WS 11.3 Interaction between an unmodulated beam and a gap
© 2018 Richard G Carter

This Mathcad 14 worksheet is designed to accompany the author's book "Microwave and RF Vacuum Electronic Power Sources", Cambridge University
Press (2018). The section, equation, and figure numbers refer to the corresponding sections, equations, and figures in the book. Data input fields are
highlighted in yellow and output fields are highlighted in green.

This resource is provided free of charge by Cambridge University Press with permission of the author, but is subject to copyright. You are permitted to view,
print and download this resource for your own personal use only, provided any copyright lines are not removed or altered in any way. Any other use, including
but not limited to, distribution of the resource in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the
author and provided you give appropriate acknowledgement of the source.

The contents of this sheet are provided for educational purposes only and no warranty is expressed or implied that they are suitable for use as professional
design tools.

This worksheet is designed for investigation of the interaction between an unmodulated electron beam, represented by ND discs of charge in one electron
wavelength, and the RF field of a gap centred at z = 0 (see Section 11.8). Normalised values ore used for position (6 = Bez)and time (¢ = wt).

Input data
Beam voltage Vo = 25kV Normalised tunnel radius ~Na = 1.0 Bunch centre starting position 0p = 27
Beam current I=44A Normalised beam radius Bb = 0.629 Initial time dg = 6
Frequency f:= 1.GHz Normalised gap length Bgap := 1.0 Final position 0f = 2™
Space-charge (0 or 1) SCF:= 0 Number of discs ND = 12 Final time Op = 50

Normalised gap voltage ( X = MVg/V0 ) X:=12 Phase of gap voltage ( ® = 0 for accelerating field) @ := 90-deg
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Constants

Charge/mass ratio of the electron

Beam parameters

Electron velocity

Propagation constants

Physical dimensions

Small-signal parameters

Gap coupling factor

Beam loading susceptance

Plasma frequency
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b =9.06-mm
gap = 14.40-mm
[ Equations 11.36 and 11.38 | M(Be) =0.792

Equation 11.23
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“p
| Equation 11.57 et seq. | —
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Find the reduced plasma frequency (see Worksheet 11.2)

1
| ) F11(Bb.A) = 1 T1(Bb)-KO(A-Bb) + I0(A-Bb)-K1(Bb) .
— -1 Bb I0(Bb)-KO(A-Bb) — I0(A-3b)-KO(b) where A =%
2
Th(Bb,m.p) = Bb- P 1
e )
p —2\m -1 £2(Bb.m. p) = p / Il(tb(Bb.m,p))
Tb(Bb, m,p) I0(Tb(Bb, m,p))
1 1
fO(Bb,A,m,p) = - 1:=09 b,A,m) := fO(Bb,A,m,pl),pl
(Bb,A,m,p) M1b.A)  2(Bb.mp) P p(Bb,A,m) := root(fO(3b,A,m,pl),pl)
= b, 2,100 (Set m = 100 to represent confined flow) o= = ﬁ = 0.100

Large-signal disc model

The beam is modelled as ND identical rigid discs. The motions of the electrons at the central planes of the discs are tracked. We define
their initial positions and velocities using the disc thickness AL. As the Mathcad ODE solver rkfixed does not accept variables with
dimensions the dimensionless variables: 6 =3,z and ¢ = wt are used.

A
ND
Normalised disk starting 0:= | for je 0,2..(2:ND - 1) Disk charge Q:=
positions and velocities 0 . w-ND
X < j-05043+86) -7
relative to the gap centre. J
8! Check f-Q-ND = 4.400 A Iy = 4.400A
0

(c) 2018 Richard G Carter
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Space-Charge Field

Based on the equations given in
J.R. Hechtel, "The effect of potential beam energy on the performance of linear beam devices",
IEEE Transactions on Electron Devices ED-17, pp.999-1009, Nov. 1970

. . 1
The first ten zeros of the Bessel function J(2). B ;= —-(2.405 5.520 8.654 11.791 14.931 18.071 21.212 24.352 27.494 30.635)T
a

Calculate the axial electric field of a disc having a charge of 1 C at 100 points up to one electronic wavelength from the centre of the disc

ESn:= | for ne 0..100
en «~ 0.02:n-7t
)
n
z & —
Be
- 4 - { Jl(ume) 2 B AL
ES «|———| Z el e = -exp(—uBm~zn)~sinh — if 6 >056
N _ 1 J1(uB,,b) ’ AL
ES «|———| Z . | exp| =pB_-—— ~sinh(uB ~z) otherwise
n 2 uB_ | uB -a~]1(uB -a) m 3 m n
ES
Normalised positions at which ES was calculated Define a continuous function for the field by linear interpolation
On:= | for ne 0..100 Es(6) := sign(0)-linterp(6n,ESn, |0]) ES(0) := |Es(® + 2-m) if 6 <—m
Gn < 0.02:n-7 Es(6 —2-1) if 6>

0 Es(0) otherwise

(c) 2018 Richard G Carter
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01 := (-m),(-0.999-1).. 7w

The field of the gap

The space-charge field of adjacent

Normalised space-charge field bunches is included by assuming that
1 the field is periodic in z. This is not
correct but tests with an initially
05 unmodulated beam and three
wavelengths of electrons give almost
identical results for the trajectories and
the current harmonics except well
05 beyond the first bunch and at
microperveance greater than 2.

