Corrections to

Statistical Analysis of Spherical Data

by N.I. Fisher, T. Lewis & B.J.J. Embleton Cambridge University Press, 1987.

Known errors as at 6th April, 2000. The authors thank all those who have contributed to this list.

Page Correction

8 Add an extra point to the plot, at (5, 0.83)

$$32^{12}$$
 $-\sin\phi_0\sin\psi_0$,

32¹⁵ Line numbered (3.7):
$$= \mathbf{A}(\theta_0, \phi_0, \psi_0)$$

$$36^2 y^* = \rho \sin \psi$$

$$37_5 \qquad \rho = \tan(90 - \frac{1}{2}\theta), \dots$$

$$38^5 \qquad \qquad \rho = 2\sin(90 - \frac{1}{2}\theta), \dots$$

$$38^{11} x^* = \sin\theta\cos\phi, \ y^* = \sin\theta\sin\phi$$

48¹⁶ Change
$$\log(\bar{\tau}_3/\bar{\tau}_2)$$
 to $\log(\bar{\tau}_3/\bar{\tau}_1)$

48₃ "
$$\bar{\tau}_1$$
 small; $\bar{\tau}_2, \bar{\tau}_3$ large"

48₁ "rotational symmetry about
$$\hat{\mathbf{u}}_1$$
"

51¹ Replace line by:

"In this book, we have used slightly modified formulae for a_1,\dots,a_n given by"

59₁₅ "Colatitude
$$\Theta = \cos^{-1} S$$
, longitude $\Phi = 2\pi R_0$."

59₄ "If
$$V \le (1 - \kappa S^2) \exp(\kappa S^2)$$
, go to 6."

Add final sentence:

"Issues related to the accuracy of structural field measurements have been discussed by Woodcock (1976)."

Joint normality of the random variables is needed if they are not independent.

- 78¹¹ Change reference to Lewis (1988).
- 89 $\exp(\kappa u^2) du$
- The axes are incorrectly labelled. $\boldsymbol{\xi}_3$ is the mean direction or pole, and $\boldsymbol{\xi}_1$ and $\boldsymbol{\xi}_2$ the major and minor axes respectively.
- The second term on the right-hand side of (4.46) should be

$$\kappa \sin \alpha [(\ \mathbf{x}' \pmb{\xi}_2)^2 - (\ \mathbf{x}' \pmb{\xi}_3)^2]/[1 - (\ \mathbf{x}' \pmb{\xi}_1)^2]^{1/2}.$$

- 97^{11} Wood (1988)
- $98_{9,1}$ Wood (1988)
- 106 Example 5.7:

Line 7: change "set B4" to "set B5".

Line 8: change "Example 5.4" to "Example 5.5".

Lines 10–11: change to

"In fact, a test for uniformity (see Examples 5.9 & 5.24) indicates that the Uniform distribution is probably a reasonable model for the data".

109 Table 5.1:

For Examples 5.2, 5.3, 5.4, 5.5, 5.6 (but not Example 5.1), interchange the values of $\hat{\gamma}$ and $\hat{\zeta}$; e.g. the row for Example 5.6 should finish

0.98 1.61

- 111₄ "For $n \ge 25, \dots$ ".
- 112 Replace Σ on left hand side of equation (5.6) by Σ .
- 1138 "Let $(\hat{\gamma}, \hat{\delta})$..."
- "...that the spherical median direction is (γ_0, δ_0) ..."
- 114 $\S 6.2.1(iv)$ should be $\S 6.3.1(iv)$.

116⁸ Insert closing ")" after §5.3.1(iv).

118¹⁴ **§3.2.1** should be **§3.2.2**.

123⁷ Equation (5.16): 0.467 not 0.567.

Second line of Figure caption: Insert opening "(" before 122°.

Last text line above figure captions:
"... described in §7.2.3(i)"

131₆₋₁ (Commencing "If $\hat{\kappa} \geq 5 \dots$ "). Reset lines in accordance with standard left hand margin.

