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Many of the errata were corrected in the second and third
printing but occasionally new ones are found. The latest con-
cerns changes to equations 4.53 to 4.61 and added footnote. The
next most recent errata concerns a missing factor of 2 in equ.
11.26 and related factor of 1/2 in equations 11.28, 11.29, and
the equation defining Ωk on page 300. Before that, a change to
the formula for the variance of the Beta distribution on page
117 and the free software accompanying the book entitled “Ad-
ditional book examples for Mathematica.” The latter correction
concerns a missing bracket in one line of the Chapter 9 code con-
cerning a Bayesian analysis of two independent samples. The
author thanks a number of dedicated readers for pointing out
some of these corrections.

Preliminaries errata

Credit for book cover photo missing

Cover photo: In the foreground, the Robert C. Byrd Green Bank Telescope
(GBT), the world’s largest fully steerable radio telescope. Image courtesy
the National Radio Astronomy Observatory/AUI/NSF.

Library of Congress Cataloging data, Authors name misspelled

Change:
Gregroy, P. C. (Philip Christopher), 1941-

To:
Gregory, P. C. (Philip Christopher), 1941-
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Chapter 1 errata

P. 6, change sentence 2 lines above Equ. (1.8)

Change:
The truth of the proposition can be represented by p(H0|D, I)dH, where
p(H0|D, I) is a probability density function (PDF).

To:
The truth of the proposition can be represented by p(H0|D, I)dH0, where
p(H0|D, I) is a probability density function (PDF).

P. 7, change Equ. (1.12)

Change:

p(H0|D1, I) ∝ p(H0|I0) p(D1|H0, I). (1.12)

To:

p(H0|D1, I) ∝ p(H0|I) p(D1|H0, I). (1.12)

Chapter 3 errata and revisions

P. 47, Equation (3.18, change i index to j in denominator.)
Change:

p(Mi | D, I) =
Oi1

∑Nmod
i=1 Oi1

, (3.18)

To:

p(Mi | D, I) =
Oi1

∑Nmod
j=1 Oj1

, (3.18)
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P. 48, replacement Figure 3.1
Change the symbol L that appears twice in the figure to L .

Parameter Θ

pHDÈΘ,M1,IL=LHΘL

LHΘïL=pHDÈΘï,M1,IL

pHΘÈM1,IL=
1
�������
DΘ

∆Θ

DΘ

Θ
ï

Figure 3.1: The characteristic width δθ of the likelihood peak and ∆θ of the
prior.

P. 57, corrected Equation (3.45)

p(D|M1, I) =
(2π)−N/2σ−N

∆T
exp

{
−∑ d2

i

2σ2

}

×
∫ Tmax

Tmin

dT exp

{
T
∑
difi

σ2

}
exp

{
−T

2∑ f2
i

2σ2

}
(3.45)

= 1.131 × 10−38
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P. 57, corrected Equation (3.47)

p(D|M1, I) =
(2π)−

N
2 σ−N

ln
(

Tmax

Tmin

) exp

{
−∑ d2

i

2σ2

}

×
∫ Tmax

Tmin

dT
exp

{
T
∑

difi

σ2

}
exp

{
−T 2

∑
f2

i

2σ2

}

T

= 1.239 × 10−37 (3.47)

P. 59, add two clarifying words to the sentence just preceding Section 3.8.1
Change:

The increase in line strength has a dramatic effect on the odds which rises
to 1.6 × 1012 - -

To:
The increase in line strength has a dramatic effect on the odds which rises
to a whopping 1.6 × 1012 - -

P. 67, corrected 2nd sentence following Equ. (3.67)

(change σ = 5 km s−1 to σ = 5 × 103 km s−1.)

Change existing sentence:
Assume that the probability density function for e can be described by a
Gaussian with mean 0 and σ = 5 km s−1.

To:
Assume that the probability density function for e can be described by a
Gaussian with mean 0 and σ = 5 × 103 km s−1.
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P. 68, corrected Figure 3.10

The scale of the vertical axis was not correctly normalized for a PDF in
the original Figure. Below is the corrected version.

1000 1500 2000
Distance HMpcL
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case 2
case 1

Figure 3.10: Posterior PDF for the galaxy distance, x: 1) assuming a fixed
value of the Hubble constant (H0), 2) incorporating a Gaussian prior uncer-
tainty for H0, 3) incorporating a uniform prior uncertainty for H0, and 4)
incorporating a Jeffreys prior uncertainty for H0.

P. 63, ADDITION to Section 3.9, “Lessons”

6. The robustness of our model selection conclusion depends both on the
choice of prior and evidence provided by the data. The spectrum of
Figure 3.3 provided only very weak support for the more complicated
model M1. Thus, our conclusion depended strongly on the choice of
prior. When the data provided stronger support for M1 (e.g., spectrum
of Figure 3.7), the conclusion did not depend in an important way
on whether we used a uniform or Jeffreys prior. For the Figure 3.7
spectrum, the odds ranged from 1.6×1012 (uniform prior) to 5.3×1012

(Jeffreys prior). The factor of 1012 is so large that we are not terribly
interested in whether the factor in front is 1.6 or 5.3. The lower left
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panel in Figure 3.7 shows the dependence of the Log10 odds on the
assumed value of Tmax for this case.

