresponding to the center of a (n + 1)–

dimensional (hyper-)sphere is always given by 1
n Î , where n is the number of

dimensions of the system, can be easily understood by considering that the trace
of a density matrix is always equal to 1 (see Property (1.41a)), and the fact that any
density matrix may be written as ρ̂ =∑n

j=1w j P̂j , where again, if ρ̂ is a mixture, n
are the dimensions of the system.
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Chapter 6

6.2 Writing L̂2= L̂2
x+ L̂2

y+ L̂2
z , we have

[
L̂ x , L̂2

]
=
[

L̂ x , L̂2
y+ L̂2

z

]
, since

[
L̂ x , L̂2

x

]
=0.

Moreover, [
L̂ x , L̂2

y

]
= L̂ x L̂2

y − L̂2
y L̂ x

= L̂ x L̂ y L̂ y − L̂ y L̂ x L̂ y + L̂ y L̂ x L̂ y − L̂ y L̂ y L̂ x

=
[

L̂ x , L̂ y

]
L̂ y + L̂ y

[
L̂ x , L̂ y

]
= ı h̄

(
L̂ z L̂ y + L̂ y L̂ z

)
= ı h̄

[
L̂ z , L̂ y

]
+ .

On the other hand, proceeding in an analogous way, we have[
L̂ x , L̂2

z

]
= −ı h̄

(
L̂ y L̂ z + L̂ z L̂ y

)
= ı h̄

[
L̂ y , L̂ z

]
+ .

In conclusion
[

L̂ x , L̂
2] = 0. It is easy to verify that this result holds true also for L̂ y

and L̂ z , which proves the desired result.
6.4 Making use of Properties (2.97) and (2.99), and of Eq. (2.174), we obtain[

L̂ z , x̂
]
= [x̂ p̂y − ŷ p̂x , x̂

]
= [x̂ p̂y , x̂

]− [ŷ p̂x , x̂
]

= [x̂ , x̂
]

p̂y + x̂
[

p̂y , x̂
]− [ŷ, x̂

]
p̂x − ŷ

[
p̂x , x̂

]
= ı h̄ ŷ,

and, similarly,[
L̂ z , p̂x

]
= [x̂ p̂y , p̂x

]− [ŷ p̂x , p̂x
]

= [x̂ , p̂x
]

p̂y + x̂
[

p̂y , p̂x
]− [ŷ, p̂x

]
p̂x − ŷ

[
p̂x , p̂x

]
= ı h̄ p̂y .

6.6 For any state vector |ψ〉 we have (see also Eq. (4.63))

〈ψ | l̂2
x |ψ〉 =

(
〈ψ | l̂†

x

) (
l̂x |ψ〉

)
≥ 0.

Along the same lines, we also have 〈ψ | l̂2
y |ψ〉 ≥ 0 which, together with the previous

equation, proves the result.
6.7 Making use of Eqs. (6.6) and (6.7), it is straightforward to obtain[

l̂z , l̂±
]
=
[
l̂z , l̂x ± ı l̂y

]
=
[
l̂z , l̂x

]
± ı

[
l̂z , l̂y

]
= ı l̂y ± l̂x = ±l̂±,[

l̂+, l̂−
]
=
[
l̂x + ı l̂y , l̂x − ı l̂y

]
= −ı

[
l̂x , l̂y

]
+ ı

[
l̂y , l̂x

]
= 2l̂z ,[

l̂2, l̂±
]
=
[
l̂2, l̂x ± ı l̂y

]
=
[
l̂2, l̂x

]
± ı

[
l̂2, l̂y

]
= 0.

6.9 Starting from Eq. (6.30), we apply l̂− to both sides. Since l̂− | l, l〉 = k | l, l − 1〉 , we
have

l̂− l̂2 | l, l〉 = l(l + 1)k | l, l − 1〉 .
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Given that l̂− and l̂2 commute (see Eq. (6.24)), we finally obtain

l̂2k | l, l − 1〉 = l(l + 1)k | l, l − 1〉 ,

which proves the desired result. Successively applying the lowering operator l̂− as
above, we obtain Eq. (6.31) for any ml .

6.10 In the case of l̂z , we have

l̂z |1, 1〉 = |1, 1〉 ,

l̂z |1, 0〉 = 0,

l̂z |1,−1〉 = − |1,−1〉 ,

from which the first matrix follows. For l̂+, we have

l̂+ |1, 1〉 = 0,

l̂+ |1, 0〉 = √
2 |1, 1〉 ,

l̂+ |1,−1〉 = √
2 |1, 0〉 ,

from which the second matrix follows. Finally, for l̂− we have

l̂− |1, 1〉 = √
2 |1, 0〉 ,

l̂− |1, 0〉 = √
2 |1,−1〉 ,

l̂− |1,−1〉 = 0,

from which the third matrix follows.
6.11 Making use of Eqs. (6.32)–(6.33), we have

∂(r ,φ, θ )

∂(x , y, z)
=
⎡⎢⎣ cosφ sin θ sinφ sin θ cos θ

− 1
r

sinφ
sin θ

1
r

cosφ
sin θ 0

cosφ cos θ
r

sinφ cos θ
r − sin θ

r

⎤⎥⎦.

6.12 To solve this problem one could use the transformations (6.33) and the partial
derivatives (see Prob. 6.11) to transform by brute force the Laplacian

 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

from Cartesian to spherical coordinates and the desired result then would follow
straightforwardly.

However, there is a more elegant and “physical” solution of the problem. Let us
start from the simple equation (see Eq. (2.134))

p̂2 = p̂2
x + p̂2

y + p̂2
z

= −h̄2
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
= −h̄2.

On the other hand, we also have (in the following a summation over repeated indices
is understood) (see Eq. (6.3))

L̂2 = h̄2 l̂2 = (r̂ × p̂
)2 = εi jk r̂ j p̂kεiabr̂a p̂b

= r̂ j p̂k r̂a p̂b
(
εi jkεiab

)
.
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Since εi jkεiab = δ jaδkb − δ jbδka , we then have

L̂2 = r̂ j p̂k r̂a p̂bδ jaδkb − r̂ j p̂k r̂a p̂bδ jbδka

= r̂ j p̂k r̂ j p̂k − r̂ j p̂k r̂k p̂ j

= r̂ j
(
r̂ j p̂k +

[
p̂k , r̂ j

])
p̂k −

(
p̂k r̂ j +

[
r̂ j , p̂k

])
r̂k p̂ j

= r̂ j
(
r̂ j p̂k − ı h̄δ jk

)
p̂k −

(
p̂k r̂ j + ı h̄δ jk

)
r̂k p̂ j

= r̂ j r̂ j p̂k p̂k − ı h̄r̂ j p̂ j − p̂k r̂k r̂ j p̂ j − ı h̄r̂k p̂k

= r̂2p̂2 − ı h̄ r̂ · p̂− ( p̂ · r̂
) (

r̂ · p̂
)− ı h̄ r̂ · p̂.

Since p̂r̂ = r̂ p̂− 3ı h̄, we have

L̂2 = r̂2p̂2 − 2ı h̄ r̂ · p̂− (r̂ · p̂− 3ı h̄
)

r̂ · p̂

= r̂2p̂2 − (r̂ · p̂
)2 + ı h̄ r̂ · p̂.

On the other hand,

r̂ · p̂ = h̄

ı

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
,

and, from r = (x2 + y2 + z2)
1
2 ,

∂

∂x
= x

r

∂

∂r
,
∂

∂y
= y

r

∂

∂r
,
∂

∂z
= z

r

∂

∂r
.

Therefore,

r̂ · p̂ = h̄

ı
r
∂

∂r
.

From the previous equations, we obtain

p̂2 = 1

r2

[(
r̂ · p̂

)2 − ı h̄r̂ · p̂+ L̂2
]

= h̄2

(
− ∂

2

∂r2
− 2

r

∂

∂r
+ l̂2

r2

)
.

Together with the first equation, we finally obtain

 = ∂2

∂r2
+ 2

r

∂

∂r
− l̂2

r2

= 1

r2

∂

∂r

(
r2 ∂

∂r

)
− l̂2

r2
,

which proves the desired result.
It is interesting to note that the equation

p̂2 = 1

r2

[(
r̂ · p̂

)2 − ı h̄r̂ · p̂+ L̂2
]

bears an important physical meaning: dividing both sides of the equation by 2m,
we have that the total energy of a point-like free quantum particle in the three-
dimensional case (p̂2/2m) may be interpreted as the sum of three terms. The first
term, i.e.
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r̂ · p̂
)2

2mr2
,

represents an element of the radial part of the energy. The second term,

− ı h̄r̂ · p̂
2mr2

,

is a typical quantum-mechanical term that arises from the commutators between posi-
tion and momentum in the derivation above,7 and is the other element of the radial
part. The last term, i.e.

L̂2

2mr2
,

is the angular part of the total energy.
6.14 We start from Eq. (6.59) and write, for m = l and m′ = l ′,∫

d�Y ∗l ′l ′ (φ, θ )Yll (φ, θ ) = δll ′ .
The lhs of the previous equation turns out to be∫ 2π

0
dφ

eı(l−l ′)φ

2π

∫ π

0
dθ sin θ�∗l ′l ′ (θ )�ll (θ ).

Now, since ∫ 2π

0
dφ

eı(l−l ′)φ

2π
= δll ′ ,

we must also have

Ill =
∫ π

0
dθ sin θ�∗ll (θ )�ll (θ ) = 1.

On the other hand,

Ill = |N |2
∫ π

0
dθ (sin θ)2l+1 = 2 |N |2

∫ π
2

0
dθ (sin θ)2l+1 .

Since8 ∫ π
2

0
dθ (sin θ)2l+1 = (2l) ! !

(2l + 1) ! !
,

then

Ill = 2 |N |2 (2l) ! !

(2l + 1) ! !
,

from which it follows that

|N | =
√
(2l + 1) ! !

2 (2l) ! !
= 1

2l l!

√
(2l + 1) !

2
.

7 This term vanishes in the classical limit h̄ → 0 (see Pr. 2.3: p. 72).
8 See [Gradstein/Ryshik 1981, 3.621.4].
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The latter result may be proved by induction (it is trivially true for l = 1, and, if it is
true for l, it is also true for l + 1).

6.16 A spherically symmetric Hamiltonian is of the type (6.84). On the other hand, l̂2 is
the angular part of the Laplacian (see Eq. (6.55)). If one bears in mind the explicit
expression of the Laplacian in spherical coordinates (Eq. (6.255)), it is clear that[

p̂2, l̂2
]
=
[
V (r ), l̂2

]
= 0.

Concerning l̂z , we have[
p̂2, l̂z

]
=
[

p̂2
x + p̂2

y + p̂2
z , x̂ p̂y − ŷ p̂x

]
=
[

p̂2
x , x̂ p̂y

]
−
[

p̂2
y , ŷ p̂x

]
=
[

p̂2
x , x̂
]

p̂y −
[

p̂2
y , ŷ
]

p̂x

= −2ı h̄ p̂x p̂y + 2ı h̄ p̂y p̂x = 0,

where we have made use of the result of Prob. 2.23. Moreover,[
r̂2, l̂z

]
=
[
x̂2 + ŷ2 + ẑ2, x̂ p̂y − ŷ p̂x

]
= −

[
x̂2, ŷ p̂x

]
+
[

ŷ2, x̂ p̂y

]
= −ŷ

[
x̂2, p̂x

]
+ x̂

[
ŷ2, p̂y

]
= −2ı h̄ ŷ x̂ + 2ı h̄ x̂ ŷ = 0,

where we have made use of the result of Prob. 2.26, and that completes the argument.
6.17 We know from Prob. 6.16 that l̂z commutes with p̂2 and r̂2. In turn, this means[

l̂z , p̂2
x + p̂2

y

]
=
[
l̂z , p̂2 − p̂2

z

]
= 0,[

l̂z , x̂2 + ŷ2
]
=
[
l̂z , r̂2 − ẑ2

]
= 0,

since l̂z commutes with both p̂z and ẑ (see Eq. (6.2c)). This completes the proof.
6.20 We explicitly derive the commutation relation

[
σ̂x , σ̂y

] = 2ı σ̂z and leave the remain-
ing to the reader. We have

[
σ̂x , σ̂y

] = [ 0 1
1 0

] [
0 −ı
ı 0

]
−
[

0 −ı
ı 0

] [
0 1
1 0

]
= 2ı

[
1 0
0 −1

]
= 2ı σ̂z .

6.22 We prove the result for σ̂x and leave to the reader the calculation involving σ̂y . The
characteristic equation for σ̂x is

det
(
σ̂x − λ Î

)
= λ2 − 1 = 0,

which gives the eigenvalues λ1,2 = ±1. We write the eigenvectors as

|↑〉 x =
(

a
b

)
, and |↓〉 x =

(
c
d

)
.
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The conditions (6.158a) imply a = b and d = −c, so that we finally arrive at the
normalized eigenvectors

|↑〉 x =
1√
2

(
1
1

)
= 1√

2

[(
1
0

)
+
(

0
1

)]
= 1√

2

(|↑〉 z + |↓〉 z
)
,

|↓〉 x =
1√
2

(
1
−1

)
= 1√

2

[(
1
0

)
−
(

0
1

)]
= 1√

2

(|↑〉 z − |↓〉 z
)
.

6.23 It is very easy to show that

σ̂z = |↑〉 z 〈↑ | − |↓〉 z 〈↓ | .
For calculating σ̂x and σ̂y , we need to use Eqs. (6.159), that is,

σ̂x = 1

2

(|↑〉 x 〈↑ | − |↓〉 x 〈↓ |
)

= 1

2

[(|↑〉 z + |↓〉 z
) (

z 〈↑ |+ z 〈↓ |
)− (|↑〉 z − |↓〉 z

) (
z 〈↑ |− z 〈↓ |

)]
= |↑〉 z 〈↓ | − |↑〉 z 〈↓ | ,

and

σ̂y = 1

2

(|↑〉 y 〈↑ | − |↓〉 y 〈↓ |
)

= 1

2

[(|↑〉 z + ı |↓〉 z
) (

z 〈↑ | − ı z 〈↓ |
)− (|↑〉 z − ı |↓〉 z

) (
z 〈↑ | + ı z 〈↓ |

)]
= ı

(− |↑〉 z 〈↓ | + |↑〉 z 〈↓ |
)
.

A comparison with the matricial expressions of the vectors |↑〉 z and |↓〉 z gives
immediately the Pauli matrices.

6.24 That Pauli matrices are Hermitian can be immediatly recognized by inspection. This
property immediately shows that σ̂ 2

j = Î for j = x , y, z.
6.25 We proceed as follows:(

σ̂ · f
) (

σ̂ · f′
) = σ̂ j σ̂k f j f

′
k =

{
1

2

[
σ̂ j , σ̂k

]+ 1

2

[
σ̂ j , σ̂k

]
+

}
f j f

′
k

=
{

ıε jkn σ̂n + Î δ jk

}
f j f

′
k

= ıε jkn f j f
′
k σ̂n + Î δ jk f j f

′
k

= ı
(
f× f′

)
σ̂ + (f · f′

)
Î .

6.27 It is sufficient to consider the form[
1

2m

(
px + e

c
By
)2 − h̄2

2m

∂2

∂y2
+ p2

z

2m
− μ̃sz B − E

]
e

ı
h̄ (px x+pz z)

ϕ(y) = 0.

6.28 For the electron we have g 	 −2 (see Eq. (6.169) and comments), and μ̃

(Eq. (6.173)) becomes

μ̃ = − eh̄

mc
.
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Therefore, the energy eigenvalues (6.179) may be rewritten as

E =
(

n + 1

2
+ sz

)
h̄ωB .+ p2

z

2m
.

