WS 14.2 Helix TWT large-signal model

© 2018 Richard G Carter

This Mathcad 14 worksheet is designed to accompany the author's book "Microwave and RF Vacuum Electronic Power Sources", Cambridge University
Press (2018). The section, equation, and figure numbers refer to the corresponding sections, equations, and figures in the book. Data input fields are
highlighted in yellow and output fields are highlighted in green.

This resource is provided free of charge by Cambridge University Press with permission of the author, but is subject to copyright. You are permitted to view,
print and download this resource for your own personal use only, provided any copyright lines are not removed or altered in any way. Any other use, including
but not limited to, distribution of the resource in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the
author and provided you give appropriate acknowledgement of the source.

The contents of this sheet are provided for educational purposes only and no warranty is expressed or implied that they are suitable for use as professional
design tools.

This worksheet provides a simple large-signal model of a helix TWT. Small-signal analysis (see Worksheet 14.1) is used to provide an initial estimate of the
RF electric field acting on the electrons. The electrons in one wavelength are represented by a set of rigid disks of equal dimensions whose charges are
equal. The motion of the disks is tracked through the helix with time as the independent variable using numerical integration. Dimensionless variables

0 = B,-zand ¢ = w-t are used.The RF power transferred to the helix is computed using conservation of energy.

The model can be run with, and without, space-charge and the backward wave. Three wavelengths of electrons are tracked where the outer wavelengths
are guard wavelengths to ensure correct calculation of the space-charge forces. The results are computed from the electrons in the central wavelength.
Good results are normally obtained with 24 electrons per wavelength.

The results in the time domain are converted into the space domain by finding the times at which the electrons cross NP regularly spaced planes and their
velocities at those times. The RF beam current harmonics are computed by superimposing the harmonics of the current pulses of individual discs repeated
at the signal frequency. This is a complex model which takes over a minute to produce the results.

The results obtained with this sheet differ slightly from those given in the book because of small changes to the model since those results were generated.
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Tube data
Anode voltage Beam current Frequency RF input power Beam radius
V, = 6.0-kV Ip= 135-mA f:=11.7-GHz P, = 10-mW b = 0.34-mm
Helix radius Helix length Propagation constant Pierce impedance Cold loss per wavelength
a:= 0.68-mm L;, == 100-mm B0 := 1700-m ! Zp:=37Q loss := 0.0-dB

Parameters of the large-signal model
Number of discs per wavelength Nd := 24 Space-charge forces (1 = YES, 0 = NO) SCF:= 1
Backward wave (1 = YES, 0 = NO) BW:=0 Saturation effects (1 = YES, 0 = NO) SAT = 1

When saturation effects are to be included the model is run first without saturation effects. The positions of the trapping and saturation
planes in the green result fields are copied into the fields below and the model run with saturation effects included. The new plane
positions are inserted and the process is repeated until convergence is obtained.

Trapping plane z; = 69-mm Saturation plane zg = 89-mm

The section below can be collapsed to allow the data and the results to be seen on the screen together.

(c) 2018 Richard G Carter
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Small-signal model

Define constants

C
= 1759-10"" =

Charge/mass ratio of the electron
kg

1.5

Perveance  pP:= pA-vV_

dB=1

dBm:=1

Calculate the beam velocity, allowing for space-charge potential depression, and the electronic propagation constant.

Vo= Vl <V,
for ne 1..5
1 0.5
u «—c|l- 5
nv,
1+
2
C
I
1 b
V <V - 0 = —1In| —
n+l I 2x ggru\2 a
return V
n+1
2.
w:=2-7f Be = = Ne = T
uo e

1 0.5
ug=c|1-
2
n-Vo
1+
2
C
Vo =5.94kV
up =4.53 % 10" ms !
o
Perv .= ——
1.5
Va
Be
e = Rel

Calculate the plasma frequency and the reduced plasma frequency

I
Plasma frequency W = ﬂ.—O.L

€0 7T-b2~uo Rel3

o

Ratio of magnetic field to the Brillouin field
chosen to approximate confined flow

Rel =

Rel =1.012
Perv = 0.29-pP
'ye-b = 0.545
mB = 10

(c) 2018 Richard G Carter
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Wq = |2 Yerd
b b
1
1 2
— -1
2
P
Tb(p) ¢ ~b- |

-1

p2 - 2-(mB2 - 1)
1 T1(yb)-KO(~va) + I0(~va)-K1(+b)

Ab 10(+b)-KO(~a) — I0(~ya)-KO(~b)

