
WS 11.6 Large Signal Model of the interaction between a modulated beam and a gap 
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This Mathcad 14 worksheet is designed to accompany the author's book "Microwave and RF Vacuum Electronic Power Sources", Cambridge University

Press (2018). The section, equation, and figure numbers refer to the corresponding sections, equations, and figures in the book. Data input fields are

highlighted in yellow and output fields are highlighted in green.

This resource is provided free of charge by Cambridge University Press with permission of the author, but is subject to copyright. You are permitted to view,

print and download this resource for your own personal use only, provided any copyright lines are not removed or altered in any way. Any other use, including

but not limited to, distribution of the resource in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the

author and provided you give appropriate acknowledgement of the source. 

The contents of this sheet are provided for educational purposes only and no warranty is expressed or implied that they are suitable for use as professional

design tools.

This worksheet is designed for investigation of the interaction between an electron beam, represented by ND discs of charge in one electron wavelength,

and the RF field of a gap centred at z = 0 (see Section 11.8). The beam can be pre-modulated with an idealised bunching waveform defined by the

parameter NB which does not have to be an integer (see Equation 11.175). If NB = 0 the beam is unmodulated. Space-charge forces can be included if

required.

Define the parameters of the model

Normalised position θ βe z⋅= Normalised time ϕ ω t⋅=

Beam voltage V0 25 kV⋅:= Normalised tunnel radius γa 1.0:= Bunch centre starting position θ0 2− π:=

Beam current I0 3.7 A⋅:= Normalised beam radius βb 0.629:= Initial time ϕ0 θ0:=

Frequency f 1 GHz⋅:= Normalised gap length βgap 1.0:= Final position θf 2π:=

Beam bunching NB 6:= Number of discs ND 24:= Final time ϕf 5θf:=



WS 11.6 Output gap model.xmcd, p.2

Phase of gap voltage 

(Φ1 0=  for accelerating field at θ 0=  andϕ 0=  ) 
Φ1 180 deg⋅≡

Normalised gap voltage 

X
M Vg⋅

V0

=








X 0.8≡

 Sections below can be collapsed if required to allow data and results to be viewed on the same screen

Define constants

η 1.759 10
11

⋅
C

kg
⋅:= μS 10

6−
S⋅:= μP μA V

1.5−
⋅:= Perv I0 V0

1.5−
⋅:=Charge/mass ratio of the electron

u0 c 1
1

1
η V0⋅

c
2

+








2
−













0.5

⋅:= Rel
1

1
u0

2

c
2

−

:=Electron velocity u0 9.049 10
7

×
m

s
=

ω 2 π⋅ f⋅:= βe
ω

u0

:= λe
2 π⋅

βe

:= γe βe( ) βe
2 ω

2

c
2

−:=Propagation constants

a
γa

γe βe( )
:= b

βb

βe

:= gap
βgap

βe

:=Physical dimensions a 15.11 mm⋅=

b 9.06 mm⋅=

gap 14.40 mm⋅=

M βe( )
2 I1 γe βe( ) b⋅( )⋅

γe βe( ) b⋅( ) I0 γe βe( ) a⋅( )⋅

sin 0.5 βe⋅ gap⋅( )
0.5 βe⋅ gap⋅









⋅:=Small-signal gap coupling factor M βe( ) 0.792=

Gap voltage Vg

X V0⋅

M βe( )
:=

Vg 25.3 kV=

(c) 2018 Richard G Carter
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Define the theoretical waveforms for an optimally-bunched beam using n harmonics

 Equation 11.175 
Current waveform IIn ϕ n, ( ) 1 cos ϕ( )+( )

n
:=

DC current I0n n( )
1

2 π⋅
π−

π

ϕIIn ϕ n, ( )
⌠

⌡

d⋅:= Normalised current waveform In ϕ n, ( )
IIn ϕ n, ( )

I0n n( )
:=

1− 0.5− 0 0.5 1
0

1

2

3

4
n = 1

n = 2

n = 3

n = 4

Phase (phi / pi)

I(
 p

h
i 

) 
/ 

I0

I ϕ( ) I0 In ϕ NB, ( )⋅:=

Amplitudes of harmonics Ih n( )

