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CHAPTER 3

PROBLEM 3.1. Vector Potential.
In general, Faraday’s law implies that E = −∂A/∂t − ∇Φ, where Φ is
arbitrary. Show that A may be redefined to include Φ. In the case of infinite
magnetic Reynolds number, deduce the equation that determines A when v
is given, and also the change δA in A produced by a displacement ξ.

SOLUTION. We follow here the discussion in Roberts, P.H. (An Intro-
duction to Magnetohydrodynamics, Longmans, 1967). Suppose

B = ∇×A,

where there are many different choices for A since it is arbitrary to within
the gradient of a gauge (Ψ). In other words, adding ∇Ψ to A, where Ψ is
any single-valued function, will not change B.

Now, Faraday’s law,

∇×E = −
∂B

∂t
,

implies that

∇×

(

E+
∂A

∂t

)

= 0,

so that
∂A

∂t
= −E−∇Φ,

where Φ is any single-valued scalar. In a steady state, Φ is the usual elec-
trostatic potential, but more generally it depends on the choice of gauge of
A.

The arbitrariness in A may be removed by requiring it to satisfy some
extra condition that simplifies the formalism of whatever problem is being
tackled. In MHD a common condition is to impose ∇ ·A = 0, whereas for
electromagnetic radiation one often assumes ∇ ·A = −∂Φ/∂t. Here instead
let us define A to include the Φ term – i.e., to introduce a new function such
that

Ã = A+

∫

∇Φdt,
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so that, after dropping the tilde, the equation for ∂A/∂t reduces to

∂A

∂t
= −E.

Note that, since free charges are usually present, in this case ∇ · E 6= 0 and
so ∇ ·A 6= 0.

In particular, for an ideal plasma (when the magnetic Reynolds number
is infinite), Ohm’s law (E = −v ×B) for E reduces the above equation to

∂A

∂t
= v ×B = v × (∇×A).

Note that one of the unpleasant side effects of this gauge is that in a steady
state A is proportional to t. When the magnetic Reynolds number is infi-
nite, the above equation still holds but with v replaced by a flux velocity w
provided it exists (which is not always the case – see Sec. 6.12.3).

If a small displacement ξ is produced by a small velocity v = ∂ξ/∂t acting
on an initial field B0, linearising the above equation shows that the resulting
change δA in A is given by

δA = ξ ×B0.

PROBLEM 3.2. Setting Up Euler Potentials.
If two coordinates (f, g) label field lines, show that in general they may
be redefined to make B = ∇f ×∇g.

SOLUTION. Since f and g are constant along magnetic field lines, ∇f
and ∇g are perpendicular to B. Therefore, following Roberts(1967), there
exists a scalar function (α) of position such that

B = α∇f ×∇g.

Taking the divergence and using ∇ ·B = 0 gives

∇α ·∇f ×∇g = 0.

This is equivalent to
∂(α, f, g)

∂(x, y, z)
= 0,
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which implies that
α = α(f, g),

so that α is constant on field lines.
Therefore, we may redfine either f or g to absorb α. For example, if we

introduce

g̃(f, g) =

∫

g

α(f, g′)dg′ + β(f),

where β is an arbitrary function of f , then

α∇g = ∇g̃ −

(
∫

g ∂α

∂f
dg′ +

dβ

df

)

∇f.

Thus, substituting for α∇g into the expression for B gives B = ∇f ×∇g̃,
or, after dropping the tilde,

B = ∇f ×∇g,

as required. Note that this representation is far from unique.

PROBLEM 3.3. Vector Potential and Euler Potentials.
How can the vector potential A be written in terms of Euler potentials? (i)
Choose the gauge to make B ·A = 0. (ii) Choose the gauge instead to make
a change δA produced by a displacement ξ normal to B, and comment on
the consequences.

SOLUTION. We again here follow Roberts (1967). We have by definition

B = ∇f ×∇g,

but this can be rewritten

B = ∇× (f∇g).

Thus, if B = ∇×A, then in general

A = f∇g +∇h,

say. Often f , g and h (sometimes called Clebsch variables) are more conve-
nient variables than Ax, Ay, and Az.
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(i) There are many choices of gauge, the most convenient depending on
the problem. For instance, if h ≡ 0, we have

A = f∇g,

and so
B ·A = ∇f ×∇g · f∇g = 0.

(ii) As another example, if B + δB is a neighbouring field with corre-
sponding vector potential A+ δA, then we have, after substituting in terms
of f , g and h,

δA = δf∇g + f∇δg +∇δh

or
δA = δf∇g − δg∇f +∇(δh+ fδg).

Thus, if we choose δh = −fδg,

δA = δf∇g − δg∇f,

and so δA is normal to B. Furthermore, it can be written as

δA = ξ ×B = ξ × (∇f ×∇g),

or
δA = −(ξ ·∇f)∇g + (ξ ·∇g)∇f.

This in turn implies that
δf + ξ ·∇f = 0

and
δg + ξ ·∇g = 0,

so that the surfaces f = constant and g = constant (and therefore their
intersections, namely, the field lines) follow the motion.

PROBLEM 3.4. Nonlinear Force-Free Fields.
Show that

∇×B = αB (1)

implies that
(∇2 + α2)B = B×∇α (2)

but that Eq.(??) does not necessarily imply Eq.(??).
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SOLUTION. Take the curl of Eq.(??) to give

∇× (∇×B) = ∇× (αB)

or, expanding both sides

∇(∇ ·B)−∇2B = α∇×B+ (∇α)×B.