_sc (max)
o

E_sc/E_sc

-1 -0.5 0 0.5 1

Axial position (Radians / pi )

The electric field for unit gap voltage is found from the Fourier Transform of the field in the gap (assumed to be constant). The average of the
field over the beam is used. Linear interpolation on the values calculated at regular intervals is used to provide a fast look-up function.

En:=

for ne 0..100
en <« 0.02'n-7

20-7

Egap(0) := linterp(6n, En, | 0] )

~N(B) ey B7 - w2

2-11((B) b) _(sin(o.S-ﬁgap))_cos B 6 )ag
(¥(B)-b)-10(~(13)-a) 0.5-B3-gap e
5 2T
CHECK the gap coupling factor ﬂj Egap(0)-cos(0) do = 0.792 M(Be) =0.792
e’ 0

(c) 2018 Richard G Carter
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Electric field of the gap as function of normalised position and time

XV
R CY

A\
E,(0,) = R{%Egap@ expli-(¢ - <I’1)ﬂ

The blue chain-dotted line is the initial
position of the first electron in the
bunch. It should lie outside the range
of the gap field.

Turn space-charge force off until the electrons reach the gap centre to
avoid non-physical dispersion of the initial group of electrons.

E z/E 0O

Vg =37.883-kV
Normalised gap field
|
0.8 |
0.6 | |
0.4
0.2 | |
|
0 | |
-2 -1 0 1 2
Normalised axial position (Radians / pi)
SCF if 620

SC(0) =

0 otherwise
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Equations of motion

The Coefficients of the Differential Equations for the motions of the electrons are defined. Definitions of normalised variables
D(¢,0):= | for je 0,2..2-(ND - 1) b = wt 9=Be'z 6'=l
Dj — 6j+1 uo
1.5 d d v
—z =V —0=—
T] llo 2 ND-1 dt dd) UO
D. - 41— —-6. |1 E_(®., SC(6.)-Q ES(6. -6, .
i+ w-u c Jtl Z( J ¢)+ ( J) Q Z ( J 2-1)
i=0 d d Vv n-E
-V = _T]E _— =
D dt dd) ug (.A)‘UO

The Equations are Solved using with nmax time steps starting from ¢, which is defined in such a way that the centre electron would
cross the gap centre at t = 0 if it travelled with a constant velocity u,. The final time is ¢

Number of integration steps nmax := 100 The variable tol specifies the tolerance on the solution of the
differential equations. 10E-6 works well normally but much
smaller values may be needed at low drive levels

tol := 10~ °

Z:= AdamsBDF(e, ¢g. dg, nmax, D,tol)

The results are in a single table (Z) in which the first column (0) is the time and the other columns are the positions and velocities of the
electrons in the same order as before at each value of n.

(c) 2018 Richard G Carter
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Extract the vector of normalised time, the matrices containing the normalised positions and velocities of the disks, and the vector of the
final velocities of the electrons

én = | for ne 0..nmax On:= | for je 0..(ND - 1) un:= | for je 0..(ND - 1) umax ;= | for je 0..(ND - 1)
d)n “— Zn,O for ne 0..nmax for ne 0..nmax uj “— anax,Z-j+2
[0) en,j < Zn,2-j+1 un,j < Zn,2-j+2 u
(¢] u

Total kinetic energy of the electrons at each time step.

KE:= | for n& 0..nmax Check that the frequency times the intial KE is equal to the DC beam power
Q C2 ND-1
KE « .
nto 'Zo KEf = 110.0kW Ppc = VoIp = 110.0kW
J =
KE Final total kinetic power in the beam (KEnmax)'f = ISl psn

n := 0..nmax

1.4
2
Beam loading conductance 2 14
- .
[+
2
o 2-(1<Enmalx - KEO)-f E 1
2 g 0.8
Vg g .
Z.
Gbd = 30.3-pS 0.6
- 0 20 40 60 80 100

Time steps

(c) 2018 Richard G Carter
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Define a set of equally-spaced planes in 6 and compute the times and velocities at which the electrons cross them using linear interpolation.

