WS 13.3 Large Signal Model of a Klystron
© 2018 Richard G Carter

This Mathcad 14 worksheet is designed to accompany the author's book "Microwave and RF Vacuum Electronic Power Sources", Cambridge University
Press (2018). The section, equation, and figure numbers refer to the corresponding sections, equations, and figures in the book. Data input fields are
highlighted in yellow and output fields are highlighted in green.

This resource is provided free of charge by Cambridge University Press with permission of the author, but is subject to copyright. You are permitted to view,
print and download this resource for your own personal use only, provided any copyright lines are not removed or altered in any way. Any other use, including
but not limited to, distribution of the resource in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the
author and provided you give appropriate acknowledgement of the source.

The contents of this sheet are provided for educational purposes only and no warranty is expressed or implied that they are suitable for use as professional
design tools.

Disk model

The bunch is represented by a set of rigid disks of equal dimensions whose charges are equal. The motion of ND disks of charge is tracked with time
as the independent variable using Runge-Kutta integration. The results of the calculation are transferred into the space domain at nmax equally spaced
reference planes. Good results are normally obtained with: ND = 24, nmax = 100. The initial position of the bunch should be such that no electrons have
entered the field of the first gap. The final time should be great enough to ensure that all the electrons have moved clear of the output gap.

The space-charge calculation is based on the field of a disc of charge in a conducting tunnel found using the quasi-static approximation. This works well
for low beam voltages. For high beam voltages the space-charge is reduced by the factor SCF which is imported from WS 13.1. If SCF = 0 the model is
run without space-charge. For simplicity the space-charge force is assumed to be periodic in space and the fields acting on the discs are averaged
across them. Electrons are treated as positive, the beam current is positive and the r.f. current is positive at the bunch centre.

The gap voltages for the same input power are imported from WS 13.1 to overcome significance errors at low drive levels. Good results are obtained if
these voltages are used except for the last two cavities and any cavities tuned to harmonic frequencies.
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Define the parameters of the model - SLAC 50 MW klystron

Anode voltage Beam current Frequency Input power Input phase Tunnel radius Beam radius
V, = 315-kV Iy = 354-A f := 2856-MHz P, = 50-W by = 0-deg a:= 15.9-mm b= 11.0-mm
Number of cavities Small-signal results used up to cavity SCAV [Space-charge factor imported from WS13.1 |

NCAV =6 SCAV =4 SCF := 0.46

Number of discs (even) Number of integration steps Number of reference planes Gap field parameter

ND = 24 nmax := 500 NP := 1000 kgap := 4

Bunch centre initial position (6 = B,2) Initial time (¢ = wt) Final position Final time

eo = =27 d)o = 60 Of = 187 d)f = 26f

Define the cavity parameters

NB. The first element of each vector is not used. The cavity count starts from 1. A cavity is unloaded if Qe >= 95000.

Cavity frequency Cavity harmonic External Q Unloaded Q R/Q Gap length Gap position

0 0 0 0 0 0 0
2860 1 200 2000 80 0.0068 0
2870 1 95000 2000 75 0.0072 0.056

fc:= | 2890 |-MHz nh:=| 1 Qe := | 95000 Q0 := | 2000 R Q:=|87 [-Q gap = | 0.0082 [-m zg:=| 0.111 |'m

2910 1 95000 2000 96 0.011 0.166
2970 1 95000 2000 96 0.0116 0.444
2853 1 21 2000 85 0.0162 0.555
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Define the charge/mass ratio of the electron. Note that the primary electric constant and the velocity of light are already defined in Mathcad.