6.29 Given the harmonic-oscillator character of the Schrödinger equation (6.176), we may
take full advantage of the eigenfunctions (4.97), with a suitable change of notation.
We finally obtain

ϕn(y) =
(

mωB

π h̄

) 1
4

2−
n
2 (n! )−

1
2 e−

(y−y0)2mωB
2h̄ Hn

[
(y − y0)

√
mωB

h̄

]
.

6.30 The first part is trivial. For the second part notice that l̂z does not commute with l̂1,2.
6.31 We prove the results for the states (6.193c) and (6.194). The derivation for the other

two cases is straightforward. Since ŝz = ŝ1z + ŝ2z and

ŝkz |↑〉 k,z =
1

2
|↑〉 k,z and ŝkz |↓〉 k,z = −1

2
|↓〉 k,z ,

we have

ŝz |1, 0〉 12 = 1√
2

[(
1

2
− 1

2

)
|↑〉 1 |↓〉 2 +

(
−1

2
+ 1

2

)
|↓〉 1 |↑〉 2

]
= 0,

ŝz |0, 0〉 12 = 1√
2

[(
1

2
− 1

2

)
|↑〉 1 |↓〉 2 −

(
−1

2
+ 1

2

)
|↓〉 1 |↑〉 2

]
= 0.

Concerning the total spin, we first notice that

ŝ2 = ŝ2
1 + ŝ2

2 + 2ŝ1 · ŝ2

= 3

2
+ 2ŝ1z ŝ2z + ŝ1+ ŝ2− + ŝ1− ŝ2+ ,

which can be derived by explicit substitution of ŝ1± , ŝ2± , ŝ2
1 , and ŝ2

2 from Eqs. (6.149)
and (6.190). By direct application of the operator ŝ2 above onto the two desired states,
we obtain

ŝ2 |0, 0〉 12 = 0,

ŝ2 |1, 0〉 12 = 2,

that proves the requested result.
6.34 We know that

(φ)2 =
〈
φ2
〉
− 〈φ〉2

=
+π∫
−π

dφψ∗(φ)φ2ψ(φ)−
⎡⎣ +π∫
−π

dφψ∗(φ)φψ(φ)

⎤⎦2

.
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With the change of variable φ + η = ξ , we have

f (η) =
+π∫
−π

dξψ∗(ξ )ξ2ψ(ξ )+ η2

+π∫
−π

dξψ∗(ξ )ξψ(ξ )− 2η

+π∫
−π

dξψ∗(ξ )ξψ(ξ )

=
〈
ξ2
〉
− 2η 〈ξ 〉 + η2.

As a consequence, f (η) represents a parabola as a function of η and its minimum
value (corresponding to the vertex of the parabola) is obtained for η = 〈ξ 〉 and is
equal to

〈
ξ2
〉− 〈ξ 〉2, that is to (φ)2.

6.35 From the equation

(
ψO

) · (ψO ′) ≥ 1

2

∣∣∣ 〈ψ | [Ô , Ô ′] |ψ〉 ∣∣∣,
we derive for the uncertainty product of x and y components of the angular momen-
tum, when we suppose to obtain the outcome h̄m j in a measurement of Ĵz , the
formula

(
ψ Jx

) · (ψ Jy
) ≥ 1

2

∣∣∣ 〈ψ | [ Ĵx , Ĵy

]
|ψ〉

∣∣∣ = h̄

2

〈
ψ

∣∣∣ Ĵz

∣∣∣ψ〉 = m j

h̄2

2
.

This result, together with the fact that the maximum value of m is j while the length
of the j-vector is

√
j( j + 1), forces us to conclude that the angular momentum vector

can never point exactly in the z-direction. Stated in other terms, since the z-direction
is arbitrary, the orientation of the angular momentum is always intrinsically uncertain.

It is also possible to derive a finer estimate of the Ĵx and Ĵy uncertainties.9 In fact,
we have (see Eqs. (2.184))

2
ψ ĵx =

〈
ψ

∣∣∣(ĵx −
〈
ψ
∣∣ĵx
∣∣ψ 〉)2∣∣∣ψ〉

=
〈
ĵ2

x

〉
ψ
− 〈ĵx

〉2
ψ
=
〈
ĵ2

x

〉
ψ

,

and similarly 2
ψ ĵy =

〈
ĵ2

y

〉
ψ

. Therefore, we have

〈
ĵ

2
〉
ψ
=
〈
ĵ2

x

〉
ψ
+
〈
ĵ2

y

〉
ψ
+
〈
ĵ2

z

〉
ψ

= 2
ψ ĵx +2

ψ ĵy + m2
j
.

Since
〈
ĵ

2
〉
ψ
= j( j + 1), we obtain

2
ψ ĵx +2

ψ ĵy = j2 + j − m2
j
.

In the case in which m j = j we have that 2
ψ ĵx +2

ψ ĵy = j .

9 See [Edmonds 1957, 18–19].
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Chapter 7

7.1 Multiplying Eq. (7.14) on the left by
〈
r(1)
δ r(2)

η r(3)
ζ

∣∣∣, it follows that

Û 123
P �(r(1)

δ , r(2)
η , r(3)

ζ ) = �(r(1)
η r(2)

ζ r(3)
δ ),

where �(r(1)
α r(2)

β r(3)
γ ) is the wave function given by the scalar product

�(r(1)
α r(2)

β r(3)
γ ) =

〈
r(1)
α r(2)

β r(3)
γ | �

〉
.

7.3 It is impossible: it would be a violation of Pauli exclusion principle.
7.6 The position–momentum uncertainty relation (2.190) states that

pxx 	 h̄.

On the other hand,

px 	
√

p2
x 	

√
2m E .

Substituting E = KBT (see Subsec. 1.5.1) in the previous equation, we finally obtain

x 	 h̄√
2mkBT

,

which is the so-called thermal wavelength.

Chapter 8

8.2 The mean value of P̂ calculated on the output state is given by〈
ψ
′ ∣∣∣P̂∣∣∣ψ ′〉 = 1

2
( 〈1 | − ı 〈2 |) [|1〉 〈1 | − |2〉 〈2 |] (|1〉 − ı |2〉 )

= 1

2
(1+ ı ı) = 0.

The mean value of P̂ ′
calculated on the input state is given by〈

1
∣∣∣P̂ ′ ∣∣∣ 1〉 = 〈1 |

[
1

2
(|1〉 − ı |2〉 ) ( 〈1 | + ı 〈2 |)− 1

2
(−ı |1〉 + |2〉 ) (ı 〈1 | + 〈2 |)

]
|1〉

=
〈
1

∣∣∣∣12
∣∣∣∣ 1〉− 〈1 ∣∣∣∣(−ı)(ı)

1

2

∣∣∣∣ 1〉 = 0.

8.3 A generic two-dimensional state |ϕ〉 may be expanded as

|ϕ〉 = cos
θ

2
|1〉 + eıφ sin

θ

2
|2〉 ,

where θ and φ are the polar and azimuthal angles of the Poincaré sphere, respectively.
Let us consider the transformation (8.4). The input state |1〉 corresponds to the north
pole, i.e. to θ = 0 (φ is not defined). On the contrary, the output state

∣∣ψ ′〉 lies on
the equator of the Poincaré sphere and corresponds to θ = π/2, φ = π/2. In a similar
way, we can show that the input state |2〉 (south pole, θ = π ) is transformed into an
equator state (θ = π/2). We may then conclude that the considered transformation
performs a π/2 rotation on the polar angle of the Poincaré sphere.
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8.4 Consider a transformation Û such that
∣∣∣ψ ′〉 = Û |ψ〉 . After some time we shall

have |ψ〉 → |ψ(t)〉 = e−
ı
h̄ Ĥ t |ψ〉 and

∣∣∣ψ ′〉 → ∣∣∣ψ ′
(t)
〉
= e−

ı
h̄ Ĥ t

∣∣∣ψ ′〉
, Ĥ being the

Hamiltonian of the system. If the symmetry under the transformation Û must be con-

served, then
∣∣∣ψ ′

(t)
〉

must be also equal to Û |ψ(t)〉 . Combining the previous equations

we obtain on one hand ∣∣∣ψ ′
(t)
〉
= e−

ı
h̄ Ĥ t Û |ψ〉 ,

and, on the other hand, ∣∣∣ψ ′
(t)
〉
= Ûe−

ı
h̄ Ĥ t |ψ〉 .

In conclusion, for the symmetry to be conserved, the operator Û must commute with
the Hamiltonian.

8.5 The hypothesis is that we have
[

Ô , Ô
′] = ı h̄ and that Ô and Ô

′
are unitarily

transformed. Then, we have

Û ÔÛ †Û Ô
′
Û † − Û Ô

′
Û †Û ÔÛ † = Û Ô Ô

′
Û † − Û Ô

′
ÔÛ †

= Û
[

Ô , Ô
′]

Û †

= ÛÛ †ı h̄ =
[

Ô , Ô
′]

.

You may have recognized that we have already solved this problem in Subsec. 3.5.1.
8.6 It is evident that, if Û (a) represents a continuous transformation, a/2 exists and

Û (a) = Û (a/2)Û (a/2). Now, Û (a/2) can be either unitary or antiunitary. However,
the square of both a unitary operator and an antiunitary operator must be a unitary oper-
ator (see Properties (8.11)). Therefore, Û (a) is unitary (see also the Stone theorem:
p. 122).

Chapter 9

9.1 After a unitary time-evolution Ût , the density matrix ρ̂0 is transformed into

ρ̂t = Ût ρ̂0Û †
t ,

such that

ρ̂2
t = Ût ρ̂0Û †

t Ût ρ̂0Û †
t

= Ût ρ̂
2
0Û †

t ,

so that, if ρ̂2
0 = ρ̂0, then we also have

ρ̂2
t = ρ̂t .

9.2 The part of ĤSM related to the system is already diagonal, that is, taking into account
the third Pauli’s matrix (6.154),

1+ σ̂Sz =
[

2 0
0 0

]
.
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Concerning σ̂Mx , we calculate the determinant of the first Pauli’s matrix

σ̂Mx =
[

0 1
1 0

]
.

Then

det
(
σ̂Mx − λ Î

)
=
∣∣∣∣ −λ 1

1 −λ
∣∣∣∣ = λ2 − 1,

i.e. λ1,2 = ±1. In other words, the action of σ̂Mx on its eigenkets |↑〉Mx , |↓〉Mx is

σ̂Mx |↑〉Mx = |↑〉Mx , σ̂Mx |↓〉Mx = − |↓〉Mx .

It follows than that (see Eqs. (6.158a) and Prob. 6.22)

|↑〉Mx = 1√
2

(
1
1

)
, |↓〉Mx = 1√

2

(
1
−1

)
.

9.3 Since a density matrix is a Hermitian operator (see Sec. 5.2), its eigenstates form a
basis in the Hilbert space (see Th. 2.2). In this basis it is apparent that the off-diagonal
terms of the density matrix are exactly zero.

9.5 We have

|ϕ(t)〉 = 1√
2

(|ψ↑(t)〉 |↑〉 z + |ψ↓(t)〉 |↓〉 z
)
.

In the limit of a perfect overlap between |ψ↑(t)〉 and |ψ↓(t)〉, we have〈
ψ↑(t) | ψ↓(t)

〉 = 1, and it follows that

ρ̂(t) = 1

2
|ψ(t) 〉 〈ψ(t) |

(
1
1

) (
1 1

)
,

where |ψ(t)〉 = |ψ↑(t)〉 = |ψ↓(t)〉.
9.6 By making use of the relations (see Eq. (6.147), (4.87), and the first of Eq. (4.85),

respectively)

1

2

(
1+ σ̂z

) |↑〉 = |↑〉 ,
â1 |0〉 = 0,

â0 |N 〉 =
√

N |N − 1〉 ,
we derive

〈↑ |
〈
N
∣∣∣ĤSA

∣∣∣ N − 1
〉
|↑〉 = ε′SA

√
N ,

which yields

ε′SA

√
Nτ0 	 1.

9.7 (i) In order to diagonalize the Hamiltonian it suffices to substitute the definitions
(9.215) into Eq. (9.61), so as to obtain

Ĥ ′
SA(b̂) = 1

2

εSA√
N

(
1+ σ̂z

) (
b̂†

0b̂0 − b̂†
1b̂1

)
.
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The eigenstates of Ĥ ′
SA(b̂) will be given by

|ν〉 b |↑〉 = 1√
ν!

1√
(N − ν) !

(
b̂†

0

)ν (
b̂†

1

)N−ν |0〉 |↑〉 ,

with

Ĥ ′
SA(b̂) |ν〉 b |↑〉 = εSA√

N
(2ν − N ) |ν〉 b |↑〉 .

(ii) Taking advantage of the expression

|N 〉 = 1√
N !

(
â†

0

)N |0〉 ,

where

â†
0 =

1√
2

(
b̂†

0 − b̂†
1

)
,

and (
â†

0

)N =
(

1√
2

)N (
b̂†

0 − b̂†
1

)N

=
(

1√
2

)N N∑
ν=0

(
N
ν

)(
b̂†

0

)ν (−b̂†
1

)N−ν
,

the initial state can be written as

|�SA(t0)〉 =
(

1√
2

)N N∑
ν=0

1√
N !

(
N
ν

)(
b̂†

0

)ν (−b̂†
1

)N−ν |0〉 |S〉

=
(

1√
2

)N N∑
ν=0

1√
N !

(
N
ν

)
(−1)N−ν

√
ν!
√

(N − ν)! |ν〉 b |S〉

=
(

1√
2

)N N∑
ν=0

(−1)N−ν
√

N !√
ν! (N − ν) !

|ν〉 b |S〉 .

Inserting this expression into Eq. (9.67) and making use of the above eigenvalue
equation for Ĥ ′

SA(b̂), we obtain

|�SA(t)〉 = c+

[(
1√
2

)N N∑
ν=0

(−1)N−ν
√

N !√
ν! (N − ν) !

e
− ı

h̄
εSA√

N
(2ν−N )t |ν〉 b

]
|↑〉

+ c− |N 〉 |↓〉 .

In order to obtain the final state (9.68), it is necessary to transform back to the
physical states |a0〉 , |a1〉 , i.e. from |ν〉 b to |n〉 . The transformation is standard
but rather cumbersome, and requires some relabeling.
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|2>

|1>

|1>

|1>

|1>

|1>

|1> |2>

|2>

|2>

|2> |2>

9.8 Stirling’s formula states that, for large m,

ln(m! ) 	 m ln m − m + 1

2
ln m.

Taking only the first two (dominant) terms of this expansion, and substituting the
resulting approximation

m! 	 mme−m

into Eq. (9.73), one obtains ℘〈n〉 	 1.
9.9 With reference to the above figure, we label by |1〉 the input state, that is trans-

mitted at the first and at each subsequent beam splitter, and by |2〉 the state that is
reflected at the first beam splitter and then transmitted at each subsequent beam split-
ter. Using the generic mapping derived in the solution of Prob. 3.12, we may write
the transformation at the first beam splitter as

|1〉 �→ T |1〉 + ıR |2〉 ,
where, for the sake of simplicity, we have assumed R and T to be real. The subsequent
two mirrors and beam splitter induce the transformations

T |1〉 �→ ıT (T |1〉 + ıR |2〉),
ıR |2〉 �→ −R (ıR |1〉 + T |2〉).

Collecting these results, we have

T |1〉 + ıR |2〉 �→ ı
(

T2 − R2
)
|1〉 − 2RT |2〉 .