P. 60, MODIFICATION to Figure 3.7
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Figure 3.7: The top left panel shows a spectrum with a stronger spectral line.
The top right panel shows the computed posterior PDF for the line strength.
The bottom left panel shows the Log10 odds versus Log10 Tmax.
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Chapter 4 errata and revisions

P. 73, Equations (4.5) and (4.6), LHS needs conditional on I

p(Q1, Q2, Q3|I) = p(Q1|I) p(Q2, Q3|Q1, I)

= p(Q1|I) p(Q2|Q1, I) p(Q3|Q1, Q2, I). (4.4)

p(Q1, Q2, Q3|I) = p(Q1|I) p(Q2|I) p(Q3|I)
= p(Q|I) p(Q|I) p(Q|I)
= p(Q|I) p(Q|I)2. (4.5)

P. 75, Corrections to Box 4.1

Change:
Needs[“Statistics ‘DiscreteDistributions’”]

To:
Needs[“Statistics`DiscreteDistributions`”]

Change:
PDF[Binomial Distribution[n,p], r]

To:
PDF[BinomialDistribution[n, p], r]
i.e., no space after Binomial.

P. 83 equations in examples 1 & 2 change < to >.

Correct equation is:

p(A|B, I) > p(A|I)

P. 85, Section 4.7 first line

Remove the fourth word “and.”
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p. 85, mistake in footnote and missing reference

In footnote change: E. T. Jaynes (1989) to E. T. Jaynes (1990)

Add reference:
Jaynes, E. T. (1990). Probability Theory as Logic. In Maximum Entropy
and Bayesian Methods, P. F. Fougre (ed.), Dordrecht, Kluwer Academic Pub-
lishers, p. 1.

P. 91, equation 4.49

The sigma in the exponential should be changed from σ2
i to σ2

mi.
Corrected equation:

p(Zi|M,θ, I) =
1√

2π σmi

exp

{
−(zi −m(xi|θ))2

2σ2
mi

}

=
1√

2π σmi

exp

{
−ε2i
2σ2

mi

}
= fZ(zi). (4.49)
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P. 88, IMPROVEMENT to Figure 4.4
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Figure 4.4: A comparison of the predictions for p(n1|n2, r, t1, t2, I) based on
equations (4.36) and (4.37) where we set r = n2/t2. The assumed values are
t1 = 8 s, t2 = 10 s and n2 = 10 counts.
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P. 92, replace two sentences starting three lines above Equ. 4.53

Replace:
Let xi0 be the nominal value of the independent variable and xi the true
value. Then δxi = xi − xi0 is the uncertainty in xi.

By:
Let xti represent the true value of the independent variable and xi the mea-
sured value. Then δxi = xi − xti is the uncertainty in xi.

P. 92, make changes to Equ. 4.53, 4.56, 4.58, 4.59, 4.60, and 4.61

Replace the symbol xi0 in all these equations by xti.

Replace the symbol zi0 in equations 4.56 and 4.58 by zti.

P. 93, replace sentence immediately following Equ. 4.60
Replace:
The reader is directed to Section 11.7 for a worked problem of this kind.

By:
The true value, xti, is unknown and frequently referred to as hidden 1 data.

1To deal with hidden data, extend the conversation to include the unknown xti by
writing down the joint probability distribution for yi, xti, specify a prior for xti, and then
integrate over xti. This gets us into the realm of hierarchical Bayesian models. For a good
discussion of these issues see “Some Aspects of Measurement Error in Linear Regression of
Astronomical Data,” by Brandon Kelly, Astrophysical Journal, 666, pp. 1489-1506, 2007.
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Chapter 5 errata and revisions

P. 102, Figure 5.3, the correct labeling of the 5 diagrams is

α3 > 0 ≡ positively skewed →

α3 < 0 ≡ negatively skewed →

α3 = 0 ≡ symmetric →

α4 > 3 leptokurtic ≡ highly-peaked →

α4 < 3 platykurtic ≡ flat-topped →

P. 110, three lines below equation (5.29)

remove ”the” before last word in the sentence.
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P. 108, corrected unnumbered equation at foot of page

µ′
2 =

d2mx(t)
dt2

∣∣∣∣
t=0

= [n(n− 1)(1 − p + etp)n−2(etp)2 + n(1 − p + etp)n−1etp]|t=0

= n(n− 1)p2 + np.

P. 108, Corrections to Box 5.2
Change:

Needs[“Statistics ‘DiscreteDistributions’”]
To:

Needs[“Statistics`DiscreteDistributions`”]

P. 113, Corrections to Box 5.4
Change:

Needs[“Statistics ‘ContinuousDistributions’ ”]
To:

Needs[“Statistics`ContinuousDistributions`”]

P. 117, Correction to variance following equation (5.44)
Change:

variance =
αβ

(1 + β)2(α+ β + 1)

to:
variance = αβ

(α+ β)2(α + β + 1)

P. 130, correct equation (5.61)

f(x) =





1
θ

exp (−x/θ), for x > 0, θ > 0

0, elsewhere.

(5.61)

P. 132, Corrections to Box 5.6
Change:

Needs[“Statistics ‘ContinuousDistributions’ ”]
To:

Needs[“Statistics`ContinuousDistributions`”]
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P. 104, IMPROVEMENT to Figure 5.5, change ordinate label
From: ‘Signal strength’ to ‘Sample value’
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Chapter 6 errata and revisions

P. 146, second sentence below equation (6.28)
Change current sentence:

Thus, the probability that the random variable σ2 < 0.49S2 = 1%.
To:

Thus, the probability that σ2 < 0.49S2 = 1%.

