
7 Chapter 7 Solution Set

Problems

7.1 Prove that a square integrable free field (one that satisfies the homogeneous

Helmholtz equation over all of space) has finite multipole moments.

A free field admits the multipole expansion

U(r) =

∞∑

l=0

l∑

m=−l
aml jl(k0r)Y

m
l (r̂)

from which we find that

∫

τ0

d3r |U(r)|2 =
∞∑

l=0

l∑

m=−l
|aml |2µ2

l (k0R0)

where

µ2
l (k0R0) =

∫ R0

0

r2dr|jl(k0r)|2

and where τ0 is a sphere of radius R0 centered at the origin. The parameters

µ2
l (k0R0) are exponentially small (but finite) for l > k0R0 so that we find that

∫

τ0

d3r |U(r)|2 ≈
k0R0∑

l=0

l∑

m=−l
|aml |2µ2

l (k0R0)

so long as all the multipole moments from l = k0R0 to l =∞ are finite. If the

free field is square integrable the r.h.s. of the above equation must be finite

for any choice of R0 which then requires that the multipole moments all be

finite.

7.2 Derive Eq.(7.5b).

The total field in the l.h.s. z < 0 in the presence of a Dirichlet plane at

z = 0 must consist of an incoming free field to the plane as well as a reflected

(scattered) free field. Ignoring evanescent plane waves we then conclude that

U(r) =

∫

Kρ<k0

d2Kρ A(Kρ)e
iKρ·ρeiγz +

∫

Kρ<k0

d2KρAs(Kρ)e
iKρ·ρe−iγz

where the second term represents the reflected (scattered) wavefield that prop-

agates into the l.h.s. The sum must be zero on the Dirichlet plane which then
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yields

As(Kρ) = −A(Kρ)

and establishes Eq.(7.5b).

7.3 Use the angular spectrum expansions developed in Section 7.2.1 to compute

the outgoing wave Green functions in the half-space z < 0 that satisfy homo-

geneous Dirichlet and Neumann conditions on the plane z = 0.

We must consider the two cases where −∞ < z < z′ < 0 and z′ < z < 0

corresponding the field points r = (x, y, z < 0) lying to the left of the source

point r′ = (x′, y′, z′ < 0) and field points r lying to the right of the source

point r′ but with both points still in the l.h.s. In both cases the field scattered

from the plane at z = 0 can be represented by a plane wave expansion of the

form

U (s)(r, r′) =

∫

Kρ<k0

d2KρAs(Kρ, r
′)eiKρ·ρe−iγz

where we have made the usual assumption of ignoring evanescent plane waves.

The field generated by a delta function source at r′ is the free space Green

function G+(r − r′) so that in the region z′ < z < 0 the field incident to the

plane at z = 0 propagates in the positive z direction and thus admits the

Weyl expansion

U (in)(r) = G+(r− r′) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eiKρ·(ρ−ρ′

)eiγ(z−z
′).

The total Green function in the region z′ < z < 0 is then given by the plane

wave expansion

G(r, r′) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eiKρ·(ρ−ρ′

)eiγ(z−z
′)+

∫

Kρ<k0

d2KρAs(Kρ, r
′)eiKρ·ρe−iγz.

Considering for the moment a Dirichlet plane at z = 0 we then require that

G = GD vanish at z = 0 which yields

As(Kρ, r
′) =

i

8π2

1

γ
e−iKρ·ρ′

e−iγz
′

so that

GD(r, r′) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eiKρ·(ρ−ρ′

)eiγ(z−z
′)+

i

8π2

∫

Kρ<k0

d2Kρ

γ
eiKρ·(ρ−ρ′

)e−iγ(z+z
′).

On making use of the Weyl expansion we see that the above plane wave

expansion of the Dirichlet Green function can be expressed in the form (see

Problems 2.15 and 4.9)

GD(r, r′) = G+(r− r′)−G+(r̃− r′) (7.1)

where r̃ = (x, y,−z).
In the region z < z′ < 0 the Green function component scattered from the
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plane at z = 0 remains that same but the component generated by the source

point at z = z′ has the Weyl expansion

G+(r− r′) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eiKρ·(ρ−ρ′

)e−iγ(z−z
′).

