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This Mathcad 14 worksheet is designed to accompany the author's book "Microwave and RF Vacuum Electronic Power Sources", Cambridge University

Press (2018). The section, equation, and figure numbers refer to the corresponding sections, equations, and figures in the book. Data input fields are

highlighted in yellow and output fields are highlighted in green.

This resource is provided free of charge by Cambridge University Press with permission of the author, but is subject to copyright. You are permitted to view,

print and download this resource for your own personal use only, provided any copyright lines are not removed or altered in any way. Any other use, including

but not limited to, distribution of the resource in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the

author and provided you give appropriate acknowledgement of the source. 

The contents of this sheet are provided for educational purposes only and no warranty is expressed or implied that they are suitable for use as professional

design tools.

This worksheet provides a simple large-signal model of a helix TWT. Small-signal analysis (see Worksheet 14.1) is used to provide an initial estimate of the
RF electric field acting on the electrons. The electrons in one wavelength are represented by a set of rigid disks of equal dimensions whose charges are
equal. The motion of the disks is tracked through the helix with time as the independent variable using numerical integration. Dimensionless variables 

θ βe z⋅=  andϕ ω t⋅=  are used.The RF power transferred to the helix is computed using conservation of energy.

The model can be run with, and without, space-charge and the backward wave. Three wavelengths of electrons are tracked where the outer wavelengths
are guard wavelengths to ensure correct calculation of the space-charge forces. The results are computed from the electrons in the central wavelength.
Good results are normally obtained with 24 electrons per wavelength. 

The results in the time domain are converted into the space domain by finding the times at which the electrons cross NP regularly spaced planes and their
velocities at those times. The RF beam current harmonics are computed by superimposing the harmonics of the current pulses of individual discs repeated
at the signal frequency. This is a complex model which takes over a minute to produce the results.

The results obtained with this sheet differ slightly from those given in the book because of small changes to the model since those results were generated.
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Tube data

Anode voltage Beam current Frequency RF input power Beam radius

Va 6.0 kV⋅:= I0 135 mA⋅:= f 11.7 GHz⋅:= Pin 10 mW⋅:= b 0.34 mm⋅:=

Helix radius Helix length Propagation constant Pierce impedance Cold loss per wavelength 

a 0.68 mm⋅:= Lh 100 mm⋅:= β0 1700 m
1−

⋅:= ZP 37 Ω⋅:= loss 0.0 dB⋅:=

Parameters of the large-signal model

Number of discs per wavelength Nd 24:= Space-charge forces (1 = YES, 0 = NO) SCF 1:=

Backward wave (1 = YES, 0 = NO) BW 0:= Saturation effects (1 = YES, 0 = NO) SAT 1:=

When saturation effects are to be included the model is run first without saturation effects. The positions of the trapping and saturation

planes in the green result fields are copied into the fields below and the model run with saturation effects included. The new  plane

positions are inserted and the process is repeated until convergence is obtained.

Trapping plane zt 69 mm⋅:= Saturation plane zs 89 mm⋅:=

 The section below can be collapsed to allow the data and the results to be seen on the screen together.

(c) 2018 Richard G Carter
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Small-signal model 

Define constants

Charge/mass ratio of the electron η 1.759 10
11

⋅
C

kg
:= Perveance μP μA V

1.5−
⋅:= dB 1≡ dBm 1:=

Calculate the beam velocity, allowing for space-charge potential depression, and the electronic propagation constant.

V0 V
1

Va←

u
n

c 1
1

1

η V
n

⋅

c
2

+








2
−













0.5

⋅←

V
n 1+

V
1

I0

2 π⋅ ε0⋅ u
n

⋅

1

2
ln

b

a








−








⋅−←

n 1 5..∈for

V
n 1+

return

:= u0 c 1
1

1
η V0⋅

c
2

+








2
−













0.5

⋅:= Rel
1

1
u0

2

c
2

−

:=

V0 5.94 kV⋅=

u0 4.53 10
7

× m s
1−

⋅⋅= Rel 1.012=

Perv
I0

Va
1.5

:= Perv 0.29 μP⋅=

ω 2 π⋅ f⋅:= βe
ω

u0

:= λe
2 π⋅

βe

:= γe

βe

Rel
:= γe b⋅ 0.545=

Calculate the plasma frequency and the reduced plasma frequency

Plasma frequency ωp
η

ε0

I0

π b
2

⋅ u0⋅

⋅
1

Rel
3

⋅:= Ratio of magnetic field to the Brillouin field

chosen to approximate confined flow
mB 10:=

(c) 2018 Richard G Carter
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ωq γa γe a⋅←