P. 147, Corrections to Box 6.1
Change:

Needs[“Statistics ‘ContinuousDistributions’ ”]
To:

Needs[“Statistics`ContinuousDistributions`”]

P. 149, Corrections to Box 6.2
Change:

Needs[“Statistics ‘ContinuousDistributions’ ”]
To:

Needs[“Statistics`ContinuousDistributions`”]

P. 151, Corrections to Box 6.3
Change:

Needs[“Statistics ‘ContinuousDistributions’ ”]
To:

Needs[“Statistics`ContinuousDistributions`”]

P. 156, Corrections to Box 6.4
Change:

Needs[“Statistics ‘ConfidenceIntervals’ ”]
To:

Needs[“Statistics`ConfidenceIntervals`”]
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P. 158, change equation (6.62)
Change existing equation:

x̄− ȳ ± sp t1−α
2

,(nx+ny−2). (6.62)

To:

x̄− ȳ ± sD t1−α
2

,(nx+ny−2). (6.62)

P. 159, change first equation with no number

Change existing equation:

T =
X̄ − Ȳ − (µx − µy)

SD

To:

T =
X̄ − Ȳ − (µx − µy)

Sp

P.159, change equation (6.63)

Change existing equation:

S2
D =

S2
x

nx
+
S2

y

ny
, (6.63)

To:

S2
p =

S2
x

nx

+
S2

y

ny

, (6.63)
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Chapter 7 errata and revisions

P. 166, Corrections to Box 7.1
Change:

Needs[“Statistics ‘HypothesisTests’”]
To:

Needs[“Statistics`HypothesisTests`”]

P. 168, change equation (7.9)

Change existing equation:

H0 ≡ µ1− = 0. (7.9)

To:

H0 ≡ µ1 − µ2 = 0. (7.9)

P. 169, Corrections to Box
Change:

Needs[“Statistics ‘HypothesisTests’”]
To:

Needs[“Statistics`HypothesisTests`”]

P. 170, Corrections to Box
Change:

Needs[“Statistics ‘HypothesisTests’”]
To:

Needs[“Statistics`HypothesisTests`”]

P. 181, Corrections to Box
Change:

Needs[“Statistics ‘HypothesisTests’”]
To:

Needs[“Statistics`HypothesisTests`”]
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P. 173, change sentence 2 lines below Example 3
Change:

Here, the grades are discrete or binned and the distribution we to is contin-
uous.

To:
Here, the grades are discrete or binned and the distribution we are comparing
to is continuous.

P. 175, change subscript on the term on LHS of the equation

Change:

χ2
ν−1 =

2∑

i=1

(Ni − npi)
2

npi
=

(54 − 63)2

63
+

(36 − 27)2

27
= 4.29

To:

χ2
ν =

2∑

i=1

(Ni − npi)
2

npi
=

(54 − 63)2

63
+

(36 − 27)2

27
= 4.29

P. 176, first equation in Example 2
Change existing equation:

p(n) =
(λ)ne−λ

n!
,

To:

p(x) =
(λ)xe−λ

x!
,

P. 181, 2nd line in Mathematica box

Change:
VarianceRatioTest[data1,data2,ratio,FullReport − <True]

To:
VarianceRatioTest[data1,data2,ratio,FullReport − >True]
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P. 165, replace sentence starting 4 lines above equation (7.4)

Change:

The question of how unlikely is this value of χ2 is usually interpreted in
terms of the area in the tail of the χ2 distribution to the right of this line
which is called the P-value or significance.

To:

The question of how unlikely is this value of χ2, is by convention inter-
preted in terms of the area in the tail of the χ2 distribution beyond this line.
This area is called the P-value or significance. We need to specify an area
because there is no probability associated with a point.

Chapter 8 errata and revisions

P. 192, 3 lines above Section 8.7

Change:
This yields a set of M equations which can be solved for the {pi}.

To:
This set of M equations, together with the constraint equation, can be solved
for the {pi} and the Lagrange multiplier λ.

P. 203, second-to-last equation on the page

Change:

S(f,m) = −
∫
dy

[
f(x, y)−m(x, y)− f(x, y) ln

(
f(x, y)

m(x, y)

)]
,

To:

S(f,m) = −
∫ ∫ [

f(x, y) −m(x, y)− f(x, y) ln

(
f(x, y)

m(x, y)

)]
dxdy,
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P. 206, equation (8.64)
Change:

p(dj |Iij, B) = p(ej|Iij, B) ∝ exp

[
−
e2

j

2σ2
j

]
= exp


−

(
dj − Iij

2σj

)2

 (8.64)

To:

p(dj |Iij, B) = p(ej|Iij, B) ∝ exp

[
−
e2

j

2σ2
j

]
= exp


−1

2

(
dj − Iij

σj

)2

 (8.64)

P. 206, equation (8.65)
Change:

p(D|Ii, B) ∝
m∏

j=1

exp


−

(
dj − Iij

2σj

)2



= exp


−1

2

m∑

j=1

(
dj − Iij

σj

)2

 = exp

[
−χ

2

2

]
. (8.65)

To:

p(D|Ii, B) ∝
m∏

j=1

exp


−1

2

(
dj − Iij

σj

)2



= exp


−1

2

m∑

j=1

(
dj − Iij

σj

)2

 = exp

[
−χ

2

2

]
. (8.65)
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IMPROVEMENT, Add a chapter 8 Summary section

8.10 Summary

We started this chapter by introducing the concept of testable information.
We learned how to measure the uncertainty of a probability distribution
using Shannon’s entropy measure. This led to our use of the maximum
entropy principle (MaxEnt) to convert the testable information into a unique
probability distribution.