The total Dirichlet Green function in this region is then given by

GD(r, r′) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eiKρ·(ρ−ρ′

)e−iγ(z−z
′)+

i

8π2

∫

Kρ<k0

d2Kρ

γ
eiKρ·(ρ−ρ′

)e−iγ(z+z
′),

which again reduces to the expression given in Eq.(7.1). A Neumann plane is

done in completely parallel fashion.

7.4 Generalize the angular spectrum expansions developed in Section 7.2.1 to the

case of an incident wave radiated by a source in the right half-space z > z0
and reflecting off of the plane z = z0 where it satisfies homogeneous Dirichlet

or Neumann conditions.

The total field in the r.h.s. z > 0 in the presence of a Dirichlet plane at

z = 0 must consist of an incoming free field to the plane as well as a reflected

(scattered) free field. Ignoring evanescent plane waves we then conclude that

U(r) =

∫

Kρ<k0

d2Kρ A(Kρ)e
iKρ·ρe−iγz +

∫

Kρ<k0

d2KρAs(Kρ)e
iKρ·ρeiγz

where the first term represents the incident wave that propagates in the −z
direction and second term represents the reflected (scattered) wavefield that

propagates into the +z direction. The sum must be zero on a Dirichlet plane

located at z = 0 which then yields

As(Kρ) = −A(Kρ)

and yields

U(r) =

∫

Kρ<k0

d2Kρ A(Kρ)e
iKρ·ρe−iγz −

∫

Kρ<k0

d2KρA(Kρ)e
iKρ·ρeiγz .

A Neumann plane is done in completely parallel fashion.

7.5 Derive the 2D versions of Eqs.(7.25).

The scattered field from a Dirichlet surface within the P.O. approximation

is given by Eq.(7.21b). The 2D version of this equation is obtained by taking

r = (x, y) = (r, φ) and

G0+(r− r′) = − i
4
H+

0 (k0|r− r′|) ∼ − i
4

√
2

πk0
e−i

π
4 e−ik0s·r′ e

ik0r

√
r
.

The scattered field from a 2D Dirichlet surface is then found to be

U
(s)
P.O.(r) = 2

∫

∂τ0

dS′

G0+(r−r
′)︷ ︸︸ ︷

− i
4
H+

0 (k0|r− r′|) ∂

∂n′U
(in)
< (r′)

∼ − i
2

√
2

πk0
e−i

π
4

∫

∂τ0

dS′ e−ik0s·r′ ∂

∂n′U
(in)
< (r′)

eik0r

√
r
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which, for plane wave incidence, yields

U
(s)
P.O.(r) ∼ −

i

2

√
2

πk0
e−i

π
4

∫

∂τ0l

dS′ ik0s0 · n̂′eik0s0·r′e−ik0s·r′ e
ik0r

√
r
.

The scattering amplitude is then found to be

fPO(s, s0) =

√
k0

2π
e−i

π
4

∫

∂τ0l

dS′ s0 · n̂′e−ik0(s−s0)·r′,

where τ0l is the lit portion of the surface. A completely parallel development

is used for the Neumann surface.

7.6 Derive Eq.(7.26a).

This is a straightforward calculation that follows the steps given in the

book.

7.7 Derive the generalized scattering amplitudes for Dirichlet and Neumann sur-

faces within the P.O. approximation

1. From the definition of the P.O. scattered fields given in Eqs.(7.21),

We find from Eqs.(7.21) that the scattered field within the P.O. approxi-

mation for a Dirichlet surface scatterer is given by

U
(s)
P.O.(r) = 2

∫

∂τ0

dS′G0+(r− r′)
∂

∂n′U
(in)
< (r′).

If we now let r→∞ we obtain

U
(s)
P.O.(r) ∼ 2

∫

∂τ0

dS′ [− 1

4π
e−ik0s·r′ e

ik0r

r
]
∂

∂n′U
(in)
< (r′).

from which we find that

fP.O.(s, ν) = − 1

2π

∫

∂τ0

dS′ e−ik0s·r′ ∂

∂n′U
(in)
< (r′).

A Neumann plane is done in a parallel fashion.