Ih
nn

1

π
π−

π

ϕIn ϕ n, ( ) cos nn ϕ⋅( )⋅
⌠

⌡

d⋅←

nn 0 n..∈for

Ih
0

0.5 Ih
0

⋅←

Ih

:=

 Table 11.2 

NB 6.0= Ih NB( )

1.000

1.714

1.071

0.476

0.143

0.026

0.002























=

 Figure 11.30 

(c) 2018 Richard G Carter
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Disc model of the electron beam

The beam is modelled as ND identical rigid discs. The motions of the electrons at the central planes of the discs are tracked. We define their initial
positions and velocities using the disc thickness ∆L. As the Mathcad ODE solver rkfixed does not accept variables with dimensions the

dimensionless variables: θ βe z⋅=   and ϕ ωt=   are used.

Disc thickness ∆L
λe

ND
:= Normalised disk thickness θd βe ∆L⋅:= Disk charge Q

2 π⋅ I0

ω ND⋅
:=

Normalised disk starting positions and

velocities relative to the gap centre for

the prebunched current waveform

defined above.

θ α 0←

f1 α( )
1

2 π⋅
π−

α

ϕIn ϕ NB, ( )
⌠

⌡

d⋅←

θ
j

root f1 α( )
j 1+

2ND
− α, 








θ0+←

θ
j 1+

1←

j 0 2, 2 ND⋅ 1−( )..∈for

θ

:=

j 0 2, 2 ND⋅ 1−..:=

0 10 20
3−

2.5−

2−

1.5−

1−

Discs

Bunch centre

Disc starting positions

Disc number

th
et

a 
/ 

p
i

Check the D.C. beam current calculated from the disks

is the same as that previously computed.

f ND⋅ Q⋅ 3.700 A= I0 3.700A=

(c) 2018 Richard G Carter
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Space-Charge Field (Not used to generate the results presented below) 

The space-charge field is found from the equations given in:

J.R. Hechtel, "The effect of potential beam energy on the performance of linear beam devices", 

IEEE Transactions on Electron Devices ED-17, pp.999-1009, Nov. 1970

The first ten zeros of the Bessel function J0(z). μB
1

a
2.405 5.520 8.654 11.791 14.931 18.071 21.212 24.352 27.494 30.635( )

T
⋅:=

Calculate the axial electric field of a disc having a charge of 1 C at 100 points up to one electronic wavelength from the centre of the disc 

ESn

θ
n

0.02 n⋅ π⋅←

z
n

θ
n

βe

←

ES
n

4−

ε0 π b
2

⋅ ∆L⋅( )⋅







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅









2

⋅ exp μB
m

− z
n

⋅( )⋅ sinh

μB
m
∆L⋅

2









⋅











∑
=

⋅← θ
n

0.5 θd⋅≥if

ES
n

4−

ε0 π b
2

⋅ ∆L⋅( )⋅







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅









2

⋅ exp μB
m

−
∆L

2
⋅









sinh μB
m

z
n

⋅( )⋅








⋅











∑
=

⋅← otherwise

n 0 100..∈for

ES

:=

Normalised positions at which ES was calculated Define a continuous function for the field by linear interpolation

θn

θ
n

0.02 n⋅ π⋅←

n 0 100..∈for

θ

:= Es θ( ) sign θ( ) linterp θn ESn, θ, ( )⋅:=

ES θ( ) Es θ 2 π⋅+( ) θ π−<if

Es θ 2 π⋅−( ) θ π>if

Es θ( ) otherwise

:=

(c) 2018 Richard G Carter
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θ1 π−( ) 0.999− π⋅( ), π..:=

1− 0.5− 0 0.5 1
1−

0.5−

0

0.5

1

Normalised space-charge field

Axial position (Radians / pi )

E
_

sc
 /

 E
_

sc
 (

m
ax

)

The space-charge field of adjacent bunches

is included by assuming that the field is

periodic in z. This is not correct but tests

with an initially unmodulated beam and three

wavelengths of electrons give almost

identical results for the trajectories and the

current harmonics except well beyond the

first bunch and at microperveance greater

than 2.