We examined three simple constraint problems and derived their corre-
sponding probability distributions. In the course of this examination, we
gained further insight into the special properties of a Gaussian distribution.
It says that unless we have some additional prior information which justifies
the use of some other sampling distribution, then use a Gaussian sampling
distribution. It makes the fewest assumptions about the information you
don’t have and will lead to the most conservative estimates (i.e., greater un-
certainty than you would get from choosing a more appropriate distribution
based on more information).

We derived the multivariate Gaussian distribution from the MaxEnt prin-
ciple, given constraint information on the variances and covariances of mul-
tiple variables. This provides a means for incorporating relevant prior infor-
mation about correlations between data points, for example.

We also explored the application of MaxEnt to situations where the con-
straints were uncertain and considered an application to image reconstruc-
tion. Finally we considered another promising Bayesian image reconstruc-
tion/compression technique called the Pixon method.
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Chapter 9 errata and revisions

P. 225, equation (9.43)
to eliminate the double negative in the exponent and make the
single negative sign in the other exponents more visible by adding
a separator.

Change:

p(σ|D, I) =
(2π)−

N
2

1
Rµ ln

σH
σL

σ−(N+1)e−
−Nr2

2σ2
∫ µH
µL

e−
N(µ−d)2

2σ2 dµ

(2π)−
N
2

1
Rµ ln

σH
σL

∫ σH
σL
σ−(N+1)e−

−Nr2

2σ2
∫ µH
µL

e−
N(µ−d)2

2σ2 dµdσ

p(σ|D, I) =
σ−(N+1)e−

−Nr2

2σ2
∫ µH
µL

e−
N(µ−d)2

2σ2 dµ
∫ σH
σL
σ−(N+1)e−

−Nr2

2σ2
∫ µH
µL

e−
N(µ−d)2

2σ2 dµdσ

=
σ−(N+1)e−

−Nr2

2σ2
√

2π σ√
N

∫ σH
σL
σ−(N+1)e−

−Nr2

2σ2
√

2π σ√
N
dσ

= Cσ−Ne−
−Nr2

2σ2 . (9.43)

To:

p(σ|D, I) =
(2π)−

N
2

1
Rµ ln

σH
σL

σ−(N+1)e
−
(

Nr2

2σ2

)
∫ µH
µL

e−
N(µ−d)2

2σ2 dµ

(2π)−
N
2

1
Rµ ln

σH
σL

∫ σH
σL
σ−(N+1)e

−
(

Nr2

2σ2

)
∫ µH
µL

e−
N(µ−d)2

2σ2 dµdσ

p(σ|D, I) =
σ−(N+1)e

−
(

Nr2

2σ2

)
∫ µH
µL

e−
N(µ−d)2

2σ2 dµ

∫ σH
σL
σ−(N+1)e

−
(

Nr2

2σ2

)
∫ µH
µL

e−
N(µ−d)2

2σ2 dµdσ

=
σ−(N+1)e

−
(

Nr2

2σ2

)
√

2π σ√
N

∫ σH
σL
σ−(N+1)e

−
(

Nr2

2σ2

)
√

2π σ√
N
dσ

= Cσ−Ne
−
(

Nr2

2σ2

)
. (9.43)
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P. 221 , 7 lines below equation (9.34)

Change:
However, at |x− d̄| = 2.3

To:
However, at |µ − d̄| = 2.3

P. 238, replacement for Figure 9.7
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Figure 9.7: Probability density for the ratio of the standard deviations. Three
probability density functions are shown: (1) the probability for the ratio of
standard deviations given that the means are the same (dotted line), (2)
the probability for the ratio of standard deviations given that the means are
different (dashed line), (3) the probability for the ratio of standard deviations
independent whether or not the means are the same (solid line).
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P. 239, replacement for Figure 9.8
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Figure 9.8: Posterior probability of the differences in the mean river sediment
toxin concentration for the four different choices of prior boundaries given
in Table 9.2. The effects of different choices of prior boundaries are barely
discernible near the peak.
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P. 240, replacement for Figure 9.9
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Figure 9.9: Posterior probability for the ratio of standard deviations of
the river sediment toxin concentration for the four different choices of prior
boundaries given in Table 9.2.
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Chapter 10 errata and revisions

P. 258, starting with Equation (10.64)
To help clarify the point of this section the material between Equa-
tions (10.64) and (10.66) has been rewritten. This includes modi-
fying Equation (10.64)

Replace Equation (10.64) and modify the text leading up to Equation
(10.66).

