
Solutions to the Tutorial Problems in
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by ER Priest (2014)
CHAPTER 6

PROBLEM 6.1. Two-Dimensional X- and O-points.
Show that any linear null with field components

BX = bX + 2cY, BY = −2aX + dY,

can be transformed to

Bx = B0
y

L0
, By = B0ᾱ

2 x

L0
.

SOLUTION.
Suppose we expand the two-dimensional field (BX , BY ) near a neutral point
in a Taylor series and keep only the first-order, linear terms, so that

BX = bX + 2cY, BY = −2aX + dY,

where a, b, c, and d are arbitrary constants, and ∇ ·B = 0 implies that
d = −b.

In terms of the magnetic flux function (A) the field components are

BX =
∂A

∂Y
, BY = −

∂A

∂X
,

which implies that the corresponding flux function is

A = aX2 + bXY + cY 2,

where we have chosen the constant of integration to make A vanish at the
origin.

This expression for A may be simplified by rotating the XY -axes through
an angle θ to give new xy-axes, such that X = x cos θ−y sin θ, Y = x sin θ+
y cos θ. If in particular the angle (θ) is chosen such that tan(2θ) = b/(a− c),
then the xy-term in the resulting expression for A vanishes and we are left
with a flux function

A =
B0

2L0
(y2 − ᾱ2x2), (1)
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where

B0

L0
= (a+ c)−

√

b2 + (a− c)2, ᾱ2 =

√

b2 + (a− c)2 + (a+ c)
√

b2 + (a− c)2 − (a+ c)

and L0 is the length-scale over which the field is varying. The corresponding
field components are

Bx = B0
y

L0
, By = B0ᾱ

2 x

L0
,

so that Bx vanishes on the x-axis and By on the y-axis.

PROBLEM 6.2. Magnetic Relaxation.
Consider the process of magnetic relaxation described in Section 6.3.2.4 of
an ideal incompressible plasma satisfying the model equation of motion

ρ
∂v

∂t
= −∇p + j×B−Kv. (2)

(i) Prove that the magnetic energy decreases when the Lorentz force does
positive work on the plasma. (ii) Prove Equation

d

dt
(Wm +Wk) = −2KWk, (3)

so that the total energy decreases monotonically.

SOLUTION.

dWm

dt
=

1

µ

∫

D

B ·
∂B

∂t
dV =

1

µ

∫

D

B · ∇ × (v ×B) dV,

which may be transformed using the divergence theorem and the boundary
conditions on ∂D to give

dWm

dt
= −

∫

D

v · j×B dV, (4)

so that the magnetic energy decreases when the Lorentz force does positive
work on the plasma and vice versa. The kinetic energy [Wk(t) =

1
2
ρ
∫

D
v2dV ]

changes at a rate

dWk

dt
= ρ

∫

D

v ·
∂v

∂t
dV =

∫

D

−v · ∇p+ v · j×B−Kv · v dV,
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which may also be transformed using the divergence theorem, the incom-
pressibility condition and the boundary conditions to

dWk

dt
=

∫

v · j×B dV − 2KWk, (5)

so that the kinetic energy is increased by a (positive) Lorentz force and
decreased by dissipation.

Combining (??) and (??) we find

d

dt
(Wm +Wk) = −2KWk. (6)

Since Wk > 0 and K > 0, the total energy decreases monotonically and,
being positive, it must tend to a finite limit.

PROBLEM 6.3. Cusp Points in Sheared X-point Fields.
Consider the field near a cusp point in Figure 6.10e of section 6.3.3. Suppose
shearing is present only in region I below the X-point, so that in regions
II and III to either side Bz = 0. In region I seek a self-similar solution of
the form A = raf(ξ), where ξ = θ/rb, for which the equilibrium equation
becomes ∇2A = −ǫA−n and the separatrix is ξ = 1. In region II seek a
potential field. Show that for total pressure balance across the separatrix
a = 1 + 3b/2 and n = (2 + b)/(2 + 3b).