This means that, after two beam splitters, the state has become

|out〉 2 = ı cos
π

N
|1〉 − sin

π

N
|2〉 ,

where R = cosπ/2N and T = sinπ/2N . It follows that, after N beam splitters (with
N even), we shall have

|out〉
N
∝ cos

π

2
|1〉 + sin

π

2
|2〉 = |2〉 .

9.10 In order to prove that ρ̂ j is a density operator it is sufficient to show that ρ̂ j = ρ̂†
j

and Tr(ρ̂ j ) = 1.

Since ρ̂ is a density operator and therefore ρ̂ = ρ̂†, the first condition is immedi-
ately verified. In order to verify the second condition we use the cyclic property of
the trace and the fact that P̂2

j = P̂j to obtain
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Tr
(
ρ̂ j
) = Tr

(
P̂j ρ̂ P̂j

)
Tr
(
ρ̂ P̂j

) =
Tr
(
ρ̂ P̂2

j

)
Tr
(
ρ̂ P̂j

) = Tr
(
ρ̂ P̂j

)
Tr
(
ρ̂ P̂j

) = 1.

9.11 In this case we have, using Eq (9.110),

T
(
ρ̂i
) = |v〉 〈v | ρ̂i |v〉 〈v | = sin2 θ |v〉 〈v |.

Similarly, using the cyclic property of the trace (see Prob. 5.4), we obtain

Tr
[
T
(
ρ̂i
)] = Tr

[
P̂vρ̂i P̂v

]
= Tr

[
P̂vρ̂i

]
= 〈v ∣∣ρ̂i

∣∣ v〉 = sin2 θ ,

where we have used the obvious fact that P̂2
v = P̂v (see Eq (1.41b)). The desired

result immediately follows from the latter two equations.
9.12 The problem can be solved by making repeated use of the cyclic property of the trace

and the linearity of the trace operation, that is,

Tr
[
ρ̂T ∗ (Ô

)]
= Tr

[
ρ̂
∑

k

ϑ̂
†
k Ôϑ̂k

]

= Tr

[∑
k

ϑ̂
†
k Ôϑ̂k ρ̂

]
=
∑

k

Tr
[
ϑ̂

†
k Ôϑ̂k ρ̂

]
=
∑

k

Tr
[

Ôϑ̂k ρ̂ϑ̂
†
k

]
=
∑

k

Tr
[
ϑ̂k ρ̂ϑ̂

†
k Ô
]

= Tr

[∑
k

ϑ̂k ρ̂ϑ̂
†
k

]
Ô .

9.13 From Eq. (9.122) and from the fact that Tr[ρ̂ f ] = 1 it follows that

1

℘(xm)
Tr
[
ϑ̂(xm)ρ̂i ϑ̂

†(xm)
]
= 1,

from which, by the cyclic property of the trace, it further follows that

℘(xm) = Tr
[
ϑ̂†(xm)ϑ̂(xm)ρ̂i

]
.

On the other hand, according to Eq. (9.120)

℘(xm) = Tr
[

Ê(xm)ρ̂i

]
,

and therefore we have

Tr
[
ϑ̂†(xm)ϑ̂(xm)ρ̂i

]
= Tr

[
Ê(xm)ρ̂i

]
.

Since the previous equation must hold for any ρ̂i , this implies that ϑ̂†(xm)ϑ̂(xm) =
Ê(xm).
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9.14 Using expressions (9.125) and (9.127b), we have

+∞∫
−∞

dxm℘(xm)
〈
xS
∣∣∣ρ̂ ′ (xm)

∣∣∣ xS
〉
=

+∞∫
−∞

dxm℘(xm) 〈xS | 1

℘(xm)
Ê

1
2 (xm)ρ̂i Ê

1
2 (xm) | xS〉

=
+∞∫
−∞

dxm 〈xS |
+∞∫
−∞

dx ′S
[
℘(xm |x ′S )

] 1
2 |x ′S〉〈x ′S |

× ρ̂i

+∞∫
−∞

dx ′′S
[
℘(xm |x ′′S )

] 1
2 |x ′′S〉〈x ′′S | xS〉 .

Given that 〈xS | y〉 = δ(xS − y), where | y〉 is an arbitrary eigenstate of x̂ , we finally
obtain

+∞∫
−∞

dxm℘(xm)
〈
xS
∣∣∣ρ̂ ′ (xm)

∣∣∣ xS
〉
=

+∞∫
−∞

dxm℘(xm |xS )
〈
xS
∣∣ρ̂i

∣∣ xS
〉

= 〈xS ∣∣ρ̂i

∣∣ xS
〉
.

9.15 The first beam splitter, the mirror M1, and the phase shifter induce the following
transformation on the initial state |1〉 :

|1〉 BS1,M1,PS�→ 1√
2

(
eıφ |1〉 − |2〉),

which, after the second mirror and BS3, becomes

M2,BS3�→ 1√
2

[
ıeıφ

(√
η |1〉 + ı

√
1− η |3〉

)
− |2〉

)
.

The final state, after BS2, can be written as

| f 〉 = 1√
2

[
ıeıφ√η 1√

2
(|1〉 + ı |2〉 )− eıφ

√
1− η |3〉 − 1√

2
(ı |1〉 + |2〉 )

]
= ı

2

(
eıφ√η − 1

) |1〉 − 1

2

(
eıφ√η + 1

) |2〉 − eıφ√1− η√
2

|3〉 .

The detection probabilities can then be calulated as follows:

℘1 = 1

4

(
eıφ√η − 1

) (
e−ıφ√η − 1

)
= 1

4
(η + 1)−

√
η cosφ

2
,

℘2 = 1

4
(η + 1)+

√
η cosφ

2
,

℘3 = 1− η
2

.
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In the case in which η = 1, we have

℘1 = 1

2
(1− cosφ) = sin2 φ

2
,

℘2 = 1

2
(1+ cosφ) = cos2 φ

2
,

℘3 = 0,

whereas, when η = 0, we obtain

℘1 = ℘2 = 1

4
,

℘3 = 1

2
.

9.18 It is easy to show that

Ê1 = 1

2

[
P̂P

d + η P̂P
u −√η

(
P̂V

2 − P̂V
1

)]
=
[

1
4 (1+ η)−

√
η

2 cosφ 1
4 (1− η)+ ı

√
η

2 sinφ
1
4 (1− η)− ı

√
η

2 sinφ 1
4 (1+ η)+

√
η

2 cosφ

]
,

Ê2 = 1

2

[
P̂P

d + η P̂P
u +√η

(
P̂V

2 − P̂V
1

)]
=
[

1
4 (1+ η)+

√
η

2 cosφ 1
4 (1− η)− ı

√
η

2 sinφ
1
4 (1− η)+ ı

√
η

2 sinφ 1
4 (1+ η)−

√
η

2 cosφ

]
,

Ê3 = (1− η) P̂P
u = 1− η

2

[
1 −1
−1 1

]
.

Now, we need to calculate the three expectations for the three detectors, that is

℘1 =
(

1 0
) [ 1

4 (1+ η)−
√
η

2 cosφ 1
4 (1− η)+ ı

√
η

2 sinφ
1
4 (1− η)− ı

√
η

2 sinφ 1
4 (1+ η)+

√
η

2 cosφ

](
1
0

)
= 1

4
(η + 1)−

√
η cosφ

2
,

℘2 =
(

1 0
) [ 1

4 (1+ η)+
√
η

2 cosφ 1
4 (1− η)− ı

√
η

2 sinφ
1
4 (1− η)+ ı

√
η

2 sinφ 1
4 (1+ η)−

√
η

2 cosφ

](
1
0

)
= 1

4
(η + 1)+

√
η cosφ

2
,

and

℘3 =
(

1 0
) 1− η

2

[
1 −1
−1 1

](
1
0

)
= 1− η

2
,

which fit with the previous calculations.
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9.19 The proof of completeness is straightforward. Indeed,

Ê1 + Ê2 + Ê3 = 1

2

[
P̂P

d + η P̂P
u −√η

(
P̂V

2 − P̂V
1

)]
+ 1

2

[
P̂P

d + η P̂P
u +√η

(
P̂V

2 − P̂V
1

)]
+ (1− η) P̂P

u

= P̂P
d + η P̂P

u + P̂P
u − η P̂P

u

= Î .

The proof of the non-commutability of the above effects is more cumbersome. We
here only consider the non-commutability between Ê1 and Ê2. In order to simplify
the proof, we take η = 1/2. Then,[

Ê1, Ê2

]
= 1

4

[
2√
2

(
P̂V

1 − P̂V
2

)
P̂P

d − 2√
2

P̂P
d

(
P̂V

1 − P̂V
2

)
− 1√

2
P̂P

u

(
P̂V

1 − P̂V
2

)
+ 1√

2

(
P̂V

1 − P̂V
2

)
P̂P

u

]
= 1

4

[
2√
2

(
2P̂V

1 − Î
)

P̂P
d − 2√

2
P̂P

d

(
2P̂V

1 − Î
)

− 1√
2

P̂P
u

(
2P̂V

1 − Î
)
+ 1√

2

(
2P̂V

1 − Î
)

P̂P
u

]
= 1

2
√

2

(
P̂V

1 P̂P
d − P̂P

d P̂V
1

)
,

which, as a direct calculation with the explicit expressions (9.133) and (9.137) of the
involved projectors shows, does not vanish (see also Eq. (2.90)). The formal reason
for this result lies in the fact that projectors P̂V

1 and P̂P
u belong to different sets.

9.20 See the original paper [de Muynck et al. 1991].
9.21 We are looking for the N functions ℘H j

(D) which make the quantity

〈C〉 =
∫
�n

d D
N∑

j=1

R j (D)℘H j
(D)

as small as possible. These probability functions are evidently subject to the
conditions

0 ≤ ℘H j
(D) ≤ 1,

N∑
j=1

℘H j
(D) = 1.

It is clear that the average cost will be minimum if the integrand in the rhs of the
first equation is chosen to be as small as possible for each data point D ∈ IRn. This
procedure corresponds to the choice, at each data point D, of the hypothesis for which
the risk R j (D) is smallest. In practice, at each point D for which Rk(D) < R j (D)
(∀ j �= k), we choose

℘Hk
(D) = 1, ℘H j

(D) = 0.

This is the required solution.



9780521869638sol CUP/AUL November 6, 2008 18:21 Page-43

43 Solut ions to selected problems
�

In order to render the solution more compact, and to facilitate the comparison with
the quantum case, we may also introduce the function

L(D) = min
j

R j (D),

so that we may rewrite our solution in the form[
R j (D)− L(D)

]
℘H j

(D) = 0,

R j (D)− L(D) ≥ 0.

Finally, note that, by summing the first of the latter two equations over j , the function
L(D) may be rewritten as

L(D) =
N∑

j=1

R j (D)℘H j
(D),

so that the minimum average cost can be simply expressed as

〈C〉min =
∫

IRn
d DL(D).

9.23 In case of binary decision, detection operators commute, since ÊH1 + ÊH0 = Î . The
Lagrange operator (see Eq. (9.177)) is given by

L̂ = R̂0 ÊH0 + R̂1 ÊH1 ,

and we have

R̂0 − L̂ = R̂0 − R̂0 ÊH0 − R̂1 ÊH1 = (R̂0 − R̂1)ÊH1 .

Eq. (9.178a) now becomes (
R̂0 − R̂1

)
ÊH1 ÊH0 = 0.

Since in general the operator R̂0 − R̂1 does not vanish, we again deal with projectors
because ÊH1 and ÊH0 must be orthogonal. In conclusion, in this case the optimal
POVM is given by a PVM.

9.24 In view of the symmetry of the expression (9.208), when it is integrated over the
hypersphere the terms with k �= j vanish. Moreover, since

∑n
k=1 |c′k |2 = 1, we have∫

S2n

dS|c′k |2 =
1

n

∫
S2n

dS
n∑

k=1

|c′k |2 =
A2n

n
,

which proves the result.
9.25 We have 〈

ϕ

∣∣∣R j − L̂
∣∣∣ϕ〉 = A−1

2n

〈
ϕ

∣∣∣ Î − ρ̂∣∣∣ϕ〉
= A−1

2n

(〈ϕ | ϕ〉 − 〈ϕ ∣∣ρ̂∣∣ϕ〉) ≥ 0,

because, for any state |ϕ〉 ,〈
ϕ
∣∣ρ̂∣∣ϕ〉 = |〈ϕ | ψ〉|2 ≤ 〈ϕ | ϕ〉.
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Chapter 10

10.1 If the two values of E1 in Eq. (10.27) are equal, we must go to the second order for
removing the degeneracy. By multiplying from the left both sides of Eq. (10.9c) by〈
ψq
∣∣ and 〈ψl |, we obtain

′∑
n

c(1)
n

〈
ψq

∣∣∣Ĥ ′ ∣∣∣ψn

〉
− dq E (2) = 0,

′∑
n

c(1)
n

〈
ψl

∣∣∣Ĥ ′ ∣∣∣ψn

〉
− dl E (2) = 0,

where the prime on the summation symbol denotes omission of the two terms n = q
and n = l. Substitution of c(1)

n from Eq. (10.30) into the previous equations yields⎛⎜⎝ ′∑
n

∣∣∣〈ψq

∣∣∣Ĥ ′ ∣∣∣ψn

〉∣∣∣2
E (0) − E (0)

n

− E (2)

⎞⎟⎠ dq +
′∑
n

〈
ψq

∣∣∣Ĥ ′ ∣∣∣ψn

〉 〈
ψn

∣∣∣Ĥ ′ ∣∣∣ψl

〉
E (0) − E (0)

n

dl = 0,

′∑
n

〈
ψl

∣∣∣Ĥ ′ ∣∣∣ψn

〉 〈
ψn

∣∣∣Ĥ ′ ∣∣∣ψq

〉
E (0) − E (0)

n

dq +
⎛⎜⎝ ′∑

n

∣∣∣〈ψl

∣∣∣Ĥ ′ ∣∣∣ψn

〉∣∣∣2
E (0) − E (0)

n

− E (2)

⎞⎟⎠ dl = 0 .

Making use of the argument employed after Eq. (10.27), the analogues of
Eqs. (10.28) are

′∑
n

∣∣∣〈ψq

∣∣∣Ĥ ′ ∣∣∣ψn

〉∣∣∣2
E (0) − E (0)

n

=
′∑
n

∣∣∣〈ψl

∣∣∣Ĥ ′ ∣∣∣ψn

〉∣∣∣2
E (0) − E (0)

n

′∑
n

〈
ψq

∣∣∣Ĥ ′ ∣∣∣ψn

〉 〈
ψn

∣∣∣Ĥ ′ ∣∣∣ψl

〉
E (0) − E (0)

n

= 0.

Unless both of these conditions are satisfied, the degeneracy is removed in second
order. A generalization to higher orders and to the cases in which the “ground” state
is more than doubly degenerate is straightforward.

10.2 From Eqs. (4.73), we obtain

x̂ =
√

h̄

2mω

(
â† + â

)
,

and

x̂4 =
(

h̄

2mω

)2 (
â4 + 4â†â3 + 6â2 + 6

(
â†
)2

â2 + 12â†â + 4
(

â†
)3

â + 6
(

â†
)2

+
(

â†
)4 + 3

)
,

where we have made use of the commutation relation ââ† = 1+ â†â in order to
write the annihilation operators to the right of the creation operators.10 From the

10 This way of ordering terms involving annihilation and creation operators is called normal ordering.
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previous equation we immediately infer that
〈
n
∣∣x̂4
∣∣m〉 is different from zero only

when m = n − 4, n − 2, n, n + 2, n + 4. In particular, we easily obtain〈
n
∣∣∣x̂4
∣∣∣ n〉 = ( h̄

2mω

)2

(6n2 + 6n + 3),

〈
n
∣∣∣x̂4
∣∣∣ n + 2

〉
=
(

h̄

2mω

)2

(4n + 6))
√

(n + 1)(n + 2),

〈
n
∣∣∣x̂4
∣∣∣ n + 4

〉
=
(

h̄

2mω

)2√
(n + 1)(n + 2)(n + 3)(n + 4).

