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Mechanical and Electromechanical Models

Many control systems contain mechanical and electromechanical components. Their models are
based on introductory physics. We provide three simple examples. The first oneisamodel on
tranglational motion, the second is rotational, and the last one is electrocmechanical. To go beyond
these examples, refer to the Web Support Reference for recommended resources.

Simple Mass and Spring System

An automobile suspension can be

modeled by trandational (also called . K
rectilinear) mechanical systems. We will f(t
i A—MW—] ®
not be that complicated. In place, we use M =
the simple mass and spring with a damper m
as our introductory illustration.! B
X 4(t
Asshown in Fig. 1, we apply aforce \_1)()
f(t) on amass M. The motion is opposed
by a spring and viscous friction. Figure 1. A simple mass and spring with damper
The model begins with Newton's law system. The displacement (deviation) is denoted by x,.

of motion, F = ma. Welll do the derivation
differently because the Hook's law is based on displacement. The law of motion, using notations
in Fig. 1, is
d?x
F=M=—=

We next rewriteit in terms of the deviation variables,

X;=X—-Xs, ad F =F-F
For all practical purpose, the so-called deviation X, is the displacement from some initial position
X, Which is maintained by some force F.. 2 Equation (1) hence becomes
dx,

F=M e

@
There are three forces acting on the mass: the applied force, and opposing it forces from the spring
and viscous friction due to afluid (liquid, air):

Fo= (F—f) —K(x—xJ —B%(x—xs) 3

Thefirst term on the right is the deviation of applied force, f = f(t). The force f, can be considered
as static friction that prevents motion at the beginning. The second term is Hook's law with K
denoting the spring constant. The last term describes viscous friction, and B is the viscous
damping coefficient. Without being explicit, it is understood that f = f(t), and K and B are
constants.

Substitution of Eg. (3) in (2), and making use of deviation variables would lead to

1 FYI. This same mass and spring system in Fig. 1 can be used to model a visco-elastic polymer
chain.

2 We use subscript 1, and not an apostrophe, to denote the displacement because it conveniently
becomes the first state variable later when we do the state space representation. And for
consistency, we apply the same notation to F and f too.
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This eguation should have the zero initia condition, x,(0) = 0. Thisisthe result that you find in
control texts, which typically skip over our additional steps from (1) to (3).

The Laplace transform of (4a) is

xa(s) _ 1
fi( Ms2+Bs+K
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The RHS s, of course, the transfer function of this model.

If we define the natural frequency w = (K/M)*?, Eq. (5) can be rewritten as

X4(S) _ 1/M
fi(9 2+ 20ws + w? &3

_B /1
C=2V MK (6)

If there is no viscous damping, B = 0, and the transfer function becomes

Xy(8) _ 1/M

where the damping ratio is

fi(s) 2+ w? @
To reformulate the model in state space (Chapter 4), we use x, asthefirst state variable and
define the second state variable as x, = dx,/dt. With them, we can easily write Eq. (4) as
Xq 0 1 (|xg 0
Tl ok -8 * E 8
X5 L X5 M ®
M M

Y ou should double check that the model matrix here has the same characteristic equation as the
characteristic polynomial in Eq. (4a).

Simple Torsion Disk

There are systems involving rotational
motion. A computer disk drive is one
example. There are al'so systems involving
both translational and rotational motions 8:(0
(robotics or crane systems), but they are
definitely beyond the scope of what we can do T,
here.

Figure 2. A simple torsion disk.
The simple model that we will study isa

torsion disk (Fig. 2). It isadisk suspended by athin shaft. The disk can rotate if we apply a
torque, but the motion is opposed by the spring constant of the shaft and viscous friction.

The derivation and end result is very similar to the last example. We just have to work with the
inertia of the disk and the angular acceleration in the law of motion. The equivalent step to Eq. (2)
is
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where now T, isthe deviation in total torque, Jis the moment of inertia of the disk, and 6, isthe
angular displacement, 6, = 6 — 6. The total torque is made up of three terms asin (3):

1,= (T-T) —K(6-8) —B%(e—es) (10)

where K is the spring constant of the shaft, and B is the viscous friction coefficient.

Again, if wedefine T, = T — T, and substitute (10) into (9), we can arrive at the equivalent of
Eq. (4a):

d’e, _de, ~
JF + BW +K8, = T, (11)
with 6,(0) = 0.
The Laplace transform is
0,(s
1(9) _ 1 (12)

TiS) J2+Bs+K

We will skip the state space representation since it is so similar to Eqg. (8). Instead, we should
point out the simplified cases. When there is no viscous friction, we have the undamped model as
analogousto Eq. (7).

