
Solutions to the Tutorial Problems in
the book “Magnetohydrodynamics of the Sun”

by ER Priest (2014)
CHAPTER 7

PROBLEM 7.1. Effect of Steady Flow on the Energy Method.

Consider a steady flow and magnetic field having y- and z-components of
the form v0(x) and B0(x) and show that the linearised equation of motion
for perturbations of the form ξ(x, y, z, t) = ξ(x) exp i(kyy+kzz−ωt) becomes

−ω̃2ρ0 ξ(x) = F[ξ(x)],

in place of
−ω2ρ0 ξ(r0) = F[ξ(r0)],

where
−ω̃ = ω − k.v0(x).

SOLUTION.
With a steady flow v0, the usual linearised equation of motion,

ρ0
∂2ξ

∂t2
= F[ξ(r0, t)],

is modified to

ρ0

(

∂

∂t
+ iv0 ·∇

)2

ξ = F(ξ) +∇ · (ξρ0v0 ·∇v0),

where F is the usual linearised total force given by

F(ξ) ≡ −∇p1 + ρ1g + j1 ×B0 + j0 ×B1

= −∇p1 + ∇ · (ρ0ξ) g + (∇× [∇× (ξ ×B0)])×B0/µ

+ (∇×B0)× [∇× (ξ ×B0)]/µ.

For normal modes of the form ξ = ξ(r)e−iωt, this reduces to

−ρ0(ω + iv0 ·∇)2ξ = F(ξ) +∇ · (ξρ0v0 ·∇v0).
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Now, for a flow of the form v0 = v0(x) having y- and z-components that
depend on x alone, v0 ·∇v0 = 0 and so normal modes of the form

ξ = ξ(x) exp[i(kyy + kzz − ωt)]

reduce the above equation to

−ω̃2ρ0 ξ(x) = F[ξ(x)],

as required, in which the usual frequency ω in the case with no flow is replaced
by a Doppler-shifted frequency ω̃ = ω − Ω0(x), with Ω0(x) = k.v0(x) and
k = kyŷ + kzẑ.

Whereas in the static case, when ω̃ = ω, transition to instability is
through the marginal point (ω = 0), the presence of flow allows such a
transition to be through a value ω 6= 0. In this case, overstable modes can
appear in the form of propagating waves with exponentially growing ampli-
tude. For more details, see Goedbloed et al’s 2010 book on Advanced MHD,
from which this example was taken.

PROBLEM 7.2. Rayleigh-Taylor Instability.
Consider two incompressible, inviscid plasmas of uniform densities (ρ

(−)
0 ,

ρ
(+)
0 ), separated by a horizontal boundary, with gravity acting vertically

downwards. Show that if the plasma of larger density ρ
(+)
0 rests on top

of the other (ρ
(+)
0 > ρ

(−)
0 ), the system is unstable with perturbations like eiωt

growing at a rate |ω| given by

ω2 = −gk

(

ρ
(+)
0 − ρ

(−)
0

ρ
(+)
0 + ρ

(−)
0

)

,

SOLUTION.
The incompressible equations are

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇p + ρg,

∂ρ

∂t
+∇ · (ρv) = 0,

∇ · v = 0,
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and the equilibrium satisfies

dp0
dz

= −ρ0g.

The linearised equations are

ρ0
∂v1

∂t
= −∇p1 + ρ1g,

∂ρ1
∂t

= −v1zρ
′

0,

∇ · v1 = 0.

Next assume perturbations of the form f(z)ei(kx+ωt), so that

iωρ0v1x = −ikp1, (1)

iωρ0v1z = −
dp1
dz

− ρ1g, (2)

iωρ1 = −ρ′0v1z, (3)

ikv1x + v′1z = 0. (4)

Eliminate ρ1 by taking d(??)/dz − ik(??) to give

iω[(ρ0v1x)
′ − ikρ0v1z] = ikρ1g.

Then use Eq.(??) to substitute for ρ1 and Eq.(??) to eliminate v1x, so that

ω2 d

dz

(

ρ0
dv1z
dz

)

− k2(ρ0ω
2 + gρ′0)v1z = 0. (5)

Now, for z > 0, dρ0/dz = 0, and so Eq.(??) reduces to

d2v1z
dz

− k2v1z = 0,

with solution
v1z = Aekz +Be−kz,

in which the condition v1z → 0 as z → ∞ implies that A = 0.
Similarly, in the region z < 0 with the condition v1z → 0 as z → −∞, we

find
v1z = Cekz.
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The next step is to link these two solutions across the interface z = 0 with
two conditions, the first of which is that v1z be continuous, so that C = B
and

v1z =

{

Be−kz, z > 0,

Bekz, z < 0.