In deriving the previous equations we have taken into account that, for example, in
the last one only the â4 term survives.

10.3 Starting from Eq. (10.58) and using Eq. (10.62), we have

c(1)
k (t ≥ t∞) =

2
〈
ψk

∣∣∣Ĥ ′
i

∣∣∣ψl

〉
ı h̄

∫ t

−∞
dt ′eı(ωkl t ′ sinωt ′

= −
〈
ψk

∣∣∣Ĥ ′
i

∣∣∣ψl

〉
ı

[∫ t∞

0
dt ′eı(ωkl+ω)t ′ −

∫ t∞

0
dt ′eı(ωkl−ω)t ′

]

= −
〈
ψk

∣∣∣Ĥ ′
i

∣∣∣ψl

〉
ı h̄

[
eı(ωkl+ω)t∞ − 1

ωkl + ω − eı(ωkm−ω)t∞ − 1

ωkl − ω
]

.

10.4 The problem is solved by considering that∣∣eıxt − 1
∣∣2 = (eıxt − 1

) (
e−ı xt − 1

)
= 2− (eıxt + e−ı xt)
= 4 sin2 xt

2
.

10.5 Hamilton equations (1.7) give

ẋ = px

m
, ṗx = −V ′(x),

where V (x) is the potential energy of the one-dimensional Hamiltonian H =
p2

x/2m + V (x). Then, we have

ẍ = ṗx

m
= −V ′(x)

m
= f (x)

m
,

which is Newton’s law. Finally, we obtain

...
x= ḟ (x)

m
= 1

m

d f (x)

dx

dx

dt
= px

m2
f ′(x).

10.6 Quantum-mechanically, Eqs. (3.126) and (3.128) give

ˆ̇x = p̂x

m
, ˆ̇px = −V ′(x̂),

from which it follows that

ˆ̈x = − 1

m
V ′(x̂) = f (x̂)

m
.
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Making use of the Heisenberg equation (3.108), we have

ı h̄
.̂..
x =

[ ˆ̈x , Ĥ
]
= 1

m

[
f (x̂), Ĥ

]
= 1

2m2

[
f (x̂)

m
, p̂2

x

]
.

Now,[
f (x̂), p̂2

x

]
= f (x̂) p̂2

x − p̂2
x f (x̂)+ p̂x f (x̂) p̂x − p̂x f (x̂) p̂x

= [ f (x̂), p̂x
]

p̂x + p̂x
[

f (x̂), p̂x
] = ı h̄

[
f ′(x̂) p̂x + p̂x f ′(x̂)

)
,

where we have taken advantage of the result given in Prob. 2.26. This proves the
final result.

10.8 If V
′′′

(x̂) is small, according to Eqs. (10.117), one has

η =
〈
Ĥ
〉
− Ec =

〈
p̂2

x

〉− 〈 p̂x
〉2

2m
+
〈
V̂
〉
− Vc

= 1

2m

(
σ 2

p + mσ 2
x V

′′
c

)
= const.

Applying Eq. (3.107) to the operator x̂2 − 〈x̂ 〉2, one has

d

dt
σ 2

x =
d

dt

〈
x̂2 − 〈x̂ 〉2〉 = 〈 d

dt

(
x̂2 − 〈x̂ 〉2)〉

= 1

m

(〈
p̂x x̂ + x̂ p̂x

〉− 2
〈
x̂
〉 〈

p̂x
〉)

.

Proceeding in a similar way, with (d/dt)σ 2
x , one obtains

d2

dt2
σ 2

x =
2

m2
σ 2

p −
1

m

(〈
V̂ ′ x̂ + x̂ V̂ ′〉− 2

〈
x̂
〉 〈

V̂ ′〉),

where

σ 2
p =

〈
p̂2

x

〉
− 〈 p̂x

〉2
is the square deviation of p̂x from its mean. If we replace V

′
in the last equation

with the first two terms of the expansion (10.116b), we arrive at

d2

dt2
σ 2

x 	
2

m2

(
σ 2

p − mV ′′
c σ

2
x

)
,

or, by taking into account that η is constant,

d2

dt2
σ 2

x 	
4

m

(
η − V ′′

c σ
2
x

)
.

This last equation, within the approximation V
′′′

(x̂) 	 0, is rather general.
In the case of the free particle,

〈
x̂
〉

performs a uniform rectilinear motion with
velocity

〈
p̂x
〉
/m, and the momentum square deviation remains exactly constant, i.e.

σ 2
p(t) = σ 2

p(t0) = 2mη.



9780521869638sol CUP/AUL November 6, 2008 18:21 Page-47

47 Solut ions to selected problems
�

Morevoer, since

d2

dt2
σ 2

x =
2σ 2

p(t0)

m2
,

one rigorously obtains Eq. (10.119).
Finally, if the free wave packet is taken to be minimum at time t0, i.e.

σ 2
x (t0) · σ 2

p(t0) = h̄

4
,

then σ̇ 2
x (t0) = 0 and

x(t) =
{

[x(t0)]2 +
[
px (t0)

m
(t − t0)

]2
} 1

2

.

The second “spreading” term of the rhs of the previous equation allows a classi-
cal interpretation of the free wave packet: a bunch of point-like particles-initally
contained within a small interval x(t0) about the average value

〈
x̂(t0)

〉
. Since the

velocities of these particles are dispersed over an interval

vx = px (t0)

m

about the group velocity of the packet

vx = 1

m

〈
p̂x (t0)

〉
,

then particles initially located around the same point become uniformly distributed
over a band vx · t at time t , and the width of the band increases indefinitely.

10.9 The Hamiltonian of the harmonic oscillator is given by Eq. (4.48). Then,
Eqs. (10.118) may be rewritten as

d

dt

〈
x̂
〉 = 〈

p̂x
〉

m
and

d

dt

〈
p̂x
〉 = −mω2 〈x̂ 〉 ,

which imply

d2

dt2

〈
x̂
〉 = −ω2 〈x̂ 〉 and

d2

dt2

〈
p̂x
〉 = −ω2 〈 p̂x

〉
,

i.e.
〈
x̂
〉
and

〈
p̂x
〉
carry out sinusoidal oscillations of frequency ω/2π about the origin.

Moreover, we have V
′′
c = mω2, i.e.

η = 1

2m

(
σ 2

p + m2ω2σ 2
x

)
,

d2

dt2
σ 2

x =
4

m

(
η − mω2σ 2

x

)
,

d2

dt2
σ 2

p = 4mω2

(
η − σ

2
p

m

)
,



9780521869638sol CUP/AUL November 6, 2008 18:21 Page-48

48 Solut ions to selected problems
�

which show that σ 2
x and σ 2

p oscillate sinusoidally with frequency ω/π about

σ 2
x =

η

mω2
and σ 2

p = mη,

respectively.
The conditions

d2

dt2
σ 2

x = 0 and
d2

dt2
σ 2

p = 0

require

σ 2
x =

σ 2
p

m2ω2
,

or

η = σ
2
p

m
= mω2σ 2

x .

As we see in Ch. 13, this is equivalent to the condition for a state to be coherent (see
Subsec. 13.4.2).

10.10 Consider the potential depicted in Fig. 10.4. When x < x1, we have V (x) = V0 =
const. Instead, when x > x1, V (x) is a positive function decreasing monotonically
from the positive value V (x1) to V (∞) = 0. The point of discontinuity x1 and the
turning point x2 divide the x-axis in regions I, II, and III. In order to find the trans-
mission coefficient, we must construct the solution of the Schrödinger equation
whose asymptotic form in region III represents a purely transmitted wave (in the
direction of increasing x). In that region, the WKB approximation will have the
form (10.134). The condition we impose upon its asymptotic form determines that
solution (to within a constant), that is, for x � x2,

ψIII = λ 1
2

[
cos

(∫ x

x2

dx
1

λ
− ı
π

4

)
+ ı sin

(∫ x

x2

dx
1

λ
− π

4

)]
,

where the phase π/4 has been added for the sake of computation. According to
Eqs. (10.139), this solution extends to region II (where x1 < x � x2) in the form

ψII = −ıλ
1
2
q exp

(∫ x2

x
dx

1

λq

)
= −ıλ

1
2
q eτ exp

(
−
∫ x

x1

dx
1

λq

)
,

where

τ =
∫ x2

x1

dx
1

λq
.

If we define

λq (x1) = h̄√
2m [V (x1)− E]

and k =
√

2m [E − V0]

h̄
,

in region I the solution of the Schrödinger equation may be written

ψI = C sin [k(x − x1)+ δ),
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where the constants C and δ are obtained applying the continuity conditions to the
wave function and its logarithmic derivative at the point x1. One then finds that

k cot δ = − 1

λq (x1)
and C sin δ = −ı

√
λq (x1)eτ .

Given these results, one can calculate the transmission probabilities (see also Sub-
sec. 4.2.1). Finally, it should be noted that the present calculation is correct if V (x)
varies sufficiently slowly in regions II and III where the WKB approximation has
been made. This in turn requires that the barrier be at least several wavelengths thick
and that the trasmission probability be extremely small (< 10−5).

10.11 Even though following result can be cast in general terms, we shall limit ourselves
to a particle moving in one dimension. Let us start from Eq. (3.99) for the one-
dimensional case, i.e.

ψ(x ′, t ′) =
∫

dxG(x ′, t ′; x , t)ψ(x , t),

where we have omitted the ı factor (see footnote 16, p. 390). In order to derive the
desired differential equation, we consider the case in which the time t ′ is only an
infinitesimal interval ε after t , i.e. t ′ = t + ε. Taking into account Eq. (10.191) and
the fact that for a small time interval ε the action is approximately equal to ε times
the Lagrangian, we have

ψ(x , t + ε) = 1

N

+∞∫
−∞

dx ′eε
ı
h̄ L
(

x+x ′
2 , x−x ′

ε

)
ψ(x ′, t).

In the one-dimensional case with a potential V (x , t),

L(x , ẋ) = 1

2
mẋ2 − V (x , t),

and

ψ(x , t + ε) = 1

N

+∞∫
−∞

dx ′e
ı
h̄

m(x−x ′)2
2ε e

− ı
h̄ εV

(
x+x ′

2 ,t
)
ψ(x ′, t).

Consider the first exponential in the previous equation: if x ′ is appreciably different
from x , this factor oscillates very rapidly, making the integral over x ′ vanish. Only
for x ′ values that are close to x do we obtain significant contributions. We therefore
make the substitution x ′ = x + η, where we expect important contributions only for
small values of η. This yields

ψ(x , t + ε) = 1

N

+∞∫
−∞

dηe
ı
h̄

mη2

2ε e−
ı
h̄ εV (x+ η2 ,t)ψ(x + η, t),

where the main contribution to the integral will come from values of η of the order√
ε. Expanding in power series the lhs up to first order in ε and the rhs up to second

order in η, we obtain
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ψ(x , t)+ ε ∂ψ
∂t

= 1

N

+∞∫
−∞

dηe
ı
h̄

mη2

2ε

[
1− ıε

h̄
V (x , t)

] [
ψ(x , t)+ η∂ψ

∂x
+ 1

2
η2 ∂

2ψ

∂x2

]
,

where we have replaced εV (x + η/2, t) by εV (x , t), since the error is of order
higher than ε. Let us consider the leading terms in both sides of the previous
equation. We have

ψ(x , t) = ψ(x , t)
1

N

+∞∫
−∞

dηe
ı
h̄

mη2

2ε .

In the limit as ε approaches zero, the normalization factor N must be chosen so that
the equality holds. Since11

+∞∫
−∞

dxeax2 =
√
−π

a
,

where a is a complex number, we have

N =
(

2π ı h̄ε

m

) 1
2

.

By making use of the integrals

+∞∫
−∞

dηe
ı
h̄

mη2

2ε η = 0

and12

+∞∫
−∞

dηe
ı
h̄

mη2

2ε η2 = ı h̄ε

m
,

we finally obtain the equality

ψ(x , t)+ ε ∂ψ
∂t

= ψ(x , t)− ıε

h̄
V (x , t)ψ(x , t)− h̄ε

2ım

∂2ψ

∂x2
.

This equality holds to order ε if ψ(x , t) satisfies the differential equation

ı
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x , t)ψ ,

that is precisely the Schrödinger equation for a one-dimensional system. In a similar
way the same result can be obtained in more complicated contexts.

11 [Gradstein/Ryshik 1981, 3.322.2].
12 [Gradstein/Ryshik 1981, 3.462.8].
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x1 x2

Chapter 11

11.4 We have:

lim
x→+∞ y(x) = 0, lim

x→0+
y(x) = +∞.

Furthermore, studying the first and the second derivatives, we obtain a minimum at
(see figure above)

x1 ≡
(

2a

b
;− b2

4a

)
,

and a flex at

x2 ≡
(

3a

b
;−2b2

9a

)
.

11.5 The reduced mass is given by

m = me Zm p

me + Zm p

= me

(
1+ me

Zm p

)−1

	 me

(
1− me

Zm p

)
,

from which we derive

me − m

me
= m

me

	 me

Zm p
.

In the case of the hydrogen atom (Z = 1), we have

m

me
	 0.05%.
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11.6 Starting from Eqs. (11.13c) and (11.18), and making use of substitutions (11.21),
(11.23a), and (11.24), we have

ĤI − Er

E0
= − 1

E0

[
Er + h̄2

2m

∂2

∂r2
− h̄2

2m

l(l + 1)

r2
+ Ze2

r

]

= − Er

E0
− h̄4

2m2e4

∂2

∂r2
+ h̄4

2m2e4

l(l + 1)

r2
− h̄2

me2

Z

r

= −Ẽ − r2
0

2

∂2

∂r2
+ r2

0

2

l(l + 1)

r2
− r0

Z

r

= −Ẽ − 1

2

∂2

∂ r̃2
+ 1

2

l(l + 1)

r̃2
− Z

r̃
,

from which, for Z = 1, the desired result can be derived.
11.7 Substituting Eq. (11.27b), i.e.

ξ ′′(r̃ ) =
[
− l + 1

r̃2
+ W ′′

W
−
(
W ′)2
W 2

+ (l + 1)2

r̃2
+ 1

n2
+
(
W ′)2
W 2

−2(l + 1)

nr̃
+ 2(l + 1)W ′

r̃ W
− 2W ′

nW

]
r̃ l+1e−

r̃
n W ,

and Eq. (11.26), i.e.

r̃ l+1e−
r̃
n W (r̃ ) = ξ (r̃),

into Eq. (11.23b), we obtain

0 =
[
− l + 1

r̃2
+ W ′′

W
−
(
W ′)2
W 2

+ (l + 1)2

r̃2
+ 1

n2
+
(
W ′)2
W 2

− 2(l + 1)

nr̃

+2(l + 1)W ′

r̃ W
− 2W ′

nW
− 1

n2
+ 2

r̃
− l(l + 1)

r̃2

]
ξ

=
[

W ′′

W
+
(

2(l + 1)

r̃
− 2

n

)
W ′

W
+ 2

r̃

(
1− l + 1

n

)]
ξ .

By multiplying by Wr̃ , we obtain finally the desired result.
11.8 Consider Eq. (11.30) with z = −y, that is,

−y
d2

d(−y)2
f (−y)+ (γ + y)

d

d(−y)
f (−y)− α f (−y) = 0.