8.9 _ 1/3

= 1
Ty9)  s?2+KI/J 13)
where the natural frequency hereis w = (JM)¥2
When the torsion spring constant is negligible, (12) becomes
0,(s
(9 _ 1 (14)

Ty s(Is+B)

And when both B and K are negligible, we have a free rotation body (very much like a satellite):

0,(s
1(9) -1 (15)
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which is a double-integrator plant.
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Figure 3. Schematic diagram of a dc motor.



DC Motor

The dc motor is one of the most common actuator in electromechanical systems. We derive
here the model equations for a permanent magnet dc motor. The main physical component is an
armature rotor, which is placed in the center of a permanent magnet. We apply a voltage to the
armature, which is modeled as a circuit with resistance in series with inductance and a back-emf
when the motor rotates as current flows through the armature under the magnetic field. Thisideais
illustrated in Fig. 3. The torque generated by the motor drives a mechanical 1oad and the rotational
motion is opposed by viscous friction.

In the following derivation, we will follow the typical texts in mechanical engineering. With
the understanding that the angular motion 6 isreally a displacement, we skip the formality of
deviation variables.

First, we apply Kirchhoff's voltage law to the motor armature circuit. The applied (input)
voltage e, is equal to the voltage dropsin the field coil resistance and inductance, and the induced
back-emf e, in the armature:

di
e, = La£‘+Raia+ en (16)

where i, isthe armature current, R, is the armature resistance, and L ,, is the armature inductance.

The induced back-emf e, isrelated to the magnetic field flux ¢ and the armature rotation rate as
en = K@%=me (17)

where 0 is the angular displacement, and w = d6/dt is the angular velocity. The generated voltage
is affected by the physical structure of the generator and we use the factor K to reflect that. More
often, we simply lump K and ¢ together to make K., the back-emf constant.

If we now substitute for e, in (16) using (17), we have adifferential equation for the changein
the armature current:

di, 1 .
E - ra [ea_Rala_Km(*)] (18)

Next, we need to do aforce balance on the mechanical load. The developed torqueis
T=Ki, (19)

where K is the torque constant, and analogous to K., it includes some factor that depends on the
motor physical design. The force balance, as analogous to Eq. (11), but without the shaft spring
constant, is

d’e _ de
Yae Tt -

Substitution for T using (19) will lead us to

d’0 _1,, - de
a2 3 K"a—BE] (21)

Egs. (18) and (21) constitute a third order model for the dc motor. Let usfirst write the state
space representation since we are amost there. We define the state variables:

X, =0, X, =d0/dt=w, and X; =1, (22)

and Egs. (21) and (18) can be put in matrix form:



d X1 0 1 0 X1 0
dil%2| = 0 -B/J K;/J Xo|+| 0 |e, (23)
X3 0 —Kn/Ly =R, /L 4[| X3 UL,
To find the transfer function, the Laplace transform of (21) is
J5?0(s) = K;i4(S) —BsB(S) (24)

and that of (18) without the w substitution for dé/dt is
L aSi a(s) = ea(s) - Rai a(s) -K m SG(S)
which can be rearranged to

ex(S) —Kn SB(s)

25
L,s+R, @)

io(s) =
Now we substitute for i, in (24) using (25), and after algebraic rearrangement, we can arrive at the
transfer function:

6(s) _ Ki
€S L, Js*+(RyJ+BL ) s+ (KK, +R,B) s

(26)

Note that the model has a pole at the origin. We can cal cul ate the coefficients based on the
specs of the manufacturer. Often, we make the approximation to ignore the armature inductance.
The model becomes second order asin

6 _ Ki

ed  s(RJIs+KK,+R,B) (27)
or
6(s) _ Ki/R,J
eL(s) S(S+ KiKm+RaB) (279)
R,J

When we design a control system, we can purposely choose a dc motor such that itstime
constant is much smaller than that of the process (plant) itself. Thusif we can further neglect the
time constant of the dc motor in the system, it becomes simply an integrating element.

Under such circumstances, we must be careful in making use of open-loop data. Let's presume
that the plant is afirst order function. Together with avery powerful and fast dc servomotor, an
open-loop test may reveal only a second order model because the motor time constant is masked by
the much slower plant time constant. Now with a second order plant and a proportional controller,
the system should always be stable. But we actually implement the system, we may find that it
can become unstable because we really have a higher order system. So we need to be careful or
conservative when we select the controller gain.