Replacement:

p({Aα} | D, I) = C ′ exp
{
−∆Q

2σ2

}

= C ′ exp



−

1

2

∑

αβ

δAα

(
ψαβ

σ2

)
δAβ





= C ′ exp



−

1

2

∑

αβ

δAαΨαβ δAβ



 . (10.64)

where

C ′ = C exp
{
−Qmin

2σ2

}
, (10.65)

is an adjusted normalization constant.
Apart from the normalization constant, Equation (10.64) has the same

form as Equation (10.41), which is the equation of a multivariate Gaussian.
Both Ψαβ and [E−1]ij are symmetric matrices. From this we conclude that the
posterior p({Aα} | D, I) is also a multivariate Gaussian. That means there
is a single peak in the joint posterior. We will investigate further parallels
between Equations (10.64) and (10.41) in Section 10.5.3.

We now write Equation (10.64) in two different matrix forms, and examine
the cross section of the posterior at constant p({Aα} | D, I), for the M = 2
case. For a two dimensional Gaussian posterior we expect this cross section
to be an ellipse. If we let δA be a column matrix of δAα values, then
Equation (10.64) can be rewritten as

p({Aα} | D, I) = C ′ exp

{
−δA

Tψ δA

2σ2

}
, (10.66)
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P. 262 , Remove explanation mark in answer to 2nd question
Could be confused with a factorial sign.

Change:
Answer: 2!

To:
Answer: 2

P. 268, replace paragraph following Equation (10.102)
Note: there is a new Appendix F dealing with highly correlated
parameters.

Replacement Paragraph:
In the extreme case of ρ = ±1, the elliptical contours will be infinitely wide in
one direction. In this case, the parameter error bars σα and σβ will be infinite
as well, saying that our individual estimates of Aα and Aβ are completely
unreliable, but we can still infer a linear combination of the parameters quite
well. See Appendix F for a discussion of this topic.

P. 269, change second sentence of Problem

From:
We are now in a position to evaluate the errors for the marginal posterior
density functions for the intercept, A1, and slope, A2, from the diagonal ele-
ments of V = Ψ−1 = (GTE−1G)−1 which is given by

To:
Evaluate the errors for the joint and marginal posterior density functions for
the intercept, A1, and slope, A2, from the diagonal elements of V = Ψ−1 =
(GTE−1G)−1 which is given by
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P. 276, interchange A and A′ in Equation (10.126)

Change:

O12 =
p(M1|I)
p(M2|I)

× p(D |M1, I)

p(D |M2, I)
= 1 × p(D |M1, I)

p(D |M2, I)

= e∆χ2
min/2 (2π)(M1−M2)/2

√
detV1

detV2

∏M2
α=1 ∆Aα∏M1
α=1 ∆A′

α

, (10.126)

To:

O12 =
p(M1|I)
p(M2|I)

× p(D |M1, I)

p(D |M2, I)
= 1 × p(D |M1, I)

p(D |M2, I)

= e∆χ2
min/2 (2π)(M1−M2)/2

√
detV1

detV2

∏M2
α=1 ∆A′

α∏M1
α=1 ∆Aα

, (10.126)

P. 277, change last word on the page from ‘is’ to ‘are’

P. 277, replace 3rd line, the prime needs to be a superscript.
Replace:

the ratio of the prior ranges ∆Aα and ∆A′α for these parameters will cancel.
By:

the ratio of the prior ranges ∆Aα and ∆A′
α for these parameters will cancel.
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P. 277, change Equation (10.130)

Change:

E−1 =
1

σ2
=




1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · ·
0 0 · · · 0 1




=




1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · ·
0 0 · · · 0 1



, (10.130)

To:

E−1 =
1

σ2




1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · ·
0 0 · · · 0 1




=




1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · ·
0 0 · · · 0 1



, (10.130)

P. 282, change Equation (10.148)
Replace:

F =

∑N
i=1 (di − fi)

2 −∑N
i=1 (di − f+i)

2

∑N
i=1 (di − f+i)2

, (10.148)

By:

F = (ν − 1)

∑N
i=1 (di − fi)

2 −∑N
i=1 (di − f+i)

2

∑N
i=1 (di − f+i)2

, (10.148)

P. 283, change last 2 sentences above Section 10.9 Summary
Replace:

Substituting these values into Equation (10.147) yields f = 10.5. This cor-
responds to a P-value = 0.2%. On the basis of this F-test, we can reject the
simpler model M2 at a 99.8% confidence level.

By:
Substituting these values into Equation (10.147) yields f = 11.23. This cor-
responds to a P-value = 0.14%. On the basis of this F-test, we can reject
the simpler model M2 at a 99.86% confidence level.
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P. 284, Change first sentence of question 2
Change:

Compute and plot the ellipse that defines the 68.3% and 95.4% joint credible
region for the slope and intercept, for the data given in Table 10.3.

To:
Compute and plot the ellipse that defines the 68.3% and 95.4% joint credi-
ble region for the slope and intercept, for the data given in Table 10.3 (see
question 1).