2. From their plane wave scattering amplitudes and the relationship Eq.(6.35b),

We have from Eq.(6.35b)

f(s, ν) =

∫

4π

dΩs0 A(s0, ν)f(s, s0)

where A(s0, ν) is the plane wave amplitude of the incident wave to the scat-

terer and f(s, s0) is the plane wave scattering amplitude. If we then express

the incoming component of an incident wave to a Dirichlet or Neumann

surface scatterer in the plane wave expansion

U
(in)
< (r) =

∫
dΩs0A

(in)
< (s0, ν)e

ik0s0·r

we conclude that

fP.O.(s, ν) =

∫

4π

dΩs0 A
(in)
< (s0ν)fP.O.(s, s0).
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Again restricting our attention to a Dirichlet surface scatterer we have that

fP.O.(s, s0) = − ik0

2π

∫

∂τ0l(s0)

dS′ s0 · r̂′e−ik0(s−s0)·r′

yielding

fP.O.(s, ν) =

∫

4π

dΩs0 A
(in)
< (s0ν)

fP.O.(s,s0)︷ ︸︸ ︷
− ik0

2π

∫

∂τ0l(s0)

dS′ s0 · r̂′e−ik0(s−s0)·r′

= − 1

2π

∫

∂τ0l(s0)

dS′ {ik0

∫

4π

dΩs0 A
(in)
< (s0ν)s0 · r̂′eik0s0·r′}e−ik0s·r′

= − 1

2π

∫

∂τ0

dS′ e−ik0s·r′ ∂

∂n′U
(in)
< (r′).

A completely parallel development is used for Neumann scatterers.

3. Verify that they are the same and reduce to the plane wave scattering

amplitudes for plane wave incidence.

This is easily verified.

7.8 Compute the scattered field and scattering amplitude for plane wave incidence

with the P.O. approximation for a Dirichlet sphere.

The scattering amplitudes for a surface scatterer within the P.O. approxi-

mation are given in Eqs.(7.25) which for a Dirichlet scatterer yields

fP.O.(s, s0) = − ik0

2π

∫

∂τ0l(s0)

dS′ s0 · r̂′e−ik0(s−s0)·r′ .

If we now take the surface to be a sphere with radius a0 and take the polar

axis of the r′ spherical coordinate system to be the negative of the unit wave

vector s0 of the incident plane wave we obtain

fP.O.(s, s0) =
ik0

2π
a2
0

∫ π

−π
dφ′

∫ π
2

−π
2

cos θ′e−ik0a0[cos(θs−θ′)+cos θ′]

ik0a
2
0

∫ π
2

−π
2

cos θ′e−ik0a0 [cos(θs−θ′)+cos θ′],

where θs is the angle that s0 makes with the polar axis −s0 and we have used

the fact that s0 ·r′ = − cos θ′ and s ·r′ = cos(θs−θ′). The final integral cannot

be evaluated in closed form and would have to be implemented numerically

to evaluate.

7.9 Use the scattering amplitude for a Dirichlet cylinder within the P.O. approx-

imation given in Section 7.3 to verify the 2D version of Eq.(7.31).

It is first necessary to derive the 2D version of Eq.(7.31). The 2D scattering

amplitude for a Dirichlet scatterer was found in Problem 7.5 to be

fPO(s, s0) =

√
k0

2π
e−i

π
4

∫

∂τ0l

dS′ s0 · n̂′e−ik0(s−s0)·r′
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It then follows that

F (k0s0) = ei
π
4 fPO(−s0, s0)− e−i

π
4 f∗PO(s0,−s0)

=

√
k0

2π

∫

∂τ0l

dS′ s0 · n̂′e2ik0s0·r′ +

√
k0

2π

∫

∂τ0⊥
l

dS′ s0 · n̂′e2ik0s0·r′

=

√
k0

2π

∫

∂τ0

dS′ s0 · n̂′e2ik0s0·r′ =

√
k0

2π

∫

τ0

d2r′∇r′ · s0e
2ik0s0·r′ = 2ik0

√
k0

2π

∫

τ0

d2r′ e2ik0s0·r′ ,

thus yielding

F (k0s0) = 2ik0

√
k0

2π
Γ̃(−2k0s0), (7.2)

where Γ(r) is the 2D characteristic function of the scatterer. Eq.(7.2) is the

2D version of the Bojarski indentity given in Eq.(7.31).