γb γe b⋅←

τb p( ) γb

1

p
2

1−

1

p
2

2 mB
2

1−( )⋅−

1−















1

2

⋅←

fn1
1

γb

I1 γb( ) K0 γa( )⋅ I0 γa( ) K1 γb( )⋅+

I0 γb( ) K0 γa( )⋅ I0 γa( ) K0 γb( )⋅−
⋅←

fn2 p( )

1
1

p
2

−

τb p( )

I1 τb p( )( )

I0 τb p( )( )
⋅←

fn p( )
1

fn1

1

fn2 p( )
−←

p0 0.9←

ωq root fn p0( ) p0, ( ) ωp⋅←

:= βq

ωq

u0

:=

ωq

ω
0.059=

Propagation constants of the fast and slow space-charge waves

βf βe βq−:= βs βe βq+:= γf

βf

Rel
:= γs

βs

Rel
:=

Electronic admittance of the beam

Ye

I0

Rel Rel 1+( )⋅ V0⋅

ω

ωq

⋅:=  Equation 11.80 Ze
1

Ye

:=

Phase velocity of the slow space-charge wave

vps
ω

βs

:=

Calculate the characteristic impedance and the coupling impedance of the helix

γ0
β0

Rel
:= Zc ZP I0 γ0 a⋅( )

2
⋅:= Yc

1

Zc

:= γ1
1

2
γ0 γs+( )⋅:= μc

2

γ1 b⋅

I1 γ1 b⋅( )
I0 γ1 a⋅( )

⋅:= Zc 67.8Ω=

μc 0.767=

β0 β0 1 j
loss

40 π⋅ log e( )⋅
⋅−









⋅:=

(c) 2018 Richard G Carter
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Pierce parameters

CP
μc

2
Zc⋅ I0⋅

4 Va⋅











1

3

:= QC
ωq

ω ωq+

1

2 CP⋅
⋅









2

:= bP
1

CP

β0

βe

1−








⋅:= α
loss β0⋅

40 π⋅ log e( )⋅
:= dP

1

CP

α

βe

⋅:=

Coupled-mode matrix

 Equation 11.132

 Note: this equation is wrong in the book and has been

corrected 

CM

β0

0

1

2
μc⋅ β0⋅

1

2
μc⋅ β0⋅

0

β0−

1

2
− μc⋅ β0⋅

1

2
− μc⋅ β0⋅

1

2
μc⋅ Zc⋅ Ye⋅ βf⋅

1

2
− μc⋅ Zc⋅ Ye⋅ βf⋅

βf

0

1

2
− μc⋅ Zc⋅ Ye⋅ βs⋅

1

2
μc⋅ Zc⋅ Ye⋅ βs⋅

0

βs























:=

The eigenvalues of the matrix are

β β sort eigenvals CM( )( )←

β

β
0

β
1

β
3

β
2

















← Im β
3( ) 0<if

β

:= Note: The roots have

been sorted in the

order: 

(1) Backward wave 

(2) Fast wave 

(3) Decaying wave

(4) Growing wave 

β

1700−

1505

1720 71i−

1720 71i+













m
1−

=

Growing wave propagation constant βg β
3

:=

(c) 2018 Richard G Carter
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Dimensionless connection matrix which relates the amplitudes of the coupled modes (W) to those of the uncoupled modes (U)