SOLUTION.
Consider the simplest case where there is shearing present only in the re-
gion (I), say, below the X-point, so that in the regions (II) and (III) to either
side Bz = 0 and the field is potential with ∇2A = 0.

In (I) near the cusp there is a self-similar solution

A = raf(ξ), (7)

where

ξ =
θ

rb
, (8)

so the separatrix (A = 0, say) is ξ = 1; in other words, it is not a straight
line but a curve θ = rb, where b > 0. Then the field components are

Br =
1

r

∂A

r∂θ
= ra−1−bf ′(ξ),

Bθ = −
∂A

∂r
= −ara−1f(ξ) + ba−1f ′(ξ)ξ.
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The equilibrium equation

∇
2A = −Bz

dBz

dA

must have the right-hand side of the form −ǫA−n , where substitution of (??)
gives

n =
2b+ 2− a

a
, (9)

and to lowest order the function f(ξ) is given by

f ′′ = −ǫf−n. (10)

In region II the field is potential and an appropriate form for A is

A = B0r sin θ +B1r
K1 sinK1(θ − π), (11)

where B1 and K1 are constants. This has A = 0 on θ = π, the vertical arm
of the separatrix, as required. As far as region II is concerned, the curved
part of the separatrix is given by

θ =
B1

B0
rK1−1 sinK1π, (12)

so, by comparing with the form θ = rb in region I, we see that

K1 = 1 + b. (13)

Finally, magnetic pressure balance across the separatrix dividing regions I
and II gives

B2
z0 + cr2(a−1−b) = B2

0 + 2KB1B0r
b cosK1π.

In order to match the variations in r across the separatrix, we need

a = 1 +
3b

2
. (14)

Thus, our cusp solutions have one free parameter (namely, b) whose value
can be determined by the global equilibrium solution. The parameters K1

and a are given in terms of it by (??) and (??), while the current parameter
(n) follows from (??) as

n =
2 + b

2 + 3b
.
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PROBLEM 6.4. Diffusion of a Current Sheet.
Prove the result

∂

∂t

∫

∞

−∞

B2

2µ
dx = −

∫

j2

σ
dx. (15)

that for a one-dimensional current sheet obeying the diffusion equation

∂B

∂t
= η

∂2B

∂x2
, (16)

the magnetic energy is converted continuously into heat as it diffuses.

SOLUTION.
The magnetic energy (

∫

∞

−∞
B2/(2µ)dx) decreases in time at a rate

∂

∂t

∫

∞

−∞

B2

2µ
dx =

∫

∞

−∞

B

µ

∂B

∂t
dx.

Substituting for ∂B/∂t from Eq.(6.21) and integrating by parts, this becomes

∫

∞

−∞

Bη

µ

∂2B

∂x2
dx =

1

µ2σ

{

[

B
∂B

∂x

]∞

−∞

−

∫

∞

−∞

(

∂B

∂x

)2

dx

}

.

Since ∂B/∂x remains equal to zero at infinity, the first term vanishes, and,
since the electric current is j = µ−1∂B/∂x, we finally have

∂

∂t

∫

∞

−∞

B2

2µ
dx = −

∫

j2

σ
dx.

In other words, magnetic energy is converted entirely into heat by ohmic
dissipation (j2/σ per unit volume).

PROBLEM 6.5. Advection of a One-Dimensional Magnetic Field.

Find the effect in the limit of Rm >> 1 of a stagnation-point flow [vx =
−V0x/a, vy = V0y/a] on a field that is initially B = B0 cos(x/a)ŷ at t = 0
between x = −

1
2
πa and 1

2
πa.

SOLUTION.
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The equations of the streamlines (namely, xy = constant) are obtained from
dy/dx = vy/vx = −y/x. These are rectangular hyperbolae (Figure 6.12a)
with inflow along the x-axis and outflow along the y-axis when V0 > 0.

The velocity field corresponds to a hydrodynamic stagnation-point flow.
The effect of this flow on the magnetic field is to carry the field lines inwards
from the sides and accumulate them near x = 0, increasing the field strength
there. Since the component (vx) of the velocity perpendicular to the field
lines is constant along a particular field line (x =constant), the field lines are
not distorted but remain straight as they come in.

