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Root Locus Plotting Criteria

Most classical books on process control derive guidelines for sketching the root loci by inspection
of the transfer function. Using MATLAB, we do not need

the details, but we should know the origin of these S
guidelines. Even though MATLAB does an excellent job l.\‘
for us in making root locus plots, it is always risky to

take things totally for granted. Here are some ideas S-z73

behind root locus construction. As an illustration, we S—=Pp,
consider a closed-loop characteristic equation in pole- CH 02
zero form: o
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where K > 0. This equation is better conceived as

(s—1z,) _
K(_l_ss—pz)(s—m =—1. (A-1)

In general, s is a complex number and we take the magnitude of the equation to give

K = Is_pzlls_pil , (A-2)
[s— 2]

which becomes the so-called magnitude criterion of the root locus. What this equation implies
is that for a chosen point s, we can calculate the gain K by the magnitude of the individual terms
(s —z1), (s — pa), and (s — p3). In vector terms, for example, (s — z,) is the one pointing from z; to
s (Fig. Al). Thus one can use a ruler (that is exactly what one did in the stone age!) to measure the
lengths in Eq. (A-2) to calculate K that corresponds with the particular chosen point s.

Now, we could have picked any point on the complex plane and application of Eq. (A-2) would
still return a number! We must have another constraint to assure that the point s indeed lies on a
root locus. This is where the argument of a complex number comes in. Take note that the
argument of K is zero and of —1 is 180°. If we take the argument of (A-1), we would have

L(s—z)—L(s—p,)—L(s—py = 0,—-0,-0; = n180°, where n= =1, +3,... (A-3)
This the angle criterion of the root locus. Points on a root locus must satisfy this requirement.

If the root locus (the closed-loop pole) happens to be on the real axis, a real open-loop pole on
its left contributes 0°, while a real open-loop pole to its right contributes 180°. (We should clarify
that the right side of a closed-loop pole is the side closer to the origin.) Two such real poles on the
right contributes a total of 360° and would not satisfy the angle criterion. A zero and a pole
together cancels each others' contribution to the total angle. This is a very informal observation
that we expect to find a root locus on the real axis only to the left of an odd number of real open-
loop poles and zeros.

In addition, if we pick any point s and substitute it into (A-1), we should expect to find K a
complex number; it would only be a real number if s lies exactly on the root locus. On the real
axis, we should see that if we pick a point which does not have an odd number of open-loop poles
and zeros on its right, the resulting value of K is negative. In other words, points there cannot
satisfy the closed-loop equation and the root locus cannot exist there. These properties are
important because they help us locate where the root locus (the closed-loop pole) can possibly lie
on the real axis and decide if a system may have complex poles with virtually no work. !

1" Do not be alarmed when we do a root locus plot with the Pade approximation. When we use
[-1 1] as the numerator polynomial in MATLAB, we should find that the result is exactly opposite
to our discussion here. That is because if we factor the —1 out such that this equation takes the



In more general terms, we rewrite the characteristic polynomial as
1 +KG(s) =0 or KG(s) =-1 (A-4)

where K is the parameter (a real positive number) and G(s) is "everything" else. If s is a solution
to the characteristic polynomial, it must satisfy the equation in whichever way we manipulate it,
including in polar coordinates. In other words, the solution s (or the locus) must lie on a point
(path) which satisfies both the magnitude and angle requirements:

|IKG@E)| =1 or with K >0 (A-5)

K=—1_
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and
L[KG(s)] = £(-1) = nl180° where n = %1, £3, 5, etc.
With K >0, £K =0°, and since Z[KG(s)] = £K + £G(s), the angle criterion is
£G(s) = nl180°, (A-6)
which is called the 180° locus.

When K <0, ZK =180°, and Z[KG(s)] = 180° + £G(s) = n180°, where n = =1, £2, etc., we
have

£G(s) = n360°, (A-7)
which is the 0° or complementary locus.

The angle criterion determines the shape of the root locus, but we will definitely skip these
details. What we can do easily, however, is to identify the angle of the locus asymptote if it
approaches infinity.

To find the angle of an asymptote, we write the closed-loop equation in Eq. (A-4) as
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= -1 (A-8)

Here, we presume that the function G(s) can be expressed as a ratio of two polynomials. The
polynomial in the denominator has a higher order such that n > m. (If n = m, all the loci will go
from an open-loop pole to an open-loop zero and there will be no asymptotes.)

A locus asymptote approaches infinity when K and thus s becomes very large. As s approaches
infinity, we can approximate the polynomials with only their leading terms:
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where oo = n — m. Substituting this relation in Eq. (A-8), an asymptote can be approximated by
the equation

s = -K— (A9)

or in polar coordinates for the RHS,

form of (A-1), we really are working with the complementary locus with a negative gain in (A-7).
This is confusing in MATLAB because its functions rlocus () and rlocfind() group (-K,)

together and report the gain as a positive number.

Most texts do not bother to do a root locus plot with the Pade approximation because time
delay can be handled exactly and easily with frequency response analysis.



£r180° , r=#1,%3, ... (A-9)
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Hence, the angles of the asymptotes s are the values of

/s =0 = “%‘0", r=xl, 3, .. (A-10)
For a second order system with two open-loop poles and no zeros, o = 2, and the angles of the
asymptotes are £90°, a familiar result to us dated back to Example 7.5. The results for the most
probable cases are listed below:

[ Asymptotic Angle
1 180°

2 +90°

3 +60°, 180°

4 +45°, +135°