CC Yc Yc Ω⋅←

Ye Ye Ω⋅←

C1

1

Yc

0

0

1

Yc−

0

0

0

0

1

Ye

0

0

1

Ye−













←

C2

C2
0 j, 

1←

C2
1 j, 

β
j

Yc⋅

β0

←

C2
3 j, 

β
j( )

2
β0

2
−

β
j
β0⋅











Yc

μc

⋅←

C2
2 j, 

C2
3 j, 

βe β
j

−

βq Ye⋅
⋅←

j 0 3..∈for

C2

←

CC C2
1−

C1⋅←

:=

Calculate the ratio of electron velocity to the phase

velocity of the growing wave and to the phase

velocity of the helix  Equation 14.14 

u0_vg
Re βg( )
βe

:= u0_vg 1.060=

u0_vp
Re β0( )
βe

:= u0_vp 1.048=

 Equations 14.26 to 14.29 

Calculate the phase of the bunch relative to the

growing wave. The phase shift of π is a result

of the sign convention used for the current in
the large-signal model.

ϕIV 1
1

π
arg

β0
2

βg( )
2

−

β0 βg⋅











+:=  Equation 14.28 

 Equation 14.31 

(c) 2018 Richard G Carter
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Dimensionless transfer matrix which relates the uncoupled modes at the start of a section to those at the end of the section

TT βz β Lh⋅←

SS

exp j− βz
0

⋅( )
0

0

0

0

exp j− βz
1

⋅( )
0

0

0

0

exp j− βz
2

⋅( )
0

0

0

0

exp j− βz
3

⋅( )

















←

T CC
1−

SS⋅ CC⋅←

:=

 Equation 14.32 

 Equation 14.33 

Transfer matrix which relates the uncoupled modes at the start of a section to the wave amplitudes at position z is

RR z( ) βz β z⋅←

SS

exp j− βz
0

⋅( )
0

0

0

0

exp j− βz
1

⋅( )
0

0

0

0

exp j− βz
2

⋅( )
0

0

0

0

exp j− βz
3

⋅( )

















←

RR SS CC⋅←

:=

(c) 2018 Richard G Carter
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Set up initial conditions

Voltage of the input signal Vin 2 Pin⋅ Zc⋅:= Vin 1.16 V=

Uncoupled amplitudes at the input

This definition of U1 ensures that the output of the tube is matched so that the

amplitude of the backward wave at the output is zero. It is necessary because a

single section with high gain has been used so that reflection of power at the

output can cause errors which would not occur in a severed tube.
U1

1

RR Lh( )0 0, −

RR Lh( )0 1, 

0

0















Vin⋅:=

Check wave amplitudes at the output W2 RR Lh( ) U1⋅:= W2

0.0

0.1 0.0i+

0.0− 0.0i−

434.6− 427.5i−













V=

Uncoupled amplitudes in the output waveguide

U2 TT U1⋅:=
 Equation 14.33 

(c) 2018 Richard G Carter
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Computation of the signal growth along the length of the tube

The forward power on the helix as a function of position along the structure is computed from

the forward wave amplitudes at the start of the section using equations (14.26) and (14.27).

W1 z( ) RR z( ) U1⋅:= Pf z( )

Re W1 z( )
1

W1 z( )
1


⋅ β

1
⋅ W1 z( )

2
W1 z( )

2


⋅ β

2
⋅+ W1 z( )

3
W1 z( )

3


⋅ β

3
⋅+





2 Re β0( )⋅ Zc⋅
:= Pf 0( ) 4.19 mW⋅=

Small-signal gain for the full length of the helix Gain z( ) 10 log
Pf z( )

Pin









⋅:= Gain Lh( ) 54.4 dB⋅=

Plotting range z1 0 0.001 Lh⋅, Lh..:=
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0
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o
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e 
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m
)

 Figure 14.10 

(c) 2018 Richard G Carter
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Large-signal disk model

It will not normally be necessary to change these settings

Number of wavelengths tracked (odd) Nλ 3:= Number of harmonics for current calculations NH 6:=

Bunch centre starting position θ0 Nλ 1+( )− π:= Number of reference planes NP 200:=