1
1 - —

p° 11(rb(p)
Tb(p) 10(Tb(p))
fn(p) « L - !
fnl  fn2(p)
p0 « 0.9

w q < root(fn(p0), p0)- wp

fn2(p) «

w w
g =1 —4 _0.059
q w

U0

Propagation constants of the fast and slow space-charge waves

Calculate the characteristic impedance and the coupling impedance of the helix

E _ 2
0= gy Z. = Zp10(~g-a)
8y = B0 1 - j loss

0- ! 40-1-log(e)

L
ZC

6f 6s
Electronic admittance of the beam
I
Y, = I Equation 11.80 Zo = L
Rel-(Rel + 1)-V() wg Y,
Phase velocity of the slow space-charge wave
B
S Bs
I1 ‘b
1 2 1(vpb)
N1 == (0 + B, = —— ———— Z.=67.80
1 2 ( 0 s) (¢ ~1-b IO(ﬂ{l-a) (¢
e =0.767

(c) 2018 Richard G Carter
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Pierce parameters
1

3

2 2
Me Zelp “g 1 1 (Bo loss-Bg 1 «
CP:=| ——— QC:= —_— bPi= —| — -1 o= ————— dp = — —
4-v, w+ Wy 2-CP CP | B, 40-1-log(e) CP 3,
Coupled-mode matrix
! ! Equation 11.132
Bo 0 E‘Mc'zc'Ye' Be _E'MC'ZC'Ye' Bs quation 1.
1 1 Note: this equation is wrong in the book and has been
0 —Bo _E'”c'zc'Ye' B¢ E'HC'ZC'Ye' Bg corrected
CM =
1 1
5 HeBo =5 HerPo Bt 0
1 1 The eigenvalues of the matrix are
E'MC'BO _E'MC'BO 0 Bs J
B:= |B « sort(eigenvals(CM))  Note: The roots have
3 been sorted in the
0 order:
b (1) Backward wave ~1700
— if 1 <0
B B, ' m(63) (2) Fast wave B 1505 — 1l
(3) Decaying wave B= 1720 — 71i
B, (4) Growing wave .
Growing wave propagation constant Bg = g3 5 1720 + 7l

(c) 2018 Richard G Carter
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Dimensionless connection matrix which relates the amplitudes of the coupled modes (W) to those of the uncoupled modes (U)

CC:=

Yc YC~Q

Ye « Ye-ﬂ
1 1 0 O
Yec -Yc 0O O i

Cl Equation 14.14
0 0 1 1

0 0 Ye —-Ye
C2« |[for je 0..3

C20,j «—1

2 2 -
(Bj) B0 | ye [ Equations 14.26 to 14.29 |

3 — |
Be_ BJ

C2,.«<C2, . ———

2,j 3.] Bq'Ye

Cc2

C2

CC« C2 Cl

Equation 14.31

Calculate the ratio of electron velocity to the phase
velocity of the growing wave and to the phase
velocity of the helix

Re( 3

u0_vg := (Py) u0_vg = 1.060
Be
Re( (3

u0_vp = ( 0) u0_vp = 1.048
Be

Calculate the phase of the bunch relative to the
growing wave. The phase shift of mis a result

of the sign convention used for the current in
the large-signal model.

2 2
Bop — (8
¢IV::1+iar O—(g)

Equation 14.28

(c) 2018 Richard G Carter
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Dimensionless transfer matrix which relates the uncoupled modes at the start of a section to those at the end of the section

exp(—jﬁzo) 0 0 0
’ eXp(_j ‘ BZI) 0 0 Equation 14.32
SS « .
0 0 exp(—]-Bzz) 0
0 0 0 exp(—j~Bz3)
T cc Lss.cc Equation 14.33

Transfer matrix which relates the uncoupled modes at the start of a section to the wave amplitudes at position z is

RR(z) == |Bz « Bz
GXP(—J"BZO)
0

SS «
0

0

RR « SS-CC

0 0 0
exp(—j Bz 1) 0 0

0 exp(—j : Bzz) 0

0 0 exp(—j : Bz3)

(c) 2018 Richard G Carter
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Set up initial conditions

Voltage of the input signal V. = [2P - Z Vi, = 116V

Uncoupled amplitudes at the input

1
—RR(L ) This definition of U1 ensures that the output of the tube is matched so that the
h)0.0 amplitude of the backward wave at the output is zero. It is necessary because a
Ul = RR(Lh)o,l “Vip single section with high gain has been used so that reflection of power at the
output can cause errors which would not occur in a severed tube.

