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Disk model

The bunch is represented by a set of rigid disks of equal dimensions whose charges are equal. The motion of ND disks of charge is tracked with time

as the independent variable using Runge-Kutta integration. Dimensionless variables θ βe z⋅=  andϕ ω t⋅=  are used. The results of the calculation are

transferred into the space domain at nmax equally spaced reference planes. Good results are normally obtained with: ND = 24, nmax = 100. The initial
position of the bunch should be such that no electrons have entered the field of the first gap. The final time should be great enough to ensure that all
the electrons have moved clear of the output gap.

The space-charge calculation is based on the field of a disc of charge in a conducting tunnel found using the quasi-static approximation. This works
well for low beam voltages. For high beam voltages the space-charge is reduced by the factor SCF which is imported from WS 13.1. If SCF = 0 the
model is run without space-charge. For simplicity the space-charge force is assumed to be periodic in space. It is automatically zero until the beam

reaches θ 0= . The fields acting on the discs are averaged across them. Electrons are treated as positive, the beam current is positive and the r.f.

current is positive at the bunch centre.

The gap voltages in this model can be set freely without consideration of physical limitations in order to explore the creation of bunches in a klystron.
The model allows an idealised pre-bunched beam to be used to explore bunch compression and optimum power extraction.
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Beam parameters and frequency

Anode voltage Va 25 kV⋅:= Beam current I0 3.953 1⋅ A⋅:= Frequency f 1.3 GHz⋅:=

Beam radius b 3.3 mm⋅:= Tunnel radius a 5.5 mm⋅:=

Number of harmonics used to define an

ideal pre-bunched beam 

(NB = 0 if the beam is unmodulated)

NB 1.2:= Number of beam current harmonics

calculated
NH 4:=

Parameters of the model

Space-charge force parameter imported from WS 13.1 SCF 0.915:=
Number of discs ND 24:=

Bunch centre initial position θ0 2− π:= Final position θf 4 π⋅:=

PEf 1.024:=

ϕf 2 θf⋅:=
Initial time ϕ0 θ0:= Final time

Good results are normally obtained with: ND = 24, nmax = 30, θ0 = -2π, θf = 4π. 

Number of integration steps nmax 100:= Distance between reference planes ∆θ
π

100
:=

(c) 2018 Richard G Carter
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Gap parameters 

NB. The first element of each vector is not used. The•

cavity count starts from 1
Phases are relative to the phase of an electron travelling•

with constant velocity.
The gap voltage is positive giving maximum accelerating•

field at the relative phase specified.

X
MVg

Va

=  •

Only phases within +/- 90 deg of the relative phase of the•

current can be achieved with passive cavities.
When the cavity phase is equal to the phase of the current•

then the field is maximum retarding at the bunch centre. 
If the gap phase is less than the phase of the current (i.e.•

leading) then the cavity has inductive reactance and is
tuned to a frequency above the signal frequency. 

Number of gaps NCAV 2:=

Gap positions

in electronic

wavelengths

Gap lengths
normalised

to βe

Normalised

gap

voltages

Relative gap

phases

Cavity

harmonic

numbers

θg 2π

0

0

0.95

1.925

4.25

4.4



















⋅:= βeg

0

0.5

0.5

1

1

1



















:= X

0

0.305

0.9

1.14

0.54

0



















:= Φr

0

90

175−

180−

130−

58



















deg⋅:= nh

1

1

1

1

1

1



















:=

.

The detailed calculations can be hidden to allow the data and results to be viewed on the screen simultaneously

(c) 2018 Richard G Carter
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Method for investigating initial bunch formation

WS 13.1 is run with the proposed beam data and the value of SCF found and inserted above. This corrects the space-charge calculation for the1.

difference between the axial and radial propagation constants.

The model is run without prebunching (NB = 0) and PEf = 1.02.

The gap positions, the amplitudes and phases of the gap voltages and the harmonic numbers (nh) are adjusted progresively to produce the3.

desired bunch at the end of the initial bunching section. The objective is to gather as many electrons as possible into a phase range of 180 deg

without crossing trajectories. I have not yet found a satisfactory figure of merit for this.