Reference plane interval A6 := 0.01-7

Normalised positions
Op:= | for pe 0..NP
0« ——(8; - 8)) + 6
p NP

return 6

Normalised velocities

up:= | for je 0..(ND - 1)
for pe 0..NP
for ne 1..nmax
flag < 0
flag« 1 if 6n . >0
g n,j Pp

up . < un

(break) if flag=1

return up

6pp - enn_

S
p.J n=1.j on .-6n .
n,j n—1,j

Number of reference planes NP :

Normalised times

¢p:= |for je 0..(ND - 1)

for pe 0..NP
for ne 1..nmax

flag < 0

flag« 1 if On . >0
g 1 n,j Pp

¢pp,j — (1)nn_l +

(break) if flag=1
return ¢p

8 =8
A®

NP =400

-(d)n - d)nn_l) - Gpp if flag=1

Electron energies (eV) at the final plane

Vpf =

~(unn,j - unn—l,j) if flag=1

for je 0..(ND - 1)

c2 1
Vj «— v . -1
’ = (20 (P )]
C2
return V

(c) 2018 Richard G Carter
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Calculate the complex current harmonics at each plane by superimposing the Fourier components of the currents of the discs.

For simplicity each disc is treated as having constant length.

Number of current harmonics NH = 6
Ip:= | for pe 0..NP
Q ND-1
I «— . 6
Pp’o 2.1 AL d
j=0
for he 1..NH
ND-1
I «— 2Q sin M0 exp(j-h-¢
. .exp(i-h- )
Po.h T hoAL T Jeelitop, )
i=0
return Ip-ug

Find the position of the first maximum of the fundamental component of the RF beam current

pmax := | for pe 200..NP Opmax = Oppmax
Ipl_ « I
P | Pp, 1|

break) if Ipl_<Ipl
(break) if Ipl <Ipl _,

return p

Plotting ranges for graphs j=0.ND -1 x:=0,0.1..1.5

Ipmax = | Ip

Py
Instantaneous current = ———=
AL
94
Pulse phase duration = ——
up_ .
p.J
pmax, 1|
¢ = dg.. 1.2 pp = 0..NP

(c) 2018 Richard G Carter
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Small-signal interaction with space-charge ( X = 0.1)

w
Reduced plasma frequency 4 _0.100 Gap coupling factor M(Be) =0.792
w
. A . 1 w
Bunching length — =250 Maximum 11 /10 —.—.X =5.988
Ne 2 w
q
Disc model results
Bunching length Sy =0.34 Maximum 11 /10 lipias =1.182
2.7
Figure 11.25 Figure 11.26
-1 T T T
2
= S
o ~
g
: v /\\’Q\/
0
0 0.2 0.4 0.6 0.8 1
theta /2 * pi theta /2 * pi
n=
Note: For this figure SCF = 1 and 6; = 20-m. The sign of phase is n=2
fayayay n= 3
reversed so that accelerated electrons move upwards B9 n=4
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Applegate diagram

Beam perveance

Normalised gap voltage

Perv = 1.11-pP
%

£ _ 1515
Vo

Note: Beam loading conductance

The text of the last paragraph of section 11.8.2 (p.423) is wrong.
The beam loading conductance calculated using the disc model
without space-charge is close to that from small-signal theory.
However, when space-charge is included the results are erratic
because the conversion of some energy into potential energy in
the bunched beam varies with position. The best results of the
disc model are obtained with 6; =2-m.

4
3

2

*

N

~

N

« 2

2

<

s

Q

fa)
1
0

omega *t/2 * pi

Small-signal theory

Using the disc model

Figure 11.24

Note: for this figure X = 0.2, ® = 90 deg and SCF = 0

Gp(Be) = 24.6-pS

Gbd = 30.3-uS

(c) 2018 Richard G Carter
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Approximate models of the beam/gap interaction

Calculate the exit energy as a function of ¢ using piecewise constant velocity and iteration to find the exit velocity. The results are compared with those

from the disk model.

Using the small-signal value of M

VsO0(d,X,®) =1+ X-cos(d — P)

Equation 11.8

Effective value of M calculated as the mean of the values of M calculated at the initial and final velocities.
This is the version used in the book for fig. 11.31(a))

-0.5

[ Equation 11.168 |

M VoV
VssZ(d),X,@,V ) =1+ iy 1+ M
S M3

5 J-Xcos(d) - ®)

V=02 fn2(Vs,c]),X,<I>) =V, — Vss2(c|),X,<I>,VS) Vs2(d,X, ) = root(fn2(VS,d),X,<I>),Vs)

(c) 2018 Richard G Carter
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E z/E 0O

u/ul

Figure 11.17(a)
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Normalised axial position (Radians / pi)
Figure 11.27(c)
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Figure 11.27(b)
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Figure 11.27(d)
3
2 A
(=]
> )
=~ 1
= °
N ° ,’
0 N
-1
-1 -05 0 0.5
phi / pi

000 Disc model
----- Approximation 1
— Approximation 2

Note: For this figure X = 1.2,
SCF =0 and Op =27
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