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of this peak decreases until it disappears for / .!T t 0 64, indicating the 
decay of long-range order. At these elevated temperatures, a broad peak 
with low amplitude remains, which originates from the remaining 
short-range spin correlations. We quantify the ordering strength of the 
antiferromagnetic long-range order by the corrected staggered mag-
netization m T( )z

c , which subtracts uncorrelated contributions and is 
equal to mz in the thermodynamic limit (Methods). Although initially 
small at elevated temperatures, mz

c increases markedly at lower temper-
atures (Fig. 2d). We compare the measured temperature dependence 
to ab initio quantum Monte Carlo calculations of the Hubbard model 
on a 10 site ×  10 site square lattice with periodic boundary conditions 
and no free parameters. We find agreement over the entire range of 
temperatures, with residual deviations possibly caused by the different 
spatial shape of Ω. The largest measured value of = .m 0 25(1)z

c  is more 
than 50% of the theoretically predicted zero-temperature value in the 
Heisenberg model for our system size, obtained from finite-size 
scaling23.

The underlying Hubbard Hamiltonian that describes our system is 
SU(2)-symmetric. In the absence of a symmetry-breaking field, the 
staggered spin-ordering vector =m m m mˆ ( ˆ , ˆ , ˆ )x y z  is expected to point 
in random directions on a sphere between different experimental real-
izations. Consequently, individual measurements of the projection m̂z 
are expected to have large variation. This variation is directly observable  
in our experiment, because we can measure independent values of  
the staggered magnetization operator m̂z  from single experimental 
realizations (Fig. 3a).

The variation of the staggered ordering can be quantified from a 
histogram of all measured values of m̂z across different experimental 

realizations, which corresponds to the full counting statistics of the 
operator m̂z . These statistics are a powerful tool for characterizing 
many-body systems beyond average values29, but so far have not been 
measured for the antiferromagnetic phase. In Fig. 3b we show the meas-
ured histograms of the staggered magnetization along the z direction 
for different temperatures at half-filling, each obtained from more than 
250 images. All of the distributions are symmetric and peak around 
zero, with expectation values 〈 〉m̂z  consistent with zero. In addition, we 
find the same results for spin correlations when measuring along a spin 
direction that is perpendicular to the z axis via a π /2 pulse (Extended 
Data Fig. 4). Both observations are consistent with a randomly oriented 
spin-ordering vector. The width of the distributions is characterized by 
the standard deviation mz defined in equation (1). At the highest tem-
perature, the distribution is consistent with the expectation in the 
infinite-temperature limit, in which the entire finite-size sample of N 
sites is uncorrelated. In this limit, a binomial distribution is predicted, 
with a width of →∞ = / = .m T N( ) 1 0 1125z , which agrees with the 
experimentally measured value of mz =  0.12(2). At lower temperatures, 
the width of the distribution grows substantially and depends sensi-
tively on temperature, but remains peaked around zero. The experi-
mental data are in excellent agreement with ab initio quantum Monte 
Carlo calculations of the Heisenberg model at the experimentally deter-
mined temperatures. These findings show that the lattice thermometer 
based on nearest-neighbour correlations that we use here is correctly 
calibrated and very precise down to fractions of the tunnelling.

Whereas theoretical predictions at half-filling are available down 
to low temperature, this is not the case for doped systems, owing to 
the exponential scaling of the fermion sign problem with inverse 
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Figure 2 | Observing antiferromagnetic long-range order. a, The spin 
correlator Cd is plotted for different displacements d =  (dx, dy) ranging 
across the entire sample for five temperatures T/t. We record more than 
200 images for each temperature (Methods). Correlations extend across 
the entire sample for the coldest temperatures, whereas for the hottest 
temperature only nearest-neighbour correlations remain. b, The sign-
corrected correlation function (− 1)iCd is obtained through an azimuthal 
average. The exponential fits to the data (| d|  =  d >   2 sites) are shown in 
blue, from which we determine the correlation length ξ; the fit of the 
coldest sample is plotted in grey in the other panels for comparison.  
c, The measured spin structure factor Sz(q) −  Sz(0) obtained from Fourier 
transformations of single images. A peak at momentum qAFM =  (π /a, π /a) 
signals the presence of an antiferromagnet. d, The measured correlation 

length ξ (data), fitted to equation (2) (curve), diverges exponentially as a 
function of temperature T/t and is comparable to the system size for the 
lowest temperature. The temperature is varied by holding the atoms in the 
trap for a variable time. The inset is a semi-logarithmic plot of the same 
quantity versus inverse temperature. e, The measured corrected staggered 
magnetization mz

c  (large blue circles) increases markedly below 
temperatures T/t ≈  0.4. We find good agreement with quantum Monte 
Carlo calculations of the Hubbard model (small grey circles). The 
trajectory followed in this figure is shown schematically in the phase 
diagram in the inset. Error bars in d and e are standard deviations of the 
sampled mean; error bars in b (smaller than the markers) are computed as 
in Methods. The figure is based on 2,282 experimental realizations.
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