Method for investigating bunch compression and power extraction.

WS 13.1 is run with the proposed beam data and the value of SCF found and inserted above. This corrects the space-charge calculation for the1.

difference between the axial and radial propagation constants.

This sheet is run with the proposed prebunching (NB) and the cavity voltages set to zero. The value of PEfactor output below is inserted as the2.

value of PEf above. The steps are repeated if necessary until PEfactor = 1. This corrects the initial electron velocity for the additional

space-charge potential depression in the bunched beam.

The phase set to 90 deg in cavity 1 and the gap voltage is adjusted to maximise the chosen figure of merit (normally F2 or F3). The position of the3.

optimum (θ2 or θ3) is inserted as the position of the ouput gap.

The phase in gap 2 is set initially to -180 deg and the voltage adjusted until either the efficiency is maximised, or the velocity of one of the4.

electrons is just not negative. The amplitude and phase of the gap voltage are adjusted to achieve the best possible efficiency.

(c) 2018 Richard G Carter
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Define the charge/mass ratio of the electron. Note that the primary electric constant and the velocity of light are already defined in Mathcad.

η 1.759 10
11

⋅
C

kg
⋅:= ε0 8.854 10

12−
×

F

m
⋅= c 2.998 10

8
×

m

s
= μPerv μA V

1.5−
⋅:= dB 1:=

Calculate tube constants and small-signal parameters

Calculate the beam voltage and velocity allowing for space-charge potential depression and relativity

 Equation 7.8  Equation 1.4 

V0 V
0

Va←

u
n

c 1
1

1

η V
n

⋅

c
2

+








2
−













0.5

⋅←

V
n 1+

V
0

I0

2 π⋅ ε0⋅ u
n

⋅

1

2
ln

a

b






+






⋅−←

n 0 3..∈for

V
n 1+

return

:=
u0 c 1

1

1
η V0⋅

c
2

PEf⋅

+






2
−













0.5

⋅:= Rel
1

1
u0

2

c
2

−

:= PDC I0 Va⋅:=

V0 24.2 kV⋅= u0 8.814 10
7

× m s
1−

⋅⋅= Rel 1.046=

I0

Va
1.5

1.00 μPerv⋅= G0

I0

Va

0.158
1

kΩ
⋅=:=

Electronic propagation constant ω 2 π⋅ f⋅:= βe
ω

u0

:= λe
2 π⋅

βe

:= γe βe
2 ω

2

c
2

−:=

γe b⋅ 0.3= γe a⋅ 0.487=

(c) 2018 Richard G Carter



WS 13.4 Klystron efficiency.xmcd, p.6

Define an idealised pre-bunched beam

Define the theoretical waveform for an optimally-bunched beam with n harmonics

normalised to unit beam current. Note n does not have to be an integer.
In ϕ n, ( )

2 π⋅ 1 cos ϕ( )+( )
n

⋅

π−

π

ϕ1 cos ϕ( )+( )
n⌠


⌡

d

:=

 Equation 11.175 

Define a function used to find the initial positions of the discs in a pre-bunched

beam.
f1 α( )

1

2 π⋅
π−

α

ϕIn ϕ NB, ( )
⌠

⌡

d⋅:=

Find the amplitudes of the harmonic currents in a pre-bunched beam. Ih n( )

Ih
nn

1

π
π−

π

ϕIn ϕ n, ( ) cos nn ϕ⋅( )⋅
⌠

⌡

d⋅←

nn 0 n..∈for

Ih
0

0.5 Ih
0

⋅←

Ih

:=

 Equation 11.177 

Beam current as a function of normalised time I ϕ( ) I0 In ϕ NB, ( )⋅:=

1− 0.5− 0 0.5 1
0

1

2

3

n = 1

n = 2

n = 3

n = 4

Phase angle (radians / pi)

