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Section 4.4 Ring-bar structure

The period of the structure is P and the pitch p where P = 2p

a:= 2.375-mm 8= 4.35-mm p:= 1.76-mm w = 0.88-mm
Relative permittivity of equivalent uniform dielectric €5 =26
Angle subtended on the axis by the bars X = 90-deg

ap=a-05t ap=a+ 05t gap := p — w = 0.88-mm

Equivalent circuit model

scale .=

Scale converts from axial F/m to azimuthal F/m 2.2

t:= 0.34-mm

The capacitances for phase shifts 0, /2 and 1 per pitch p without dielectric loading are found using Worksheet 4.4

C, = 10.83-¢ Cpp=3204e;  C,i=49.05¢

Cyi=Cgscale  Cp:=025(Cy—Cg)-scale  Cp:= 025:(Cry — C, —2:C)-scale

Cl(o) = Co+2:Cy-(1- c08(0.5:9)) + 2:Cy-(1 — cos(¢))

1
L1(¢) = BN
¢ -Cl(d)

Equation 4.44
Equation 4.48

The transverse phase velocity without dielectric loading is ¢. The inductance is unaffected by dielectric loading.
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The capacitances for phase shifts 0, 11/2 and 1T per pitch p with dielectric loading are found using Worksheet 4.4

CK, = 27.51g CKpp 1= 5825 CK, = 83.16:¢,

CK( = CKgscale  CKj = 0.25-(CK, ~ CK,)-scale CKj = 0.25-(CKppy — CK, — 2:CKy)-scale

CK(¢) := CKy + 2:CKy-(1 = c0s(0.5-)) + 2:CKy-(1 = cos(P))
Effective relative permittivity and transverse phase velocities of the even and odd modes with dielectric loading.

CK(9) () = — v (4) = c
Cl(¢) pe [ectt(® po [eatp(d—2-m)

Characteristic impedances of even and odd modes with and without dielectric loading.

Eeff(P) =

L1($) L1(¢)
() = CK() Zy(9) = Zy(d - 2-m) Zoo(P) = Cl(d) Zoo(P) = Zgp( — 2-m)
Define the transverse path length for one half of the structure. Lt := Tt-a

Calculate the dispersion curves

(a) Ignoring coupling between lines and assume that the effective permittivity is that of the substrate at the centre frequency

cd () = wO(P)

Hl + szi.O.S-Lt 2-1-GHz

wO0(P) = fO(m) = 14.974 Vpo(d>) =

wO(d)-p
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(b) Including coupling between lines and assuming that the effective length is Lt

Define the dispersion functions with dielectric loading (Equation 4.57)
w-Lt

Z, ()

Z, ()

2
F2(w,0) = tan(%) -

2
Fl(w,0) = (tan(gjj an -tan _wit
2 2:Vpe(d) 2:Vpo($)

Solve for the lower and upper branches

Z,(9) Z,(9)

wi() = |wy « wo(d) fl(d) = % Phase velocity
wl « root(Fl(wl,d)),wl)

w2(d) = wy < wO2T - b) 2(d) = % Group velocity
wl « root(FZ(wl ,TC — d)),wl)

Define the dispersion function without dielectric loading (Equation 4.57)

2 Zyo(d) : :
F3(w,0) = tan(gj - ol -tan(w Lt)-tan(w Lt)
2)  Zgy(d) 2¢ 2¢
W) = |wy « wO(d) f3(d) = % Phase velocity
w3 « root(F3(w1,d)),w1)
k3() = %@ Group velocity

w-Lt w-Lt
cot -cotf —m
[2-vpe(¢)j [2-vp0(¢)j

wl(d)p

(@)=

V() = p-(j—d)wl(@j

w3(d)-p

Vp3(¢) = (1>

d
Vg3(d) = p-(d—¢w3<¢>)
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Plot the dispersion curves ¢l :=0.05m,0.1-m.. 7

40

300 Propagation constants and relative amplitudes of the even and odd modes
< ~ with dielectric loading
% \

~
2 R () = L@ (&) LD
5 20 = T v () O v (@)
5 —~ \ pe(® pol(®
= B
g -
e

= — Axial propagation constant Bo(d) = 4

10 -

— ] P
/_/
—
—
—
/
o -
0 0.2 0.4 0.6 0.8

Phase change per cell (deg)

Calculate the power flow for the whole structure and the Pierce impedance assuming that the field is constant in the gap.