For the second condition, integrate Eq.(??) across the interface to give

[

ω2ρ0
dv1z
dz

− k2gρ0v1z

]

z=0+
=

[

ω2ρ0
dv1z
dz

− k2gρ0v1z

]

z=0−
,

or
(−ω2ρ+k − k2gρ+) = (ω2ρ−k − k2gρ−),

or

ω2 = −gk
ρ
(+)
0 − ρ

(−)
0

ρ
(+)
0 + ρ

(−)
0

,

as required.

PROBLEM 7.3. Continuously Stratified Medium.
Consider an equilibrium horizontal magnetic field B0 = [B0(z), 0, 0] in a grav-
itationally stratified atmosphere, with p0 = p0(z) and ρ0 = ρ0(z). Linearise
the inviscid, ideal, adiabatic MHD equations and assume perturbations of the
form f(x, y, z, t) = f(z)ei(ly−ωt). When the wavenumber l is large (l → ∞),
prove that the local dispersion relation is given by

(

c2s + v2A
)

ω2 = c2sN
2 + gv2A

d

dz

[

log

(

B0

ρ0

)]

,

where v2A = B2
0/µρ0, c

2
s = γp0/ρ0 and N2 = (g/γ)d/dz[log(p0/ρ

γ
0)]. Deduce

that the plasma can be unstable (ω2 < 0) even when it is convectively stable
(N2 > 0).

SOLUTION.
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The inviscid, ideal, adiabatic MHD equations are

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇p + (∇×B)×B/µ+ ρg,

∂ρ

∂t
+∇ · (ρv) = 0,

∂B

∂t
= ∇× (v×B),

∂p

∂t
= −v ·∇p− γp∇ · v.

If B0 = [B0(z), 0, 0], p0 = p0(z) and ρ0 = ρ0(z), then the equilibrium satisfies

d

dz

(

p0 +
B2

0

2µ

)

= −ρ0g,

and the linearised MHD equations are

ρ0
∂v1

∂t
= −∇p1 + (∇×B1)×B0/µ+ (∇×B0)×B1/µ+ ρ1g,

∂ρ1
∂t

= −ρ0∇ · (v1)− v1zρ
′

0,

∂B1

∂t
= ∇× (v1 ×B0) = −B0(∇ · v1) +B0

∂v1x
∂x

− v1z
dB0

dz
,

∂p1
∂t

= −v1zp
′

0 − γp0∇ · v1.

Next assume all perturbations are of the form f(x, y, z, t) = f(z)ei(ly−ωt).
Then the components of the equation of motion become

−iωρ0v1x =
B′

0

µ
B1z, (6)

−iωρ0v1y = −il

(

p1 +
B0B1x

µ

)

, (7)

−iωρ0v1z = −

(

p1 +
B0B1x

µ

)

′

− ρ1g, (8)

while the continuity equation becomes

−iωρ1 = −ρ0∇ · v1 − ρ′0v1z, (9)
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and the induction equation reduces to

−iωB1x = −B0∇ · v1 −B′

0v1z, (10)

−iωB1y = 0,

−iωB1z = 0,

Since B1z = 0, Eq.(??) implies v1x = 0 and the adiabatic equation becomes

−iωp1 = −γp0∇ · v1 − p′0v1z, (11)

while ∇ ·B1 = 0 is

0 = ilB1y +B′

1z.

Now, assume that the wavenumber l is large (l → ∞), so that ∇ · v1 =
ilv1y + v′1z will remain finite only if v1y ∼ 1/l → 0. Then Eq.(??) becomes

p1 +
B0B1x

µ
= 0, (12)

and so Eq.(??) reduces to

−iωρ0v1z = −ρ1g. (13)

The next step is to take B0 × (??)/µ+ (??) to give

−iω

(

p1 +
B0B1x

µ

)

= −

(

γp0 +
B2

0

µ

)

∇ · v1 −

(

p′0 +
B0B

′

0

µ

)

v1z.