0
0 0.0
. 0.1 + 0.01
Check wave amplitudes at the output W2 = RR(Lh)'Ul W2 = 00— 0.0
—U.U — U.U1
—434.6 — 427.51

Uncoupled amplitudes in the output waveguide

U2 := TT-Ul Equation 14.33

(c) 2018 Richard G Carter
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Computation of the signal growth along the length of the tube

The forward power on the helix as a function of position along the structure is computed from
the forward wave amplitudes at the start of the section using equations (14.26) and (14.27).

Re(Wl(z)1~W1(z)l-Bl + Wi(2), Wi(z2),:8, + Wl(z)3-W1(z)3-B3>

W1(z) := RR(2)-Ul Pp(z) =

2Re(By) Z
. . _ P¢(2)
Small-signal gain for the full length of the helix Gain(z) := 10-log
in
Plotting range z1:=0,0.001-Ly,.. Ly

80
E
g 60
3
= Figure 14.10
o
5 40
o
5
B
E
220
o
4 /

0

0 20 40 60 80 100

z (mm)

Pp(0) = 4.19-mW

Gain(Ly,) = 54.4-dB

(c) 2018 Richard G Carter
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Large-signal disk model

It will not normally be necessary to change these settings

Number of wavelengths tracked (odd)

Bunch centre starting position
Number of integration steps
Final values of the normalised position and time

Number of discs

Normalised disk thickness

Normalised initial positions and
velocities of the disks

NAx=3

0p:=—(NX+ D)

nmax = 100

Of = BeLh
ND := Nd-NX
2-t-NX
Od = T
ND

Number of harmonics for current calculations

Number of reference planes

d)f = Gf + 107t

Disk charge

Disk length

0:= | for je 0,2..2:(ND - 1)

0.  «1
j+1

0 <—90+N>\7r-(1 oy R 1)
J

ND

NH:= 6

NP := 200

w-Nd

AL = —

(c) 2018 Richard G Carter
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Compute the space-charge function

The Space-Charge Field is found from the equations given in
J.R. Hechtel, "The effect of potential beam energy on the performance of linear beam devices",
IEEE Transactions on Electron Devices ED-17, pp.999-1009, Nov. 1970.

Define the first ten zeros of the Bessel function J(z).

1
pB == —-(2.405 5.520 8.654 11.791 14.931 18.071 21.212 24.352 27.494 30.635)T
a

Charge density

Po =

Tr~b2~AL

pg is calculated for a disk charge of -1C.

Thus the electric field must be multiplied by the charge of the source disk

The space-charge field is calculated at intervals over a normalised distance of 27 from the centre of the disc.

ESn :=

ES

for ne 0..240

0« —.x
n 120

Jl(uBm-b)

' HB,,-a-J1 (1B, -a)

Jl(uBm-b)

' HB,a-J1(1B, -a)

2 uBm-AL
-oxp(-4B, 7, ) sinh| ———— || if 0, 20.56¢

2

ALY | .
.| exp —}LBm-T -smh(uBmzn) otherwise

(c) 2018 Richard G Carter
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The space-charge table is converted into a continuous function using linear interpolation

On =

_sc (max)

E_sc/E_sc

for ne 0..240 Es(0) := sign(0)-linterp(6n, ESn, |9|)
0« .
n 120
6
Normalised space-charge field
1
0.5
0]
- 0.5

-1 -05 0 0.5 1

Axial position (Radians / pi )

ES(0) =

Es(6 + 2-NX\-mt) if 6 < —-N\-7t
Es(0 — 2-NX\-m) if 6 >N\
Es(0) otherwise

(c) 2018 Richard G Carter
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Interaction field

The interaction field on the axis is found using small-signal theory because Mathcad is too slow to make iteration possible.

All quantities are defined in terms of absolute position and time

Initial wave amplitudes

Forward wave field

Backward wave field

Sat(z) :=| | Sat < |exp —Im(B

1 otherwise

| | return Sat

Interaction field ( V/m)

3

W, = W1(0)

3

0.000

0.115
Win = .
0.525 + 0.012i
0.525 — 0.012i1

B8
. . n .
E¢(0,0) = |Ef « |R E J-Bn-Winn-expy[d)—B—-e if 620A6<06¢
e

n=1
0 otherwise

return Ef-p.

B

. . 0 .
Ep(6,4) := |Eb <« |R J-BO-WmO-epr- ¢—B—~6 if 620A6<06¢

0 otherwise

return Eb-p.

(z-2)

. if z>2z. ASAT=1
2'(Zs_zt) t

E,(0.d) := (Ef(e,q>) + BW~Eb(9,¢))~Sat(

(S

Define an approximate function to model saturation using
quadratic variation of growth rate starting from the position
of first trapping. Note that this differs from the cubic
function in equation (14.65). The quadratic function gives
better consistency with the large-signal results in this
case.

