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This Mathcad 14 worksheet is designed to accompany the author's book "Microwave and RF Vacuum Electronic Power Sources", Cambridge University
Press (2018). The section, equation, and figure numbers refer to the corresponding sections, equations, and figures in the book. Data input fields are
highlighted in yellow and output fields are highlighted in green.

This resource is provided free of charge by Cambridge University Press with permission of the author, but is subject to copyright. You are permitted to view,
print and download this resource for your own personal use only, provided any copyright lines are not removed or altered in any way. Any other use, including
but not limited to, distribution of the resource in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the
author and provided you give appropriate acknowledgement of the source.

The contents of this sheet are provided for educational purposes only and no warranty is expressed or implied that they are suitable for use as professional
design tools.

This sheet uses the method described in
Fujisawa, K. (1958). "General treatment of klystron resonant cavities." IRE Transactions on Microwave Theory and Techniques MTT-6(10): 344-358.

It also models the coupling into a cavity using a loop

Section 3.5.2 Fujisawa's model of re-entrant cavities
Define physical constants
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Define the cavity dimensions

The cavity is defined as a singly re-entrant cavity divided into three regions numbered I, Il and IlI starting from the axis. The height of region i is z;and its
outer radius is r;

)= 27.5-mm Iy = 50-mm I3 1= 150-mm
'y
zy = 200-mm zy = 20.5-mm z3 = 99-mm
23
A
The properties of a doubly re-enetrant cavity with all the height dimensions “
doubled are calculated from those of the singly re-entrant cavity. Note that the I @
equations in the book assume a doubly re-entrant cavity. i R
.
Calculate the contributions to the capacitance from the three regions
2-10 (Lim I1 i
Lim = —— CI(r,z) = 2€0~r- (B0 . sin(B-2) dg Equation 3.81 CI(rl ’Z2) = 0.906-pF
m | Bl@n Bz
— Lim
2 2
€0~7T-(r2 —rl ) _
Cpp = Equation 3.82 Cyp = 2.366:pF
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2 2
(s (I'3 b I'2) + Z3 _
Crp = 4ggrpl 5 Equation 3.83
)
The total capacitance is Cg:= CI(rl,z2) +Cpp + Cppp

Calculate the inductance

Ro23 (13
LS = \In| —
21 Iy

Calculate the resonant frequency and R/Q

1

Wn =

0 ’CS'LS
L
S

R_QS:= C_S

For a doubly re-entrant cavity

Calculate the surface resistance

Equation 3.86

R_Qp:= 2'R_Qg

The factor surf can used to adjust the effective conductivity to obtain Q in agreement with experiment

o= 595910 -S-m_ | s = 0,15

w0 Mo .
R = [—— Equation 3.50
2-o-surf

Cg = 7.226:pF

Lg=2.175% 10

fo = 0.401-GHz

R_Qg = 54.865

R_Qp=109.73Q

R = 00139
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Calculate the stored energy and power dissipation for unit circulating current

Ko Z I
= 0 3.1n 3 Equation 3.87
4.1t 153

Ry (13 23 =17
— +

4.1t I3 I

r Equation 3.88
N h{ 3]) quation

Py =
L
)

Note: the power dissipation is calculated on the curved surfaces and the
annular surface so it applies only to a doubly re-entrant cavity

Calculate the unloaded Q and the shunt impedance of a doubly re-entrant cavity

wn W
__0H Equation 3.12

QD =

Pr

Qp =7778
Rep = 853.5k
i =0.014Q
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Section 3.6.1 Loop coupling . I3 :
) i
Parameters of a doubly re-entrant cavity from Fujisawa's model above r :
|
i
I
i

Cc =3.613pF Lo =0.044 pH R =853.5k2 E : §
[
Characteristic impedance of the input transmission line :
A i

I w i Z3

Z. = 50-Q ;
—_y '
[

Dimensions of the loop made of wire with radius r, § : §
|
|
Iy = 87-mm I5 = 136-mm w = 31-mm I = 2.5-mm i
Iy !
—
Calculate the mutual inductance when the plane of the loop is at an angle 6 rs :
to the axis of the cavity by calculating the flux linked to the loop for unit !

current circulating in the cavity

=Tt I'4

The coupling factor is the fraction of the flux in the cavity which is linked to
the loop. Using Fujisawa's approximation this is

u0~cos(6) I5
M (0) = 2—~w~ln — M; (0) = 0.0028 uH

k(6) = k(0) = 0.064
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Estimate the self-inductance of the loop in free space

(a) Loop inductance calculated from the formula for a circular wire loop in Ramo, S., J. R. Whinnery, et al. (1965).
Fields and Waves in Communication Electronics. New York, Wiley. Section 5.24, equation (2). The RF current flows in a thin surface layer of the wire
and the internal inductance is zero.