However, Eq.(??) implies that the left-hand side vanishes and so

(

γp0 +
B2

0

µ

)

∇ · v1 = −

(

p′0 +
B0B

′

0

µ

)

v1z . (14)

Then forming −iω × (??) and substituting for ρ1 from Eq.(??) gives

ω2ρ0v1z = −iωρ1g = −(ρ′0gv1z + ρ0g∇ · v1)

After rearranging this and substituting for ∇ · v1 from Eq.(??), we find

(ρ0ω
2 + ρ′0g)v1z = −ρ0g∇ · v1 =

ρ0g

γp0 +B2
0/µ

(

p′0 +
B0B

′

0

µ

)

v1z.
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This may be rearranged to give

(γp0 +B2
0/µ)ω

2 =
γp0g

γ

(

p′0
p0

−
γρ′0
ρ0

)

+
B2

0g

µ

(

B′

0

B0
−

ρ′0
ρ0

)

,

or, in other words,

(

c2s + v2A
)

ω2 = c2sN
2 + gv2A

d

dz

{

log

(

B0

ρ0

)}

,

as required, where v2A = B2
0/µρ0, c

2
s = γp0/ρ0 and the Brunt-Väisälä fre-

quency

N2 =
g

γ

d

dz

{

log

(

p0
ργ0

)}

.

Note that the plasma can be unstable (ω2 < 0) even when it is convectively
stable with N2 > 0.

PROBLEM 7.4. Magnetic Rayleigh-Taylor Instability.
Show that incompressible perturbations of the form v1 = [vx(z), 0, vz(z)]e

i(kx+ωt),
ρ1 = ρ1(z)e

i(kx+ωt), B1 = [B1x(z), 0, B1z(z)]e
i(kx+ωt) to an interface at z = 0

between two uniform media (with density ρ+ and magnetic field B+x̂ above
the interface and ρ− and B−x̂ below it) have dispersion relation

ω2 =
k2

µ

(

B2
+ +B2

−

ρ+ + ρ−

)

+ kg

(

ρ− − ρ+
ρ− + ρ+

)

.

SOLUTION.
The incompressible, inviscid, ideal MHD equations are

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇p + (∇×B)×B/µ+ ρg,

∂ρ

∂t
= −v ·∇ρ,

∂B

∂t
= ∇× (v ×B) = (B ·∇)v − (v ·∇)B,

∇ ·B = 0, ∇ · v = 0.

The equilibrium variables are B0 = (B0(z), 0, 0), p0 = p0(z) and ρ0 = ρ0(z),
and they satisfy

d

dz

(

p0 +
B2

0

2µ

)

= −ρ0g.
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The linearised MHD equations are

ρ0
∂v1

∂t
= −∇p1 + (∇×B1)×B0/µ+ (∇×B0)×B1/µ+ ρ1g,

∂ρ1
∂t

= −ρ′0v1z,

∂B1

∂t
= B0

∂v1

∂x
− v1z

dB0

dz
,

∇ ·B1 = 0, ∇v1 = 0.

Consider now incompressible perturbations of the form v1 = [v1x(z), 0, v1z(z)]e
i(kx+ωt),

ρ1 = ρ1(z)e
i(kx+ωt), B1 = [B1x(z), 0, B1z(z)]e

i(kx+ωt), for which the linearised
equations become

iωρ0v1x = −ikp1 +
B′

0

µ
B1z, (15)

iωρ0v1z = −

(

p1 +
B0B1x

µ

)

′

+ ik
B0

µ
B1z − ρ1g, (16)

iωρ1 = −ρ′0v1z,

iωB1x = ikB0v1x − v1zB
′

0 = −(B0v1z)
′,

−iωB1z = ikB0v
2
1z

ikv1x = −v′1z , and ikB1x = −B′

1z .

By taking d/dz(??)− ik(??), we can eliminate p1 to give

iω(ρ0v1x)
′ + ωkρ0v1z = (B′

0B1z/µ)
′ + (B0ikB1x/µ)

′ + k2B0B1z/µ+ ikρ1g,

and then v1x, B1z, B1x and ρ1 can be eliminated to give the following equation
for v1z alone:

ω(−ρ0v
′

1z/k)
′+ωkρ0v1z = (kB′

0B0v1z/ω)
′−(B0k/(ωµ)(B0v1z)

′)′+k3B2
0v1z/(ωµ)−kρ′0gv1z/ω

which implies

ω2 d

dz

(

ρ0
dv1z
dz

)