Now that we have derived the 2D Bojarski identity we can apply it to a

cylinder and show that the P.O. approximation given in Section 7.3 leads to

Eq.(7.2). We first compute F (k0s0) directly from Eq.(7.2) for a cylinder. We

find that

Γ̃(−K) =

∫ a0

0

rdr

∫ 2π

0

dφ eiKr cosφ = 2π

∫ a0

0

rdr J0(Kr) = 2πa0
J1(Ka0)

K

where we have used the identity

d

dx
xJ1(x) = xJ0(x).

On making use of the above result we then find that

F (k0s0) = 2ik0

√
k0

2π
2πa0

J1(2k0a0)

2k0
= i

√
2πk0a2

0J1(2k0a0). (7.3)

We must now show that the same result is obtained from the 2D definition

of F :

F (k0s0) = ei
π
4 fPO(−s0, s0)− e−i

π
4 f∗PO(s0,−s0)

using the P.O. approximation to the cylinder given in Section 7.3. The scat-

tering amplitude was found in that section to be given by

fP.O.(φ) =

√
k0a

2
0

2π
e−i

π
4 [C0J0(k0a0) + 2

∞∑

n=1

(−i)nCnJn(k0a0) cosnφ],

where the incident plane wave is assumed to be propagating in the positive x

direction and φ is the scattering angle relative to the positive x axis. For the

following development it is preferable to rewrite the above expansion in the

alternative form

fP.O.(φ) =

√
k0a2

0

2π
e−i

π
4

∞∑

n=−∞
(−i)nCnJn(k0a0)e

inφ,
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which follows using the fact that C−n = Cn. Using this expression we find

that

fPO(−s0, s0) = fPO(s0,−s0) = fP.O.(φ = π) =

√
k0a2

0

2π
e−i

π
4

∞∑

n=−∞
inCnJn(k0a0),

where we have made use of the fact that for a cylinder f(s0 ,−s0) = f(−s0 , s0).

We then conclude that

F (k0s0) = ei
π
4 fPO(−s0, s0)− e−i

π
4 f∗PO(s0,−s0)

=

√
k0a2

0

2π
[

∞∑

n=−∞
inCnJn(k0a0)−

∞∑

n=−∞
(−i)nC∗

nJn(k0a0)]

=

√
k0a2

0

2π
{

∞∑

n=−∞
in(Cn − (−1)nC∗

n)Jn(k0a0)}. (7.4)

To proceed we need to compute Cn− (−1)nC∗
n. We find from the definition

of Cn given in Section 7.3 that

C∗
n =

∫ 3
2π

π
2

dφ′ cos φ′e−ik0a0 cosφ′

einφ
′

= −(−1)n
∫ 5

2π

3π
2

dφ′′ cos φ′′eik0a0 cosφ′′

einφ
′′

where we have made the transformation φ′′ = φ′ +π. Since Cn = C−n we can

also express this result in the form

C∗
n = −(−1)n

∫ 5
2π

3π
2

dφ′′ cos φ′′eik0a0 cosφ′′

e−inφ
′′

.

On using this result we find that

Cn − (−1)nC∗
n =

∫ 3
2π

π
2

dφ′ cos φ′eik0a0 cosφ′

e−inφ
′

+

∫ 5
2π

3π
2

dφ′ cosφ′eik0a0 cosφ′

e−inφ
′

=

∫ 2π

0

dφ′ cos φ′eik0a0 cosφ′

e−inφ
′

.

Using this result in Eq.(7.4) then yields

F (k0s0) =

√
k0a2

0

2π

∞∑

n=−∞
in

Cn−(−1)nC∗
n︷ ︸︸ ︷∫ 2π

0

dφ′ cosφ′eik0a0 cosφ′

e−inφ
′

Jn(k0a0)

=

√
k0a

2
0

2π

∫ 2π

0

dφ′ cos φ′eik0a0 cosφ′

eik0a0 cos φ′

︷ ︸︸ ︷
∞∑

n=−∞
ine−inφ

′

Jn(k0a0)

=

√
k0a2

0

2π

∫ 2π

0

dφ′ cosφ′e2ik0a0 cosφ′

=
√

2πk0a2
0iJ1(2k0a0)
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which is the same result we found earlier in Eq.(7.3). In deriving the above

result we have made use of the expansion

J1(x) = 2πi

∫ 2π

0

dφ eiφeix cosφ.