The field of the gap

The field of the gap is found for unit gap voltage is found from the Fourier Transform of the field in the gap (assumed to be

constant). The average of the field over the beam is used. Linear interpolation on the values calculated at regular intervals is

used to provide a fast look-up function.

En

θ
n

0.02 n⋅ π⋅←

γ β( ) β
2

ω
2

c
2−

−←

E
n

V

π
−

0

20 π⋅

gap

β
2 I1 γ β( ) b⋅( )⋅

γ β( ) b⋅( ) I0 γ β( ) a⋅( )⋅

sin 0.5 β⋅ gap⋅( )

0.5 β⋅ gap⋅









⋅ cos
β

βe

θ
n

⋅








⋅

⌠



⌡

d⋅←

n 0 100..∈for

E

:=

Egap θ( ) linterp θn En, θ, ( ):=

 Equation 3.79 

CHECK the beam coupling factor
2−

βe V⋅
0

2π

θEgap θ( ) cos θ( )⋅
⌠

⌡

d⋅ 0.792= M βe( ) 0.792=

(c) 2018 Richard G Carter
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2− 1− 0 1 2
0

0.2

0.4

0.6

0.8

Normalised gap field

Normalised axial position (Radians / pi)

E
_

z 
/ 

E
_

0

Electric field of the gap as function of normalised position and time

Ez θ ϕ, ( ) Re
Vg

V
Egap θ( )⋅ exp j ϕ Φ1−( )⋅ 









:=

The blue chain-dotted line is the initial position of the first electron

in the bunch. It should lie outside the range of the gap field. 

Space-charge (0 or 1) SCF 0:=

Turn space-charge force off until the electrons

reach the origin to avoid non-physical dispersion of

the bunched beam.

SC θ( ) SCF θ 0≥if

0 otherwise

:=

Equations of motion

The Coefficients of the Differential Equations for the motions of the electrons are defined. The

rows represent, in order, the position in radians and the normalised velocity of the electrons. Definitions of normalised variables

D ϕ θ, ( )

D
j

θ
j 1+

←

D
j 1+

η

ω u0⋅
− 1

u0

c
θ

j 1+
⋅









2

−









1.5

⋅ Ez θj
ϕ, ( ) Q SC θ

j( )⋅

0

ND 1−

i

ES θ
j

θ
2 i⋅

−( )∑
=

⋅+











⋅←

j 0 2, 2 ND 1−( )⋅..∈for

D

:=

ϕ ω t⋅= θ βe z⋅= θ'
v

u0

=

t
z

d

d
v=

ϕ
θ

d

d

v

u0

=

t
v

d

d
η− E⋅=

ϕ

v

u0

d

d

η E⋅

ω u0⋅
=

(c) 2018 Richard G Carter
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The Equations are Solved using with nmax time steps starting from ϕ0 which is defined in such a way that the centre electron

would cross the gap centre at t = 0 if it travelled with a constant velocity u0. The final time is ϕf

Number of integration steps nmax 100:= The variable tol specifies the tolerance on

the solution of the differential equations.

10E-6 works well normally but much

smaller values may be needed at low drive

levels

tol 10
6−

:=

Z AdamsBDF θ ϕ0, ϕf, nmax, D, tol, ( ):=

The results are in a single table (Z) in which the first column (0) is the time and the other columns are the

positions and velocities of the electrons in the same order as before at each value of n.

Extract the vector of phase, the matrices containing the normalised positions and velocities of the disks

and the vector of the final velocities of the electrons

ϕn

ϕ
n

Z
n 0, 

←

n 0 nmax..∈for

ϕ

:= θn

θ
n j, 

Z
n 2 j⋅ 1+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

θ

:= un

u
n j, 

Z
n 2 j⋅ 2+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

u

:= umax

u
j

Z
nmax 2 j⋅ 2+, 

←

j 0 ND 1−( )..∈for

u

:=

Kinetic Energy of the bunch at each time step.
Check that the frequency times the intial KE is equal to the DC beam power