C 12 F Y
N = 175910 = eg=8854x 10 125 c=2998x 1052 WPery := pA-V 1 dB =1
kg 0 m S

Calculate tube constants and small-signal parameters

Calculate the beam voltage and velocity allowing for space-charge potential depression and relativity

Equation 7.8 Equation 1.4
0.5
— 1 1
VO VOeVa uOZZC'l—— Rel = —
2
for ne 0..3 n-Vo
1+
0.5 2
1 c
u o 1- 5
n-v,
1+ . "
2 Vg =291.1kV ug=2311x 10"-m-s Rel = 1.570
Iy 1
«—V - | — +1Inf —
1 0 2-mggu_ \ 2
' o _ 2 = - L124—
return V T = 2.00- pPerv Gy=|—| =112d4—
n+1 v a
a
Electronic propagation constant w:= 2-mf Be = > Xe = 2m
uo Be
Ve =05 Yea=0.787
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Compute the parameters of the cavities

Beg := B gap 0g:= Bozg

Shunt conductance

External conductance

Gc:= || for ne 1..NCAV Ge:= || for ne 1..NCAV
—1 -1 .
Ge « (R_Qn-QOn) Ge « (R_Qn-Qen) if Qe < 95000
return Gc Gen <« 0 otherwise
return Ge
Axial gap coupling factor [ Equation 11.36 adapted for non-uniform field|
k . k .
k-(@-cosh( ga;) )sin( B iap) + k- sinh( ga;) )-cos( B iapjj
pd(B, gap,k) == | pd « . " if k>0
8% sinh| 22X | 4 k2 ginp| E22X
2 2
Begap
pd ¢ sinc otherwise

Small-signal gap coupling factor

Mg(Be) = | for ne 1..NCAV

Mgn «— ur(nhn. ge). Md(ﬁe’ gap,

return Mg

Equation 11.35

kgap
gap,

Equation 3.5

Cavity admittance at beam harmonic frequency

Yc:= | for ne 1..NCAV

f-nh fc
n n

Yc < Gc |1 +j-Q0 -
n n n fcn f-nhn

return Yc

Radial coupling factor averaged across the beam

Equation 11.38

2-11(ve'b)

(c) 2018 Richard G Carter
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The beam is modelled as ND rigid discs of thickness AL. The motions of the electrons at the disc centres are followed.

. . . 2.1 . 2""-IO -9
Normalised disk thickness 0= —— Disk charge Q= Q=5165x10 ~C

ND w-ND

Define normalised initial positions and velocities of the discs
The initial positions are symmetrical about the bunch centre.

j:=0,2.2ND -1

0:= | for je 0,2..2-(ND - 1)
G+ 1 Initial disk positions
9j<—90—ﬁ+ﬁ(IJ\ID ) -1 T T T T
ej+1 «—1 - 1.5 N
5
0 b 4
T
2.5 N
Check the D.C. beam current calculated from the disks is correct. '
| | | |
-3
ND-1 0 10 20 30 40
z (f-Q) = 354.000 A Iy = 354.000 A i

=0

The Space-Charge Field ES(0) is found from the equations given by J.R. Hechtel, "The effect of potential beam energy on the performance of linear
beam devices", IEEE Transactions on Electron Devices ED-17, pp.999-1009, Nov. 1970. The potential distribution of a cylinder of charge of radius b,

length AL and charge density p within a conducting cylinder of radius a in cylindrical polar coordinates whose origin is at the centre of the cylinder is
calculated for a disc charge of 1C

0
Disc thickness AL = Ed AL =3.371-mm Charge density Py =

€ Tr~b2~AL

1

(c) 2018 Richard G Carter
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Compute the space-charge field at npts points

The first ten zeros of J,(2).

ESn:= | for ne 0..npts
0 2-n-m
n npts
0
n
Z — —
n Be
Bs o |00 o | (1B )
o Z uB_ | uB -a~]1(uB -a)
m=o0L m m m
Bs o |00 - | (1B, )
n €0 Z puB_ | uB ~a-J1(uB -a)
m=o0L m m m
ES

npts := 100

1
pB == —-(2.405 5.520 8.654 11.791 14.931 18.071 21.212 24.352 27.494 30.635)T
a

2 uBm-AL
oxp(-HB, 7, |-sinh| ———— || if 6 20.56;

2

ALY | .
| exp —uBm~7 ~smh(uBm~zn) otherwise

Find the space-charge field as a continuous function by linear interpolation

On:= | for ne 0..npts

2:n-T

0 «

n npts

ES(0) =

Es(0) « sign(0)-linterp(6n,ESn, |9|)
Es(O + 2-1) if 6 <—m

Es(6 —2-m) if 6>

Es(0) otherwise

(c) 2018 Richard G Carter
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Normalised space-charge field

1

0.5
B
g
2

U-ll 0
P
ml

-05

-1

-1 -05 0 0.5

Axial position (Radians / pi )

The space-charge field is set to zero until the electrons reach 6 = 0 to
avoid non-physical dispersion of the electrons.

