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Gridded Gaps1.

The coupling factor and beam loading conductance are calculated in terms of the gap transit angle θ = βeg
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2. Coupling in an ungridded gap 

Radial Coupling Factor

See Garland M. Branch: Electron Beam Coupling in Interaction Gaps of Cylindrical Symmetry

IRE Trans ED Vol.ED-8, pp.193-207 (1961)

a. Brillouin Beam: interaction concentrated on beam surface. b. Confined flow: Coupling averaged over area of beam

μB A γb, ( )
I0 γb( )

I0 A γb⋅( )
:=  Equation 11.40 where A
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Computation of Beam Loading Admittance of an ungridded gap by a beam in confined flow

Define the propagation constant, the coupling coefficient and the normalised gap loading conductance in terms of the transit angle θ (in

radians) and the dimensions of the beam and the gap
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 (Gb/G0 only) 

Compare fig.6 in 

Craig, E.J., The beam loading admittance of gridless klystron gaps, 

IEEE Trans. Vol.ED-14, No.5, pp.273-278 (1967)
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Beam Loading Admittance for a relativistic beam

Based on E. J. Craig, "Relativistic beam-loading admittance," IEEE Transactions on Electron Devices, vol. 16, pp. 139-139, 1969 and using

his notation. The results are for an ungridded gap assuming uniform field in the gap. 
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 Computed in the limit of small beam velocity 
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