A
. . . L
Loop area A = w-(r5 - r4) Equivalent circular loop radius Ry = 7 R; =22mm
Note: If the loop is made of wire with a rectangular section its properties
can be approximated by using a round wire with the same perimeter.
. 8-Rp
Loop inductance Laj = py'Rp | In o -2 Laj =0.062-uH

(b) Loop treated as a short-circuited two-wire line using the formula for the characteristic impedance in Ramo, S., J. R. Whinnery, et al. (1965).
Fields and Waves in Communication Electronics. New York, Wiley. Table 8.09.

Z W,
0 w . . 0
ZCL = :'aCOSh(Z—I‘Oj ZCL =301Q Electrical Iength of the line d) = T(rS — r4) d) = 23.62-deg

Z

CL
tan(d) Lby =0.052-uH

Lby :=
L
“o

(c) Loop inductance from formula in Engala, K. R., A. A. Kishk, et al. (2000). "Simple computation of the coupling coefficient for loop-coupled
resonant cavities." Microwave and Optical Technology Letters 27(6): 400-404. Equation (5) corrected.

2 2
ay = 31-mm b1:: I5 =1y dl = ’al +b1

2-a;-b 2:a1-b b
Lep = ) aj-l A + byl L —2~(a1+b1—d1)+w Lep = 0.070-uH
s r0~(a1 + dl) ro(bl + dl) 4
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Note: The loop inductances calculated by these three methods agree with one another to around +/- 20%.

When the loop is placed in the cavity the flux generated by it is contained by the walls of the cavity. This increases the
reluctance of the flux path and decreases the flux generated by unit current and, hence, the self-inductance of the loop.
The loop inductance can be measured experimentally by using a frequency distant from the resonant frequency of the
cavity. The measured value of the loop inductance can then be used to model its effects.

In the absence of an experimental result we can get a very rough idea of its value by noting the the flux density at the
centre of a round wire loop of radius a in free space is

Bl

2-a
If the flux line through the centre of the loop is constrained by the cavity to be a circle with the same diameter as the
loop and the magnetic field is assumed to be uniform along this line, then at the centre of the loop
e
B = 0
2-a
suggesting that the inductance calculated in free space should be divided by Tr.

Taking the average of the values of the loop inductance in free space calculated above

LaL + LbL + LCL

Ly =
L 3

The input impedance of the cavity is

k(6)*Re

_ w Y
”J'QD'[: e
0

where LF is the correction factor for the inductance. The voltage reflection coefficient and the scattering parameter at the input to the cavity are

Equation 3.91

Zip(w.6.LF) = j-wLFL +

Z;(w.0,LF) - Z_
p(w,0,LF) == S11(w.6.LF) = 20-log(| p(w.6.LF)|)
Z;y(w,0,LF) + Z
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ERE

Loop angle 6 := 39-deg Loop correction factor LLIE': Investigate the effect of changing the loop angle

(dB)

Y \

S_11

o+ () degrees
- L3 leee 20 degrees

-038 \/
—— Without loop inductance a4k 40 degrees
o9 60 degrees

— With loop inductance ‘
—Z
0.99 0.995 1 1.005 1.01

-1
0.99 0.995 1 1.005 1.01

Normalised frequency Normalised frequency

Figure 3.20

Note that this figure differs slightly from the one in
the book because of a difference in the assumption
about the self-inductance of the loop in free space.

(c) 2017 Richard G Carter




WS 3.4 Fujisawa's model.xmcd, p.9

Calculate the loop reactance, the external resistance, and the external Q of the loaded cavity assuming that the source impedance is equal to the
characteristic impedance of the input line.

Z02 + XL2 RE
= wn-Lr - =— Equation 3.93 Qp = =368
Xp = wy Ly LF Rg: ; q E= Qg
k(6)"Z, 0"-C
The resonant frequency ( w, ) of the loaded cavity is the solution of
1 k*X
aC, — - =0 Equation 3.95
‘oL, (R+X?) a :
2
Fn(w) == wCe - - W= Wy wy = root(Fn(w), w) — =0.402GHz
w-Lc 2 2 2-T
Z. + X
|
— =1.00134
“0
At resonance Sll(wl,e,LF) =—0.825-dB
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