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This sheet illustrates the basic principles of the continuous travelling-wave tube interaction using small-signal theory (see Section 14.2.1)

Define the beam and helix parameters

Anode voltage
V, = 6.0-kV
Tunrel radius
a:= 0.68-mm
Section 1 length

zy = 50-mm

Beam current

I) = 135-mA
Beam radius
b := 0.34-mm

Sever length

Zg:= 5-mm

Synchronous frequency

fy:= 11.7-GHz
Shield radius
rg=al5

Section 2 length

zy = 50-mm

Magnetic field/Brillouin field

mB := 2
Effective permittivity Cold loss per wavelength
€y:=25 loss := 0.05-dB

Tape helix parameters

oc:=1 op =1
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The section below can be collapsed to allow the input data and the results to be seen on the screen simultaneously

Physical constants

Charge/mass ratio of the electron n:= 1.759.1011£ Perveance WP = pA-V = dB=1
kg
Calculate the beam velocity and the electronic propagation constant
1 0.5
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Note the parameters of the model must be dimensionless because Mathcad will not accept mixed dimensions in matrices.
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wy = 2-1-fyys Be(w) = —-m:s Ye(w) =
Rel

Up

ORIGIN = 1

Rel =1.012

Ne(wp)-b = 0.545
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Calculate the plasma frequency and the reduced plasma frequency

Plasma frequency wp = s, ﬂLL
m | o 7T~b2-u0 Re13
wq(w) = |va ¢ Y(w)-a
PYb « ﬁ{e(w)'b
wy(w) _ Walw
: By(w) = ——-ms | o) _ o
1 2 Ug (o)
— -1
2
Tb(p) < "b- P

1

-1
p2 - 2~(mB2 - 1)
L‘ I1(~4b)-KO(~va) + I0(~va)-K1(vb)

b 10(«b)-KO(~ya) — 10(~ya)-KO(~b)

1
1 - —

p’ 11(7b(p)
To(p) 10(7b(p))

1 1
fn(p) « — -
fnl  fn2(p)

fn2(p) «

p0 « 0.9

w, < root(fn(p0), p0)- wp

q
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Propagation constants of the fast and slow space-charge waves

Br(w) = Be(w) = By(w) By(w) :

Be(w) + By(w)

. . Iy w
Electronic admittance Y (w):

Rel-(Rel + 1)-Vyy wg(w)

Phase velocity of the slow space-charge wave

Sheath helix with a shield and dielectric supports

Li(y, ) =

Na < ~-a

NS = VI

Ho-m 2
Ly« —I1(~va)-K1(~a) cot()
2-m-H

L« Lo-(l - —H('Ya)'KI(“{S))

I1(vs)-K1(va)

Phase velocity

1

vp(Y, ) =
JoroacLi(v,$)-Cy(v)

Ve(w) =

Equation 11.80

vps(w) =

Ci(v) =

Br(w)

) Bs(w)
(W) =
el s Rel
Z(w) =
Ye(w)
)
Bs(w)
~Na « ~y-a
NS & VI
2-T-Epm
Co

P U
10(~a)-KO(va)-F

11ya) KO(s)

D -10 -K1 41+ —

oo ma)( ’ Klma)-loms))
Eeit < 1 + (65— 1)D

-1
Cy « C()'Seff'(l - —IO(Wa)'KO(“))

10(~ys)-KO(~a)
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Find the pitch angle which gives the required phase velocity at synchronism

Wo

v, = ) P, = 10-deg = roof (vp(~s(wo) 1a) = V) U] Check synchronism vp(Vs(wo) . W) = vy =0
s\ ™0
P = 10.7-deg
Helix pitch ph == 2-7-a-tan()-m pp = 0.81-mm
h =081
, . o Bs(wo)'Ph
The normalised phase shift per turn at the synchronous point is —  —0.443
TT- M
Propagation constant
> Phase velocity and group velocity
2 W m
Bo(w) = [¥(B) « |B ——— w 1
E § Vp(w) = d
Bo(w) Vg(w) = d—Bo(w)
B — Bs(wO) w
By < root B -w,B Check synchronism Bo(wo) = By(wp) =0
JLi(1(B),H)-C (V(B)) :
f ._il. tm_l f =26.73-GH
Frequency at the pi mode T S N T om »Wo ™= i
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Transverse impedance, characteristic impedance and Pierce impedance