Now, the y-component of the induction equation (6.21) when Rm ≫ 1 is
∂B/∂t = −∂/∂x(vxB) or

∂B

∂t
−

V0x

a

∂B

∂x
=

V0B

a
, (17)

and this determines B(x, t). In order to solve such a partial differential
equation, we consider characteristic curves in the xt-plane, which are defined
to be such that

dx

dt
= −

V0x

a
, (18)

with solution
x = x∗e−V0t/a, (19)

where x = x∗, say, at t = 0. We wish to determine B(x, t) at every point of
the xt-plane and the elegance of considering characteristic curves, x = x(t)
given by (??) (Figure 6.17Ba), is that on such curves B(x(t), t) has the
derivative

dB

dt
=

∂B

∂t
+

dx

dt

∂B

∂x
=

∂B

∂t
−

V0x

a

∂B

∂x
,

by (??), or, from (??), dB/dt = V0B/a. In other words, on the characteristic
curves we have a simple ordinary differential equation to solve in place of (??):
the solution is B = constant eV0t/a or, since x = x∗ and B = B0 cosx

∗/a at
t = 0, we have

B(x, t) = B0 cos(x
∗/a) eV0t/a.

However, in this solution x∗ is a constant which we have introduced for
convenience and which was not present in the initial statement of the prob-
lem, so we should eliminate it by using (??), with the final result

B(x, t) = B0 cos(
x

a
eV0t/a) eV0t/a.
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This solution may be plotted against x for several times. It can be shown
that the field does indeed, as expected, concentrate near x = 0 as time
proceeds. The field strength at the origin is B(0, t) = B0e

V0t/a, which grows
exponentially in time (or decreases if the flow is reversed by taking V0 < 0).

PROBLEM 6.6. Magnetic Annihilation.
Show that the stagnation-point flow

vx = −
V0 x

a
, vy =

V0 y

a
, (20)

acting on a magnetic field [B = B(x)ŷ] satisfying

E −
V0x

a
B = η

dB

dx
(21)

also satisfies the equation of motion and so is an exact solution of the MHD
equations.

SOLUTION.
For straight magnetic field lines the equation of motion reduces to

ρ(v · ∇)v = −∇

(

p+
B2

2µ

)

or
ρ[−v × (∇× v) +∇(1

2
v2)] = −∇(p+ B2

2µ
).

However, the flow (??) has zero vorticity (∇× v = 0) and ρ is constant, so
the first term in the above equation vanishes while the other terms imply
that

∇

(

p+
B2

2µ
+ 1

2
ρv2

)

= 0,

and thus

p = ps −
1
2
ρv2 −

B2

2µ
,

where ps is the pressure at the stagnation point situated at the origin.

PROBLEM 6.7. Energetics of the Sweet-Parker Mechanism.
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(i) Prove the steady-state electromagnetic energy equation from Ohm’s law
and Maxwell’s equations:

−∇ · (E×H) =
j2

σ
+ v · j×B.

(ii) Hence prove that half of the inflowing electromagnetic energy in the
Sweet-Parker mechanism goes into ohmic heating and half into the work done
by j×B when Rm ≫ 1.

(iii) Use the mechanical energy equation to show that the work done by
j × B goes into kinetic energy when the plasma is incompressible and that
the work done by the ∇p is negligible.

SOLUTION.
(i) a vector identity for the divergence of a vector product together with
j = ∇×B/µ and ∇× E = 0 (for a steady state) imply that

−∇ · (E×H) = E · j.

However, the scalar product of Ohm’s law in turn with j gives

E · j =
j2

σ
+ v · j×B.