It is easy to derive

y
d2

dy2
g(y)+ (γ + y)

d

d(y)
g(y)+ αg(y) = 0,

where g(y) = f (−y), which shows that the solution of this equation has the form
g(y) = F(α; γ ;−y). For y = η we obtain the result (11.39).
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11.9 For each value of n, the possible values of l range from 0 to n − 1; moreover, for
each value of l there are 2l + 1 sublevels. The total number of degenerate states is
then given by

n−1∑
l=0

(2l + 1) = 2n(n − 1)

2
+ n = n2,

since
m∑

k=0

k = m(m + 1)

2
,

and
m∑

k=0

1 = m.

11.10 We find R10(r̃ ) and leave the following ones to the reader. In this case, we have
n = 1, l = 0. As a consequence (see Eq. (11.45)), we have c0 = 1, c1 = 0, and,
for any j > 1, c j = 0. This implies that (see Eq. (11.47)), W (η) = 1, and (see
Eq. (11.26)) ξ (r̃) = r̃ e−r̃ . Finally (see Eq. (11.19)), we obtain

R10(r̃ ) ∝ e−r̃ .

11.11 Again, we find the normalization factor for R10(r ) and leave the others to the reader.
Denoting by N the normalization factor for R10(r ), we must have

N 2

+∞∫
0

dre
−2 r

r0 r2 = 1.

Integrating by parts, we obtain

+∞∫
0

dxe−x x2 = 2,

which implies

2
(r0

2

)3
N 2 = 1,

or

N = 2r
− 3

2
0 .

11.12 Again, we find the radial probability density corresponding to R10(r ) and leave the
others to the reader. We have

℘10(r ) = 4r2

r3
0

e
−2 r

r0 .
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11.13 Using the explicit form of the radial wave functions (Eq. (11.51)), we find〈(
r

r0

)2
〉
= 1

2

[
3n2 − l(l + 1)

)
,

〈
r

r0

〉
= n2

[
5n2 + 1− 3l(l + 1)

)
,〈(

r

r0

)−1
〉
= 1

n2

〈(
r

r0

)−2
〉
= 1

n3
(

l + 1
2

) ,

〈(
r

r0

)−3
〉
= 1

n3l
(

l + 1
2

)
(l + 1)

.

Notice that the latter case is divergent for l = 0, but finite for l > 0. This is due to
the fact that R(0) �= 0 only for l = 0, and in this case the radial integral is divergent.
The previous results may be used to obtain an interesting consequence. We know
that, for a hydrogenoid atom,

Ĥ = p̂2

2m
− Ze2

r
,

and

〈V̂ 〉 =
〈
− Ze2

r

〉
= − Ze2

r0
Z

〈(
r

r0

)−1
〉
= − Ze2

n2

m Ze2

h̄2
= 2En ,

where, for a hydrogenoid atom,

En = −1

2
mc2

(
Zα

n

)2

,

c is the speed of light, and

α = e2

h̄c
	 1

137

is the fine-structure constant.
Moreover, the mean value of the kinetic energy becomes

〈T̂ 〉 = 〈Ĥ〉 − 〈V̂ 〉 = En − 2En = 1

2
m
〈
v2
〉
,

so that 〈
v2

c2

〉
= 2〈T̂ 〉

mc2
=
(

Zα

n

)2

.

For most hydrogenoid atoms this ratio is small because Z is much smaller than 100.
11.14 Impose that the condition

+∞∫
0

drr2

π∫
0

dθ sin θ

2π∫
0

dφ |ϕnlm(r , θ ,φ)|2 = 1

is satisfied for ϕ100,ϕ200,ϕ300.
11.15 Make use of Eqs. (6.68)–(6.69) and Eqs. (11.51) and impose the condition of

Prob. 11.14.
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11.16 The s-levels (l = 0) are obviously unaffected by the spin–orbit interaction, since
l̂ · ŝ = 0 identically.

For the p-levels (l = 1), we have either j = l + 1/2 = 3/2 or j = l − 1/2 =
1/2. In the former case, the energy correction is equal to κ/2, whereas in the latter
it is simply given by −κ , where κ = κl=1(n).

Similarly, for the d-levels (l = 2), the correction is equal to κl=2(n) for j = 5/2
and to −3κl=2(n)/2 for j = 3/2.

Finally, for the f -levels (l = 3), the correction is equal to 3κl=3(n)/2 for j = 7/2
and to −2κl=3(n) for j = 5/2.

It should be noted that the proportionality constant κ grows as Z4. As a con-
sequence, the spin–orbit correction is particularly important in the case of heavy
atoms. For example, the spin–orbit correction to the 6p level of thallium (Z =
81, A = 204) gives rise to a shift of about 1500 ρ̂A in the wavelength of the radiation
emitted in the corresponding transition.

11.21 From the definitions (11.112), we immediatly infer that the unit of length is given by
r0. Moreover, the unit of mass is simply given by the electron mass me, and the unit
of electron charge is equal to the opposite e of the electron charge. Finally, since the
physical dimensions of energy are given by

[E] = [m][l]2[t]−2,

we obtain

me
h̄4

m2
ee4

t−2
0 = mee4

h̄2
,

where t0 is the atomic unit of time. From this it follows that

t0 = h̄3

mee4
.

11.22 We have

E (1)
1 = Z6

π2

∫
dr1dr2e−2Zr1 e−2Zr2

1

r12

= Z6

π2

∫
dr1e−2Zr1

∫
dr2

∫
d cos θ

2πr2
2 e−2Zr2√

r2
1 + r2

2 − 2r1r2 cos θ

= Z6

π2
2π
∫

dr1e−2Zr1

∫
dr2r2

2 e−2Zr2
1

2r1r2
2
√

r2
1 + r2

2 − 2r1r2 cos θ

∣∣∣∣cos θ=−1

cos θ=1

= 2Z6

π

∫
dr1e−2Zr1

∫
dr2r2e−2Zr2

1

r1
[(r1 + r2)− |r1 − r2|]

= 2Z6

π

∫
dr1

e−2Zr1

r1

[∫ r1

0
dr2e−2Zr2 2r2

2 +
∫ ∞

r1

dr2r2e−2Zr2 2r1

]
,

where θ is the polar angle. From the previous equation, given that, if r2 < r1, the
second integral in the square brackets is zero, we finally obtain
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E (1)
1 = 2Z6

π
16π

∫ ∞

0
dr1r1

e−2Zr1

r1

∫ r1

0
dr2e−2Zr2r2

2 ,

where the extra factor 2 comes from the contribution of all the symmetric configu-
rations in which r2 > r1. Now, we compute the previous integral by making use of
the expression13

u∫
0

dxxne−μx = n!

μn+1
− e−uμ

n∑
k=0

n!

k!

uk

μn−k+1
,

obtaining

E (1)
1 = 32Z6

∫
dr1e−2Zr1

[
2

(2Z )3
− e−2Zr1

(
2

(2Z )3
+ 2r1

(2Z )2
+ r2

1

2Z

)]

= 5

8
Z .

Chapter 12

12.2 The solution of the problem can be found by making use of the mathematical
identity

∇2( f g) = ∇ [∇( f g)
]

= ∇ [g∇ f + f ∇g
]

= g∇2 f + f∇2g + 2∇ f ∇g,

for any pairs of functions f = f (x , y, z) and g = g(x , y, z).
12.3 Given the simplifications (12.16)–(12.21), by making use of the definition (12.10)

and of Eqs. (12.11) and (12.13), we obtain[
−

Nn∑
k=1

h̄2

2mk
∇2

k + V̂n + Ee

]
ψϕrn

k
= ϕrn

k

[
−

Nn∑
k=1

h̄2

2mk
∇2

k + V̂n + Ee

]
ψ ,

from which the result is easily obtained, since the equality

ϕrn
k

[
−

Nn∑
k=1

h̄2

2mk
∇2

k + V̂n + Ee

]
ψ = Eψϕrn

k

must hold for any ϕrn
k
.

12.4 The change of variable (Eq. (12.27)) is equivalent to the following six changes of
coordinates:

xc = ma xn
a + mbxn

b

ma + mb
, yc = ma yn

a + mb yn
b

ma + mb
, zc = mazn

a + mbzn
b

ma + mb
,

x0 = xn
b − xn

a , y0 = yn
b − yn

a , z0 = zn
b − zn

a ,

given rn
a = (xn

a , yn
a , zn

a) and rn
b = (xn

b , yn
b , zn

b). Limiting ourselves to the x-
coordinate, we have

13 See [Gradstein/Ryshik 1981, 3.351].
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∂

∂xa
= ∂xc

∂xa

∂

∂xc
+ ∂x0

∂xa

∂

∂x0
= ma

ma + mb

∂

∂xc
− ∂

∂x0
,

∂

∂xb
= ∂xc

∂xb

∂

∂xc
+ ∂x0

∂xb

∂

∂x0
= mb

ma + mb

∂

∂xc
+ ∂

∂x0
,

from which we obtain

∂2

∂x2
a
= m2

a

(ma + mb)2

∂2

∂x2
c
+ ∂2

∂x2
0

− 2ma

ma + mb

∂2

∂xc∂x0
,

∂2

∂x2
b

= m2
b

(ma + mb)2

∂2

∂x2
c
+ ∂2

∂x2
0

+ 2mb

ma + mb

∂2

∂xc∂x0
.

Taking into account only the x-coordinate terms in the Laplacians of Eq. (12.24),
we have

− h̄2

2ma

∂2

∂x2
a
− h̄2

2mb

∂2

∂x2
b

= − h̄2

2(ma + mb)

∂2

∂x2
c
− h̄2

2m

∂2

∂x2
0

.

Adding the similar terms for the y- and z-coordinates, we finally obtain the desired
result.

12.5 We may write (
Ĥa + Ĥb

)
ϕa(ra)ϕB (rB ) = Eϕa(ra)ϕB (rB ),

i.e.

ϕb(rb)Ĥaϕa(ra)+ ϕa(ra)Ĥbϕb(rb) = Eϕa(ra)ϕb(rb).

This last equation leads to

E = Ea + Eb,

provided that we have

Ĥaϕa(ra) = Eaϕa(ra),

Ĥbϕb(rb) = Ebϕb(rb).

12.8 See the figure below, which represents the Morse potential for a diatomic molecule.

V(rab)

–D

rab

rab

_
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12.9 Just make use of Eq. (12.48) to derive

d

drab
= dr̃

drab

d

dr̃
= −ar̃

d

dr̃
,

and, consequently,

d2

dr2
ab

= d

drab

d

drab
= a2r̃

(
d

dr̃
+ r̃

d2

dr̃2

)
.

12.11 In order to solve the problem, we need to make use of definitions (12.50), which
implies

−2m Evib
n

a2h̄2
=
[
−
(

n + 1

2

)
+
√

2m D

ah̄

]2

,

from which Eq. (12.55) is easily obtained.
12.12 Let us first rewrite Eq. (12.55) as

Evib
n = −D +

(
n + 1

2

)
h̄a

√
2D

m
−
(

n + 1

2

)2 a2h̄2

2m
,

where the last term represents the anharmonic correction of the Morse potential.
Comparing the first two terms with Eq. (12.42), we have

ω0 = a

√
2D

m
.

Chapter 13

13.2 Inserting Eqs. (13.3b), (13.9), and (13.8) into Eq. (13.1d), we obtain

∇ × (∇ × A) = − 1

c2

∂2

∂t2
A.

Using the mathematical identity

∇ × (∇ × V) = ∇ (∇ · V)− ∇2V,

which holds for any vector V, and Eq. (13.7), we arrive at

∇2A = 1

c2

∂2

∂t2
A,

which is the desired result.
13.4 The expression (13.20a) for E(r, t) is calculated using Eq. (13.9) and making use of

the expansion

Â =
∑

k

ckl−
3
2

{[
âk,1eık·re−ıωkt + â†

k,1e−ık·reıωkt
]

e1

+
[
âk,2eık·re−ıωkt + â†

k,2e−ık·reıωkt
]

e2

}
,
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from which we obtain easily the desired expression for the electric field. The
expression (13.20b) for B(r, t) is a bit more cumbersome to derive. We recall the
mathematical expression

∇ × V =
(
∂Vz

∂y
− ∂Vy

∂z

)
ı +

(
∂Vx

∂z
− ∂Vz

∂x

)
j +

(
∂Vy

∂x
− ∂Vx

∂y

)
k

for any vector V, from which, taking into account that

eık·r = eı(kx x+ky y+kz z),

we have

∇ ×
(

eık·re1

)
= ıkzeık·rj − ıkyeık·rk,

∇ ×
(

e−ık·re1

)
= −ıkze−ık·rj + ıkye−ık·rk,

∇ ×
(

eık·re2

)
= −ıkzeık·r ı + ıkx eık·rk,

∇ ×
(

e−ık·re2

)
= +ıkze−ık·r ı − ıkx e−ık·rk.

Collecting these results together, we have

∇ × Â = ı
∑

k

c
′
k

{[
âk,1eı(k·r−ωkt) − â†

k,1e−ı(k·r−ωkt)
]

e2

−
[
âk,2eı(k·r−ωkt) − â†

k,2e−ı(k·r−ωkt)
]

e1

}
= ı

∑
k

c
′
k

[(
âk,1eı(k·r−ωkt) − â†

k,1e−ı(k·r−ωkt)
)

b1

+
(

âk,2eı(k·r−ωkt) − â†
k,2e−ı(k·r−ωkt)

)
b2

)
,

since kx = ky = 0, b1 = e2 and b2 = −e1 (see Eq. (13.21)), and where

c
′
k = kz

(
h̄ωk

2ε0l3

) 1
2 =

(
h̄k

2cl3ε0

) 1
2

.

13.5 Let us first compute the squares of the electric and magnetic fields

Ê2 =
∑
k,λ

h̄ωk

2ε0l3

[
−â2

k,λe
2ık·r −

(
â†

k,λ

)2
e−2ık·r + âk,λâ

†
k,λ + â†

k,λâk,λ

]
,

B̂2 =
∑
k,λ

h̄k

2ε0l3

[
−â2

k,λe
2ık·r −

(
â†

k,λ

)2
e−2ık·r + âk,λâ

†
k,λ + â†

k,λâk,λ

]
.

Now, due to the periodic boundary conditions, we have∫
l3

dre2ık·r = 0,

since ∫
l
dxeıkx x = 1

ıkx
eı 2πnx

l x
∣∣∣l
0
= 0,

and similarly for the other components.
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Substituting these results into Eq. (13.22) and using Eq. (13.2), we obtain
Eq. (13.23).

13.6 In order to evaluate the trace in Eq. (13.32) it is easier to work in the energy
(number) representation, where

Z (β) =
∞∑

n=0

〈
n
∣∣∣e−β Ĥ

∣∣∣ n〉 = ∞∑
n=0

e
−βh̄ω

(
n+ 1

2

)

= e−
1
2βh̄ω

∞∑
n=0

(
e−βh̄ω

)n = e− 1
2βh̄ω

1− e−βh̄ω
.

13.7 (a) We have

ln Z = −1

2
βh̄ω − ln

(
1− e−βh̄ω

)
,

and, therefore,

〈E〉 = − ∂
∂β

ln Z = 1

2
h̄ω + h̄ω

eβh̄ω − 1
.