Z(v) = oLy, ) ) |
t = . 7 = ——_— Y =
/ ac-C(v) (W)= |« [Bo(w) 22 (W) 74
Vp(w)
Z(")
V(W)
2 W 2 -2
- _Y ot Z¢
Yo(w) = | Bo(w) B m’-s 7, = (w)

10(vo(w)-a)°

Compute the coupling factor corresponding to the propagation constant of the growing wave

2 T{viw-b)
N1(w)-b 10(~;(w)-a)

1
V() 1= (o) + () Me(w) =
Adjust the propagation constant on the helix to include loss

By = Bo(w)-(l - ﬁj

40-7-log(e)

Bo(wo) = 1717 - 1.6i Be(wp) = 1623 By(wo) = 94314 Z(wy) = 5201 Zwy) =58.7 pe(wp) = 0.765
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Coupled-mode matrix

[ 1 1
BO 0 Euc Zc' Ye'(Be - Bq) _E'uc' Zc' Ye'(ﬁe + Bq)
1 1
0 _60 _E'MC'ZC'Ye'(Be - Bq) E'Hc'zc'Ye'(Be + Bq)
CM(Bo. By Ber e Ze» Ye) = | |
E'Hc'ﬁo —E‘Mc‘ﬁo (Be_ Bq) 0
LBy —peBo 0 (Be+ By)
_2 (¢ 5 c e q

The eigenvalues of the matrix are

Bn2(w) = eigenvals(CM( Bo(w), Bg(w), Be(w), pe(w) , Z(w), Ye( UJ)))

Equation 11.132

[This equation is incorrect in the book

B(w) = | B « sort(Bn2(w))
8 Note: The roots have been —1717 + 2i
1 sorted in the order: 1511 — 0i
— U1
Py (1) Backward wave Blw) = 1726 — 671
B« if Im( ¢ 4) <0
By (2) Fast wave 1726 + 65i
(3) Decaying wave
By (4) Growing wave
8
Two wave approximation
Bo(w) + By(w) y
B2(w) = % + JE\/ uc(w)z-zc(w)-Ye(w)-Bo(w)ﬁs(w) — (Bo(w) - Bs(w))2 |Equation 11.145 | B2(wp) = 1717 + 69i

(c) 2018 Richard G Carter
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The connection matrix which relates the amplitudes of the coupled modes to those of the uncoupled modes is

CC(w) =

Ye ¢ Y (w)
Ye < Y (w)
He < pe(w)
1 1 0 O
Yc -Yc O 0
Cl «
0 0 1 1
0 0 Ye —-Ye
BB « B(w)
B0 < By(w)
Be « Be(w)
Bq < By(w)
C2« |for je 1..4
C2. .« 1
L,j
BB.-Yc
2.« —3
2,j B0
2 2
(BBj) B0 vy,
2, «|——|—
4. BBj-BO pe
Be - BBj
C2, . «C2, ——
3.] 4] BgYe
C2
ccec2 La

Equation 14.14

| Equations 14.26 to 14.29 |

Equation 14.31

(c) 2018 Richard G Carter
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The transfer matrix which relates the uncoupled modes at the start of a section of length z to those at the end of the section is

TT(w,z) = | Bz « B(w)-z
exp(—j-le) 0 0 0
0 exp(—j- Bz 0 0
SS « p( : 2) Equation 14.32
0 0 exp(—j~623) 0
0 0 0 exp(—j-Bz 4)
T « CC(w) l-SS-CC(w) Equation 14.33

Transfer matrices for the sections of the tube

TI(w) = TT(w,z;)

T2(w) = TT(w,2,)

The transfer matrix which relates the uncoupled modes at the start of a section of length z, to the wave amplitudes at the end of the section is

RR(w) := | Bz « B(w)-z,
exp(—jﬁzl) 0 0
0 exp(—j-Bzz) 0
SS ]
0 0 exp(—J-Bz3)
0 0 0
RR « SS-CC(w)

0
0

0

exp(—§-Bz,)

(c) 2018 Richard G Carter
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Matrix representation of the input section

The amplitude of the input signal is unity, the beam is initially unmodulated and it is assumed that the amplitude of the backward wave
amplitude at the output is zero. Thus three boundary conditions are defined at the input and one at the output.