P. 280, useful ADDITION, insert new paragraph above sentence
“Note: Mathematica provides a command called”

Insert paragraph:
As an example, we use the χ2 hypothesis test to see if we can reject M2 (no
line exists) in the spectral line problem of Section 3.6. The best fit for M2,
with 64 degrees of freedom, χ2

ν=64 = 57.13. The computed significance (P-
value) of this test is GammaRegularized[64

2
, 57.13

2
] = 0.72. On the basis

of this test, our confidence in rejecting the simpler model M2 is only 28%.
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Chapter 11 errata and revisions

P. 295, Equation 11.20, put bracket around product
Replace:

p(D|θ,M, I) = (2π)−N/2
N∏

i=1

σ−1
i exp

[
−1

2

N∑

i=1

(di − fi)
2

σ2
i

]

= C exp

[
−χ

2(θ)

2

]
. (11.20)

By:

p(D|θ,M, I) = (2π)−N/2

{
N∏

i=1

σ−1
i

}
exp

[
−1

2

N∑

i=1

(di − fi)
2

σ2
i

]

= C exp

[
−χ

2(θ)

2

]
. (11.20)

P. 299 , replace equation 11.26 (missing factor of 2)

and equations 11.28 and 11.29 (missing factor of 1/2)
Replace:

∇χ2(θ) ≈ ∇χ2(θc) + κ δθ. (11.26)

By:

∇χ2(θ) ≈ ∇χ2(θc) + 2κ δθ. (11.26)

Replace:

κ δθ = −∇χ2(θc) (11.28)

By:

κ δθ = −1

2
∇χ2(θc) (11.28)
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Replace:

θ̂ = θc − κ−1∇χ2(θc) (11.29)

By:

θ̂ = θc − κ−1 1

2
∇χ2(θc) (11.29)

P. 300 , definition of Ωk following equation 11.32 (missing factor of 1/2),

and again 6 lines below equation 11.33
Replace:

Ωk = −∂χ2(θc)/∂θk

By:
Ωk = −1

2
∂χ2(θc)/∂θk

P. 304 , first equation, missing an f
Replace:

model[f, f ] := a0 + a1 line[f1] + a2 line[f, f2].
By:

model[f, f ] := a0 + a1 line[f, f1] + a2 line[f, f2].

P. 306, missing footnotes 4 and 5

4 The quantity result[[3,2]] is V∗ expressed in Mathematica’s MatrixForm. To compute
the determinant of this matrix we need to extract the argument of MatrixForm which
is given by result[[3,2]][[1]].

5 A fully Bayesian way of handling this would be to treat k as a parameter and marginalize
over a prior range for k.

P. 307, please ignore Section 11.7 entirely,
for an explanation refer to ch. 4, p. 93 revisions.
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Chapter 12 errata and revisions

P. 316, Corrections to Box
Change:

Needs[“Statistics ‘MultinormalDistribution’”]
To:

Needs[“Statistics`MultinormalDistribution`”]

P. 316, Mathematica box, remove extra opening curly bracket on 5th line.
Replace:

dist2 = MultinormalDistribution[{{4,0}, {{2, 0.8}, {0.8, 2}}]
By:

dist2 = MultinormalDistribution[{4, 0}, {{2,0.8}, {0.8, 2}}]

P. 349, Section 12.12, replace existing problems with the following.

1. In Section 12.6, we used both the Metropolis-Hastings and parallel tem-
pering (PT) versions of MCMC to re-analyze the toy spectral line prob-
lem of Section 3.6. A program to perform automatic PT calculations
is given in the Markov Chain Monte Carlo section of the Mathematica
tutorial. Use this program to analyze the spectrum given in Table 12.4,
for n = 20, 000 to 50, 000 iterations, depending on the speed of your
computer (try it out first with only two tempering levels). As part
of your solution, include figures like 12.7 and 12.8, and compute the
quasi-Monte Carlo estimate of the Bayes factor, used to compare the
two competing models. Explain how you arrived at your choice for the
number of burn-in samples.

The prior information is the same as that assumed in Section 12.6.
Theory predicts the spectral line has a Gaussian shape with a line
width σL = 2 frequency channels, and line center between channels 1
and 44. The noise in each channel is known to be Gaussian with a
σ = 1.0 mK and the spectrometer output is in units of mK.

2. Repeat the analysis of problem 1 only this time assume the line width
is also uncertain. Adopt a uniform prior for the line width (σl), with
upper and lower bounds of 0.5 and 4 frequency channels, respectively.
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You will need to modify the parallel tempering MCMC program to al-
low for the addition of the line width parameter. You will also need to
specify prior bounds on σl and a starting σ for the line width Gaussian
proposal distribution (typically 10% of the prior range). Your solution
should include a plot of the marginal probability distribution for each
of the three parameters and a calculation of the Bayes factor for com-
paring the two models. Justify your choice for the number of burn-in
samples.

3. (Difficult problem) In Section 11.6, we illustrated the solution of a sim-
ple nonlinear model fitting problem using Mathematica’s Nonlinear-
Regress, which implements the Levenberg-Marquardt method. In this
problem we want to analyze the same spectral line data (Table 12.5)
using the experimental APT MCMC software given in the Mathemat-
ica tutorial and discussed in Section 12.8. It will yield a fully Bayesian
solution to the problem without the need to assume the asymptotic
normal approximation, or, assume the Laplacian approximations for
computing the Bayes factor and marginals. In general, MCMC solu-
tions come into their own for higher dimensional problems but it is
desirable to gain experience working with simpler problems.

Modify the APT MCMC software to analyze this data for the two mod-
els described in Section 11.6.

In Mathematica, model 1 has the form:
model[a0 , a1 , f1 ] := a0 + a1 line[f1].
where

line[f1 ] :=
Sin[2π(f − f1)/∆f ]

2π(f − f1)/∆f
and ∆f = 1.5.