Number of integration steps nmax 100:=

Final values of the normalised position and time θf βe Lh⋅:= ϕf θf 10 π⋅+:=

Number of discs ND Nd Nλ⋅:= Disk charge Q
2 π⋅ I0

ω Nd⋅
:=

Normalised disk thickness θd
2 π⋅ Nλ⋅

ND
:= Disk length ∆L

θd

βe

:=

Normalised initial positions and

velocities of the disks
θ

θ
j

θ0 Nλπ 1
j 1+

ND
−









⋅+←

θ
j 1+

1←

j 0 2, 2 ND 1−( )⋅..∈for

θ

:=

(c) 2018 Richard G Carter
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Compute the space-charge function

The Space-Charge Field is found from the equations given in

J.R. Hechtel, "The effect of potential beam energy on the performance of linear beam devices", 

IEEE Transactions on Electron Devices ED-17, pp.999-1009, Nov. 1970.

Define the first ten zeros of the Bessel function J0(z). 

μB
1

a
2.405 5.520 8.654 11.791 14.931 18.071 21.212 24.352 27.494 30.635( )

T
⋅:=

Charge density ρ0
1

π b
2

⋅ ∆L⋅

−:= ρ0 is calculated for a disk charge of -1C. 

Thus the electric field must be multiplied by the charge of the source disk

The space-charge field is calculated at intervals over a normalised distance of 2π from the centre of the disc.

ESn

θ
n

n

120
π⋅←

z
n

θ
n

βe

←

ES
n

4 Q⋅ ρ0⋅

ε0







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅









2

⋅ exp μB
m

− z
n

⋅( )⋅ sinh

μB
m
∆L⋅

2









⋅











∑
=

⋅← θ
n

0.5 θd⋅≥if

ES
n

4 Q⋅ ρ0⋅

ε0







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅









2

⋅ exp μB
m

−
∆L

2
⋅









sinh μB
m

z
n

⋅( )⋅








⋅











∑
=

⋅← otherwise

n 0 240..∈for

ES

:=

(c) 2018 Richard G Carter
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The space-charge table is converted into a continuous function using linear interpolation

θn

θ
n

n

120
π⋅←

n 0 240..∈for

θ

:= Es θ( ) sign θ( ) linterp θn ESn, θ, ( )⋅:= ES θ( ) Es θ 2 Nλ⋅ π⋅+( ) θ Nλ− π⋅<if

Es θ 2 Nλ⋅ π⋅−( ) θ Nλ π⋅>if

Es θ( ) otherwise

:=

1− 0.5− 0 0.5 1
1−

0.5−

0

0.5

1

Normalised space-charge field

Axial position (Radians / pi )

E
_

sc
 /

 E
_

sc
 (

m
ax

)

(c) 2018 Richard G Carter
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Interaction field

The interaction field on the axis is found using small-signal theory because Mathcad is too slow to make iteration possible.

All quantities are defined in terms of absolute position and time  

Initial wave amplitudes Win W1 0( ):= Win

0.000

0.115

0.525 0.012i+

0.525 0.012i−













V=

Ef θ ϕ, ( ) Ef Re

1

3

n

j β
n

⋅ Win
n

⋅ exp j ϕ

β
n

βe

θ⋅−






⋅






⋅






∑
=











θ 0≥ θ θf≤∧if

0 otherwise

←

Ef μc⋅return

:=
Forward wave field

Eb θ ϕ, ( ) Eb Re j β
0

⋅ Win
0

⋅ exp j ϕ

β
0

βe

θ⋅−






⋅






⋅






θ 0≥ θ θf≤∧if

0 otherwise

←

Eb μc⋅return

:=
Backward wave field

Define an approximate function to model saturation using

quadratic variation of growth rate starting from the position

of first trapping. Note that this differs from the cubic

function in equation (14.65). The quadratic function gives

better consistency with the large-signal results in this

case.