132₈ Replace (n - R) by (n - R)

 135_{16} χ^2_{2n-2}

 χ^2_{2n-2}

136-140 Corrections to the text in §5.3.3(i) Estimation of the parameters of the Kent distribution):

Equation 5.43: replace first 4 lines of **Step 2** by "Compute the matrix

$$\mathbf{H} = \mathbf{A}'(\hat{\theta}, \hat{\phi}, 0)$$

where \mathbf{A} is defined by (3.9), and then"

137 Equation 5.45:

$$\hat{\psi} = \frac{1}{2} \arctan\{2b_{12}/(b_{11} - b_{22})\}\$$

137 Equation 5.46:

$$\mathbf{K} = \begin{pmatrix} \cos \hat{\psi} & -\sin \hat{\psi} & 0\\ \sin \hat{\psi} & \cos \hat{\psi} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$Q = v_{11} - v_{22}, \qquad Q > 0$$

137–138 Example 5.27:

$$\mathbf{B} = \begin{pmatrix} 0.0385 & 0.0042 & 0.0005 \\ 0.0042 & 0.0172 & 0.0009 \\ 0.0005 & 0.0009 & 0.9443 \end{pmatrix}$$

$$\widehat{\mathbf{G}} = \begin{pmatrix} -0.1076 & -0.1170 & -0.9873 \\ -0.1723 & -0.9758 & 0.1345 \\ -0.9791 & 0.1846 & 0.0848 \end{pmatrix}$$

$$\mathbf{V} = \begin{pmatrix} 0.0393 & 0.0000 & 0.0007 \\ 0.0000 & 0.0164 & 0.0008 \\ 0.0007 & 0.0008 & 0.9443 \end{pmatrix}$$

138^{8,9} "Let $x_i^* = \sin \theta_i' \cos \phi_i'$, $y_i^* = \sin \theta_i' \sin \phi_i'$, $z_i^* = \cos \theta_i'$, i = 1, ..., n, ...

Equation 5.52:

Replace x by z in the first sum, y by x in the second, and z by y in the third.

138 Equation 5.54:

$$s_1 = \tilde{\sigma}_1 g^{\frac{1}{2}}, \qquad s_2 = \tilde{\sigma}_2 g^{\frac{1}{2}}$$

"Then $\arcsin(s_1)$ and $\arcsin(s_2)$ are the major and minor semi-axes ..."

138 Step 3.1:

Let u_0 be any number between $-s_1$ and s_1 (from 5.54).

139 Step 3.2:

$$v_0 = s_2 [1 - (u_0/s_1)^2]^{\frac{1}{2}}, \qquad w_0 = (1 - u_0^2 - v_0^2)^{\frac{1}{2}}$$
 (5.55)

Step 3.3:

... let
$$x_0 = u_0$$
, $y_0 = v_0$, $z_0 = w_0$, and $x'_0 = u_0$, $y'_0 = v_0$

$$-v_0, z_0' = w_0$$

Step 3.4:

The right-hand-side of the right-hand equation in (5.56)

should be

$$\hat{\mathbf{G}} \left(\begin{array}{c} u_0 \\ -v_0 \\ w_0 \end{array} \right)$$

Replace

$$(v_0^*, w_0^*, u_0^*)$$

by

$$(u_0^*, v_0^*, w_0^*)$$

and

$$(v_0^{**}, w_0^{**}, u_0^{**})$$

by

$$(u_0^{**}, v_0^{**}, w_0^{**})$$

in the two lines immediately following (5.56).

139 Step 3.5:

Repeat Steps 3.1–3.4 for a range of values of u_0 between $-s_1$ and s_1 .

1399 Replace 3.2° by 3.4° .

 146_{13-12} $\hat{x} = U/R^*, \, \hat{y} = V/R^*, \, \text{and } \hat{z} = W/R^*, \, \text{where } R^* \text{ is defined by (5.67)}.$

149 Giné's

Figure caption should refer to Example 5.35.

154 Caption to Figure 6.5, line 3: "(Colatitude, Longitude). See Example 6.5."

Replace Figure 6.5 by new figure (supplied).

