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Mechanical and Electromechanical Models

Many control systems contain mechanical and electromechanical components. Their models are
based on introductory physics. We provide three simple examples. The first one is a model on
translational motion, the second is rotational, and the last one is electrocmechanical. To go beyond
these examples, refer to the Web Support Reference for recommended resources.

Simple Mass and Spring System

An automobile suspension can be
modeled by translational  (also called
rectilinear) mechanical systems. We will
not be that complicated. In place, we use
the simple mass and spring with a damper
as our introductory illustration.1

As shown in Fig. 1, we apply a force
f(t) on a mass M. The motion is opposed
by a spring and viscous friction.

The model begins with Newton's law
of motion, F = ma. We'll do the derivation
differently because the Hook's law is based on displacement. The law of motion, using notations
in Fig. 1, is

  F = Md2x
d t2 (1)

We next rewrite it in terms of the deviation variables,

x1 = x – xs  ,   and    F1 = F – Fs

For all practical purpose, the so-called deviation x1 is the displacement from some initial position
xs, which is maintained by some force Fs. 2 Equation (1) hence becomes

  
F1 = M

d2x1

d t2
(2)

There are three forces acting on the mass: the applied force, and opposing it forces from the spring
and viscous friction due to a fluid (liquid, air):

  F1 = (f – fs) – K(x – xs) – B d
d t

(x – xs) (3)

The first term on the right is the deviation of applied force, f = f(t). The force fs can be considered
as static friction that prevents motion at the beginning. The second term is Hook's law with K
denoting the spring constant. The last term describes viscous friction, and B is the viscous
damping coefficient. Without being explicit, it is understood that f = f(t), and K and B are
constants.

Substitution of Eq. (3) in (2), and making use of deviation variables would lead to

                                                

1  FYI. This same mass and spring system in Fig. 1 can be used to model a visco-elastic polymer
chain.

2  We use subscript 1, and  not an apostrophe, to denote the displacement because it conveniently
becomes the first state variable later when we do the state space representation. And for
consistency, we apply the same notation to F and f too.

M

f(t)
K

B (t)x 1

Figure 1. A simple mass and spring with damper
system. The displacement (deviation) is denoted by x1.
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M

d2x1

d t2
= f1 – Kx1 – B

d x1

d t
(4)

or as

  
M

d2x1

d t2
+ B

d x1

d t
+ Kx1 = f1 (4a)

This equation should have the zero initial condition, x1(0) = 0. This is the result that you find in
control texts, which typically skip over our additional steps from (1) to (3).

The Laplace transform of (4a) is

 x1(s)
f1(s)

= 1
Ms2 + Bs + K

(5)

The RHS is, of course, the transfer function of this model.

If we define the natural frequency ω = (K/M)1/2, Eq. (5) can be rewritten as

  x1(s)
f1(s)

= 1 / M
s2 + 2ζωs + ω2 (5a)

where the damping ratio is

  ζ = B
2

1
MK (6)

If there is no viscous damping, B = 0, and the transfer function becomes

  x1(s)
f1(s)

= 1 / M
s2 + ω2 (7)

To reformulate the model in state space (Chapter 4), we use x1 as the first state variable and
define the second state variable as x2 = dx1/dt. With them, we can easily write Eq. (4) as

 
x1

x2

=
0 1

– K

M

– B

M

x1

x2

+
0

1/M

f1
(8)

You should double check that the model matrix here has the same characteristic equation as the
characteristic polynomial in Eq. (4a).

Simple Torsion Disk

There are systems involving rotational
motion. A computer disk drive is one
example. There are also systems involving
both translational and rotational motions
(robotics or crane systems), but they are
definitely beyond the scope of what we can do
here.

The simple model that we will study is a
torsion disk (Fig. 2). It is a disk suspended by a thin shaft. The disk can rotate if we apply a
torque, but the motion is opposed by the spring constant of the shaft and viscous friction.

The derivation and end result is very similar to the last example. We just have to work with the
inertia of the disk and the angular acceleration in the law of motion. The equivalent step to Eq. (2)
is
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Figure 2. A simple torsion disk.
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τ1 = J

d2θ1

d t2
(9)

where now τ1 is the deviation in total torque, J is the moment of inertia of the disk, and θ1 is the
angular displacement, θ1 = θ – θs. The total torque is made up of three terms as in (3):

   τ1 = (T – Ts) – K(θ – θs) – B d
d t

(θ – θs) (10)

where K is the spring constant of the shaft, and B is the viscous friction coefficient.

Again, if we define T1 = T – Ts, and substitute (10) into (9), we can arrive at the equivalent of
Eq. (4a):

   
J
d2θ1

d t2
+ B

d θ1

d t
+ Kθ1 = T1 (11)

with θ1(0) = 0.

