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Review notes: Important points to keep in mind
A collection of key points based on questions and missed points in exams.

Chapters 2 and 3. Mathematical preliminaries

• If the pole is –a, the corresponding time constant is 1/a, and time domain term is e–at. (Repeat
this thinking exercise with a = 1/τ.)

• If the poles are complex conjugates, pi = –α ± jβ, the time domain function is
e–αt sin(βt + φ), where φ is the phase lag.

• When we have a repeated pole at –a, we still have the exponential function e–at, but it now
has other terms with time “tagged” onto it to make the entire time function decays slower in
time.

• Relatively speaking, poles that are closer to the origin are associated with larger time
constants (or are slower) and are considered dominant.

• A transfer function is always derived from a differential equation with zero initial
condition(s). That is why when we begin with a linear equation, we still have to put it in
deviation variables first.

• The steady state gain of a transfer function is the final change of the output (deviation)
variable relative to a unit change in the input. It may be easier to put the statement as: “the
final value of the output when the input is a unit step.” The steady state gain is easy to spot if
we use the time constant form of a transfer function. That’s because when a transfer function
is expressed as a ratio of two polynomials, the steady state gain is the ratio of the two constant
coefficients.

• Steady state gain and time constants (or you can say poles and zeros) are properties of the
transfer function and are independent of the input.

• The most important part of a transfer function is the polynomial in the denominator; it is the
characteristic polynomial of a differential equation model.

• Along the same line, if there are multiple inputs to the differential equation model, the
transfer functions associated with each of these inputs will have the identical characteristic
polynomial.

• For a second order transfer function, the natural time period τ is not the time constant. (Forgot
why? Review comments in Section 3.2.)

Chapters 4 and 9. State-space models

• There is no unique state space representation of a model. (We see this quite well with
MATLAB, but this also makes using its result confusing at the beginning. As always, check
the eigenvalues. When we move to design controls in Chapter 9, make sure the MATLAB
matrices are scaled properly. This point is explained in MATLAB Session 4.)

• Do not be intimidated by the formulation of the state-transition matrix. Its explanation in
Section 4.2 is largely used to relate state-space models to transfer functions. For more
complex problems beyond, for example, Example 4.7, there are numerical techniques
available at more advanced levels.

• Speaking of which, learning the canonical form transformations and controller designs in
Chapter 9 relies to a great extent the use of MATLAB at this introductory level. (General
theoretical analysis requires linear algebra that can only be taken up in a second or more
advanced course. Despite this note, you still need to read Section 9.3 slowly and carefully.)

• When a problem is simple enough, the state feedback gain is the same as the proportional
gain in classical control. We did a couple of examples, e.g., Example 4.7B, to illustrate the
point. But as soon as we move to slightly more complex problems, including the use of
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integrating action, controller settings using state-space control are very different from
classical control. We no longer have this “physical” PID feel, but that is fine because state-
space control is handled invariably by computers.

Chapters 5 and 6. Closed-loop system analysis

• There are two ways for us to organize the material in Chapter 5. If you find the beginning too
mathematical, start with Section 5.2.3 to get a better physical feel of the tasks at hand.

• The closed-loop characteristic polynomial is identical whether we solve the servo or the
regulatory problem.

• For a given process model, we can only choose one manipulated variable. All other variables
become disturbance (or load) variables.

• When we derive, for example, the closed-loop set point tracking function, we can set all other
variables to zero. That’s because we work with linear systems. We can consider each effect
(input) individually and then, if needed to later, add them back together.

• When you solve a problem, it is very important to draw the block diagram (no matter how
simple that is), and label it with the proper variables and their units.

• Then you go through each block and determine the proper signs of all the steady state gains.
The decisions are based on your understanding of the process model and safety concerns
(failed open versus failed closed).

• Integrating action eliminates offset—it is usually introduced by a PI or PID controller, but it
also can be introduced by the process function (as in manipulating liquid level with a pump).

• If the process function has no integrating action itself, neither P nor PD control can eliminate
offset. We need, once again, integrating action.

• When we do an open-loop step test, it reveals information about Ga(s)Gp(s)Gm(s), and they
can be anything (meaning in any form). We can only approximate the result as a first order
with dead time function if the data reflect a self-regulating multicapacity process. You do not
blindly force fit the data.

• In theory, internal model control allows us to design a controller based on our specification of
the closed-loop response and the process model. The problem is that the theory is also based
on perfect pole-zero cancellation, which we cannot expect in reality. Nevertheless, the
analysis is instructive, and shows us, for example, how Kc is (more or less) inversely
proportional to the process gain.

• There is no single best method and no one correct answer. We need to approach each problem
individually and learn to make our judgment. Generally, all the methods require field tuning.
Refer to summary Table 6.3 of tuning methods for a review.

• To detune a controller, we decrease the proportional gain or increase the integral time
constant.

• Generally, when we add integral to proportional control, we need to lower the proportional
gain. We can increase the proportional gain if we add derivative action to make a PID
controller. (Read and scrutinize the results from recipe.m carefully to pick up the trends.)