I 
/ 

I0

Ih NB( )
1.000

1.091









=

 Figure 11.30 

(c) 2018 Richard G Carter
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Calculate the gap lengths coupling factors and voltages

gap

gap
n

βeg
n

βe

←

n 1 NCAV..∈for

gapreturn

:= Mg

β βe nh
n

⋅←

γ β
2 ω

2

c
2

−←

M
n

2 I1 γ b⋅( )⋅

γ b⋅( ) I0 γ a⋅( )⋅
sinc

β gap
n

⋅

2









⋅←

n 1 NCAV..∈for

Mreturn

:= Vg

Vg
n

X
n

Va⋅

Mg
n

←

n 1 NCAV..∈for

Vgreturn

:=

gap

0.00

5.40

5.40











mm⋅= Mg

0.000

0.943

0.943











= Vg

0.000

8.082

23.850











kV⋅=
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The Bunch is modelled as ND rigid discs. The motions of the electrons at the disc centres are followed. We define their initial positions and velocities

using the disc thickness ∆L. As the Mathcad ODE solver rkfixed does not accept variables with dimensions the dimensionless variables: θ = βez and

ϕ = ωt are used.

Calculate the normalised disk

thickness (qd)
θd

2 π⋅

ND
:= Define disk charge Q

2 π⋅ I0

ω ND⋅
:=

Define normalised disk starting positions and velocities for the prebunched current specified.  

α 0:=

j 0 2, 2 ND⋅ 1−..:=

θ

θ
j

root f1 α( )
j 1+

2ND
− α, 





θ0+←

θ
j 1+

1←

j 0 2, 2 ND 1−( )⋅..∈for

θ

:=

0 10 20 30 40
3−

2.5−

2−

1.5−

1−

Initial disk positions

θj

π

j
Check the D.C. beam current calculated from the disks

is the same as that previously computed.

0

ND 1−

j

f Q⋅( )∑
=

3.953A= I0 3.953A=

(c) 2018 Richard G Carter
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The Space-Charge Field is found from the equations given in

J.R. Hechtel, "The effect of potential beam energy on the performance of linear beam devices", 

IEEE Transactions on Electron Devices ED-17, pp.999-1009, Nov. 1970. 

The calculations are for a disc of charge of radius b and length ∆L with uniform charge density ρ0

Compute the space-charge lookup function ES(θ)

Define the first ten zeros of J0(z). μB
1

a
2.405 5.520 8.654 11.791 14.931 18.071 21.212 24.352 27.494 30.635( )

T
⋅:=

ρ0 is calculated for a disk charge of +1C.

Thus the electric field must be multiplied
by the charge of the source disk

∆L
θd

βe

:= ρ0
1

π b
2

⋅ ∆L⋅

:=

ESn

θ
n

0.02 n⋅ π⋅←

z
n

θ
n

βe

←

ES
n

4 ρ0⋅

ε0







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅







2

⋅ exp μB
m

− z
n

⋅( )⋅ sinh

μB
m
∆L⋅

2









⋅











∑
=

⋅← θ
n

0.5 θd⋅≥if

ES
n

4 ρ0⋅

ε0







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅







2

⋅ exp μB
m

−
∆L

2
⋅







sinh μB
m

z
n

⋅( )⋅






⋅











∑
=

⋅← otherwise

n 0 100..∈for

ES

:= θn

θ
n

0.02 n⋅ π⋅←

n 0 100..∈for

θ

:=

Es θ( ) sign θ( ) linterp θn ESn, θ, ( )⋅:=

ES θ( ) Es θ 2 π⋅+( ) θ π−<if

Es θ 2 π⋅−( ) θ π>if

Es θ( ) otherwise

:=

(c) 2018 Richard G Carter
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θ1 π−( ) 0.99− π⋅( ), π..:=

1− 0.5− 0 0.5 1
1−

0.5−

0

0.5

1

Normalised space-charge field

Axial position (Radians / pi )

E
_

sc
 /

 E
_

sc
 (

m
ax

)

The space-charge field of adjacent

bunches is included by assuming that the

field is periodic in z. This is not correct

but tests with an initially unmodulated

beam and three wavelengths of electrons

give almost identical results for the

trajectories and the current harmonics

except well beyond the first bunch and at

microperveance greater than 2.

The Interaction Field on the axis is found from the Fourier Transform of the field in the gap (assumed to be constant). The field in the gap is assumed to be

constant. The average of the field over the beam is used. Linear interpolation on the values calculated at regular intervals is used to provide a fast look-up

function.