Define the line to ground voltage of the even mode v, := 1.V
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Without dielectric loading

Ratio of mode amplitudes

Axial power flow

Electric field in the gap

Electric field of the
fundamental space harmonic

Radial propagation constant

Electric field of the fundamental
space harmonic on the axis

Pierce impedance

b_a3(d) := — 7 @
e0

4L
PO, (¢) = Tt'vaz-vg3(¢>{

¢Zep(d) ¢Zoo(d)
4Vy (D . ¢
EOg(d),x) = -| cos(k3(d)-x)-sin| — | + b_a3(d)-sin(k3(d)-x)-cos| —
gap 2 2
Lt
| 2
EOgo(d)) = E‘J_Lt Eog(q>,x) dx
R

2
3(6) = j Bo(®)” — (%@)

. gap | gap 1
EO0n() == EO_n(db)- (p)-== |- == _—
(¢ 00 (¢ s1nc(ﬁo ¢ 5 j b 0(3@ra)

EO(¢)°

Z0p(d) = 3
2-B0(0)"PO(d)

Equation 4.56

2
(1 + sine(ky() Lt)) + %-(1 - sinc(ko(d))-Lt))}

Equation 4.61
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With dielectric loading

Ratio of mode amplitudes

Axial power flow

Electric field in the gap

Electric field of the
fundamental space harmonic

Radial propagation constant

Electric field of the fundamental
space harmonic on the axis

Pierce impedance

b alto) Zo(d)-sin(ke(d)-Lt)
_a ==
ze(¢)-sin(k0(¢)~u)

2
4Lt 2 1 . b_al(¢)
P ()= —V, v ()| ——— (1 (d)-Lt i CAN
AP =T Va (e {vpe@)ze(cb) (1 sine(l@)Lt)) + Voo ®) Zo(®)
E (d,X) = 4lva-(cos(ke(d>)-x)~sin(gj +b al(d))-sin(k0(¢)-x)-cos(9jj
g gap 2) 7 2

Lt

B
|
Ego(d)) = E Eg(d),x) dx
—Lt

2

2
V() = j Bo(®)” - (%d’))

; gap | gap 1
Eg(¢) = E (d))-smc(B (d)).—)._.—
0 20 0 2 P I()(f\{l(q))al)

Eo(6)”
Zp(o) =

2-Bo($) P, ()

(1- sinc(ko(d))-Lt))}
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Experimental data derived from
D. T. Lopes and C. C. Motta, "Characterization of Ring-Bar and Contrawound Helix Circuits for High-Power Traveling-Wave Tubes," Electron Devices,
IEEE Transactions on, vol. 55, pp. 2498-2504, (2008) fig. 11. The 'a’' series points are without dielectric loading, 'b' series are with dielectric loading

Lopes' parameters a =2.375mm ri=

o |»

-1832  cotpi= =2 = 4239 ni= 22— 1571
p p

Note: Lopes' p is the structure period which is double the pitch defined above.

7 0.449 111
7.5 0.438 112
8 0.427 111 7 0.274
8.5 0.412 108 7.5 0.265
9 0.398 101 8 0.252
40-Q2
fa:=1] 9.5 vpa = | 0.383 Kq = E 92 fb:=| 8.5 vpb = | 0.241
10 0.367 83 9 0.226
10.5 0.350 72 9.5 0.217
11 0.332 61 10 0.204
11.5 0.314 50
12 0.299 45
da:= for ne 0..10 ¢b = for ne 0..6
2-1T-fan~GHz-p 2~7T-fbn~GHz-p
6, ——— 6, & ———
n vpa - n vpbn-c
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\ \
L —— Calculated unloaded
- \*_-_1,___*\ _ S oo+ Mecasured unloaded
0.4 T — T e § 30 >~~~y |— - Calculated loaded
T — 0\\* <= <
2 I g N o \ .
> TS > e
= 0.3 o \\\
8 D W g I\
© . e S = 20 =
- T — A 2 RN
[} — - .
Z 02 — T — £ e
= - - - © ~~4
A — - Calculated without dielectric 3
o.1H{*** Measured without dielectric £ 0 -
| | - Calculated with dielectric T —
«A+ Measured with dielectric —~ —
o \ [ [ 0 —_——
7 8 9 10 11 12 7 8 9 10 11 12
Frequency (GHz) Frequency (GHz)
Compare Lopez (2008) fig. 11(a) Compare Lopez (2008) fig. 11(b)
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0.5 40 I I
v, / c ‘G\ 009 Calculated unloaded
9_\9\.4 oo+ Mecasured unloaded
0.4 ’é‘ 0 \ a2+ Calculated loaded
5
03 A\\A\ \5\‘\6\ §
] 20, N \
g
0.2 —A— § \\.
oo Calculated unloaded §
L0
0.1l |#** Measured unloaded = \
aa4 Calculated loaded \A\A\
a44 Measured loaded
0 I I 0 & A A
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Figure 4.23(a) Figure 4.23(b)
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