Replace plots in Figure 6.11 by two new figures (supplied).

$$160_8$$
 $\bar{\tau}_3$

$$165^{14}$$
 $(1-2\bar{\tau}_3+\Gamma)$

$$176^1 D(\hat{\kappa}) = \bar{\tau}_3$$

 176^{6-9} Replace by

$$\widehat{\kappa} = \begin{cases} 3.75(3\bar{\tau}_3 - 1) & \frac{1}{3} \le \bar{\tau}_3 \le 0.34 \\ -5.95 + 14.9\bar{\tau}_3 + 1.48(1 - \bar{\tau}_3)^{-1} - 11.05\bar{\tau}_3^{-2}, & 0.34 < \bar{\tau}_3 \le 0.64 \\ -7.96 + 21.5\bar{\tau}_3 + (1 - \bar{\tau}_3)^{-1} - 13.25\bar{\tau}_3^2 & \bar{\tau}_3 > 0.64 \end{cases}$$

Insert 1— at beginning of right hand side of equation (6.24):

$$\bar{\tau}_3^* = 1 - \dots$$

177¹⁹ "Best & Fisher (1986)".

177₁₅ Change line to: "Best & Fisher (1986); note the correction, 21.5 instead of 2.15, for $\bar{\tau}_3 > 0.32$."

189 Replace equation (6.38) by

$$\widehat{\kappa} = \begin{cases} (2\bar{\tau}_1)^{-1} & 0 \le \bar{\tau}_1 \le 0.06 \\ 0.961 - 7.08\bar{\tau}_1 + 0.466/\bar{\tau}_1 & 0.06 < \bar{\tau}_1 \le 0.32 \\ 3.75(1 - 3\bar{\tau}_1), & 0.32 < \bar{\tau}_1 \le \frac{1}{3} \end{cases}$$

200 In equation (7.4), replace Σ by Σ^{-1}

200₂ "... using the method in (iia) ...".

 200_1 "... (colat. 72.3° , long. 338.0° ...".

 201^1 Replace the number 326.9 by 263.8.

In equations (7.5) and (7.6) replace \mathbf{W}_i^{-1} by \mathbf{W}_i

 $203_{13,12}$ Change to:

 \dots and the V-matrix in (7.7) is then given by

$$\mathbf{V}^{-1} = \sum_{i=1}^{r} n_i \ \mathbf{W}_i^{-1} / N^2 \tag{7.9}$$

203₁ "and minor semi-axes 9.9° and 4.3° ."

 204_{8-4} Replace these lines by:

"For formal testing, define the quantities

$$\hat{x}_* = \sum_{i=1}^r \hat{x}_i / \hat{\sigma}_i^2, \qquad \hat{y}_* = \sum_{i=1}^r \hat{y}_i / \hat{\sigma}_i^2, \qquad \hat{z}_* = \sum_{i=1}^r \hat{z}_i / \hat{\sigma}_i^2,$$

$$R_* = (\hat{x}_*^2 + \hat{y}_*^2 + \hat{z}_*^2)^{\frac{1}{2}}, \qquad \rho_* = \sum_{i=1}^r 1 / \hat{\sigma}_i^2$$

The test statistic is

$$G_r = 4(\hat{\rho}_* - R_*) \tag{7.11}$$

206 Last four lines of Example 7.7. Change sentences to:

"For the pooled data, we get $G_4 = 10.8$, corresponding to a P-value of about 0.1 for a χ_6^2 variate. We conclude that the four samples can reasonably be taken to be drawn from distributions with a common mean direction."

$$\sin \widehat{\alpha}_w \cos \widehat{\beta}_w = \cdots$$

$$207_{10}$$
 "If $n_1^{\frac{1}{2}} \hat{\sigma}_1, \dots$ "

 207_4 Equation number should be (7.23).

 210_{8-6} Change sentence:

"Note that when these two samples were two of the four compared jointly, in Example 7.7, there was effectively no evidence of overall difference."