Sat z( ) Sat exp Im β
3( )−

z zt−( )
2

2 zs zt−( )⋅
⋅











z zt≥ SAT 1=∧if

1 otherwise

←

Satreturn















:=

Ez θ ϕ, ( ) Ef θ ϕ, ( ) BW Eb θ ϕ, ( )⋅+( ) Sat
θ

βe









⋅:=
Interaction field ( V/m )

(c) 2018 Richard G Carter
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The Coefficients of the Differential Equations for the motions of the electrons are defined. 

The rows represent, in order, the position in radians and the normalised velocity of the electrons.

Definitions of normalised variables

Const
η

ω u0⋅
−:=

ϕ ω t⋅= θ βe z⋅= θ'
v

u0

=

D ϕ θ, ( )

D
j

θ
j 1+

←

D
j 1+

Const 1
u0

c
θ

j 1+
⋅









2

−









1.5

⋅ Ez θj
ϕ, ( )⋅











SCF 1≠if

Const 1
u0

c
θ

j 1+
⋅









2

−









1.5

⋅ Ez θj
ϕ, ( )

0

ND 1−

i

ES θ
j

θ
2 i⋅

−( )( )∑
=

+











⋅













otherwise

←

j 0 2, 2 ND 1−( )⋅..∈for

D

:=

t
z

d

d
v=

ϕ
θ

d

d

v

u0

=

t
v

d

d
η− E⋅=

ϕ

v

u0

d

d

η E⋅

ω u0⋅
=

The Equations are Solved using with nmax time steps starting from 0. The final time is tf

The variable tol specifies the tolerance on the solution of the differential equations. 

10E-6 works well normally but much smaller values may be needed at low drive levels tol 10
6−

:=

Z AdamsBDF θ 0, ϕf, nmax, D, tol, ( ):=

The results are in a single table (Z) in which the first column (0) is the time and the other columns (1-12) are the positions and

velocities of the electrons in the same order as before at each value of n.
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Extract the vector of phase, the matrices containing the normalised positions and velocities of the disks and the vector of the final velocities of the electrons

ϕn

ϕ
n

Z
n 0, 

←

n 0 nmax..∈for

ϕ

:= θn

θ
n j, 

Z
n 2 j⋅ 1+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

θ

:= un

u
n j, 

Z
n 2 j⋅ 2+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

u

:= umax

u
j

Z
nmax 2 j⋅ 2+, 

←

j 0 ND 1−( )..∈for

u

:=

Define a set of equally-spaced reference planes in θ.

θp

θ
p

p

NP
θf⋅←

p 0 NP..∈for

θreturn

:= zp
θp

βe

:=

Find the normalised velocities of the electrons as they cross each reference plane 

up

flag 0←

flag 1← θn
n j, 

θp
p

>if

up
p j, 

un
n 1− j, 

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
un

n j, 
un

n 1− j, 
−( )⋅+← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

upreturn

:=
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Find the phase of the wave on the helix as a function of position from the small signal model

Vh θ ϕ, ( )

1

3

n

Win
n

exp j ϕ

β
n

β
3

−

βe

θ⋅−






⋅






⋅






∑
=

:= ϕV θ( ) arg Vh θ 0, ( )( )
Re β

3( )
βe

θ⋅−:=

Find the phase when each electron crosses each reference plane referred to the phase of the growing wave determined from the small-signal model.

ϕp

flag 0←

flag 1← θn
n j, 

θp
p

>if

ϕp
p j, 

ϕn
n 1−

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
ϕn

n
ϕn

n 1−
−( )⋅+









ϕV θp
p( )+← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

ϕp
p j, 

ϕp
p j, 

2 π⋅+← ϕp
p 1− j, 

ϕp
p j, 

− π>if

ϕp
p j, 

ϕp
p j, 

2 π⋅−← ϕp
p j, 

ϕp
p 1− j, 

− π>if

p 1 NP..∈for

ϕpreturn

:=
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Define the serial numbers of the electrons in the central group used to calculate the performance of the tube.

NG 0.5 Nλ 1−( )⋅:= N1 NG Nd⋅:= N2 N1 Nd+ 1−:=

Find the mean velocity of the electrons normalised to the phase velocity of the growing wave

umean

um
p

1

Nd
N1

N2

j

up
p j, ∑

=

⋅←

p 0 NP..∈for

um

Re β
3( )

βe

⋅

:=

Calculate the complex current harmonics at each plane, normalised to the DC beam current, by superimposing the Fourier components of the discs.