(b) The same result can be obtained by making use of the number distribution. In
fact, since the energy is diagonal in the number basis, we have

〈E〉 =
∞∑

n=0

Enρnn =
∞∑

n=0

(
n + 1

2

)
h̄ω

e
−β
(

n+ 1
2

)
h̄ω

Z (β)

= h̄ω

2Z (β)

∞∑
n=0

e
−β
(

n+ 1
2

)
h̄ω + h̄ω

Z (β)

∞∑
n=0

ne
−β
(

n+ 1
2

)
h̄ω

= h̄ω

2
+ h̄ω

(
1− e−βh̄ω

) ∞∑
n=0

ne−βnh̄ω

= h̄ω

2
+ h̄ω

eβh̄ω − 1
,

where we have made use of the mathematical relation
∞∑

n=0

nxn−1 = d

dx

∞∑
n=0

xn = 1

(1− x)2
.

13.11 Take a generic matrix element of the operators êıφ and ê−ıφ in the number basis.
Then, using Eq. (13.39), we have〈

n
∣∣∣êıφ

∣∣∣m〉 = { 〈n | m − 1〉 = δn,m−1 for m �= 0
0 for m = 0

and 〈
n
∣∣∣ê−ıφ

∣∣∣m〉 = 〈n | m + 1〉
= δn,m+1.

Since for a Hermitian operator Ô we must have Omn = O∗
nm , we have also proven

that êıφ and ê−ıφ are not Hermitian.
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13.12 Making use of Eqs. (13.37) and (13.40), we have

[
ĉosφ, ŝinφ

] = 1

4ı

[(
N̂ + 1

)− 1
2

â + â†
(

N̂ + 1
)− 1

2
] [(

N̂ + 1
)− 1

2
â − â†

(
N̂ + 1

)− 1
2
]

− 1

4ı

[(
N̂ + 1

)− 1
2

â − â†
(

N̂ + 1
)− 1

2
] [(

N̂ + 1
)− 1

2
â + â†

(
N̂ + 1

)− 1
2
]

= 1

2ı

[
−
(

N̂ + 1
)− 1

2
ââ†

(
N̂ + 1

)− 1
2 + â†

(
N̂ + 1

)−1
â

]
= 1

2ı

[
â†
(

N̂ + 1
)− 1

2
,
(

N̂ + 1
)− 1

2
â

]
= 1

2ı

[
ê−ıφ , êıφ

]
.

13.14 In an eigenstate of the number operator we obviously have N̂ = 0. We also have

〈n |ĉosφ| n〉 = 0,〈
n
∣∣ŝinφ

∣∣ n〉 = 0.

However,〈
n
∣∣∣ĉos2φ

∣∣∣ n〉 = 1

4

〈
n
∣∣∣êıφ êıφ + êıφ ê−ıφ + ê−ıφ êıφ + ê−ıφ ê−ıφ

∣∣∣ n〉
=
{ 1

2 if n �= 0
1
4 if n = 0

.

The same values can be derived for
〈
n
∣∣∣ŝin

2
φ

∣∣∣ n〉. This means that both ĉosφ and

ŝinφ for n �= 0 are equal to 1/
√

2, which confirms that the phase is completely
undetermined for an eigenstate of the number operator (i.e. it corresponds to a
uniform phase distribution between 0 and 2π ).

13.15 By using Eqs. (13.20) and (13.17), one has

Ê = cB

{[
âeı(k·r−ωt) − â†e−ı(k·r−ωt)

]
e1 +

[
âeı(k·r−ωt) − â†e−ı(k·r−ωt)

]
e2

}
,

and

B̂ = cB

{[
âeı(k·r−ωt) − â†e−ı(k·r−ωt)

]
|k|e2 −

[
âeı(k·r−ωt) − â†e−ı(k·r−ωt)

]
|k|e1

}
,

where

cE = ı

(
h̄ω

2ε0l3

) 1
2

and cB =
(

h̄k

2cε0l3

) 1
2

,

and we have made use of the fact that

b1 = k× e1 = |k|e2 and b2 = k× e2 = −|k|e1.

We also have [
Ê, B̂

]
=
[

Êx , B̂x

]
+
[

Êy , B̂y

]
+
[

Êz , B̂z

]
.
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By recalling that the vectors e1 and e2 are parallel to the x- and y-directions,
respectively, and that k is in the direction of z, the first commutator reads[

Êx , B̂x

]
= h̄ω2

2cε0l3

[
−
(

â − â†
)2
]

,

and similarly for the other commutators.
13.16 The first equation is trivial, since, by using Eq. (13.49a), we immediately obtain〈

α

∣∣∣â†â
∣∣∣α〉 = |α|2 .

Analogously, we have 〈
N̂ 2
〉
α
=
〈
α

∣∣∣â†ââ†â
∣∣∣α〉

= |α|2
〈
α

∣∣∣â†â + 1
∣∣∣α〉

= |α|2
(

1+ |α|2
)

,

from which we obtain

αn =
√
|α|2 (1+ |α|2)− |α|4

=
√
|α|2 = |α|.

13.17 Inverting Eqs. (13.61), we obtain

â = 1√
2

(X̂1 + ı X̂2),

â† = 1√
2

(X̂1 − ı X̂2).

Comparing with Eqs. (4.73) we may identify X̂1 and X̂2 as

X̂1 =
(

mω

h̄

) 1
2

x̂ ,

X̂2 =
(

1

mωh̄

) 1
2

p̂x .

13.18 Let us first write an explicit expression for the uncertainties of the quadratures in
the coherent state |α〉 . Then we have

α X̂1 =
√〈
α

∣∣∣X̂2
1

∣∣∣α〉− (〈α ∣∣∣X̂1

∣∣∣α〉)2

=
√

1

2

[〈
α

∣∣∣â2 + ââ† + â†â + (â†)2
∣∣∣α〉− (〈α ∣∣∣â + â†

∣∣∣α〉)2
]

,

and

α X̂2 =
√〈
α

∣∣∣X̂2
2

∣∣∣α〉− (〈α ∣∣∣X̂2

∣∣∣α〉)2

=
√
−1

2

[〈
α

∣∣∣â2 − ââ† − â†â + (â†)2
∣∣∣α〉− (〈α ∣∣∣â† − â

∣∣∣α〉)2
]

,
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where we have made use of Eqs. (13.61). Now we know or may easily derive that〈
α
∣∣â∣∣α〉 = α,

〈
α

∣∣∣â†
∣∣∣α〉 = α∗,〈

α

∣∣∣â2
∣∣∣α〉 = α2,

〈
α

∣∣∣(â†)2
∣∣∣α〉 = (α∗)2,〈

α

∣∣∣â†â
∣∣∣α〉 = |α|2,

〈
α

∣∣∣ââ†
∣∣∣α〉 = 1+ |α|2.

Making use of these relations, we finally obtain

α X̂1 =
√

1

2

[(
α2 + 1+ |α|2 + |α|2 + (α∗)2

)− (α + α∗)2] = 1√
2

α X̂2 =
√
−1

2

[(
α2 − 1− |α|2 − |α|2 + (α∗)2

)− (α∗ − α)2] = 1√
2

.

13.19 To the first order in η we have

e−ηξ̂ π̂eηξ̂ =
(

1− ηξ̂
)
π̂
(

1+ ηξ̂
)

= π̂ − η
[
ξ̂ , π̂

]
.

Similarly, to the second order in η, we may write

e−ηξ̂ π̂eηξ̂ =
(

1− ηξ̂ + η2 ξ̂
2

2

)
π̂

(
1+ ηξ̂ + η2 ξ̂

2

2

)

= π̂ − η
[
ξ̂ , π̂

]
+ η2 ξ̂

2

2
π̂ − η2ξ̂ π̂ ξ̂ + η2π̂

ξ̂2

2
.

Now, we have that [
ξ̂ ,
[
ξ̂ , π̂

]]
=
[
ξ̂ , ξ̂ π̂ − π̂ ξ̂

]
= ξ̂2π̂ − 2ξ̂ π̂ ξ̂ + π̂ ξ̂2,

from which Eq. (13.232) follows to the second order in η.
For the proof of the general result, let us first compute the derivative of the lhs of

Eq. (13.232) with respect to η , that is,

d

dη
e−ηξ̂ π̂eηξ̂ = −ξ̂e−ηξ̂ π̂eηξ̂ + e−ηξ̂ π̂eηξ̂ ξ̂ .

Let us make use of the substitution Ô ≡ e−ηξ̂ π̂eηξ̂ . Then, the previous equation
reads as

d Ô

dη
=
[

Ô , ξ̂
]
.

If we denote the rhs of Eq. (13.232) as Ô ′, we easily see that, by computing again
the derivative with respect to η,

d Ô ′

dη
=
[

Ô ′, ξ̂
]
.
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Now, the last two equations show that Ô and Ô ′ satisfy the same differential equa-
tion. As a consequence, for any boundary condition Ô ≡ Ô ′ and the lhs and the rhs
of Eq. (13.232) are equal.

13.20 Let us first write14

ξ̂ (η) = eηÔ eηÔ
′
,

and compute its derivative with respect to η:

d

dη
ξ̂ (η) = ÔeηÔ eηÔ

′ + eηÔ Ô
′
eηÔ

′

=
(

Ô + eηÔ Ô
′
e−ηÔ

)
ξ̂ (η).

However, by making use of the results of Prob. 13.19 and of the fact that[
Ô ,
[

Ô , Ô
′]] = [Ô

′
,
[

Ô , Ô
′]] = 0,

we obtain

eηÔ Ô
′
e−ηÔ = Ô

′ − η
[

Ô
′
, Ô
)

,

which implies

d

dη
ξ̂ (η) =

(
Ô + Ô

′ + η
[

Ô , Ô
′])
ξ̂ (η).

ξ̂ (η) is the solution of this differential equation for which ξ̂ (0) = 1. Since the com-

mutator
[

Ô
′
, Ô
]

commutes with
(

Ô + Ô
′)

, by integrating the previous equation,

we finally obtain

ξ̂ (η) = e
η
(

Ô+Ô
′)

e
η2

2 [Ô ,Ô
′
],

which, for η = 1, proves the desired result.
13.23 Let us consider an initial coherent state |α〉 . Its time evolution is given by

|α, t〉 = e−
ı
h̄ Ĥ t |α〉 ,

where

Ĥ = h̄ω

(
â†â + 1

2

)
is the single-mode free-field harmonic-oscillator Hamiltonian. We want now to
verify that |α, t〉 is an eigenstate of the annihilation operator. We have

â |α, t〉 = âe−
ı
h̄ Ĥ t |α〉 = e−

ı
h̄ Ĥ t e+

ı
h̄ Ĥ t âe−

ı
h̄ Ĥ t |α〉 .

To evaluate e+
ı
h̄ Ĥ t âe−

ı
h̄ Ĥ t we use the formula (13.234),

e−Ô Ô
′
eÔ =

∑
n

(−1)n

n!

[
Ô , Ô

′]
n

.

14 See [Gardiner 1991, 138–39] and [Messiah 1958, 442].
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The evaluation of the first two terms of the infinite sum in the formula above with
Ô = −ıω

(
â†â + 1

2

)
t and Ô

′ = â allows us to write

e+
ı
h̄ Ĥ t âe−

ı
h̄ Ĥ t =

∑
n

(−ıωt)n

n!
â = âe−ıωt ,

where we have also made use of the result of Prob. 4.11. Using this result, we obtain

â |α, t〉 = e−
ı
h̄ Ĥ t e−ıωt â |α〉 = αe−ıωt e−

ı
h̄ Ĥ t |α〉

= αe−ıωt |α, t〉 ,

which shows that the initial coherent state |α〉 under time evolution remains a
coherent state, i.e. the state |α, t〉 = |α(t)〉 with eigenvalue α(t) = αe−ıωt .

13.24 Using the completeness relation (13.71) we have, for any state |ψF 〉 of the radiation
field,

|ψF 〉 = 1

π

∫
d2α |α〉 〈α | ψF 〉 .

In particular, for a generic coherent state |β〉 we have

|β〉 = 1

π

∫
d2α 〈α | β〉 |α〉

= 1

π
e−

1
2 |β|2

∫
d2αeα

∗β− 1
2 |α|2 |α〉 ,

where we have made use of expression (13.69).
13.27 Given the most general expression of the density matrix ρ̂ =∑ j w j

∣∣ψ j
〉 〈
ψ j
∣∣ with∑

j w j = 1 (see Eq. (5.20)) and {∣∣ψ j
〉 } representing an orthonormal basis, we may

write

Q(α,α∗) = 1

π

∑
j

w j |
〈
α | ψ j

〉 |2 ≤ 1

π

∑
j

w j = 1

π
,

since | 〈α | ψ j
〉 |2 ≤ 1.

13.28 Any density matrix may be written as ρ̂ =∑ j w j
∣∣ψ j

〉 〈
ψ j
∣∣, {∣∣ψ j

〉 } representing
an orthonormal basis. On the other hand we have

∑
j w j = 1. Then, we may write

| 〈n ∣∣ρ̂∣∣m〉 | =
∣∣∣∣∣∣
∑

j

w j
〈
n | ψ j

〉 〈
ψ j | m

〉∣∣∣∣∣∣
≤
∑

j

w j
∣∣〈n | ψ j

〉∣∣ ∣∣〈ψ j | m
〉∣∣ .

Making use of the fact that, for any real x and y, 2xy ≤ x2 + y2, we have∑
j

w j
∣∣〈n | ψ j

〉∣∣ ∣∣〈ψ j | m
〉∣∣ ≤∑

j

1

2
w j

[∣∣〈n | ψ j
〉∣∣2 + ∣∣〈ψ j | m

〉∣∣2]

= 1

2

⎡⎣∑
j

w j
∣∣〈n | ψ j

〉∣∣2 +∑
j

w j
∣∣〈ψ j | m

〉∣∣2⎤⎦.
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Since ∣∣〈n | ψ j
〉∣∣2 ≤ 1 and

∣∣〈ψ j | m
〉∣∣2 ≤ 1,

we finally have

1

2

⎡⎣∑
j

w j
∣∣〈n | ψ j

〉∣∣2 +∑
j

w j
∣∣〈ψ j | m

〉∣∣2⎤⎦ ≤ 1

2

⎛⎝2
∑

j

w j

⎞⎠ = 1.

13.30 Using the identity

1

2π

∫ +∞

−∞
dxeıxy = δ(y),

we have∫ +∞

−∞
dpx W (x , px ) = 1

πh

∫ +∞

−∞
dx ′

〈
x + x ′

∣∣ρ̂∣∣ x − x ′
〉 ∫ +∞

−∞
dpx e2ı px x ′

h

= 〈x ∣∣ρ̂∣∣ x
〉 = ℘(x).

Chapter 14

14.1 Let us write | R〉 =∑ j a j
∣∣r j
〉
, | R0〉 =∑ j a0

j

∣∣r j
〉
, and | R1〉 =∑ j a1

j

∣∣r j
〉
.

Then, we have

ρ̂
SR = |c0|2 |0〉 〈0 |

∑
n, j

a0
n

(
a0

j

)∗ ∣∣rn 〉
〈
r j
∣∣+ |c1|2 |1〉 〈1 |

∑
n, j

a1
n

(
a1

j

)∗ ∣∣rn 〉
〈
r j
∣∣

+ c0c∗1 |0 〉 〈1 |
∑
n, j

a0
n

(
a1

j

)∗ ∣∣rn 〉
〈
r j
∣∣+ c∗0c1 |1 〉 〈0 |

∑
n, j

a1
n

(
a0

j

)∗ ∣∣rn 〉
〈
r j
∣∣ .