215² Change "Example 5.26" to "Example 5.27".

218¹³ "Let
$$(\theta'_1, \phi'_1), \dots$$
"

233₁₀ "(
$$\mathbf{X}_i$$
, \mathbf{X}_i^*) omitted, ..."

 $235^{14,15}$ Replace by

$$\hat{\Sigma}_{11} = \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}}) (\mathbf{X}_{i} - \bar{\mathbf{X}})'
\hat{\Sigma}_{12} = \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}}) (\mathbf{X}_{i}^{*} - \bar{\mathbf{X}}^{*})'
\hat{\Sigma}_{22} = \sum_{i=1}^{n} (\mathbf{X}_{i}^{*} - \bar{\mathbf{X}}^{*}) (\mathbf{X}_{i}^{*} - \bar{\mathbf{X}}^{*})'$$
(8.11)

where

$$\bar{\mathbf{X}} = (1/n) \sum_{i=1}^{n} \mathbf{X}_{i}, \qquad \bar{\mathbf{X}}^{*} = (1/n) \sum_{i=1}^{n} \mathbf{X}_{i}^{*}$$

Replace last paragraph of *Example 8.8* beginning "From (8.14), ..." by:

"From (8.14), we obtain the estimated correlation as $\hat{\rho}_A = 0.042$, so that $3n\hat{\rho}_A \simeq 12.73$. This corresponds to a P-value of about 0.18 for a χ_9^2 -variate. We conclude that there is little evidence of correlation between the orientations of the shortest and longest axes."

238² Replace
$$\mathbf{X}_i \; \mathbf{X}_i'$$
 by $(\mathbf{X}_i - \bar{\mathbf{X}})(\mathbf{X}_i - \bar{\mathbf{X}})'$

238³ Replace
$$\mathbf{X}_i \mathbf{Y}_i'$$
 by $(\mathbf{X}_i - \bar{\mathbf{X}})(\mathbf{Y}_i - \bar{\mathbf{Y}})'$

238⁴ Replace
$$\mathbf{Y}_i \mathbf{Y}_i'$$
 by $(\mathbf{Y}_i - \bar{\mathbf{Y}})(\mathbf{Y}_i - \bar{\mathbf{Y}})'$
Add line:
$$(\text{where } \bar{\mathbf{X}} = (1/n) \sum_{i=1}^n \mathbf{X}_i, \ \bar{\mathbf{Y}} = (1/n) \sum_{i=1}^n \mathbf{Y}_i)$$

In (8.25) the second equation should be

$$\tan \hat{\alpha}_1 = \operatorname{trace}(\mathbf{S}_{vx} \ \hat{\mathbf{U}}_1')/\bar{\mathbf{X}}' \ \hat{\mathbf{U}}_1 \mathbf{w}$$

The values of $A^{-1}(x)$ in Table A10 are accurate; however, those of $D^{-1}(x)$ are inaccurate. A corrected table of values $D^{-1}(x)$ is attached.

"Diggle, P.J. & Fisher, N.I...." 313_{8} 316^{17-18} Change to: Lewis, T. (1988). A simple improved–accuracy normal approximation for χ^2 . Austral. J. Statist. **30A**, 160–167. 320 Delete last five lines. 322 Insert new entry: "colatitude plot 118, 168". 322 Existing entry "colatitude test": Insert "122, 169", and delete "see Fisher distribution, Watson distribution" 325Existing entry "longitude plot": Insert "118, 168" before "to assess ...", and delete "see also Fisher distribution, Watson distribution". 325 Insert new entry: "longitude test 123, 170". 328 Insert new entry: "two-variable plot 118". 328Insert new entry: "two-variable test 125". 320 Change reference to Wood (1986) to: Wood, A. T. A. (1988). Some notes on the Fisher-Bingham family on the sphere. Commun. Statist. - Theor. Meth. 17, 3881-3897. 320 Add reference: Woodcock, N. H. (1976). The accuracy of structural field measurements. Journal of Geology 84, 350-355. (66)

"Coordinates Colatitude, Longitude."