0
Be

(c) 2018 Richard G Carter
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The Coefficients of the Differential Equations for the motions of the electrons are defined.
Definitions of normalised variables

The rows represent, in order, the position in radians and the normalised velocity of the electrons.

Const := — N
w-u
0 & = wt 0=8,2 0=—
u
D($,0) = | for je 0,2..2:(ND - 1) 0
D. « 6.
] j+l d d %
_ —z =V —0=—
r 2—15 dt dd) U.O
uo .
Dj+1 < || Const{1 - (T-Gjﬂj 'Ez(ej’d)) if SCF # 1
- - dys —nN-E d v _nb
r ~1.5 dt dou w-u
" 2 ND-1 ®to 0
Const-| 1 — T~6j+1 . EZ(OJ.,d)) + Z (ES(GJ. - 62.i)) otherwise
B - i=0

D

The Equations are Solved using with nmax time steps starting from 0. The final time is t;

The variable tol specifies the tolerance on the solution of the differential equations.

10E-6 works well normally but much smaller values may be needed at low drive levels tol := 10 ¢

Z = AdamsBDF(e, 0, d)f ,nmax, D, tol)

The results are in a single table (Z) in which the first column (0) is the time and the other columns (1-12) are the positions and
velocities of the electrons in the same order as before at each value of n.

(c) 2018 Richard G Carter
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Extract the vector of phase, the matrices containing the normalised positions and velocities of the disks and the vector of the final velocities of the electrons

én = | for ne 0..nmax On:= | for je 0..(ND - 1) un:= | for je 0..(ND - 1)
d)n “— Zn 0 for ne 0..nmax for ne 0..nmax
¢ %0 < Zn2jr Uni < Zn2ji2
6 u

Define a set of equally-spaced reference planes in 6.

0
Op:= | for pe 0..NP zp = B_p
e
0« L0,
p NP
return 6

Find the normalised velocities of the electrons as they cross each reference plane

up:= | for je 0..(ND - 1)

for pe 0..NP
for ne 1..nmax

flag < 0

flag« 1 if 6n . >0
g n,j pP

6pp - enn—l,j
up . < un .+
P n=1.j  6n_.—6n

~(unn,j - unn—l,j) if flag=1
n,j n—1,j

(break) if flag=1

return up

umax := | for je 0..(ND - 1)

U max, 2.4+2

(c) 2018 Richard G Carter
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Find the phase of the wave on the helix as a function of position from the small signal model

’ B P Re(63)
Vi(0,9) = Z Winn-exp il - 5 -0 dV(0) = arg(vh(e,O)) - B—-e
n=1 c c

Find the phase when each electron crosses each reference plane referred to the phase of the growing wave determined from the small-signal model.

¢p:= |for je 0..(ND - 1)

for pe 0..NP

for ne 1..nmax

flag < 0

flag« 1 if On_ . >0
e BT Py

Op — On

p n—1,j .
. + - + ¢V|(06 f flag=1

e R L | R N
n,j n—1,j

(break) if flag=1

for pe 1..NP
. — .+ 2. if .= . >
<1>pp,J <1>pp,J T i ¢Pp_1’J <1>pp,J ™

.= =2 if .= > T
d)pp,J d)pp,J d)pp,J d)pp—l,J

return ¢p

(c) 2018 Richard G Carter
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Define the serial numbers of the electrons in the central group used to calculate the performance of the tube.
NG := 0.5(NX—-1) N1 := NG-Nd N2:=NIl+Nd-1
Find the mean velocity of the electrons normalised to the phase velocity of the growing wave

umean := | for pe 0..NP
| N2
um_«— —- up .
p Nd p.J
j=NI1
Re(BS)

Be

um-

Calculate the complex current harmonics at each plane, normalised to the DC beam current, by superimposing the Fourier components of the discs.
For simplicity each disc is treated as having constant charge and length. The currents are referred to the phase of the growing wave.

Ip:= | for pe 0..NP
N2 |
Ip ,« (—-Od) Q.-up_ .
p.0 Z 2 Instantaneous current = ——1
J=Nl AL
for he 1..NH
N2 . %4
h-6, Pulse phase duration = ——
I «— 0,-si . i-h- . up_ .
o 3| Busi —[oofinor, )
j =N1 27Tllpp’J + 0-10
Ip
return —
T

(c) 2018 Richard G Carter
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Find the normalised amplitude and the phase of the first harmonic of the RF beam current Find the first maximum of 1./1,

Ipl:= | for pe 0..NP ¢I1:= | for pe 0..NP Ipl for pe 0.NP -1

max ‘=
Ipl ‘(Ip<1>)p‘ o1 arg[(lp< 1>)p} Imax < Ip1 ) if Ipl > Tpl |

Ipl o (break) if Lhax # 0

(break) if Lhax#0

return L.+
Calculate the total kinetic power of the electrons as they cross each reference plane.