After using ∇ ·B = 0 and Eq.(??) for ∇×B this becomes

−∇2B = α2B+ (∇α)×B,

or
(∇2 + α2)B = B×∇α,

as required.
However, this is of higher order than the original Eq.(??), so in principle

we would not expect all solutions of Eq.(??) to satisfy Eq.(??). This may
be shown explicitly as follows. First of all, rearrange the terms in Eq.(??) to
give

∇2B+ (∇α)×B = −α2B.

Then, after adding and subtracting α∇×B, it becomes

∇2B+ α∇×B+ (∇α)×B = α∇×B− α2B,

or
∇2B+∇× (αB) = α(∇×B− αB).

Then, using a triple vector product identity and ∇ ·B = 0, this implies

−∇× (∇×B) +∇× (αB) = α(∇×B− αB)

or
∇× (∇×B− αB) + α(∇×B− αB) = 0.

In other words,
(∇×+α)(∇×B− αB) = 0.

Now this implies that

∇×B− αB = C,
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where
∇×C+ αC = 0.

Therefore one possible solution is C ≡ 0, namely,

∇×B− αB = 0,

but there are many other solutions, namely, all those with ∇×B−αB = C
and C 6= 0, and so we have proved that Eq.(??) does not necessarily imply
Eq.(??), as required.

PROBLEM 3.5. Force-Free Fields in Euler Potentials.
What are the equations for a linear force-free field in Euler potentials? Com-
ment on the result.

SOLUTION. We have
B = ∇× (f∇g),

for which the electric current density is

µj = ∇×B = ∇× [∇× (f∇g)].

Expanding out the triple vector product gives

µj = ∇[∇ · (f∇g)]−∇2(f∇g)

or
µj = ∇(∇f ·∇g) +∇f∇2g −∇2f∇g.

For a linear force-free field, we have

µj = αB,

where α is a given constant, and so, after substituting for j and B, we find
from the x- and y-components the following two equations for f(x, y, z) and
g(x, y, z):

∂

∂x

(

∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y
+

∂f

∂z

∂g

∂z

)

+
∂f

∂x
∇2g −

∂g

∂x
∇2f = α

(

∂f

∂y

∂g

∂z
−

∂f

∂z

∂g

∂y

)

,

∂

∂y

(

∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y
+

∂f

∂z

∂g

∂z

)

+
∂f

∂y
∇2g −

∂g

∂y
∇2f = α

(

∂f

∂z

∂g

∂x
−

∂f

∂x

∂g

∂z

)

.
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Thus, the equations determining the Euler potentials are highly complex
and nonlinear, even though the magnetic field itself is linear.

PROBLEM 3.6. Properties of Magnetostatic Fields.
Prove that for a magnetostatic field (i) ∇ · (B×∇p) = 0 and (ii) (j ·∇)B =
(B ·∇)j

SOLUTION. We have
j×B = ∇p,

where
∇ ·B = 0

and
j = ∇×B/µ.

(i) The expression
∇ · (B×∇p)

may be expanded by operating first on B and then on ∇p to give

∇ · (B×∇p) = ∇p ·∇×B+B ·∇×∇p,

or
∇ · (B×∇p) = µ∇p · j,

since the second term vanishes identically. Furthermore, j×B = ∇p implies
that ∇p is perpendicular to j and so

∇ · (B×∇p) = 0,

as required.
(ii) Taking the curl of j×B = ∇p implies

∇× (j×B) = 0,

or, after expanding the triple vector product and using∇·j = 0 and∇·B = 0

(j ·∇)B− (B ·∇)j = 0,

as required.
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PROBLEM 3.7. General Solution for Magnetostatic Fields.
Prove that the magnetostatic equations are satisfied by

j = (α/µ)B+
B×∇p

B2
, (3)

where α is given by an integral along a field line of the form

α = α0 − 2µ

∫

x

x0

B · (∇B)× (∇p)/B4ds

from a value α0 at a reference point x0, say.

SOLUTION. Substitute Eq.(??) into the magnetostatic equation

j×B = ∇p, (4)

to give
B×∇p

B2
×B = ∇p.

Expanding the triple vector product, we have

∇p−B
∇p ·B

B2
= ∇p.

But Eq.(??) implies that ∇p · B = 0 and so this is satisfied identically. In
other words (??) is satisfied by (??), as required.

The value of α follows from taking the divergence of Eq.(??) and using
∇ · j = 0, to give

0 = ∇ · (αB/µ) +∇ ·

(

B×∇p

B2

)

.

Expanding out both expressions and using ∇ ·B = 0 gives

(B ·∇)α/µ = −B ·∇p×∇

(

1

B2

)

−
∇p

B2
·∇×B−

B

B2
·∇×∇p.

But the second and third terms on the right vanish since Eq.(??) implies that
∇p · j = 0 and ∇ ×∇p is identically zero. Thus, after putting ∇(1/B2) =
−2(∇B)/B3 this reduces to

B
dα

ds
= −

2µ

B3
B ·∇p×∇B
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or, integrating along a field line from x0 to x,

α = α0 − 2µ

∫

x

x0

B · (∇B)× (∇p)

B4
ds,

as required.

9