SCF1(0) := |SCF if >0

0 otherwise

The space-charge field of adjacent bunches is included by assuming
that the field is periodic in z. This is not correct but tests with an
initially unmodulated beam and three wavelengths of electrons give
almost identical results for the trajectories and the current harmonics
except well beyond the first bunch and at microperveance greater than
2.

This space-charge calculation is based on a quasi-static analysis. This
is adequate for low beam voltages. For higher beam voltages it is
important to make a correction based on the use of y in place of 8
when calculating the small-signal plasma frequency reduction factor p.
Since the square of the plasma frequency is proportional to the charge
density in the beam the space-charge field should be multiplied by the
correction factor

2
SCF = (m)
p(B)

This factor is calculated in WS 13.1 and imported. With this correction
it is found that the reduced plasma wavelength computed by this
sheet is within 2% of that computed by WS 13.1.

A further problem is that the reduced plasma wavelength is too small
for low drive levels. It increases with increasing drive level to the
correct value and then decreases again as expected. This is believed
to be caused by significance errors. To avoid the problem the voltages
for the first few gaps are imported from WS 13.1. The results only
change slightly when TOL is changed from the default value to 1E-6.

(c) 2018 Richard G Carter
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The Interaction Field is found from the Fourier Transform of the field in the gap. The average of the field over the beam is used. Linear interpolation on
the values calculated at regular intervals is used to provide a fast look-up function.

for nge 1..NCAV

for ne 0..npts

2:n-T
0 «
n npts
20- Tt Be
Begng
E ——-
n,ng ,,\.J
0
return E

2-11(y(B)-b)

(V(B)b)10((B)-a)

pd| B, gap ’kgap -COS| £-6 dg
ne gap, Be "

Superimpose the electric fields of the gaps using absolute phase

NCAV Vg
E,(6.¢) = R Z (

n=1

Tn-Egap(e - ng)nexp(j -nhn~(1>)j

Egap(0) :=

for nge 1..NCAV
Eng «— linterp(Gn,En<ng> , |6| )

return E

Plot the normalised field of gap n ng:= 1
Normalised gap field
-
S ||
w06
N |
o 04
0.2 | |
0 1 1
-1 -0.5 0 0.5 1

Normalised axial position (Radians / pi)
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CHECK small-signal coupling factors by direct integration of the field.

0.000 0.000
M_:= | for ne 1..NCAV
& ) 0.879 0.759
S
1
M« —J Egap(e)n-cos(nhn-e) de 0.877 0.757
eV ) M, =| 0873 Mg(B,) =| 0.753
return M 0.856 0.739
0.852 0.735
0.813 0.702

The Coefficients of the Differential Equations for the motions of the electrons are defined.
Definitions of normalised variables

The rows represent, in order, the position in radians and the normalised velocity of the electrons.

o =wt 9=Bez 0'=—
uo
D(¢,0) = | for je 0,2..2(ND - 1)
D. < 6.
i gl d, d ,_ Vv
1.5 dt d u
. ug 2 ND-1 ¢ 0
D. 11 =] —-6. 1 E_(6.,¢] + SCF1(6.)-Q: ES(6. -6, .
i+ wu ( c J+lj Z( j d)) ( J) Q Z ( ( j 2~1)) d 4 v N-E
i=0 —v=-1E —_— ==
D dt doug w-ug

The Equations are Solved using with nmax time steps starting from ¢, which is defined in such a way that the centre electron would cross the gap
centre at t = 0 if it travelled with a constant velocity u,. The final time is ¢;.

Z = rkﬁxed(e, (1)0 s d)f ,nmax, D)

(c) 2018 Richard G Carter
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The results are in a single table (Z) in which the first column (0) is the time and the other columns (1-12) are the positions and velocities of the electrons

in the same order as before at each value of n.