Now, by tracing the reservoir out, we obtain the reduced density matrix

ˆ̃ρS =
∑

k

〈
rk

∣∣∣ρ̂SR∣∣∣ rk

〉
= |c0|2 |0〉 〈0 |

∑
n

∣∣∣a0
n

∣∣∣2 + |c1|2 |1〉 〈1 |
∑

n

∣∣∣a1
n

∣∣∣2
+ c0c∗1 |0 〉 〈1 |

∑
n

a0
n

(
a1

n

)∗ + c∗0c1 |1 〉 〈0 |
∑

n

a1
n

(
a0

n

)∗
.

The sums
∑

n

∣∣a0
n

∣∣2 and
∑

n

∣∣a1
n

∣∣2 are the traces of P̂0 and P̂1, respectively, where

P̂0 = | R0〉 〈R0 | =
∑
n, j

a0
n

(
a0

j

)∗ ∣∣rn 〉
〈
r j
∣∣ , P̂1 = | R1〉 〈R1 | =

∑
n, j

a1
n

(
a1

j

)∗ ∣∣rn 〉
〈
r j
∣∣,

and, by the normalization condition, both are equal to 1. The terms
∑

n a0
n

(
a1

n

)∗
and∑

n a1
n

(
a0

n

)∗
are equal to 〈R1 | R0〉 and 〈R0 | R1〉, respectively. In fact,

〈R1 | R0〉 =
∑
n, j

a0
n

(
a1

j

)∗ 〈
r j | rn

〉 =∑
n

a0
n

(
a1

n

)∗
,

〈R0 | R1〉 =
∑
n, j

a1
n

(
a0

j

)∗ 〈
r j | rn

〉 =∑
n

a1
n

(
a0

n

)∗
.

Collecting these results and writing them in matrix form, we obtain Eq. (14.5).
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14.2 It is easy to see that{
Ô
∣∣∣ Ô

′} = ∑
l,m, j ,k

O∗
l,m O

′
j ,k{l, m| j , k} = O∗

l,m O
′
j ,kδl, jδk,m

=
∑
l,m

O∗
l,m O

′
l,m =

∑
l,m

O†
ml O

′
l,m = Tr

(
Ô† Ô

′)
,

and

{ j , k|Ô} = { j , k|
∑
l,m

Ol,m |l, m}

=
∑
l,m

Ol,mδl, jδk,m = O j ,k .

14.5 Let us write the density matrix ρ̂ in terms of the expansion (13.92), that is,

ρ̂ = π
∑
n,m

Qn,m

(
â†
)n

âm .

Then, we may write

ρ̂â† = π
∑
n,m

Qn,m

(
â†
)n

âmâ†

= â†
π
∑
n,m

Qn,m

(
â†
)n

âm + π
∑
n,m

mQn,m

(
â†
)n

âm−1

= â†
ρ̂ + dρ̂

dâ
,

where we have taken into account the result

âmâ† = â†âm + mâm−1

of Prob. 4.12. The final equality on the rhs of Eq. (14.53) may be derived by taking
into account the expansion (13.91) that yields〈

α

∣∣∣∣dρ̂dâ

∣∣∣∣α〉 = π ∂Q

∂α
.

14.6 We have that〈
α

∣∣∣âρ̂â†
∣∣∣α〉 = 〈α ∣∣∣∣â†

ρ̂â + â† dρ̂

dâ† + ρ̂ +
dρ̂

dâ
â + d2ρ̂

dâdâ†

∣∣∣∣α〉 ,

since

ρ̂â† = â†
ρ̂ + dρ̂

dâ
and âρ̂ = ρ̂â + dρ̂

dâ† .

By making use of the previous results we obtain the desired solution.
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14.8 We have that

s2 = s2
x + s2

y + s2
z

= ρ2
eg + ρ2

ge + 2ρegρge − ρ2
eg − ρ2

ge + 2ρegρge + ρ2
ee + ρ2

gg − 2ρeeρgg

= ρ2
ee + ρ2

gg + 4ρegρge − 4ρeeρgg + 2ρeeρgg

= 1+ 4
(
ρegρge − ρeeρgg

)
,

where we have made use of the fact that, since ρee + ρgg = 1 (they are the diagonal
elements of the density matrix), also ρ2

ee + ρ2
gg + 2ρeeρgg = 1. Now it is easy to

show that 1+ 4
(
ρegρge − ρeeρgg

)
is equal to one in the case of pure states and

strictly smaller than 1 in the case of mixtures. In fact, if ρ̂ is a pure state, we must
have that Tr(ρ̂2) = 1. This means that the sum of the diagonal elements of ρ̂2 must
be equal to 1, i.e.

ρ2
gg + ρgeρeg + ρegρge + ρ2

ee = 1,

from which it follows that

ρgeρeg = ρeeρgg ,

which immediately gives the desired result.
In the case in which ρ̂ is a mixture, we have that Tr(ρ̂2) < 1, and, therefore, we also
must have that

ρ2
gg + ρgeρeg + ρegρge + ρ2

ee < 1,

from which it follows that

ρgeρeg < ρeeρgg ,

from which it follows that 1+ 4
(
ρegρge − ρeeρgg

)
< 1.

14.9 We recall that

σ̂− |e〉 = |g〉 , σ̂− |g〉 = 0,

σ̂+ |e〉 = 0, σ̂+ |g〉 = |e〉 .

Then, we may calculate the time derivatives of the elements of ρ̂:

ρ̇ee =
〈
e
∣∣∣ ˙̂ρ∣∣∣ e〉 = −γ (〈e ∣∣σ̂+σ̂−ρ̂∣∣ e〉+ 〈e ∣∣ρ̂σ̂+σ̂−∣∣ e〉)

= −γ (〈g ∣∣σ̂−ρ̂∣∣ e〉+ 〈e ∣∣ρ̂σ̂+∣∣ g
〉)

= −γ (〈e ∣∣ρ̂∣∣ e〉+ 〈e ∣∣ρ̂∣∣ e〉) = −2γρee.

Analogously, we have for ρ̇gg:

ρ̇gg =
〈
g
∣∣∣ ˙̂ρ∣∣∣ g

〉
= γ (2 〈g ∣∣σ̂−ρ̂σ̂+∣∣ g

〉− 〈g ∣∣σ̂+σ̂−ρ̂∣∣ g
〉− 〈g ∣∣ρ̂σ̂+σ̂−∣∣ g

〉)
= 2γ

〈
e
∣∣ρ̂∣∣ e〉 = 2γρee.
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For the time derivative of the matrix element ρeg , we have

ρ̇eg =
〈
e
∣∣∣ ˙̂ρ∣∣∣ g

〉
= γ (2 〈e ∣∣σ̂−ρ̂σ̂+∣∣ g

〉− 〈e ∣∣σ̂+σ̂−ρ̂∣∣ g
〉− 〈e ∣∣ρ̂σ̂+σ̂−∣∣ g

〉)
= −γ 〈g ∣∣σ̂−ρ̂∣∣ g

〉 = −γ 〈e ∣∣ρ̂∣∣ g
〉

= −γρeg .

The solutions of these differential equations are then given by

ρee(t) = e−2γ tρee(0),

ρgg(t) = 1+ e−2γ t [ρgg(0)− 1
)
,

ρeg(t) = e−γ tρeg(0),

where, for deriving the second solution, we have used the following procedure:

ρgg(t) = 1− ρee(t) = 1− e−2γ tρee(0)

= 1− e−2γ t [1− ρgg(0)
)
.

From these results, it follows that the time derivatives of the Bloch vector’s
components are

ṡx = ρ̇eg + ρ̇ge = −γ (ρeg + ρge
) = −γ sx ,

ṡy = ı
(
ρ̇eg − ρ̇ge

) = −ıγ
(
ρeg − ρge

) = −γ sy ,

ṡz = ρ̇ee − ρ̇gg = −2γρee − 2γρee == −4γρee = −2γ (1+ sz).

The solution of these differential equations are finally

sx (t) = e−γ t sx (0),

sy(t) = ıe−γ t [ρeg(0)− ρge(0)
] = e−γ t sy(0),

sz(t) = ρee(t)− ρgg(t) = e−2γ tρee(0)− 1− e−2γ tρgg(0)+ e−2γ t

= e−2γ t sz(0)+ e−2γ t − 1,

which are in agreement with Eqs. (14.83).
14.10 This equation plays an important role and it can be proved in many ways. Let us call

L(ξ , η) the left-hand side and R(ξ , η) the right-hand side.
A first possibility is to verify that:

• Both terms are equal to the identity at ξ = 0.
• Both terms satisfy the same differential equation

∂L(ξ , η)

∂ξ
= (Ô + ηÔ ′)L(ξ , η),

∂R(ξ , η)

∂ξ
= (Ô + ηÔ ′)R(ξ , η).

The proof of the first equation is trivial (it is essentially the definition of the expo-
nential), while the proof of the second equation can be obtained by inspecting the
different terms.
Both the functions L(ξ , η) and R(ξ , η) satisfy the same first-order differential

equation with the same boundary condition and therefore they must be equal.
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A second proof can be obtained by performing the following steps:
• One verifies that, for small ξ ,

R(ξ , η) = 1+ (Ô + ηÔ ′)ξ + O(ξ2).

• The function R(ξ , η) satisfies the semigroup property (see Sec. 8.4)

R(ξ1, η)R(ξ2, η) = R(ξ1 + ξ2, η),

as can be proved by combining the different terms present in the lhs.
The function L(ξ , η) trivially satisfies the same equations. The two properties
identify in a unique way the function and therefore the two functions must coincide.

However the most instructive (and constructing) way to verify Eq. (14.91) is to
check that the lhs and the rhs do coincide term by term in the Taylor expansion
around η = 0. The Taylor expansion of the rhs is trivial, so we have to compute the
Taylor expansion of the lhs. To this end it is convenient to notice that, for any real
δ �= 0, we can write

L(ξ , η) = (e(Ô+ηÔ ′)δ)
ξ
δ .

In particular, we can write

L(ξ , η) = lim
δ→0

(e(Ô+ηÔ ′)δ)
ξ
δ = lim

δ→0
(1+ δ(Ô + ηÔ ′))

ξ
δ .

Without loss of generality we can evaluate the limit δ→ 0 by restricting to the
sequence of δ where ζ = ξ/δ is an integer. Using this definition of ζ we have

L(ξ , η) = lim
δ→0

∏
j=1,ζ

(1+ δ(Ô + ηÔ ′)).

We can now easily compute the expansion in powers of η of the previous formula:
the rhs is the product of terms linear in η. Let us compute the coefficient of the order
η2. The term η2 may come from both the j-th and the l-th terms of the product
(where all the other factors give a contribution equal to 1/δÔ). We thus find that the
coefficient of η2 is just given by

δ2
∑

j ,l=1,ζ ; j<l

⎛⎝⎛⎝ ∏
a=1, j−1

(1+ δÔ)

⎞⎠ Ô ′
⎛⎝ ∏

b= j+1,l−1

(1+ δÔ)

⎞⎠ Ô ′
⎛⎝ ∏

c=l+1,ζ

(1+ δÔ)

⎞⎠⎞⎠
= δ2

∑
j ,l=1,ζ ; j<l

(1+ δÔ) j−1 Ô ′(1+ δÔ)l− j−2 Ô ′(1+ δÔ)ζ−l−1.

In the limit δ→ 0 each individual term in the sum over j and l is irrelevant and we
can assume that both j and l are of order δ−1. We can thus substitute the sums with
integrals; neglecting terms going to zero with δ we obtain∫ ξ

0
dξ1

∫ ξ

ξ1

dξ2(1+ δÔ)
ξ1
δ Ô ′(1+ δÔ)

ξ2−ξ1
δ Ô ′(1+ δÔ)

ξ−ξ2
δ .

We can now perform the limit δ→ 0 and obtain∫ ξ

0
dξ1

∫ ξ

ξ1

dξ2 eξ1 Ô Ô ′e(ξ2−ξ1)Ô Ô ′e(ξ−ξ2)Ô ,
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which is essential the result stated in Eq. (14.91) for k = 2, apart from a redefinition
of the integration variables. It should be clear to the reader how to generalize the
result to higher (and lower) values of k.

The same result could also be obtained starting from path integral representation
(see Sec. 10.8) for the function L(ξ , η), but we shall not show this further derivation.
We should note that all the proofs presented here have a rather formal character: we
are implicitly assuming that the rhs of Eq. (14.91) is a convergent series (and that
the lhs exists). If not (the perturbative expansion is often not convergent), the rhs
should be interpreted as an asymptotic expansion (see also Secs. 10.1–10.2).

14.11 Let us start from the identity

ρ̂ = |ψ〉 〈ψ | .

Time derivation leads to

˙̂ρ = ∣∣ψ̇ 〉 〈ψ ∣∣+ ∣∣ψ 〉 〈ψ̇ ∣∣ ,
where ∣∣ ψ̇ 〉 = 1

ı h̄
˜̂H |ψ〉 ,

〈
ψ̇
∣∣ = ı

h̄
〈ψ | ˜̂H†.

Then, we have

˙̂ρ = 1

ı h̄
˜̂H ρ̂ − 1

ı h̄
ρ̂
˜̂H†

= 1

ı h̄

(
Ĥ0 + Ĥ ′) ρ̂ − 1

ı h̄
ρ̂
(

Ĥ0 + Ĥ ′)
= 1

ı h̄

[
Ĥ0, ρ̂

]
+ 1

ı h̄

[
Ĥ ′, ρ̂

]
+ .

14.13 First, the reader may verify that the exponential e−ı π2 t j2
is equal to 1 for even values

of j ( j = 2k) and to −ı for odd values of j ( j = 2k + 1). Then, we have

e−
|α|2

2

∞∑
j=0

α j e−ı π2 t j2

√
j!

| j〉 = e−
|α|2

2

2

[ ∞∑
k=0

2α2k

√
2k!

|2k〉 +
∞∑

k=0

(−2ı)
α2k+1

√
(2k + 1)!

|2k + 1〉
]

= e−
|α|2

2

[
(1+ ı)

∞∑
k=0

α2k

√
2k!

|2k〉 + (1− ı)
∞∑

k=0

α2k

√
(2k)!

|2k〉

+ (1− ı)
∞∑

k=0

α2k+1

√
(2k + 1)!

|2k + 1〉 − (1+ ı)
∞∑

k=0

α2k+1

√
(2k + 1)!

|2k + 1〉
]

,

where we have made use of the identities 2 = 1+ ı + 1− ı and −2ı = 1− ı −
(1+ ı). Now we group the first and last terms, and the second and third terms of the
rhs, so as to obtain
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e−
|α|2

2

∞∑
j=0

α j e−ı π2 t j2

√
j!

| j〉 = 1√
2

[
(1− ı)√

2
e−

|α|2
2

∞∑
k=0

αk

√
k!
|k〉 + (1+ ı)√

2
e−

|α|2
2

∞∑
k=0

(−α)k

√
k!

|k〉
]

= 1√
2

(
e−ı π4 |α〉 + eı π4 |−α〉

)
,

where we have made use of the mathematical identity

(1± ı)√
2

= e±ı π4

and of the fact that (see Eq. (13.58))

e−
|α|2

2

∞∑
k=0

(±α)k

√
k!

|k〉 = |±α〉 .

14.15 Any distance between two elements a, b has to satisfy four well-known prop-
erties. The property d(a, a) = 0 is easily satisfied by the Fubini–Study distance,
since |〈ψ1 | ψ1〉|2 = 1. Similarly, the Fubini–Study distance is always positive
when the two states are different except the trivial case in which the difference
is only given by the global phase, since |〈ψ1 | ψ2〉|2 < 1. Also the property that
d(a, b) = d(b, a), since |〈ψ1 | ψ2〉|2 = |〈ψ2 | ψ1〉|2, Finally, the triangular property
d(a, b)+ d(b, c) ≥ d(a, c) is also satisfied. Indeed we have√

1− |〈ψ1 | ψ2〉|2 +
√

1− |〈ψ2 | ψ3〉|2 ≥
√

1− |〈ψ1 | ψ3〉|2.