KE

KE
n

Q c
2

⋅

η
0

ND 1−

j

1

1

un
n j, 

u0⋅( )
2

c
2

−

1−












∑
=

⋅←

n 0 nmax..∈for

KE

:=
PDC V0 I0⋅ 92.5 kW⋅=:= KE

0
f⋅ 92.5 kW⋅=

Calculate the RF power transferred to the gap from the change in KE

PRF KE
0

KE
nmax

−( ) f⋅:= PRF 53.2 kW⋅=

Calculate the efficiency ηe

PRF

PDC

:= ηe 57.5 %⋅=

(c) 2018 Richard G Carter
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Define a set of equally-spaced planes in θ and compute the times and velocities at which the electrons cross them using linear interpolation.

Reference plane interval ∆θ 0.01 π⋅:= Number of reference planes NP
θf θ0−

∆θ
:= NP 400.00=

θp

θ
p

p

NP
θf θ0−( )⋅ θ0+←

p 0 NP..∈for

θreturn

:= ϕp

flag 0←

flag 1← θn
n j, 

θp
p

>if

ϕp
p j, 

ϕn
n 1−

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
ϕn

n
ϕn

n 1−
−( )⋅+ θp

p
−← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

ϕpreturn

:=

(c) 2018 Richard G Carter
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up

flag 0←

flag 1← θn
n j, 

θp
p

>if

up
p j, 

un
n 1− j, 

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
un

n j, 
un

n 1− j, 
−( )⋅+← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

upreturn

:= Calculate the total kinetic energy of the

electrons as they cross each plane. 

KEp

KE
p

Q c
2

⋅

η
0

ND 1−

j

1

1

up
p j, 

u0⋅( )
2

c
2

−

1−












∑
=

⋅←

p 0 NP..∈for

KE

:=

np 0 NP..:=

1− 0.5− 0 0.5 1
0

0.5

1

theta / pi

K
E

 /
 I

n
it

ia
l 

K
E

Electronic efficiency

KEp
0

KEp
NP

−( ) f⋅

PDC

57.5 %⋅= ηe 57.5 %⋅=

(c) 2018 Richard G Carter
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Calculate the complex current harmonics at each plane by superimposing the Fourier components of the discs. 

For simplicity each disc is treated as having constant length. Number of current harmonics NH 6:=

Ip

Ip
p 0, 

Q

2 π⋅ ∆L⋅
0

ND 1−

j

θd∑
=

⋅←

Ip
p h, 

2 Q⋅

π h⋅ ∆L⋅
0

ND 1−

j

sin
h θd⋅

2









exp j h⋅ ϕp
p j, 

⋅( )⋅






∑

=

⋅←

h 1 NH..∈for

p 0 NP..∈for

Ip u0⋅return

:=

Instantaneous current = 

Q up
p j, 

⋅

∆L

Pulse phase duration = 
θd

up
p j, 

Effective gap coupling factor

Meff

2 PRF⋅

Ih NB( )
1

I0⋅ Vg⋅
:=

Vss u( )
c

2

η

1

1
u

2

c
2

−

1−












⋅:=

(c) 2018 Richard G Carter
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 Approximate model of the beam/gap interaction

The exit energy is calculated as a function of ϕ using piecewise constant velocity and iteration to find the exit velocity. 

The results are compared with those from the disk model.

ue Ve( ) c 1
1

1
η Ve⋅

c
2

+








2
−













0.5

⋅:= βe Ve( )
ω

ue Ve( )
:=

Vss2 ϕ X, Φ, Vs, ( ) 1
1

2
1

M βe V0 Vs⋅( )( )
M βe( )

+








⋅ X⋅ cos ϕ Φ−( )⋅+:=  Equation 11.168 

Vs 0.2:= fn2 Vs ϕ, X, Φ, ( ) Vs Vss2 ϕ X, Φ, Vs, ( )−:= Vs2 ϕ X, Φ, ( ) root fn2 Vs ϕ, X, Φ, ( ) Vs, ( ):=