• With a PID controller, we generally want the integral time constant to be larger than the
derivative time constant: τD/τI  ≈ 0.25   (typically between 0.1 and 0.3). A simple thinking is
that a small integral time constant can lead to a very underdamped behavior or even
instability. (We get a better idea when we do root locus plots or Bode plots.)

• Tuning relations like Cohen-Coon and Ziegler-Nichols try to have an one-quarter system
decay ratio. It may be too oscillatory (underdamped) for some systems.
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• ITAE index provides the “best” conservative design among integral criteria and other
empirical tuning relations. Ciancone-Marlin relation is too conservative.

• With significant dead time (relative to the dominant process time constant), the system can
become unstable and hard to control, so be careful and conservative. Use smaller proportional
gain and larger integral time constant.

Chapters 7. Stability

• A simple first or second order system is always stable. By simple, we mean a system with no
open-loop zeros in the right-hand plane.

• The curves on a root locus plot are the closed-loop poles. We draw the open-loop poles and
zeros only because they define the mathematical limits and are a handy guide to what the root
locus plot may look like. (When you read other texts, the term open-loop pole is rarely used
explicitly. Most people just talk about poles and you should know that what they mean are the
open-loop poles.)

• For a polynomial to have solutions with only negative real parts (i.e., stable), the necessary
condition is that all the coefficients are positive definite.

• Being necessary does not mean sufficient. This is where the Routh array comes in; it provides
the additional conditions required for stability. We apply that to a third and higher order
polynomials. For a second order polynomial, the coefficient test provides the necessary and
sufficient conditions.

• Substitution of s = jω allows use to find the ultimate gain Kcu and ultimate frequency ωcu.
The ultimate gain should be identical to the value if we apply the Routh array (based on the
limit of the inequality), or root locus (based on the intersection with the imaginary axis). The
result is also identical to the ultimate gain and the gain cross over frequency ωcg using a Bode
plot.

• Using root locus as a computational tool, we can rationalize the choice of integral and
derivative time constants with respect to time domain response that we may specify. The only
drawback is that root locus plots cannot handle dead time easily.

• Back in Chapter 2, we introduced the idea of identifying dominant poles of an open-loop
transfer function. When we do a root locus plot, we are now analyzing a closed-loop system
and the dominant poles are the root locus curves that are closer to the imaginary axis, not the
open-loop poles. We may still casually point to an open-loop zero and say that’s where the
dominant pole may end up, and that’s a direct implication that a root locus starts from an
open-loop pole and ends up at a zero.

Chapters 8. Frequency Response

• One main reason why we use frequency response analysis is that it can handle dead time
easily. And if you are good, you can use the technique to explain why a certain system is
stable—mostly based on reading the phase lag.

• The basis of the analysis is that if we have a stable transfer function and if we apply a sine
input A sin ωt, the response at large enough times y∞(t) is also a sine function with the same
frequency. Here, there are two more important points.

1. The amplitude and phase lag of the sinusoidal response at large enough times are functions
of frequency. Generally, the amplitude becomes smaller and the phase lag larger with
higher frequencies.

2. If the transfer function is G(s), then the amplitude and phase lag of the sinusoidal response
in the time-domain, y∞(t)/A, are |G(jω)| and ∠G(jω). (This is one reason why frequency
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response analysis is so confusing at the learning stage. The notations of time and
frequency domains are blended together.)

• Controller design using frequency response analysis is based on the Nyquist stability
criterion. The computation is based on the gain and phase margins, which are much easier to
find on the Bode plot than the Nyquist plot.

• The computation of the gain and phase margins are based on a frequency plot of the open-
loop function Gc(jω)Ga(jω)Gp(jω)Gm(jω), but that does not mean that we are solving the
open-loop problem. In very simple terms, the Nyquist stability criterion is applied on the basis
of a shifted coordinate or the closed-loop equation written as
Gc(jω)Ga(jω)Gp(jω)Gm(jω) = –1.

• Generally, we use this method to find the proportional gain Kc. So with a PID controller, we
need to select some probable values of integral and derivative time constants beforehand.
Since we can compute the ultimate gain effortlessly with MATLAB, the easiest route is to use
the Ziegler-Nichols ultimate gain tuning relations.

• When we solve a problem, we do not need trial-and-error to find Kc. We take advantage of
the fact that the phase angle of Kc is zero, and thus the phase angle plots of the open-loop
function with or without Kc are identical.

• Remind yourself repeatedly that simple first and second order systems are always stable. It
makes no sense to apply the Nyquist stability criterion.

• With a third order system without dead time, there are other methods to design a controller.
We can use root locus plots. Or we approximate the process reaction curve with a first order
with dead time function and then use empirical tuning relations. We could use IMC. And of
course, we can use frequency response. With MATLAB, we can quickly find the ultimate gain
and ultimate frequency, with which we apply to the Ziegler-Nichols ultimate gain tuning
relations.

• Frequency response analysis does not reveal the probable time-domain response. To
overcome that, older texts used the Nichols chart, which is actually a nice technique. Now,
newer texts do not put much emphasis on it. We can only guess that it is because we can use
MATLAB to plot easily the closed-loop time response, and if also need to, closed-loop
modulus (definition in the Web Support supplementary notes).