To prove this, it suffices to assume, without loss of generality, that the involved state
vectors are normalized and real. Then, consider that

| |ψ1〉 − |ψ2〉 |2 = 2− 2 〈ψ1 | ψ2〉 ,

from which it follows that it suffices to multiply both the lhs and the rhs of the above
inequality so as to obtain

| |ψ1〉 − |ψ2〉 | + | |ψ2〉 − |ψ3〉 | ≥ | |ψ1〉 − |ψ3〉 |,
which is satisfied, since it is an instance of the triangular inequality (see also
Subsec. 2.3.2)

|a| + |b| ≥ |a + b|.
When applying the definition of the Fubini–Study distance to the distance between
the coherent states in Box 14.1, we must make use of the square modulus
(Eq. (13.70)), so that

d f s =
√

1− e−|αeıφ−αe−ıφ|2 =
√

1− e−4|α|2 sin2 φ .

Expanding in power series to the first-order in sinφ for φ � 1, we obtain

d f s 	 2|α| sinφ = d.
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Chapter 15

15.1 If you do not succeed, please refer to the quoted specialized literature.
15.7 It is easy to prove that (see also Prob. 13.21)

 ̂xp D̂xp|ψn〉 = D̂xp ̂D̂−1
xp D̂xp|ψn〉

= D̂xp ̂|ψn〉
= D̂xp(−1)n|ψn〉
= (−1)n|ψn

xp〉,

from which the solution follows.
15.9 First of all, we note that the exponential factor e−ξα∗+ξ∗α may be rewritten as

e2ı(ξrαi−ξiαr ). We start from Eq. (15.59), which then turns to

W (αr ,αi ) = 1

π2

+∞∫
−∞

dξr dξi e
2ı(ξrαi−ξiαr )χ (ξr , ξi ).

Changing the variables according to

ξr = − 1√
2
ζ sin θ and ξi = 1√

2
ζ cos θ ,

we also have dξr dξi = 1
2 |ζ |dζdθ , and, using Eq. (15.64), we may rewrite the W-

function as

W (αr ,αi ) = 1

2π2

+∞∫
−∞

dζ

π∫
0

dθ |ζ |e−ı
√

2ζ (αi sin θ+αr cos θ)χ℘(ζ , θ ).

Making the inverse Fourier transform of Eq. (15.61), that is,

χ℘(ζ , θ ) =
∫

d X℘(X , θ )eıζ X ,

and inserting this into the previous equation, we finally obtain

W (αr ,αi ) = 1

2π2

+∞∫
−∞

d X

+∞∫
−∞

dζ
∫ π

0
dθ |ζ |℘(X , θ )e

ıζ
[

X−√2(αr cos θ+αi sin θ)
]
.

15.11 We sketch the main steps of the derivation. First, since all the basis states in
Eq. (15.71) are orthogonal, perform the square modulus of Eq. (15.72), so as to
obtain (see Sec. 9.9)

℘e(t ,φ) =
∞∑

n=0

∣∣ψe,n(t)
∣∣2 .
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Then, make use of the following facts:
∞∑

n=0

|cn+1|2 = 1− |c0|2 ,

ı
(
z − z∗

) = −2!(z), z ∈ (C,

2 sin θ cos θ = sin 2θ ,

cos2 θ = 1+ cos 2θ

2
.

Chapter 16

16.1 From Eqs. (16.3)–(16.5) we have

�(x1, x2) = 1

2π

+∞∫
−∞

dpe
ı
h̄ (x1−x2+x0)p

= h√
2π
δ(x1 − x2 + x0) = h√

2π

+∞∫
−∞

dxδ(x1 − x)δ(x − x2 + x0)

= 1

2π

+∞∫
−∞

dxδ(x1 − x)

+∞∫
−∞

dpe−
ı
h̄ (x−x2+x0)p

= 1√
2π

+∞∫
−∞

dxψx (x2)ϕx (x1).

16.4 Let us take |ς〉 = |ςk〉 as an element of a complete set of orthogonal vectors {∣∣ς j
〉 }.

Then, by Eq. (16.27), and by the fact that each
〈
P̂ς j

〉
ϕ

cannot be negative, we

immediately have that for any j �= k all
〈
P̂ς j

〉
ϕ

vanish.

16.6 Since
〈
P̂ς1

〉
ϕ
=
〈
P̂ς2

〉
ϕ
= 0, then the rhs of Eq. (16.29) vanishes, which in turn

implies that
〈
P̂ψ1

〉
ϕ
=
〈
P̂ψ2

〉
ϕ
= 0. Writing, e.g., |ψ1〉 as the linear combination

|ψ1〉 = c1 |ς1〉 + c2 |ς2〉 ,

with arbitrary c1, c2, we obtain the desired result.
16.8 The problem is solved when considering that (see Eqs. (6.154))

σ̂ 1 · a = ax

[
0 1
1 0

]
1

+ ay

[
0 −ı
ı 0

]
1

+ az

[
1 0
0 −1

]
1

and

σ̂ 2 · b = bx

[
0 1
1 0

]
2

+ by

[
0 −ı
ı 0

]
2

+ bz

[
1 0
0 −1

]
2

,

The expectation value on the singlet state (16.12) of the product of these two scalar
products gives nine terms, of which the first three have the form
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�0
∣∣ax bx σ̂1x σ̂2x

∣∣�0
〉 = 〈�0 | ax bx√

2

[
0 1
1 0

]
1

[
0 1
1 0

]
2

×
[(

1
0

)
1

⊗
(

0
1

)
2

−
(

0
1

)
1

⊗
(

1
0

)
2

]

= 〈�0 | ax bx√
2

[(
0
1

)
1

⊗
(

1
0

)
2

−
(

1
0

)
1

⊗
(

0
1

)
2

]
= 〈�0 |−ax bx |�0〉 = −ax bx .

Similar calculations show that we also have〈
�0
∣∣ayby σ̂1y σ̂2y

∣∣�0
〉 = −ayby and

〈
�0
∣∣azbz σ̂1z σ̂2z

∣∣�0
〉 = −azbz .

The six cross terms are instead all zero. Indeed, we have

〈
�0
∣∣ax by σ̂1x σ̂2y

∣∣�0
〉 = 〈�0 | ax by√

2

[(
0
1

)
1

⊗
( −ı

0

)
2

−
(

1
0

)
1

⊗
(

0
ı

)
2

]

= ax by

2

[(
1 0

)
1
⊗ ( 0 1

)
2
− ( 0 1

)
1
⊗ ( 1 0

)
2

]
×
[(

0
1

)
1

⊗
( −ı

0

)
2

−
(

1
0

)
1

⊗
(

0
ı

)
2

]

= ax by

2
[−(1 · ı)− (1 · (−ı))] = 0,

and similarly for all other cross terms, so that we may finally conclude that

〈�0
∣∣(σ̂ 1·a

) (
σ̂ 2·b

)∣∣�0〉 = −(ax bx + ayby + azbz) = −a · b.

16.9 The solution is obtained when one considers that, for any integrable function f (x),
we have ∣∣∣∣∫ dx f (x)

∣∣∣∣ ≤ ∫ dx | f (x)| ,

and |Ab(λ)Ac(λ)− 1| = 1− Ab(λ)Ac(λ)
16.10 We have that 〈

a′, b
〉 = ∫

#

dλρ(λ)Aa′(λ)Bb(λ) = 1− δ

=
∫
#+

dλρ(λ)−
∫
#−

dλρ(λ).

Since ∫
#+

dλρ(λ)+
∫
#−

dλρ(λ) = 1,

we immediately obtain the desired result.
16.11 Making use of Eq. (16.65), we have that∫

#

dλρ(λ)Bb(λ)Bb′(λ) =
∫
#+

dλρ(λ)Aa′(λ)Bb′(λ)−
∫
#−

dλρ(λ)Aa′(λ)Bb′(λ),
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which together with the fact that∫
#+

dλρ(λ)Bb(λ)Bb′(λ) =
∫
#

dλρ(λ)Aa′(λ)Bb′(λ)−
∫
#−

dλρ(λ)Aa′(λ)Bb′(λ),

allows us to derive∫
#

dλρ(λ)Bb(λ)Bb′(λ) =
∫
#

dλρ(λ)Aa′(λ)Bb′(λ)− 2
∫
#−

dλρ(λ)Aa′(λ)Bb′(λ).

Now, we also have that∫
#

dλρ(λ)Aa′(λ)Bb′(λ)− 2
∫
#−

dλρ(λ)Aa′(λ)Bb′(λ)

≥
∫
#

dλρ(λ)Aa′(λ)Bb′(λ)− 2
∫
#−

dλρ(λ)|Aa′(λ)Bb′(λ)|.

Since Aa′ (λ)Bb′(λ) = ±1, these results, together with Eqs. (16.66) and (16.62), give
the desired solution.

16.12 Let us do the substitution a′ = b′ in inequality (16.69) in its formulation:

| 〈a, b〉 − 〈a, b′
〉 | ≤ 2+ 〈a′, b′

〉+ 〈a′, b
〉
.

Since 〈
b′, b′

〉 = −1,

the result is easily obtained.
16.13 By making use of Eq. (16.53), let us first rewrite Eq. (16.55) as

〈a, b〉 − 〈a, b′
〉 = ∫ dλρ(λ) [Aa(λ)Bb(λ) (1± Aa′ (λ)Bb′(λ))]

−
∫

dλρ(λ) [Aa(λ)Bb′(λ) (1± Aa′ (λ)Bb(λ))).

Since we have that

[Aa(λ)]2 = 1 ≥ Aa(λ)Bb(λ), Aa(λ)Bb′(λ),

which implies both∫
dλρ(λ) [Aa(λ)Bb(λ) (1± Aa′ (λ)Bb′(λ))] ≤

∫
dλρ(λ) (1± Aa′ (λ)Bb′(λ))∫

dλρ(λ) [Aa(λ)Bb′(λ) (1± Aa′(λ)Bb(λ))] ≤
∫

dλρ(λ) (1± Aa′ (λ)Bb(λ)),

we also have

| 〈a, b〉 − 〈a, b′
〉 | ≤ ∫ dλρ(λ) (1± Aa′ (λ)Bb′(λ))+

∫
dλρ(λ) (1± Aa′ (λ)Bb(λ)),

which amounts to

| 〈a, b〉 − 〈a, b′
〉 | ≤ 2± 〈a′, b′

〉± 〈a′, b
〉
,

from which the CHSH inequality follows.
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16.14 From Eqs. (16.73), (16.75), and (16.172) we obtain

−1 ≤ π12(λ, a, b)− π12(λ, a, b′)+ π12(λ, a′, b)+ π12(λ, a′, b′)
− π1(λ, a′)− π2(λ, b) ≤ 0,

where in Eqs. (16.171) we have taken

xk = πk(λ, j), with j = {a, a′},
yk = πk(λ, l), with l = {b, b′},

and X = Y = 1. Integrating this inequality over # with the probability distribution
ρλ, and using Eqs. (16.74), yields

− 1 ≤ ℘12(a, b)− ℘12(a, b′)+ ℘12(a′, b)+ ℘12(a′, b′)− ℘1(a′)− ℘2(b) ≤ 0,

which may be rewritten as Eq. (16.76).
16.19 The three-particle interference in the GHSZ state (Eq. (16.143)) is evidenced by the

sine term in Eq. (16.144a), which represents the probability that the three particles
are detected at D1, D2, and D3. In order to test if the two-particle interference
is present, we have to consider the probability that two detectors (say D2 and
D3) click independently of what happens in the third arm of the inteferometer. In
this case, for instance, we have to sum Eqs. (16.144a) and (16.144b) and obtain
℘�D2D3

(φ1,φ2,φ3) = 1/4, which is independent of the phases φ1,φ2, and φ3.

Chapter 17

17.2 In the case of pure states, we have ρ̂ = P̂k = |bk〉 〈bk |, which means that in
Eq. (17.4) we have wkδ jk , with the consequence that the diagonal matrix has only
an element different from zero, namely wk = 1. This proves the result because the
logarithmic function of 1 is 0.

17.8 Applying one of the unitary operators (17.73) to the corresponding state of particle
3 as represented in Eq. (17.71), we recover the information contained in particle 1,
which may be rewritten in the form

c

(
1
0

)
1

+ c′
(

0
1

)
1

=
(

c
c′
)

1

.

Indeed, [ −1 0
0 −1

]
3

( −c
−c′

)
3[ −1 0

0 1

]
3

( −c
c′

)
3[

0 1
1 0

]
3

(
c′
c

)
3[

0 1
−1 0

]
3

( −c′
c

)
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
(

c
c′
)

3

.
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In the case of the first measurement outcome (the singlet one), the state of particle
3 is the same as of particle 1 except for an irrelevant phase factor, so that Bob
need do nothing further to reproduce the state of 1. In the three other cases, Bob
must apply one of the unitary operators Û2, Û3, Û4 – corresponding, respectively,
to 180◦ rotations around the z-, x-, y-axes – in order to convert the state of 3 into the
state of 1. What Bob must do, obviously depends on the (classical) communication
of Alice’s result.

17.10 The most direct algorithm that can be used to factorize an integer number of l dig-
its consists of checking whether the integer is divisible by each number from 2 to√

M = √
10 l . Therefore, this algorithm requires a number of steps given by

N 	 √
M =

√
10 l ,

which shows that the growth is exponential. For example, if l us equal to 100 dec-
imal digits, even if the time required for a division is very small (say, 10−20 s), the
total time required to factorize the original number is

τ 	 1010 × 10−20 = 1030s,

i.e. 1013 times the age of the universe. Of course, in the example above we have not
chosen the most efficient algorithm. As a matter of fact, the best known classical
algorithm takes a time of the order of 10l1/3

(i.e. it is sub-exponential).
17.11 The state (17.109) on which we want to evaluate the Boolean function may be

rewritten as

1

2
(|0〉 + |1〉 ) (|0〉 − |1〉 ) = 1

2
(|00〉 − |01〉 + |10〉 − |11〉 ).

Now, we evaluate each of the four components of the state above for each of the
four possible Boolean functions f j ( j = 1, . . . , 4), i.e.

f1 : |00〉 − |01〉 + |10〉 − |11〉 = (|0〉 Ê+ |1〉) (|0〉 − |1〉 ),
f2 : |01〉 − |00〉 + |11〉 − |10〉 = (|0〉 Ê+ |1〉) (|1〉 − |0〉 ),
f3 : |00〉 − |01〉 + |11〉 − |10〉 = (|0〉 Ê− |1〉) (|0〉 − |1〉 ),
f4 : |01〉 − |00〉 + |10〉 − |11〉 = (|0〉 Ê− |1〉) (|1〉 − |0〉 ).

This leads to the desired solution.
17.12 The distance between ρ̂1 and ρ̂2 is given by

d(ρ̂1, ρ̂2) = 1

2
Tr|ρ̂1 − ρ̂2|

= 1

4
Tr| (r− s) · σ̂ |

= 1

2
|r− s|,

since (r− s) · σ̂ has eigenvalues ±|r− s|, so that we obtain

Tr| (r− s) · σ̂ | = 2|r− s|.
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In other words, we have the important result that the distance between two single
qubit states is equal to one half the Euclidean distance between them on the Bloch
sphere. Since rotation on the Bloch sphere leaves this distance unaffected, unitary
transformations preserve it, i.e.

d(ρ̂1, ρ̂2) = d(Û ρ̂1Û †, Û ρ̂2Û †).
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