7.10 Use the scattering amplitude for a Dirichlet cylinder within the P.O. approx-

imation given in Section 7.3 to verify the 2D version of Eq.(7.35).

This problem is done in a parallel manner as was used in the previous

problem. It is first necessary to derive the 2D version of Eq.(7.35). The 2D

scattering amplitude for a 2D Dirichlet scatterer was found in Problem 7.5 to

be

fPO(s, s0) =

√
k0

2π
e−i

π
4

∫

∂τ0l

dS′ s0 · n̂′e−ik0(s−s0)·r′

It then follows that

Fg(s0, s) = ei
π
4 fPO(s, s0)− e−i

π
4 f∗PO(−s,−s0)

=

√
k0

2π

∫

∂τ0l

dS′ s0 · n̂′e−ik0(s−s0)·r′ +

√
k0

2π

∫

∂τ0⊥
l

dS′ s0 · n̂′e−ik0(s−s0)·r′

=

√
k0

2π

∫

∂τ0

dS′ s0 · n̂′e−ik0(s−s0)·r′ =

√
k0

2π

∫

τ0

d2r′∇r′ · s0e
−ik0(s−s0)·r′ ,

yielding the result

Fg(s0, s) = ei
π
4 fPO(s, s0)−e−i

π
4 f∗PO(−s,−s0) = ik0

√
k0

2π
(1−s0·s)Γ̃[k0(s−s0)].

We will also need later the form for Fg given by the surface integral on the

l.h.s. in the third line of the above development:

Fg(s0, s) =

√
k0

2π

∫

∂τ0

dS′ s0 · n̂′e−ik0(s−s0)·r′ . (7.5)

Note that putting s = −s0 we obtain

Fg(s0,−s0) = ei
π
4 fPO(−s0, s0)− e−i

π
4 f∗PO(s0,−s0) = 2ik0

√
k0

2π
Γ̃(−2k0s0),

which was the result we found for F (k0s0) in the previous problem.

We showed in the previous problem that

Γ̃(−K) =

∫ a0

0

rdr

∫ 2π

0

dφ eiKr cosφ = 2π

∫ a0

0

rdr J0(Kr) = 2πa0
J1(Ka0)

K

from which we conclude that

Fg(s0, s) = ik0

√
2πk0a2

0(1− s0 · s)
J1(k0a0|s− s0|)

k0|s− s0|
. (7.6)

Again putting s = −s0 we obtain the solution obtained for F (k0s0) in Eq.(7.3)

in the previous problem.
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We must now show that the same result is obtained from the 2D definition

of Fg(s0, s):

Fg(s0, s) = ei
π
4 fPO(s, s0)− e−i

π
4 f∗PO(−s,−s0)

using the P.O. approximation to the cylinder given in Section 7.3. The scat-

tering amplitude was found in that section to be given by

fPO(s, s0) =

√
k0a2

0

2π
e−i

π
4 [C0J0(k0a0) + 2

∞∑

n=1

(−i)nCnJn(k0a0) cosnφ]

=

√
k0a2

0

2π
e−i

π
4

∞∑

n=−∞
(−i)nCnJn(k0a0)e

inφ.

where the incident plane wave is assumed to be propagating in the positive

x direction and φ is the scattering angle relative to the positive x axis; i.e.,

is the angle made between the wave vectors s and the positive x axis. Using

this expression we find that

f∗PO(−s,−s0) =

√
k0a2

0

2π
ei

π
4

∞∑

n=−∞
inC∗

nJn(k0a0)e
−inφ

√
k0a

2
0

2π
ei

π
4

∞∑

n=−∞
inC∗

nJn(k0a0)e
inφ

where we have made use of the fact that for a cylinder f(−s,−s0) = f(s, s0)