1

“Tl(w) This equation assumes that the backward wave amplitude in the output
_ 21 transmission line is zero and the the line is matched to the circuit in the
Ul(w) = Tl(w)2 ) Equation 14.35 absence of the beam. When the beam is present there is a change in the
' matches at the ends of the circuit resulting in gain ripples. This can be
0 observed by enabling this equation and disabling the one below.
0
1
“RR(w) In a helix TWT the end of the first section is normally terminated by an
_ Lt internal attenuator so that the amplitude of the backward circuit wave is zero
Ul(w) = | RR(wW), , at the end of the section. This is represented by the equation to the left
’ which is not given in the book.
0
0

Then at the end of the section 0.0

0.1 — 0.0i
W2(w) := RR(w)-Ul(w) W2(wy) = ! Note: Backward wave = 0 as required
%1 20.0 + 0.0i

0.5 + 12.0i

U2(w) = T1(w)-Ul(w) Equation 14.33

(c) 2018 Richard G Carter
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The gain of the section is Gainl(w) = 20-10g( |U2(w)l|)
The returned signal at the inputis  20-log(|U1(wp)o| ) = —92.4-dB
The coupled modes at the start of the section are Wl(w) = CC(w)-Ul(w)
20-log(|W1(wp)4|) =—6.8-dB

The launching loss is

The cold loss through the section is 20-log(exp(Im( By(wp))-21)) = -0.7-dB

Matrix representation of a sever

The propagation matrix for the uncoupled modes through the sever is

Ts(w) == | Bf « Bp(w)
Bs « Bs(w)
00 0 0
00 0 0
TS0 0 exp(j-Bfz) 0
00 0 exp(—j-Bs-z)

Gain1(1.0-wy) = 21.7-dB

(c) 2018 Richard G Carter
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Matrix representation of the second section

The amplitude of the input signal on the structure is zero as is the backward wave in the output transmission line.
The section is driven by the fast and slow waves on the beam carried forward from the previous section.

U3(w) := | U3 « Ts(w)-U2(w) ' This equation assumes that the output of the
section is matched in the absence of the beam.
—(T2(w)2’3~U33 i T2(w)2’4-U34) ; When the beam is present the change in the
U3»2 “— Equation 14.41 -
T2(w)2 2 matches produce gain ripples. These can be
’ demonstrated by enabling the equation to the left
U3 and disabling the equation below.
0.0
00 The gain ripples disappear if it is assumed that
U3(w) = Ts(w) U2(w) U3(wp) = T the forward and backward uncoupled waves at
37.9 - 1.61 the start of the circuit are both zero.
—68.2 — 99.2i
The vector of uncoupled waves at the output of the section is
U4(w) == T2(w)-U3(w)
The overall gain of the tube is Gain2(w) = 20.10g(|U4(w)1|) Equation 14.42 Gainz(wo) = 45.0-dB

The Sever Loss can be computed from the vector of coupled waves at the start of the second section

W3(w) = CC(w)-U3(w) 20-log(|W3(wp)4| ) — 20-log(|U2(wo)1|) = -5.0-dB

(c) 2018 Richard G Carter
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Computation of the signal growth along the length of the tube

The amplitudes of the forward waves in dB as a function of position along the structure are computed from the forward wave
amplitudes at the start of each section

4
WA = W1(w) B8 := B(w) VA(z) := 20-log] Z (WAj-exp(—j-BBj-z)) z1:= 0,0.001..z,
j=2
4
WB = W3(w) VB(z) := 20-log Z [WBj~exp|:—j~BBj~(z -z - zs)] 22:= (2 + 2),(z) + 25 + 0.001)... (2] + 2 + 2,)
j=2

40

30,

20) /
10

/

Forward wave amplitude (dB)

0 0.05 0.1

z (m)
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Plotting frequencies in GHz f1:=1,2..30 wl:=|for fe1,2..30

wlf — 2~7T-f-109

wl
0.145 80)
©-<9- Pierce impedance
4-4-¢ Coupling impedance

0.144 60)
E
S S
2 o

5 0.143 S 40
i) 3
B) ]
> (5]
2
g

0.142 20

9% Slow wave
¢-¢-¢ Circuit wave
0.141 0
0 10 20 30 0 10 20 30
Frequency (GHz) Frequency (GHz)
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Im (beta) (m*-1)

8 6
60)
40
)
=z
40 5
<
&)
20
20
66 4 wave 466 Whole tube
660 2 wave Section 1
0 0
0 10 20 30 0 10 20 30
Frequency (GHz) Frequency (GHz)

Note: The computation of this graph takes some time
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