En γ β( ) β
2 ω

2

c
2

−←

θ
n

0.02 n⋅ π⋅←

E
n ng, 

V

π

0

20 π⋅ βe⋅

βegng

β
2 I1 γ β( ) b⋅( )⋅

γ β( ) b⋅( ) I0 γ β( ) a⋅( )⋅
sinc

β gap
ng

⋅

2









⋅ cos
β

βe

θ
n

⋅








⋅

⌠



⌡

d⋅←

n 0 100..∈for

ng 1 NCAV..∈for

Ereturn

:=  Equation 11.30 

Egap θ( )

E
ng

linterp θn En
ng〈 〉

, θ, ( )←

ng 1 NCAV..∈for

Ereturn

:=

(c) 2018 Richard G Carter
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Plot the normalised gap field 

CHECK small-signal coupling factors by direct integration of the

field.

1− 0.5− 0 0.5 1
0

0.2

0.4

0.6

0.8

Normalised gap field

Normalised axial position (Radians / pi)

E
_

z 
/ 

E
_

0

Mg

M
n

1−

βe V⋅
2− π

2π

θEgap θ( )
n

cos nh
n
θ⋅( )⋅

⌠

⌡

d⋅←

n 1 NCAV..∈for

Mreturn

:=

Mg

0.000

0.943

0.943











= Mg

0.000

0.943

0.943











=

Absolute phase of the gap field
Turn space-charge force off until the electrons reach the origin.

Φg Φr θg+:=

SC θ( ) SCF θ 0≥if

0 otherwise

:=

Superimpose the electric fields of the gaps

Ez θ ϕ, ( ) Re

1

NCAV

n

Vg
n

V
Egap θ θg

n
−( )n⋅ exp j nh

n
⋅ ϕ Φg

n
−( )⋅ 







∑

=











:=
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The Coefficients of the Differential Equations for the motions of the electrons are defined. 

The rows represent, in order, the position in radians and the normalised velocity of the electrons.

Definitions of normalised variables

ϕ ω t⋅= θ βe z⋅= θ'
v

u0

=

D ϕ θ, ( )

D
j

θ
j 1+

←

D
j 1+

η

ω u0⋅
1

u0

c
θ

j 1+
⋅









2

−







1.5

⋅ Ez θj
ϕ, ( ) SC θ

j( ) Q⋅

0

ND 1−

i

ES θ
j

θ
2 i⋅

−( )( )∑
=

⋅+











⋅←

j 0 2, 2 ND 1−( )⋅..∈for

D

:=

t
z

d

d
v=

ϕ
θ

d

d

v

u0

=

t
v

d

d
η E⋅=

ϕ

v

u0

d

d

η E⋅

ω u0⋅
=

The Equations are Solved using with nmax time steps starting from ϕ0 which is defined in such a way that the centre electron would cross the gap

centre at t = 0 if it travelled with a constant velocity u0. The final time is tf

n 0 nmax..:= Z rkfixed θ ϕ0, ϕf, nmax, D, ( ):= ∆ϕ
ϕf ϕ0−

nmax
:=

The results are in a single table (Z) in which the first column (0) is the time and the other columns (1-12) are the positions and velocities of the electrons

in the same order as before at each value of n.

Extract the vector of phase, the matrices containing the normalised positions and velocities of the disks and the vector of the final velocities of the electrons

ϕn

ϕ
n

Z
n 0, 

←

n 0 nmax..∈for

ϕ

:= θn

θ
n j, 

Z
n 2 j⋅ 1+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

θ

:= un

u
n j, 

Z
n 2 j⋅ 2+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

u

:= umax

u
j

Z
nmax 2 j⋅ 2+, 

←

j 0 ND 1−( )..∈for

u

:=
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The Kinetic Energy of the bunch at each time stepis calculated using the relativistically correct formulae by summing the

energies of the disks. The figure becomes unstable when siginificant cross-overs occur