and that the scattering amplitude is an even function of the scattering angle

φ. We then find in analogy to Eq.(7.4) in the solution of the previous problem

that

Fg(s0, s) =

√
k0a2

0

2π

∞∑

n=−∞
(−i)n(Cn − (−1)nC∗

n)Jn(k0a0)e
inφ,

with

Cn − (−1)nC∗
n =

∫ 2π

0

dφ′ cos φ′eik0a0 cosφ′

e−inφ
′

,

found in that problem solution. On using the above expression we find that

the expression for Fg given above reduces to

Fg(s0, s) =

√
k0a2

0

2π

∫ 2π

0

dφ′ cosφ′eik0a0 cosφ′
∞∑

n=−∞
(−i)ne−in(φ′−φ)Jn(k0a0)

=

√
k0a2

0

2π

∫ 2π

0

dφ′ cosφ′eik0a0 cosφ′

e−ik0a0 cos(φ−φ′)

where we have made use of the Jacobi-Anger expansion

e−ik0a0 cos θ =

∞∑

n=−∞
(−i)ne−inθJn(k0a0)
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with θ = φ′ − φ.

Our goal is to show that the above expression for Fg(s0, s) obtained above

is the same as that obtained in Eqs.(7.5) and (7.6). It is far easier to compare

the above result with the expression given in Eq.(7.5) than that given in

Eq.(7.6) which is what we will do here1. If we specialize Eq.(7.5) to the case

of a cylinder it becomes

Fg(s0, s) =

√
k0a

2
0

2π

∫ 2π

0

dφ′ cos φ′e−ik0a0 cos(φ−φ′)eik0a0 cosφ′

,

which is seen to be identical to the expression for Fg obtained above and thus

proves the equivalence of the two expressions.

7.11 Derive the expression for the Kirchoff diffraction pattern given in Eq.(7.46b).

We begin with Eq.(7.41b) where we let r tend to infinity to obtain

U (d)(r, ν) ∼ −ik0

2π

z

r

∫

z=z0

d2ρ′ T (ρ′)U (in)(r0, ν)e
−ik0s·r′0 e

ik0r

r
,

where s = r/r is the unit vector along the position vector r. If we then neglect

the so-called “obliquity factor” z/r and take the aperture to be located at

z′ = 0 we obtain the expression given in Eq.(7.46b) for the Kirchoff diffraction

pattern fd(s, ν) as a function of s over a hemisphere in the r.h.s. z >> 0.

7.12 Compute the Kirchoff diffraction pattern of a circular disk as a function of

the transverse coordinates in an observation plane located at distance z from

the center of the disk.

Here we use the expression for the diffraction pattern given in Eq.(7.46a)

which, for a circular disk and normally incident plane wave reduces to

fd(u, ν) = − ik0

2π

∫ a0

0

ρ′dρ′
∫ 2π

0

dφ′ e−i|u|ρ
′ cosφ′

where φ′ is the polar angle of ρ′ and u = k0ρ/z. The above integrals are easily

performed and we obtain

fd(u, ν) = − ik0

2π

∫ a0

0

ρ′dρ′2πJ0(|u|ρ′) = −ik0a0
J1(|u|a0)

|u| .

7.13 Compute the diffraction pattern of the disk in problem 7.12 in the far field

as a function of the unit vector s.

Here we use Eq.(7.46b) for the diffraction pattern which for a circular disk

and normally incident plane wave reduces to

fd(s, ν) = − ik0

2π

∫ a0

0

ρ′dρ′
∫ 2π

0

dφ′ e−ik0sT ·ρ′

1 Any reader who can provide a direct comparison with Eq.(7.6) should be commended. I would

also be grateful to receive a copy of that solution since I have not been able to provide such a
direct comparison!



78 Chapter 7 Solution Set

where sT = (sx, sy) = ρ/r is the component of the unit vector s = r/r lying

in the (x, y) plane. We can simplify the above expression to obtain

fd(s, ν) = − ik0

2π

∫ a0

0

ρ′dρ′
∫ 2π

0

dφ′ e−ik0|sT |ρ′ cosφ′

= −ik0

∫ a0

0

ρ′dρ′J0(k0|sT |ρ′) = −ik0a0
J1(k0|sT |a0)

k0|sT |
= −ik0a0

J1(k0a0ρ/r)

k0ρ/r
.