Extract the vector of phases, the matrices containing the normalised positions and velocities of the disks and the vector of the final velocities of the electrons

én = | for ne 0..nmax On:= | for je 0..(ND - 1) un:= | for je 0..(ND - 1) umax := | for je€ 0..(ND - 1)
d)n «— Zn,O for ne 0..nmax for ne 0..nmax uj «— anax,Z-j+2
b 00 < Zn2je Un i < Zn 242 u
(0] u

Check for reflected electrons  MESSAGE := |M <« "No reflected electrons "
for je 0..(ND - 1)
if unnmax,j <0
M « "REFLECTED ELECTRONS"

break

return M

The Kinetic Energy of the bunch at each time step is calculated using the relativistically correct formulae by summing the
energies of the disks. The figure becomes unstable when siginificant cross-overs occur. It is essential to ensure that the final

time is great enough for all electrons to have left the interaction region.

KE:= | for ne 0..nmax Ppc =V Ppc=111.5MW
2 ND-1
Q-c 1
KEn < T Z Check that the frequency times the intial KE is equal to the DC beam power
allowing for space-charge potential depression.

i=0
KE-f =103.0-MW

Volp = 103.0MW

KE

(c) 2018 Richard G Carter
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Define a set of equally-spaced reference planes in 6 and compute the phases and velocities at which the electrons cross them
using linear interpolation. Also find the times relative to an electron travelling at constant velocity ug.

Plane positions

0 -0
f 0
Op:= | AO « :
P NP ¢p
for pe 0..NP
0 -AO + 6
p P 0
return 6
0, —0
AD = f 0
NP

Normalised velocities (u / up) of the electrons at the reference planes

for je 0..(ND - 1)
for pe 0..NP

up =

for ne 1..nmax

flag < 0

. < un .+

u
Pp.j n-1,j

On

(break) if flag=1
up

return

flag«1 if On . >0
& n,) pP

Absolute phase

6pp - Gnn

. —0On
n,)

Relative phase

for je 0..(ND - 1) ¢r:= | for je 0.ND -1
for pe 0..NP for pe 0..NP
for ne 1..nmax . .—0
¢PaJ (bppyl pP
flag 0 return ¢r

flag«— 1 if On . >0
& ! n,] Pp

Op — 6n
p
¢p

. — (1)nn_l +

n—1,j .
D -(d)nn - d)nn_l) if flag=1

. —0On .
n,j n—1,j

(break) if flag=1

On

return ¢p

Sum of the kinetic energies of the electrons at each plane.

KEp = | for pe 0..NP

2 ND-1
KE « —~—.

Q 1
p fr]c Z

1. KE
~(unn,j - unn—l,j) if flag=1
n—1,j

(c) 2018 Richard G Carter
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Normalised kinetic energy

0.8

0.6

0.4

0 2 4 6 8

Normalised axial position

Calculate the complex current harmonics at each plane by superimposing the Fourier components of the discs.

Ip:=

for pe 0..NP

for he 1..

return Ip-ug

.« 10
upP,J

ND-1

0.5-ND

I 0
Pp’o A 27T Z d

for je 0..ND -1

6 .
if u
pP’J

=0

Q'upp J
Instantaneous current = ———=
04
Pulse duration = ——
up_ .
p,J

Find the variation of current with time at plane p
by Fourier synthesis

0.5-ND
IP(p, ) = Re " (Ip -exp(i-n-))
n=0

(c) 2018 Richard G Carter
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Fundamental RF current and its relative phase at the reference planes
(D

Ipl=1Ip argrll := | for pe 0..NP
11« Ipl - j-0
argr b arg( p b exp(] pp))

return argrll

Calculation of the induced curent in each cavity

Function for plotting the positions of the cavities
$g(0) == | for ne 1..NCAV
Beg,

bg 2 if |9—6gn| < >

return 2¢g — 2

Find the serial number of the plane at the centre of each cavity and plane numbers at the edges of the gap field. The gap
field is assumed to be zero at 10g from the gap centre. Note: 6¢2 for the last cavity must be less than 6f.