−ω2k2ρ0v1z+
k4B2

0v1z
µ

−k2ρ′0gv1z+
k2

µ

d

dz

(

B0B
′

0v1z − B0B
′

0v1z − B2
0v

′

1z

)

= 0

or

d

dz

{(

ω2ρ0 − k2B
2
0

µ

)

dv1z
dz

}

− k2(ω2ρ0 + ρ′0g − k2B
2
0

µ
)v1z = 0. (17)
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Next consider the interface at z = 0 across which p0(z) + B2
0(z)/2µ is

continuous and either side of which

ρ0 =

{

ρ+, z > 0,
ρ−, z < 0,

B0 =

{

B+, z > 0,
B−, z < 0.

In the regions z > 0 and z < 0 either side of the interface, the conditions are
uniform and so ρ′0 = 0. As with PROBLEM 7.1, the continuous solution for
v1z subject to the conditions v1z → 0 as z → ∞ and z → −∞ is

v1z =

{

Ae−kz, z > 0,

Aekz, z < 0.

Integrating Eq.(??) across the interface gives

[(

ω2ρ0 −
kB2

0

µ

)

dv1z
dz

− k2gρ0v1z

]z=0+

z=0−
= 0,

or
−(ω2ρ+ − k2B2

+/µ)k − k2gρ+ = (ω2ρ− − k2B2
−
/µ)k − k2gρ−,

or

ω2 =
k2

µ

(

B2
+ +B2

−

ρ+ + ρ−

)

+ kg

(

ρ− − ρ+
ρ− + ρ+

)

,

as required. Hence, there is only an instability if ρ+ > ρ− (and small values
of k), but the magnetic field is stabilizing, due to the magnetic tension effect
introduced by an Alfvén wave.

PROBLEM 7.5. Sausage Instability.
Use the Energy Method to show that a cylindrical tube in equilibrium with
pressure p0(R), uniform current and azimuthal magnetic field B0φ(R) is un-

stable to compressible perturbations of the form ξ = exp i(kz+ωt)[ξR(R)R̂+
iξz(R)ẑ] with ω2 < 0.

SOLUTION.
Consider an equilibrium tube with pressure p0(R), azimuthal magnetic field
B0φ(R) and electric current given by

µj0(R) =
1

R

d

dR
(RB0) =

B0

R
+B

′

0
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and

µp
′

0 = −µj0B0 = B0

(

B0

R
+B

′

0

)

.

Suppose there is a perturbation of the form

ξ = exp i(kz + ωt)[ξR(R)R̂+ iξz(R)ẑ],

in which the tube takes on a periodic sausage-like shape of wavelength 2π/k
along its length.

Now, Eq.(7.28), namely,

ω2

∫

1
2
ρ0 ξ2 dV = δW,

implies that we have instability if δW < 0, so that ω is imaginary and the
perturbation grows exponentially in time.

In turn, Eq.(7.30) determines the change in energy as

δW =
1

2

∫

B2
1

µ
− j0 · (B1 × ξ) + (ξ ·∇p0)(∇ · ξ) + γp0(∇ · ξ)2 dV,

where
B1 = ∇× (ξ ×B0) = −(B0D + ξR∆)φ̂,

in terms of D = ∇ · ξ and ∆ = B
′

0 −B0/R. In other words,

δW =
1

2

∫

1

µ
(B0D + ξR∆)2 − j0ξR(B0D + ξR∆) + ξRp

′

0D + γp0D
2 dV,

After rearranging and substituting for ∆, p
′

0 and j0, we find

δW =
1

2µ

∫

a2D2 + 2bD + c dV,

where a2 = γµp0 + B2
0 , b = −2B2

0ξR/R and c = −2ξ2RB0(B0/R)
′

. Thus, we
may complete the square in the integral to give

δW =
1

2µ

∫
(

aD +
b

a

)2

+ c−
b2

a2
dV.

Then we choose a perturbation whose z-component satisfies D = −b/a2,
so that the integral reduces to

δW =
1

2µ

∫

c−
b2

a2
dV
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or

δW = −
1

µ

∫

ξ2R

[

B0

(

B0

R

)′

+
2B4

0/R
2

γµp0 +B2
0

]

dV.