PRF2 X Φ, ( )
V0

2 π⋅
π−

π

ϕI ϕ( ) 1 Vs2 ϕ X, Φ, ( )−( )⋅
⌠

⌡

d⋅:=
 Equation 11.179 

Meff2 X Φ, ( )
1

2
M βe( ) M βe V0 Vs2 0 X, Φ, ( )⋅( )( )+( )⋅:=  Equation 11.182 

ηe2 X Φ, ( )
PRF2 X Φ, ( )

I0 V0⋅
:=ηe1 X Φ, ( )

1

2
− Ih NB( )

1
⋅

Meff2 X Φ, ( )

M βe( )
⋅ X⋅ cos 0 Φ−( )⋅:=

Plotting ranges for graphs j 0 ND 1−..:= x 0 0.1, 1.5..:= ϕ ϕ0 1.2ϕf..:= ϕg 1− 1..:= pp 0 NP..:=

(c) 2018 Richard G Carter
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Results of the disk model calculations

PRF 53.2 kW⋅= ηe 57.5 %⋅= M βe( ) 0.792= Meff 0.664= Perv 0.936 μP⋅=

1− 0.6− 0.2− 0.2 0.6 1
0

0.5

1

1.5

theta / 2 * pi

N
o

rm
al

is
ed

 k
in

et
ic

 e
n

er
g

y

1− 0.5− 0 0.5 1
1

0.5

0

0.5−

1−

theta / 2 * pi

R
el

at
iv

e 
p

h
as

e 
/ 

p
i

(c) 2018 Richard G Carter
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1− 0.5− 0 0.5 1
0

0.5

1

1.5

2

theta / 2 * pi

u
 /

 u
0

(c) 2018 Richard G Carter
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Investigation of the effect of gap voltage on the effective gap coupling factor

The results of the calculations for different values of X are entered in the data matrices below for plotting

 Disc model  Approximate model 

Meff

M βe( )
0.839=  Meff / M for NB = 1, 2 and 6

Meff2 X Φ1, ( )
M βe( )

0.833=  Meff2 / M

X1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

























:= Meff1

0.959

0.905

0.843

0.768

0.678

0.564

0.413

0.211

























:= Meff2

0.971

0.929

0.878

0.816

0.737

0.637

0.501

0.315

























:= Meff6

0.976

0.941

0.896

0.839

0.764

0.663

0.522

0.326

























:= Mapp

0.974

0.939

0.892

0.833

0.765

0.696

0.632

0.576

























:=

(c) 2018 Richard G Carter



WS 11.6 Output gap model.xmcd, p.16

0 0.4 0.8 1.2 1.6
0.2

0.4

0.6

0.8

1

Approximate

Disc NB = 6

Disc NB = 2

Disc NB = 1

SCF = 0

X

M
ef

f

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

Approximate

Disk model

SCF = 0, NB = 6

X

M
ef

f

(c) 2018 Richard G Carter



WS 11.6 Output gap model.xmcd, p.17

Investigation of the values of efficiency calculated using the disc model and two theoretical approximations

The results from the disc model without space-charge and from approximate theoretical models

are computed and the results stored in the data matrices for plotting. 

1. Φ=180 deg and various values of X. 

2. Beta * g = 1.0, NB = 6, X = 1.0 and various phases
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Investigation of maximum energy transfer from a bunched beam to an output gap

The calculations were carried out using 24 discs, no space-charge. For each choice of I1/I0, gamma*a and beta*g X and PHI were adjusted for

maximum efficiency. The results are entered in the yellow cells of the embedded spreadsheet for plotting. The figures in the table were computed with

an earlier version of the model and may differ slightly from those calculated now.
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Calculation of effective gap factors for maximum energy transfer to the gap from a bunched beam b / a = 0.6

I1/I0 gamma*a Beta*g X1 PHI Vg / Va M eta Meff

1.33 1 0.1 1.2 185 1.455 0.825 54.8 0.57

1.33 1 0.2 1.2 185 1.456 0.824 54.69 0.57

1.33 1 0.4 1.2 185 1.463 0.82 54.25 0.56
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M1 is the small-signal coupling factor and Me1 the effective coupling factor 

for the first pair of values of I1 / I0 and gamma * a, and so on.

 Figure 11.32 
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