Model 2 has the form:
model[a0 , a1 , a2 , f1 , f2 ] := a0 + a1 line[f1] + a2 line[f2],
where f2 is assumed to be the higher frequency line.

Adopt uniform priors for all parameters and assume a prior range from
0 to 10 for a0, a1 and a2. For the frequency parameters use a prior
range from 1.0 to 5.0. Note: for a multi-spectral line model, each spec-
tral peak is free to move through the full frequency range which can
result in the occurrence of degenerate peaks in the joint posterior. It
is therefore necessary to redefine the parameters after the MCMC iter-
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ations are terminated, in such a way that a1 and f1 correspond to the
lowest frequency spectral line parameters, etc. Please refer to section
5 of a recent paper that discusses a suitable multi-frequency prior (P.
C. Gregory, Monthly Notices of the Royal Astronomical Society 374,
p. 1321, 2007).
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Chapter 13 errata and revisions

P. 355, change the line below Equ. 13.5. Replace j subscript by i.
Replace:

where N is the number of data values and d2 = 1
N

∑
j d2

i is the mean
By:

where N is the number of data values and d2 = 1
N

∑
i d

2
i is the mean

P. 356, change Equ. 13.6.
Replace:

C(fn) =
1

N

∣∣∣∣∣∣

N∑

j=1

dje
i2πfntj

∣∣∣∣∣∣

2

=
1

N
|FFT|2

or C(n) =
1

N

∣∣∣∣∣∣

N∑

j=1

dje
i2π nj

N

∣∣∣∣∣∣

2

=
|Hn|2

N
, (13.6)

By:

C(fn) =
1

N

∣∣∣∣∣∣

N∑

j=1

dje
i2πfntj

∣∣∣∣∣∣

2

=
1

N
|FFT|2

or C(n) =
1

N

∣∣∣∣∣∣

N∑

j=1

dje
i2π

(n−1)(j−1)
N

∣∣∣∣∣∣

2

=
|Hn|2

N
, (13.6)
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P. 358, change material in Box 13.1.
Replace:

Note: Mathematica uses a slightly different definition
of Hn to that given in equation (13.6),
which we designate by [Hn]Math.

[Hn]Math = 1√
N

∑N
j=1 dje

i2π nj
N

The modified version of equation (13.9) is

C(n) = Nzp

Norig
|[Hn]Math|2 for n = 0, 1, · · · , Nzp

2
,

where [Hn]Math = Fourier[data], and data is a list of dj values.

By:

Note: Mathematica uses a slightly different definition of Hn to
that given in equation (13.6), which we designate by [Hn]Math.

[Hn]Math = 1√
N

∑N
j=1 dje

i2π
(n−1)(j−1)

N

The modified version of equation (13.9) is

C(n) = Nzp

Norig
|[Hn]Math|2 for n = 1, 2, · · · , Nzp

2
+ 1,

where [Hn]Math = Fourier[data], data is a list of dj values,
and the zero frequency corresponds to the n = 1 term.
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P. 366, Equation 13.13
Replace:

θ =
1

2
tan−1



∑NR

i=1 sin(4πfti − θ)Z(ti)
2 −∑NI

j=1 sin(4πft′j − θ)Z(t′j)
2

∑NR
i=1 cos(4πfti − θ)Z(ti)2 −∑NI

j=1 cos(4πft′j − θ)Z(t′j)
2


 .

(13.13)
By:

θ =
1

2
tan−1



∑NR

i=1 sin(4πfti)Z(ti)
2 −∑NI

j=1 sin(4πft′j)Z(t′j)
2

∑NR
i=1 cos(4πfti)Z(ti)2 −∑NI

j=1 cos(4πft′j)Z(t′j)
2


 . (13.13)

P. 367, Section 13.5.1, add an ‘of’ to the last line.
Replace:

range problems and involves a generalized version of the Lomb-Scargle statis-
tic.

By:
range of problems and involves a generalized version of the Lomb-Scargle
statistic.

P. 375, item (a), delete second sentence.

Remove following sentence:
Assume the variance of the data set = 1.
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P. 373, change to column headings of Table 13.1.

t (s) mK t (s) mK t (s) mK t (s) mK
1 0.474 17 -0.865 33 -0.225 49 0.369
2 0.281 18 0.206 34 -1.017 50 0.695
3 1.227 19 -0.926 35 0.817 51 1.291
4 -1.523 20 2.294 36 -2.064 52 0.978
5 -0.831 21 0.786 37 -0.103 53 -0.592
6 -0.978 22 0.522 38 1.878 54 -0.986
7 0.169 23 -1.04 39 0.625 55 -1.005
8 0.04 24 -0.181 40 1.418 56 -1.268
9 0.76 25 -1.47 41 0.464 57 -0.571
10 0.847 26 -1.837 42 -1.182 58 1.128
11 0.106 27 0.523 43 -1.319 59 0.64
12 -1.814 28 0.605 44 1.354 60 0.144
13 -1.16 29 -1.595 45 -1.784 61 -1.468
14 0.249 30 -0.413 46 -0.989 62 -0.71
15 -1.054 31 1.275 47 -1.52 63 -1.486
16 -0.359 32 -1.644 48 1.239 64 -0.129

Table 13.1: The table contains 64 samples of a simulated times series con-
sisting of a single sinusoidal signal with additive IID Gaussian noise.
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Chapter 14 errata and revisions

P. 387, two lines above Equ. 14.31, change ‘become’ to ‘becomes’.
Replace:

∆t become infinitesimal
By:

∆t becomes infinitesimal

P. 387, line below Equ. 14.30, replace ‘r(t)∆t’ by ‘r(tj)∆t’.

P. 388, Section 14.6, add sentence at end of problems 4 and 5.
Add following sentence:

Assume a uniform prior for r0 in the range 0 to 5 counts s−1, and a Jeffreys
prior for τ in the range 2 to 300 s.

