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Transformation to canonical forms

In Chapter 4, we introduced different canonical forms and made that statement that we can go from
one form or another. We show how to do the transformations here. This explanation requires
terminology that will not be introduced until Chapter 9. You may defer the reading till then. First,
we show that a system which is completely state controllable can be transformed to the observable
canonical form. If an n-th order system

x
.
  = Ax + Bu

is completely state controllable, the controllability matrix (from Chapter 9)

P = [B  AB  A2B …  An–1B]

is of rank n, i.e., it is not singular. In this case, we can show that the transform xob = P–1x can

be used to convert A into the observable canonical form, Aob:

P–1AP = Aob (A4-1)

We multiply both sides with P to obtain

AP = PAob (A4-2)

The task is to show that they are really the same. The LHS is easy. It is

AP = [AB  A2B  A3B …  AnB] (A4-3)

Substitution for Aob from Chapter 9, the RHS of (A4-2) becomes

  

PA ob = [ B AB A2B An – 1B ]

0 0 0 –ao

1 0 … 0 –a1

0 1 –a2

0

0 0 1 –an–1

(A4-4)

You may recognize that Aob is the transpose of the controllable canonical matrix in Eq. (4-19).

The coefficients ao, a1, … an–1 are those of the characteristic equation, |sI – A| = 0, as in Eq. (4-

21).

When we carry out the matrix multiplication in (A4-4), we should remind ourselves that each
"entry" in P (e.g., A2B) is an (n x 1) column partition. The product PAob is very clean until we

get to the last column when we have to add up all the terms. Hence, we have

PAob = [AB  A2B … An–1B  (–aoB –a1AB –a2A2B – … –an–1An–1B)]

To make sense out of the last messy column, we need the Cayley-Hamilton theorem from linear
algebra, which states that each matrix A satisfies it own characteristic equation as in Eq. (4-21):

An + an–1An–1 + ... + a1A + aoI = 0 (A4-6)

With (A4-6), the last column of the matrix in (A4-5) can be factored as

(–aoB … –an–1An–1B) = (–aoI –a1A –a2A2 – … –an–1An–1)B = AnB

Finally, we see that RHS of (A4-2) is

PAob = [AB  A2B … An–1B  AnB] (A4-7)
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which is the same as the LHS (A4-3), and thus (A4-2) is the proper transformation to the
observable canonical form.

We can check whether P–1B = Bob too. In the observable canonical form,

Bob = [1 0 … 0]T (A4-8)

If so, we should recover B = PBob. Now

  
PBob = B AB A2B A3B

1
0
0
0

= B

which is exactly what we look for.

______________________________

Our next agenda is to find the controllable canonical form. We now need a transformation
matrix T = PM, where

  

M =

a1 a2 an–1 1

a2 a3 … 1 0

0

an–1 1

1 0 1 0

(A4-9)

To see that

T–1AT = Actr (A4-10)

where Actr is the controllable canonical form in Eq. (4-19), we repeat the same procedure as before.

First, we substitute for T = PM such that

M–1P–1APM = Actr

We have just shown that P–1AP = Aob. Thus if we multiply both sides by M, we have

AobM  = MActr

Once again, we want to show that both sides are the same. The algebra will be messier this time.
It be may more instructive to use the simple n = 4 case as an illustration. In this case, the LHS is

  

A ctrM =

0 0 0 –a0

1 0 0 –a1

0 1 0 –a2

0 0 1 –a3

a1 a2 a3 1

a2 a3 1 0

a3 1 0 0

1 0 0 0

=

–a0 0 0 0

0 a2 a3 1

0 a3 1 0

0 1 0 0

And the RHS is

  

MA ob =

a1 a2 a3 1

a2 a3 1 0

a3 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

–a0 –a1 –a2 –a3

=

–a0 0 0 0

0 a2 a3 1

0 a3 1 0

0 1 0 0

Hence (A4-10) is true, at least for n = 4, and we can use T = PM to find the controllable
canonical form Actr.
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We can check whether T–1B = Bctr, where now

Bctr = [0 0 … 1]T (A4-11)

in the controllable canonical form. If so, we should recover B = TBctr = PMBctr. Here,

  

PMBctr = B AB A2B A3B

a1 a2 a3 1

a2 a3 1 0

a3 1 0 0

1 0 0 0

0

0

0

1

which is reduced to what we look for:

  
PMBctr = B AB A2B A3B

1
0
0
0

= B