Ppc =1y Vo Prp:= | for pe 0..NP

CHECK the initial beam power is equal to the DC power Prp0 =801.4W P = 801.4W

The RF power on the helix at each plane is equal to the DC beam power plus the initial RF power minus the residual beam power at that plane.
This ignores the effects of harmonics

Find the maximum RF power, the saturated gain and the efficiency

Prax ) Prax . P
Poax = max(PRF) Max_power = 10-log Sat_gain := 10-log MNe =

1-mW in

(c) 2018 Richard G Carter
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Find the initiation plane at which the large-signal phase first equals Find the plane at which trapping commences where the velocity of the slowest
the small-signal phase electron equals the phase velocity of the growing wave obtained from the
small-signal model.

py:= | for pe 0..NP

p; = | for pe 0..NP
' Lp for je NI..N2
or je .
—¢Hp zi=py— ! . Ly
p: p if > IV NP Re(By) =P
1 . g NP
T pt<—p1fuppj~ <1
(break) if p; * 0 e
break) if p,# 0
(break) if p; # 0 (break) if p
(break) if p#0

return p;

return p;

Find the plane of saturation Calculate the spent beam distribution curve at plane P

pg:= | for pe 0.5-NP..NP — 1 Ly, Vs(P):= | for je 0.Nd -1
«—p if Ppp >P 8= Py ip s, .
Py p 1 RF, > 'RE | NP US; <~ UPp iiNd
(break) if p,#0 uss <« reverse(sort(us))
S

. for je 0..Nd -1
(break) if pg# 0 5 Gain(zs) = 47.990-dB
return pg Vsj < (ussj)

return Vs

Plotting ranges Gain compression

pl = 0.NP nj:= 0..ND jl:=0..Nd -1 Compression := Gain(zs) — Sat_gain

(c) 2018 Richard G Carter
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A

Results

Perv = 0.290- pP

Small-signal results

Pierce parameters (C, QC, b and d)

Relative phase of the bunch /1t

Beam velocity / phase velocity of helix

Large-signal results

Saturated RF power

Saturated gain

Maximum normalised RF beam current

Initiation, trapping and saturation planes

Plotting plane and phase offset

CP = 0.061

SIV = 0.406

u0_vp = 1.048

Poax = 133 W

Sat_gain =41.2-dB
Iplmax =1.102

zi = 22.5-mm

P:= pg

QC =0.212 bP = 0.784

Beam velocity / phase velocity of growing wave

Efficiency Me = 16.4-%

Gain compression Compression = 6.8-dB

zt = 69.0-mm zs = 89.5-mm

Offset := 2

dP = 0.000

u0_vg = 1.060

(c) 2018 Richard G Carter
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‘et -4 -—4+ -« — -«

20

10

— - Small-signal with saturation
Axial position (z / lambda_e)
Figure 14.10

£
.20 .20 = o B O — <
RZEZ 2 .8 g
— -
T3 E &5 /
S EEEZES
— »n = = w»n
R \
| 854
] o
S S S [=)
) < Q
(gp) romod

N\ .,,,\Q\ 7/ ;
K ,z.ws\\

Axial position (z / lambda_e)
Figure 14.13

1d 7 aseyd oane[oy
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Normalised current

1.5 reY

€-9-¢ |st harmonic
©-0-¢ 2nd harmonic
660 Initiation
A& Trapping

1[ |&#&4& Saturation

Relative phase / pi

0.5

0

|
$
|
|
T
-

0

Axial position (z / lambda_e)

Figure 14.11

0.5

-05

__e._

Large-signal
— - - Small-signal
©60 Initiation
AN Trapping
A-AA Saturation

10

Axial position ( z/lambda_e )

Figure 14.12
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Phase space diagram at plane P I

e__

/\ Y 1.05

Normalised velocity

u_mean/ vl
— —o— o —

—B———D—_E>_/'—B——
[\
—>— > — — —

1/10

<u>/vl
¥ 0.93 660 Initiation !
Figure 14.14 a5 Trapping \
A4k Saturation |
-05 0 0.5 1 0.9 T
. . 0 10 0
Relative phase / pi
Axial position (z / lambda_e)
Spent Beam Curve at plane P Figure 14.15
Figure 14.16
0.2 0.4 0.6 0.8 1 1.2 14
V/Va
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