KE

KE
n

Q c
2

⋅

η
0

ND 1−

j

1

1

un
n j, 

u0⋅( )
2

c
2

−

1−










∑
=

⋅←

n 0 nmax..∈for

KE

:= Compare the frequency times the intial KE with the DC beam power

KE
0

f⋅ 93.4 kW⋅= I0 V0⋅ 95.6 kW⋅=

Check for electrons brought to rest and reflected
When the beam is prebunched the electron energy is reduced from

V0 by the potential energy stored in the bunch. To estimate this the

model is run with all the gap voltages set to zero. The normalised final

kinetic energy is taken as a measure of the additional potential

energy. The initial electron energy is reduced by the factor PEf given

by

VELOCITY V "Positive"←

V "Negative"←

break

un
n j, 

0≤if

n 0 nmax..∈for

j 0 ND 1−( )..∈for

Vreturn

:=

PEfactor

KE
nmax

f⋅

I0 V0⋅
:=
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Define a set of equally-spaced planes in θ and compute the phases and velocities at which the electrons cross them using linear interpolation. 

Number of planes at which results are stored NP
θf θ0−

∆θ
:= NP 600=

θp

θ
p

θ0 p ∆θ⋅+←

p 0 NP..∈for

θreturn

:= ϕp

flag 0←

flag 1← θn
n j, 

θp
p

>if

ϕp
p j, 

ϕn
n 1−

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
ϕn

n
ϕn

n 1−
−( )⋅+← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

ϕpreturn

:=

up

flag 0←

flag 1← θn
n j, 

θp
p

>if

up
p j, 

un
n 1− j, 

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
un

n j, 
un

n 1− j, 
−( )⋅+← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

up
p j, 

10
6−

← up
p j, 

0=if

p 0 NP..∈for

j 0 ND 1−( )..∈for

upreturn

:=

Phase relative to an electron with velocity u0

ϕr

ϕr
p j, 

ϕp
p j, 

θp
p

−←

p 0 NP..∈for

j 0 ND 1−..∈for

ϕrreturn

:=
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Calculate the total kinetic energy of the electrons as they cross each plane. 

KEp

KE
p

Q c
2

⋅

η
0

ND 1−

j

1

1

up
p j, 

u0⋅( )
2

c
2

−

1−










∑
=

⋅←

p 0 NP..∈for

KE

:=

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

KEn f⋅

PDC

n
Calculate the complex current harmonics at each plane by superimposing the

Fourier components of the discs. For simplicity each disc is treated as having

constant charge and length.

Ip

Ip
p 0, 

Q

∆L

1

2 π⋅
⋅

0

ND 1−

j

θd∑
=

⋅←

Ip
p h, 

Q

∆L

2

π h⋅
⋅

0

ND 1−

j

up
p j, 

sin
h θd⋅

2 up
p j, 

⋅







⋅ exp j h⋅ ϕp
p j, 

⋅( )⋅






∑
=

⋅←

h 1 NH..∈for

p 0 NP..∈for

Ip u0⋅return

:=
Instantaneous current = 

Q
j

up
p j, 

⋅

∆L
Pulse phase duration = 

θd

up
p j, 

Relative phases of the RF beam current harmonics

argrI1

argI1
p

arg Ip
p 1, 

exp j− θp
p

⋅( )⋅( )←

p 0 NP..∈for

argI1return

:=

argrI2

argI2
p

arg Ip
p 2, 

exp 2− j⋅ θp
p

⋅( )⋅( )←

p 0 NP..∈for

argI2return

:=
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Find the variation of current with time at plane p by Fourier synthesis