 295^{3}

x	$D^{-1}(x)$	x	$D^{-1}(x)$	x	$D^{-1}(x)$
0.0005	-1000.0	0.240	-1.202	0.620	2.930
0.001	-500.0	0.245	-1.127	0.630	3.044
0.002	-250.0	0.250	-1.053	0.640	3.160
0.003	-166.7	0.255	-0.982	0.650	3.280
0.004	-125.0	0.260	-0.911	0.660	3.402
0.005	-100.0	0.265	-0.842	0.670	3.529
0.006	-83.33	0.270	-0.774	0.680	3.659
0.007	-71.43	0.275	-0.707	0.690	3.794
0.008	-62.50	0.280	-0.642	0.700	3.933
0.009	-55.56	0.285	-0.578	0.710	4.079
0.010	-50.00	0.290	-0.514	0.720	4.231
0.015	-33.33	0.295	-0.452	0.730	4.389
0.020	-25.00	0.300	-0.390	0.740	4.556
0.025	-20.00	0.305	-0.329	0.750	4.731
0.030	-16.67	0.310	-0.270	0.760	4.917
0.035	-14.29	0.315	-0.211	0.770	5.115
0.040	-12.50	0.320	-0.152	0.780	5.326
0.045	-11.11	0.325	-0.095	0.790	5.552
0.050	-10.00	0.330	-0.038	0.800	5.797
0.055	-9.087	0.331	-0.026	0.810	6.063
0.060	-8.327	0.332	-0.015	0.820	6.354
0.065	-7.681	0.333	-0.004	0.830	6.676
0.070	-7.126	0.334	0.008	0.840	7.035
0.075	-6.641	0.335	0.019	0.850	7.438
0.080	-6.215	0.336	0.030	0.860	7.897
0.085	-5.835	0.337	0.041	0.870	8.426
0.090	-5.495	0.338	0.052	0.880	9.043
0.095	-5.188	0.339	0.063	0.890	9.776
0.100	-4.907	0.340	0.075	0.900	10.66
0.105	-4.651	0.350	0.184	0.905	11.17
0.110	-4.415	0.360	0.292	0.910	11.75
0.115	-4.196	0.370	0.398	0.915	12.39
0.120	-3.992	0.380	0.503	0.920	13.11
0.125	-3.802	0.390	0.606	0.925	13.94
0.130	-3.624	0.400	0.708	0.930	14.88
0.135	-3.457	0.410	0.809	0.935	15.97
0.140	-3.298	0.420	0.908	0.940	17.24
0.145	-3.148	0.430	1.008	0.945	18.75
0.150	-3.006	0.440	1.106	0.950	20.56
0.155	-2.870	0.450	1.204	0.955	22.77
0.160	-2.741	0.460	1.302	0.960	25.55
0.165	-2.617	0.470	1.399	0.965	29.11
0.170	-2.499	0.480	$1.497 \\ 1.594$	0.970	33.87
0.175	$-2.385 \\ -2.275$	0.490	1.694 1.692	0.975	40.53
$0.180 \\ 0.185$	-2.275 -2.170	$0.500 \\ 0.510$	1.092 1.790	$0.980 \\ 0.985$	$50.52 \\ 67.18$
$0.180 \\ 0.190$	-2.170 -2.068	0.510 0.520	1.888	0.980 0.990	100.5
0.190 0.195	-2.003 -1.970	$0.520 \\ 0.530$	1.987	0.991	111.6
0.200	-1.874	0.540	2.087	0.992	125.5
0.205	-1.782	0.550	2.188	0.993	143.4
0.200 0.210	-1.692	0.560	2.180 2.289	0.994	167.2
0.215	-1.605	0.570	2.392	0.995	200.5
$0.210 \\ 0.220$	-1.520	0.580	2.496	0.996	250.5
0.225	-1.438	0.590	2.602	0.997	333.8
0.230	-1.357	0.600	2.709	0.998	500.5
0.235	-1.279	0.610	2.818	0.999	1000.5