The Laplace transform is

  θ1(s)
T1(s)

= 1
Js2 + Bs + K

(12)

We will skip the state space representation since it is so similar to Eq. (8). Instead, we should
point out the simplified cases. When there is no viscous friction, we have the undamped model as
analogous to Eq. (7).

  θ1(s)
T1(s)

= 1 / J
s2 + K/J

(13)

where the natural frequency here is ω = (J/M)1/2.

When the torsion spring constant is negligible, (12) becomes

  θ1(s)
T1(s)

= 1
s(Js + B) (14)

And when both B and K are negligible, we have a free rotation body (very much like a satellite):

  θ1(s)
T1(s)

= 1
Js2 (15)

which is a double-integrator plant.
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Figure 3. Schematic diagram of a dc motor.
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DC Motor

The dc motor is one of the most common actuator in electromechanical systems. We derive
here the model equations for a permanent magnet dc motor. The main physical component is an
armature rotor, which is placed in the center of a permanent magnet. We apply a voltage to the
armature, which is modeled as a circuit with resistance in series with inductance and a back-emf
when the motor rotates as current flows through the armature under the magnetic field. This idea is
illustrated in Fig. 3. The torque generated by the motor drives a mechanical load and the rotational
motion is opposed by viscous friction.

In the following derivation, we will follow the typical texts in mechanical engineering. With
the understanding that the angular motion θ is really a displacement, we skip the formality of
deviation variables.

First, we apply Kirchhoff's voltage law to the motor armature circuit. The applied (input)
voltage ea is equal to the voltage drops in the field coil resistance and inductance, and the induced
back-emf em in the armature:

  ea = L a
d ia

d t
+ Raia + em (16)

where ia is the armature current, Ra is the armature resistance, and La is the armature inductance.

The induced back-emf em is related to the magnetic field flux φ and the armature rotation rate as

   em = Kφ dθ
d t

= Kmω (17)

where θ is the angular displacement, and ω = dθ/dt is the angular velocity. The generated voltage
is affected by the physical structure of the generator and we use the factor K to reflect that. More
often, we simply lump K and φ together to make Km, the back-emf constant.

If we now substitute for em in (16) using (17), we have a differential equation for the change in
the armature current:

   d ia

d t
= 1

L a

[ea – Raia – Kmω] (18)

Next, we need to do a force balance on the mechanical load. The developed torque is

τ = Ki ia (19)

where Ki is the torque constant, and analogous to Km, it includes some factor that depends on the
motor physical design. The force balance, as analogous to Eq. (11), but without the shaft spring
constant, is

   Jd2θ
d t2

= τ – Bdθ
d t (20)

Substitution for τ using (19) will lead us to

   d2θ
d t2

= 1
J

[Ki ia – Bdθ
d t

] (21)

Eqs. (18) and (21) constitute a third order model for the dc motor. Let us first write the state
space representation since we are almost there. We define the state variables:

x1 = θ ,  x2 = dθ/dt = ω ,  and  x3 = ia (22)

and Eqs. (21) and (18) can be put in matrix form:
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d
d t

x1
x2
x3

=
0 1 0
0 – B/J Ki /J
0 – Km /L a – Ra /L a

x1
x2
x3

+
0
0

1/L a

ea (23)

To find the transfer function, the Laplace transform of (21) is

  Js2θ(s) = Ki ia(s) – Bsθ(s) (24)

and that of (18) without the ω substitution for dθ/dt is

  L a sia(s) = ea(s) – Raia(s) – Km sθ(s)

which can be rearranged to

  ia(s) =
ea(s) – Km sθ(s)

L a s + Ra

(25)

Now we substitute for ia in (24) using (25), and after algebraic rearrangement, we can arrive at the
transfer function:

  θ(s)
ea(s)

=
Ki

L a J s3 + (Ra J +BL a) s2 + (Ki Km +Ra B) s
(26)

Note that the model has a pole at the origin. We can calculate the coefficients based on the
specs of the manufacturer. Often, we make the approximation to ignore the armature inductance.
The model becomes second order as in

  θ(s)
ea(s)

=
Ki

s (Ra J s + Ki Km +Ra B)
(27)

or

  θ(s)
ea(s)

=
Ki /Ra J

s s +
Ki Km +Ra B

Ra J
(27a)

When we design a control system, we can purposely choose a dc motor such that its time
constant is much smaller than that of the process (plant) itself. Thus if we can further neglect the
time constant of the dc motor in the system, it becomes simply an integrating element.

Under such circumstances, we must be careful in making use of open-loop data. Let's presume
that the plant is a first order function. Together with a very powerful and fast dc servomotor, an
open-loop test may reveal only a second order model because the motor time constant is masked by
the much slower plant time constant. Now with a second order plant and a proportional controller,
the system should always be stable. But we actually implement the system, we may find that it
can become unstable because we really have a higher order system. So we need to be careful or
conservative when we select the controller gain.