The second term in the square brackets is destabilising since it produces a
negative δW , whereas the first term tends to be stabilising since for typical
profiles (B0/R)

′

< 0.
Now, for a uniform-current flux tube B0(R) = BeR/R0 inside a tube of

radius R0, say, where Be is the field at R = R0, whereas outside the tube the
field is B0(R) = BeR

2
0/R. In this case, the destabilising term is present for

all R, whereas the stabilising term vanishes inside the tube. Thus, if we pick
a ξR that is nonzero inside the tube, but vanishes outside the tube, then δW
will definitely be negative and we have instability, as required.

PROBLEM 7.6. Kelvin-Helmholtz Instability.
Consider two homogeneous plasma layers with field and flow v+

0 and B+
0 in

x > 0 and v−

0 and B−

0 in x < 0, having y- and z-components parallel to
the interface. Show that, under an incompressible displacement of the form
ξ ∼ exp[i(ky + kzz − ωt)], the interface is unstable when

[k · (v+
0 − v−

0 )]
2 >

(k ·B+
0 )

2 + (k ·B−

0 )
2

µρ+
ρ+ + ρ−

ρ−
,

where k = kyŷ + kzẑ.

SOLUTION.
The details of this solution can be found in chapter 13 of the excellent book on
Advanced MHD by Goedbloed et al (2010). The wave equation for an ideal
incompressible MHD displacement of the form ξ = ξ(x) exp[i(ky+kzz−ωt)]x̂,
in which the disturbance is Fourier analysed in the ignorable y- and z-
directions, is

d

dx

[

ρ0(ω̃
2 − ω2

A)
dξ

dx

]

− k2[ρ0(ω̃
2 − ω2

A)]ξ = 0,

where ω̃ = ω − k · v0 is the Doppler-shifted frequency, ωA = k ·B0/
√

(µρ0)
is the Alfvén frequency and k2 = k2

y + k2
z .

Suppose we have an eigenvalue problem with boundary conditions ξ van-
ishing at x = a and x = −b, say. Then above the interface we have a uniform
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medium, for which the above equation reduces to

d2ξ

dx2
− k2ξ = 0

with solution subject to ξ(a) = 0

ξ+ = c+
sinh[k(a− x)]

sinh(ka)
.

Similarly, below the interface we have the same differential equation and
so the solution subject to ξ(−b) = 0 is

ξ− = c−
sinh[k(b+ x)]

sinh(kb)
.

Thus, the eigenfunctions have the usual cusp-shaped form characteristic
of surface modes. The first boundary condition at the interface is continuity
of normal velocity or displacement ξ+(0) = ξ−(0), which implies c+ = c−.
The second condition is essentially pressure balance and may be obtained by
integrating the above full differential equation across the interface to give

[

ρ(ω̃2 − ω2
A)

dξ

dx

]+

−

= 0

or, after substituting for ξ+ and ξ−, we find the dispersion relation

−ρ+[(ω − Ω+
0 )

2 − (ω+
A)

2] coth(ka) = ρ−[(ω − Ω−

0 )
2 − (ω−

A)
2] coth(kb).

In the limit of small wavelength disturbances, the boundaries are essen-
tially at infinity and so both coth functions become unity. The solutions then
reduce to

ω =
ρ+Ω+

0 + ρ−Ω−

0

ρ+ + ρ−
±

√

√

√

√

[

−
ρ+ρ−(Ω+

0 − Ω−

0 )
2

(ρ+ + ρ−)2
+

ρ+ω+
A

2
+ ρ−ω−

A

2

ρ+ + ρ−

]

.

The Kelvin-Helmholotz instability occurs when the expression under the
square root is negative, namely, when

[k · (v+
0 − v−

0 )]
2 >

(k ·B+
0 )

2 + (k ·B−

0 )
2

µρ+
ρ+ + ρ−

ρ−
,
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as required, so that the frequency is complex and the positive square root
represents a solution that is growing exponentially in time.

Note that when this does not hold, the expression under the square root
is positive and we have two waves of real frequency.

Also, if there is no shear so that B+
0 and B−

0 have the same direction,
then we may choose k such that k ·B0 = 0, for which the above instability
condition is always satisfied for arbitrarily small velocity differences v+

0 −v−

0 .
However, when the field is sheared it is stabilising, since the right-hand side
of the above instability criterion is always then positive and so instability
only occurs when the velocity difference v+

0 − v−

0 is large enough.
For treatment of a continuous rather than a discrete transition between

to media, the analysis is very much more complex (see Goedbloed’s book,
section 13.2).
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