40



Appendix B errata and revisions

P. 409, change equation (B.47) to make it clearer.

Change equation (B.47) from:

fn ≡ n

NT
, n = −N

2
, · · · , N

2
, (B.47)

To:

fn ≡ n

NT
, n = −N

2
, · · · ,−1, 0, 1, · · · , N

2
, (B.47)

P. 411, changes to equations B.54 and B.55.

Change:

Hn =
1√
N

N−1∑

k=0

hk e
i2πnk/N (B.54)

hk =
1√
N

N−1∑

n=0

Hn e
−i2πnk/N . (B.55)

To:

Hn =
1√
N

N∑

k=1

hk e
i2π(n−1)(k−1)/N (B.54)

hk =
1√
N

N∑

n=1

Hn e
−i2π(n−1)(k−1)/N , (B.55)

and the zero frequency corresponds to the n = 1 term.
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P. 411, Box B.1, remove outer parentheses on the third line.

Change:
(Fourier[{u1, u2, · · · , un}]).

To:
Fourier[{u1, u2, · · · , un}].

P. 413, second sentence needs to end with a period.

Corrected sentence:
These results are shown in panels (c) and (d) of Figure B.8.

P. 420, 6 lines below equation (B.78)

Change the sentences:
If we only had |C(n)|2, we could estimate |S(n)|2 by extrapolating the spec-
trum at high values of n to zero. Similarly, we can estimate the |N(n)|2 by
extrapolating back into the signal region.

To:
If we only had |C(n)|2, we could estimate |N(n)|2 by extrapolating back
into the signal region from high values of n. |S(n)|2 is what stands above
the estimate of |N(n)|2 at low values of n. Finally, it is necessary is to ex-
trapolate the portion of |S(n)|2 that sits above the estimated |N(n)|2 to zero.
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Appendix D errata and revisions

P. 445, 2nd line of Equ. (D.2), Change ‘N ’ to ‘Non’.

P. 446, change first sentence.
Change:
Substituting equations (D.5), (D.4), (D.3) and (D.2) into equation (D.1), we
obtain

To:
Substituting equations (D.5), (D.4), (D.3), (D.2) and (14.15) into equation
(D.1), we obtain

P. 448, sentence below Equ. (D.16).
Change:
Substitution of equation (D.14) and (D.16) into equation (D.17) yields

To:
Substitution of equations (D.14) and (D.16) into equation (D.6) yields

Added new Appendix F, begins on next page.
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Appendix F

Highly Correlated Parameters

In Section 10.5.2, we introduced the correlation coefficient as a useful to
summary of the correlation between estimates of any two model parameters.
The correlation coefficient is defined by

ραβ =
σαβ√
σαασββ

=
[Ψ−1]αβ√

[Ψ−1]αα[Ψ−1]ββ

, (F.1)

where Ψ−1 is the variance-covariance matrix of the parameter errors. It
ranges from −1 to +1, where −1 indicates complete negative correlation, +1
indicates complete positive correlation, and 0 indicates no correlation.

In the extreme case of ραβ = ±1, the elliptical contours will be infinitely
wide in one direction (with only information in the prior preventing this

catastrophe) and oriented at an angle ± tan−1
[√

([ ψ−1]ββ/[ ψ
−1]αα)

]
. In

this case, the parameter error bars σα and σβ will be infinite as well, saying
that our individual estimates of Aα and Aβ are completely unreliable, but we
can still infer a linear combination of the parameters quite well. For ρ large
and positive, the probability contours will be very elongated and bunch up

close to the lineAβ = b+mAα, wherem =
√

([ ψ−1]ββ/[ ψ
−1]αα). Figure F.1

shows a plot of the inner regions of these elongated contours (68% and 95%)
and the equation of the line for a case where ρ = 0.997. This line intersects
the Aβ axis (i.e., Aα = 0) at b. We can rewrite this as Aβ − mAα = b.
Varying the intercept b corresponds to a parallel translation of this line. The
value of b that causes the line to fall on the upper 68% contour corresponds
to the 68% constraint we can set on the linear combination Aβ −mAα. Since
the contours are closely spaced, this indicates that the data contain a lot of
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information about the difference Aβ −mAα. If ρ is large and negative, then
we can infer the sum Aβ +mAα.
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Figure F.1: A contour plot of the joint posterior p(Aα, Aβ | D, I) where the
correlation coefficient ρ = 0.997. Only the inner region close to the most
probable value {Âα, Âβ} is shown. The probability contours bunch up close
to the line Aβ = b+mAα. For such a large positive correlation the individual
estimates of Aα and Aβ are completely unreliable, but we can still infer a
linear combination of the parameters Aβ −mAα quite well.
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