IP p ϕ, ( ) Re

0

NH

h

Ip
p h, 

exp j h⋅ ϕ⋅( )⋅( )∑
=











:=

Calculate the variation of current with time at plane p using compressible discs

IPd

IP
p j, 

Q ω⋅

ϕr
p j, 

ϕr
p j 1+, 

− 10
6−

+

←

j 0 ND 2−..∈for

IP
p ND 1−, 

Q ω⋅

ϕr
p ND 1−, 

ϕr
p 0, 

2 π⋅−( )−
←

IP
p ND, 

IP
p 0, 

←

IP
p ND 1+, 

IP
p 1, 

←

IP
p ND 2+, 

IP
p 2, 

←

p 0 NP..∈for

IPreturn

:= ϕrd

ϕ
p j, 

0.5 ϕr
p j, 

ϕr
p j 1+, 

+( )⋅←

j 0 ND 2−..∈for

ϕ
p ND 1−, 

0.5 ϕr
p ND 1−, 

ϕr
p 0, 

+ 2 π⋅−( )⋅←

ϕ
p ND, 

ϕ
p 0, 

2 π⋅−←

ϕ
p ND 1+, 

ϕ
p 1, 

2 π⋅−←

ϕ
p ND 2+, 

ϕ
p 2, 

2 π⋅−←

p 0 NP..∈for

ϕreturn

:=
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Calculation of the induced curent in each cavity

Find the serial number of the plane at the centre of each cavity and plane numbers at the edges of the gap field. The gap field is assumed to be

zero at 10g from the gap centre. Note that an array element error will be reported if pc2 > NP for the last cavity.

pc round
θg θ0−

∆θ









:= pc1 round
θg θ0− 10 βeg⋅−

∆θ









:= pc2 round
θg θ0− 10 βeg⋅+

∆θ









:=

Check that field of cavity number cn is zero at planes pc1 and pc2. 

Cavity number cn 2:= pc1
cn

231= pc
cn

390= pc2
cn

549.00= θc1 pc1
cn

pc
cn

−( ) ∆θ⋅:= θc2 pc2
cn

pc
cn

−( ) ∆θ⋅:=

Induced current in each cavity Iind

Iind
n

∆θ−

βe V⋅
pc1n

pc2n

p

Ip
p nhn, 

Egap θp
p

θg
n

−( )n⋅( )∑
=











⋅←

n 1 NCAV..∈for

Iindreturn

:=  Equation 11.173

 The integral is approximated by a sum 

2− 1− 0 1 2
0

0.2

0.4

0.6

0.8

Normalised gap field

Normalised axial position (Radians / pi)

E
_

z 
/ 

E
_

0

RF output power Pout Re
1

2
Iind

NCAV
⋅ Vg

NCAV
exp j Φg

NCAV
⋅( )⋅( )


⋅







:=

Energy_balance 1

Pout KE
nmax

f⋅+

I0 V0⋅
−:=
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Bunching figures of merit for final bunching and the planes at which their values are maximum

F1

F1
p

Ip
p 1, 

2I0

min up
T( )

p〈 〉



⋅







θp
p

0>if

0 otherwise

←

p 0 NP..∈for

F1return

:= popt1

break( ) F1
p

max F1( )=if

p 0 NP..∈for

preturn

:=

θ1

θp
popt1

2 π⋅
:=  Equation 13.31 

F2

∆u

0

ND 1−

j

up
p j, 

1−( )
2

∑
=

←

F2
p

Ip
p 1, 

2I0

1 ∆u−( )⋅






θp
p

0>if

0 otherwise

←

p 0 NP..∈for

F2return

:= popt2

break( ) F2
p

max F2( )=if

p 0 NP..∈for

preturn

:=

θ2

θp
popt2

2 π⋅
:=  Equation 13.32 

Plotting data

j 0 ND 1−..:= jj 0 ND..:= x 0 0.1, 1.5..:= ϕ ϕ0 1.2ϕf..:= ϕg 1− 1..:=

z2
θg 0.5 βeg⋅−

2 π⋅
:= z1

θg 0.5 βeg⋅+

2 π⋅
:= ϕ1 π− 0.99− π⋅, π..:= nc 1 NCAV..:= p1 0 NP..:=

ϕg θ( )

ϕg 1← θ θg
n

−

βeg
n

2
≤if

n 1 NCAV..∈for

2ϕg 1−return

:=
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max F1( ) 0.730= max F2( ) 0.6462= PEfactor 0.342=

I0

Va
1.5

1.00 μPerv⋅=

θ1 0.860= θ2 0.830=

VELOCITY "Positive"=

Pout

PDC

63.7 %⋅= Pout 62.9 kW⋅= Energy_balance 0.002 %⋅= γe b⋅ 0.3= γe a⋅ 0.487=
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