A0

eg — 60
pc = round
A6

Check that field of a cavity is zero at planes pc1 and pc2

(Og— 8y — 10: Begj
pcl = round

Cavity number cni=2 pel =80

pc. = 169

pc2Cn =258.00

Bg — 6 + 10-Beg
A6

pc2 = round(

Ocl = (pclCn - pccn)-AG Oc2 = (pCZCn - pccn)-AG

Normalised gap field
b 'l I
0.8 ' | | ' T
< I I
E 0.6 1 | | |
L:| 0.4 ' ' 1
0.2F ' ] ' .
0 1 L 1
-2 -1 0 1 2

Normalised axial position (Radians / pi)
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Induced current in each cavity Iind := | for ne 2..NCAV Equation 11.173
N pe2, The integral is approximated by a sum
lind « ——- I -Egap(6p -6
ind Be'V Z (Pp’nhn g P( Pp gn)n)
p =pcly,
return lind
Revised gap voltage in each cavity Weighted gap voltages to be used for
the next iteration
Vgc:= | for ne 1..SCAV ModVg:= | for ne 1..NCAV
Vgl = (1 — weight)- Vg + weight-Vgc
Vgcn «— O.S(Vgssn + Vgn) MVgn «— |Vgcn|
for ne SCAV + 1..NCAV return MVg
Ve < 0.5 lind LV ArgrVgc := | for ne 1..NCAV
ge S|ls0———— + Vg .
n (ch + Gen) n AVg arg(Vgcn-exp(J ~9gn)) + T
return Vge return AVg
RF output power from the change in KE RF output power from the output gap voltage Gain Efficiency
PkE = (KEO B KEnmax)'f P = L. (Modv G Gain := 10-1o Fout Pout
out = 5 (ModVeyey) “Gencay = Hog N Efficiency =
DC
Relative change in cavity voltages Power dissipated in each cavity Energy balance
Err:= | for ne 2..NCAV Pc:= | for ne 1..NCAV NCAV
|Vgn _ Vgcn| oo L ilve 1V2.6e Poy + KE £+ Z Pc_
Errn<—— n 2(| gn|) n n=1
|Vgcn| Energy_balance := -1
return Pc Ip'Vo * Pin

return Err

(c) 2018 Richard G Carter
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[]

Results The results of the calculation are in the green cells below. On the first pass the voltages in the yellow matrix are set to zero. After each pass the
figures from the green matrix are copied into the yellow matrix. The process in repeated for successive passes until the difference in the vector
voltages measured by the 'Error' is considered to be small enough. The process is repeated until it converges. Note: the first element of each
matrix is not used. The gap voltages Vg1 are the weighted mean of initial and the revised gap voltages. Normally weight = 1 but other values (e.g.
0.5) sometimes lead to more rapid convergence of the results.

MESSAGE = "No reflected electrons " weight = 1 [ Gap voltages imported from WS13.1 |

0.000 0.000 0.0 0.000 [ 0.000
0.837 0.837 0.0 0.002 0.837
3.376 + 3.583i 3.376 + 3.583i 0.0 0.081 3.376 + 3.583i
Vg=| -13.925 + 13.7351 | kV Vgl =| -13.925 + 13.7351 |-kV Err=| 0.0 |-% Pc=| 1.099 [kW Vgss = —13.925 + 13.7351 |[kV
—42.167 — 53.087i —42.167 — 53.087i1 0.0 11.969 —42.167 — 53.0871
129.825 + 237.557i 129.830 + 237.513i 0.0 190.854 101.505 + 311.629i
—410.708 — 58.236i —410.636 — 58.074i 0.0 506.096 1\ —999.741 — 402.708i / |
Pyt = 43.18 MW Pgg =47.19-MW Gain = 59.8-dB Efficiency = 43.2-% Energy_balance = 1.6- %
SR — —
e F— — S
= ' ; ! z
a —05 s L » S
= : :' = ! 3
5 L : : Iy 2
o >
R == E
~ | 0 T i <
0.5F—= : : ! g
1 O [ ! [ H g
S ¥ | l\\ . g
) s s . I N\
0 2 4 6 8 0 2 4 6 8
Normalised axial position (electron wavelengths) Normalised axial position (z / Ae)

(c) 2018 Richard G Carter




WS 13.3 Klystron large signal model.xmcd, 16

pl:=0..NP

( O / UT ) JUSIIND JTUOULIRY PASI[EULION

Normalised axial position ( z/Xe )
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