Combining these together gives the electromagnetic energy equation.
(ii) Integrate it over the diffusion region with volume V and surface S

and use the divergence theorem to give

−

∫

S

E×H · dS =

∫

V

(

j2

σ
+ v · j×B

)

dV,

in which E ≈ −viBi along the inflow part of S. The outflow contribu-
tion (EBol/µ) is smaller than the inflow contribution (EBiL/µ) by a fac-
tor l2/L2 ≈ R−1

mi so that it may be neglected. Furthermore, the current in
the centre of the sheet is roughly Bi/(µl) and so we may approximate the
mean value of j2 by roughly 1

2
B2

i /(µl)
2 and the mean value of v · j×B by

1
2
vo[Bi/(µl)]Bo. Thus, the above equation becomes approximately

viBi
Bi

µ
4L =

[

B2
i

2µ2l2σ
+

voBiBo

2µl

]

4Ll,
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since the two opposing inflow sides of the current sheet have a total length
of 4L and the volume is 4Ll (per unit length in the z-direction). Replacing
voBo by viBi in the last term due to the uniformity of the electric field, we
find

vi =
η

2l
+

vi
2

(∗)

or vi = η/l. In other words, we recover the diffusion result (6.43), which is
not surprising since both are essentially a consequence of Ohm’s Law (6.41).
However, what we can deduce from (??) is that half of the inflowing electro-
magnetic energy goes into ohmic heating and half into the work done by the
magnetic force.

(iii) The equation of mechanical energy may be derived in the incompress-
ible limit by taking the scalar product of the equation of motion with v and
using ∇ · v = 0, so that

∇ ·
(

1
2
ρv2v

)

= v · j×B− v · ∇p,

which implies that a change of kinetic energy is produced by the work done
by j×B and −∇p. Next, rewriting v · ∇p as ∇ · (pv) since ∇ · v = 0 in the
present model and integrating over the diffusion region, we find

∫

S

(

1
2
ρv2v + pv

)

· dS =

∫

V

(v · j×B) dV,

and so the magnetic force term on the right of this equation is a combination
of the change in kinetic energy and the net work done by pressure on the
surface. In particular, when the pressure term is negligible, we find that all
the work done by j×B goes into kinetic energy.

PROBLEM 6.8. Quasi-Separatrix Layer.
Calculate the norm (N) of the mapping for the sheared X-field (Bx, By, Bz) =
(x,−y, l) inside a cube.

SOLUTION.
Consider the sheared X-field

(Bx, By, Bz) = (x,−y, l)

inside a cube with l ≪ 1. The mapping from the base (S0) to the top and
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Figure 1: Sheared X-field in a cube together with the variations of the
end-point coordinates (x1, y1, z1) on the top and side boundaries and of
the norm (N) with the initial footpoint coordinates (x0 and y0) on the
bottom boundary.
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sides (S1) is given by

x1 = x0 e
z1/l , y1 = y0 e

−z1/l.

Thus, when the point A(x0, y0, 0) on S0 is so close to the y-axis that 2x0 < ǫ,
A maps to a point B on the top (z1 = 1) and

F =

(

ǫ−1 0
0 ǫ

)

,

while

N ≈
1

ǫ
,

where

ǫ = e−1/l
≪ 1.

On the other hand, when ǫ < 2x0 < 1, A maps to C on the side (x1 = 1
2
),

while the elements of F and the value of N are of order unity. The resulting
variations of x1, y1, z1, N with x0 are shown in Figure 8.27, which reveals
the quasi-separatrix layer as a very narrow region of width ǫ where N ≫ 1.
When l = 0.1 the value of N in the quasi-separatrix layer is 104, and even
when l is as large as 0.3, N is about 28 in the quasi-separatrix layer. If the
cube is replaced by a hemisphere or sphere, similar forms are produced but
the functions become continuous and differentiable.

PROBLEM 6.9. Field-Conservation in Ideal MHD.
Use the equation of mass continuity and the ideal induction equation to show
that an elemental segment (δl) of a line moving with the plasma obeys the
same equation as B/ρ.