7.14 Give an argument why the field diffracted by a circular aperture which sub-

tends the solid angle Ω0 from a source located in the l.h.s. is approximately

given by

U (d)(r) ≈
∫

Ω0

dΩsA
(in)(s)eik0s·r (7.7)

where A(s) is the angular spectrum of the incident wave to the aperture. State

the requirements for the approximation to be accurate.

We can represent the field radiated by a source located in the l.h.s. of a

diffracting aperture in the angular spectrum expansion

U+(r) =

∫ π

−π
dβ

∫

C+

dα sinαA(in)(s)eik0s·r

where C+ is the α contour of integration that runs from α = 0 to α = π/2−i∞
and A(in)(s) is the angular spectrum of the field with α and β being the polar

and azimuthal angles of s, respectively. The incident wave field to the aperture

then consists of a superposition of homogeneous plane waves propagating

in various real directions s with sz > 0 and evanescent plane waves that

propagate perpendicular to the z axis and that decay exponentially fast with

z.

If the diffracting aperture is large compared with the wavelength and lo-

cated at a distance much larger than a wavelength from the source then we

can ignore the contribution of the evanescent plane waves to the diffracted

field. Moreover, the action of the diffracting aperture to the incident wave

can be regarded to be a filter that allows those plane waves who’s propaga-

tion vector intersects the aperture to pass through but blocks the plane waves

who’s propagation vectors lie outside the aperture. This then leads to the field

representation given by Eq.(7.7).

7.15 Derive Eq.(7.58) from Eq.(7.56).

We begin by writing Eq.(7.56) in the form

I(r) = ∓ k2
0

8π2

∫ π

−π
dα0

∫ π
2

−π
2

dα
√

1− (s · s0)2

Fg(s,s0)︷ ︸︸ ︷
[f(s, s0) + f∗(−s,−s0)] e

ik0(s−s0)·r

= ∓ k2
0

8π2

∫ π

−π
dα0

∫ π
2

−π
2

dα
√

1− (s · s0)2f(s, s0)e
ik0(s−s0)·r

∓ k2
0

8π2

∫ π

−π
dα0

∫ π
2

−π
2

dα
√

1− (s · s0)2f
∗(−s,−s0)e

ik0(s−s0)·r (7.8)
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where we have substituted for Fg from Eq.(7.55).

According to fig. 8.3 in the Chapter 8 α0 is the angle formed between the

positive y axis and the unit vector s0 and α is the angle formed between s

and s0. Moreover, the Cartesian (ξ, η) coordinate system is defined to have

its positive η axis aligned along s0 so that

s · s0 = cosα, s0 = η̂, s = sinαξ̂ + cosαη̂, r = ξξ̂ + ηη̂

from which we conclude that

s− s0 = sinα ξ̂ + (cosα− 1) η̂, (s− s0) · r = ξ sinα+ η(cosα− 1)

where ξ and η are the components of r in the rotated (ξ, η) coordinate system.

We then find that
∫ π

−π
dα0

∫ π
2

−π
2

dα
√

1− (s · s0)2f(s, s0)e
ik0(s−s0)·r

=

∫ π

−π
dα0

∫ π
2

−π
2

dα | sinα|f(α, α0)e
ik0[ξ sin α+η(cosα−1)],

where f(α, α0) is f(s, s0) expressed in terms of α and α0. We also find that
∫ π

−π
dα0

∫ π
2

−π
2

dα
√

1− (s · s0)2f
∗(−s,−s0)e

ik0(s−s0)·r

=

∫ 2π

0

dα′
0

∫ π
2

−π
2

dα′ | sinα′|f∗(α′, α′
0)e

−ik0[ξ sin α′+η(cosα′−1)]

where α′
0 = α0 + π and α′ is the angle formed between −s and −s0. Substi-

tuting these two expressions into Eq.(7.8) then yields Eq.(7.58).

7.16 Generalize the formulation developed in Example 7.1 to the case of a sphere.

This problem is easily done using the eigen functions appropriate to a spher-

ical coordinate system as opposed to a cylindrical system.


