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WS 2.2 Capacitive iris, p.2

Section 2.4.2 Capacitive iris in a rectangular waveguide

see also Section 2.4.1 Height step in a rectangular waveguide

The iris is assumed to be thin and symmetrical. The height of the gap is d. The iris can be represented by a capacitive susceptance whose
magnitude is given in Marcuvitz, N. (1951) McGraw-Hill, pp.218-220. The first approximation is
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More accurate results can be obtained by adding extra terms given
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For a standard waveguide (e.g. WG16) b_>\g = 0 at cut-off and 0.45 at the top of the normal working band (12.4 GHz). Comparison of the effect of using

one, two, or three, terms (see the figure below) shows that the second term is a small correction and the third term is negligible. Thus the normalised
susceptance depends only on the ratio h/b to a good approximation.
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Equivalent circuit
Now suppose that the iris can be represented by a short length of waveguide having the same cross-sectional dimensions as the iris and a thickness 6

which represents the fringing fields. The equivalent circuit of the iris is that for a TE mode shown in the figure below
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From the theory of the TE mode we know that the inductances and the characteristic impedance can be expressed in terms of the capacitance as

L=t L=— 7= L
w:C c’C ¢ B, cC

where ,Bgz =5 -5 B = V4

For the moment let us assume that the impedance of L, is small compared with Zg' Then the admittance of the iris is

. 2
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where C; is the capacitance per unit length of the iris.
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The admittance added by the iris is found by subtracting the admittance of the waveguide whose height is b

Y, = jcCO—=2— jeCO—L = jeCO—=| =L -1
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Normalising to the waveguide impedance
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Now analysis of the equivalent circuit for a rectangular waveguide shows that the capacitance per unit length is inversely proportional to h regardless of
the choice of definition of impedance. Thus
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Hence the normalised susceptance plotted by Marcuvitz is
Eﬁ:zﬁ(ﬁ_ljé:m(li}é
Y, b d b b)d

Therefore the normalised susceptance depends only on the dimensions of the aperture
including the, as yet undetermined, parameter 6. We note that the susceptance is positive

and, therefore, capacitive
The condition that the series inductance is negligible is
oL, o P,
==
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cC=p,—-0
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. . , 5.
Thus we expect the expression derived above to be comparable with that computed as Term1 above. Hence the parameter g is

given by
Term1(d_b)
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The first and second approximations to the normalised susceptance are
2
Approx1(h_b) := 1.8-m-(1 — h_b)

Then, comparing the exact and approximate normalised susceptance

Approx2(h_b) = 5.6-m-(1 - h_b)-(l —h_b
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Thus the first approximate model derived from the equivalent circuit gives good accuracy provided that d/b > 0.5 and that it is permissible to

neglect the effect of the series inductance.
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Comparison between the results for a height step and a thin iris. For a height step
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