SOLUTION.
A direct proof of line conservation in ideal MHD is as follows. Assume ideal
MHD

∂B

∂t
= ∇× (v×B). (22)

and use the mass continuity equation

dρ/dt ≡ ∂ρ/∂t + v ·∇ρ = −ρ∇ · v
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to eliminate ∇ · v. The result is

d

dt

(

B

ρ

)

=

(

B

ρ
·∇

)

v, (23)

where d/dt (= ∂/∂t + v ·∇) is the total or convective derivative.
Consider next an elemental segment δl along a line moving with the

plasma. If v is the plasma velocity at one end of the element and v + δv is
the velocity at the other end, then the differential velocity between the two
ends is δv = (δl ·∇)v. During the time interval dt, the segment δl therefore
changes at the rate

dδl

dt
= δv = (δl ·∇)v.

Since this equation has exactly the same form as (??) for the vector B/ρ,
it follows that, if δl and B/ρ are initially parallel, then they will remain
parallel for all time. In other words, any two neighbouring plasma elements
on a field line are always on the same field line, with the distance between
them proportional to B/ρ – i.e., the field lines are “frozen” to the plasma.

PROBLEM 6.10. Non-Ideal Field-Line Velocity.
Show that for two-dimensional resistive flow there is no unique definition of
field-line velocity.

SOLUTION.
Consider, for example, a two-dimensional flow and magnetic field in the xy-
plane, say, satisfying the resistive Ohm’s Law

E+ v ×B =
j

σ
,

where E and j are aligned in the z-direction. Then the plasma velocity
normal to the field is

v⊥ =
(E− j/σ)×B

B2

and a possible field-line velocity is

w⊥ =
E×B

B2
, (24)

so that the slippage velocity is the difference (v⊥ −w⊥).
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Now, in general The component (w⊥) of a field-line velocity may then be
defined if and only if Ohm’s Law can be transformed into the form

E+w ×B = a, (25)

where
∇× a = λwB

and λw is some scalar function.
The form (??) therefore works because it implies that E+w⊥ ×B = 0,

which is of the required form (??) with a = 0 and λw = 0. However, another
possible field-line velocity is

w′

⊥
=

(E−K∗ ẑ)×B

B2
,

where K∗ is a constant. This also works since it implies that

E+w⊥ ×B = K∗ẑ,

which is again of the form (??) but now with a = K∗ẑ and λw = 0. In other
words, the field-line velocity is not unique.

PROBLEM 6.11. Euler Potentials.
Use the equations (6.73) for Euler potentials to show that line conservation
holds if B× (∇×N) = 0 and flux conservation holds if ∇×N = 0.

SOLUTION.
We first express the magnetic field as

B = ∇α×∇β (26)

in terms of Euler potentials (α and β). Then we write Ohm’s law (E+v×B =
N) In terms of components parallel to ∇α,∇β and ∇s as

dα

dt
= −

∂Ψ

∂β
−Nβ , (27)

dβ

dt
=

∂Ψ

∂α
+Nα, (28)

∂Ψ

∂s
= −N s, (29)
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Line conservation would hold if the right-hand sides of (??) and (??) were
independent of s, i.e.,

∂

∂s

(

∂Ψ

∂β
+Nβ

)

=
∂

∂s

(

∂Ψ

∂α
+Nα

)

= 0, (30)

so that the behaviour of α and β is independent of distance along a field line.
The general solution of these equations (??) is

Nα =
∂f

∂α
+

∂g

∂β
, Nβ =

∂f

∂β
−

∂g

∂α
, N s =

∂f

∂s
,

which in turn is equivalent to

B× (∇×R) = 0, (31)

where f(α, β, s, t, ) and g(α, β, t) are arbitrary functions.
Furthermore, flux conservation would still hold if Liouville’s theorem

holds or, in other words, if α and β are of Hamiltonian form so that

dα

dt
= −

∂F

∂β
,

dβ

dt
=

∂F

∂α
, (32)

where F = F (α, β, t). Then, if we write the function Ψ in (??) - (??) in the
form Ψ(α, β, s, t) = F (α, β, t) − G(α, β, s, t), the pair (??) and (??) is the
same as (??) if and only if

Nα =
∂G

∂α
, Nβ =

∂G

∂β
,

or, in other words,
∇×N = 0. (33)
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