For simplicity each disc is treated as having constant charge and length. The currents are referred to the phase of the growing wave. 

Ip

Ip
p 0, 

N1

N2

j

1

2
θd⋅







∑

=

←

Ip
p h, 

N1

N2

j

θd sinc
h θd⋅

2 π⋅ up
p j, 

⋅ 0 10
6−

⋅+











⋅ exp j h⋅ ϕp
p j, 

⋅( )⋅










∑
=

←

h 1 NH..∈for

p 0 NP..∈for

Ip

π
return

:=

Instantaneous current = 

Q
j

up
p j, 

⋅

∆L

Pulse phase duration = 
θd

up
p j, 
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Find the normalised amplitude and the phase of the first harmonic of the RF beam current Find the first maximum of I1/I0

Ip1

Ip1
p

Ip
1〈 〉( )

p
←

p 0 NP..∈for

Ip1

:= ϕI1

ϕI
p

arg Ip
1〈 〉( )

p




←

p 0 NP..∈for

ϕI

:= Ip1max

Imax Ip1
p

← Ip1
p

Ip1
p 1+

>if

break( ) Imax 0≠if

p 0 NP 1−..∈for

break( ) Imax 0≠if

Imaxreturn

:=

Calculate the total kinetic power of the electrons as they cross each reference plane. 

PDC I0 V0⋅:= Prp

P
p

PDC

Nd
1

1
u0

2

c
2

−

1−












⋅ N1

N2

j

1

1
u0

2

c
2

up
p j, ( )

2
−

1−












∑
=

⋅←

p 0 NP..∈for

P

:=

CHECK the initial beam power is equal to the DC power Prp
0

801.4 W= PDC 801.4 W=

The RF power on the helix at each plane is equal to the DC beam power plus the initial RF power minus the residual beam power at that plane.

This ignores the effects of harmonics

PRF Pf 0( ) PDC+ Prp−:=

Find the maximum RF power, the saturated gain and the efficiency

Pmax max PRF( ):= Max_power 10 log
Pmax

1 mW⋅









⋅:= Sat_gain 10 log
Pmax

Pin









⋅:= ηe

Pmax

I0 Va⋅
:=
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Find the initiation plane at which the large-signal phase first equals

the small-signal phase

Find the plane at which trapping commences where the velocity of the slowest

electron equals the phase velocity of the growing wave obtained from the

small-signal model.

pt

pt p← up
p j, 

Re βg( )
βe

⋅ 1≤if

break( ) pt 0≠if

j N1 N2..∈for

break( ) pt 0≠if

p 0 NP..∈for

ptreturn

:=
pi

pi p←

ϕI1
p

−

π
ϕIV≥if

break( ) pi 0≠if

p 0 NP..∈for

break( ) pi 0≠if

pireturn

:=

zi pi

Lh

NP
⋅:=

zt pt

Lh

NP









⋅:=

Find the plane of saturation
Calculate the spent beam distribution curve at plane P

ps

ps p← PRF
p

PRF
p 1+

>if

break( ) ps 0≠if

p 0.5 NP⋅ NP 1−..∈for

break( ) ps 0≠if

psreturn

:= Vs P( )

us
j

up
P j Nd+, 

←

j 0 Nd 1−..∈for

uss reverse sort us( )( )←

Vs
j

uss
j( )

2
←

j 0 Nd 1−..∈for

Vsreturn

:=

zs ps

Lh

NP
⋅:=

Gain zs( ) 47.990 dB⋅=

Gain compression
Plotting ranges

p1 0 NP..:= nj 0 ND..:= j1 0 Nd 1−..:= Compression Gain zs( ) Sat_gain−:=
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Results

Perv 0.290 μP⋅=

Small-signal results

Pierce parameters (C, QC, b and d) CP 0.061= QC 0.212= bP 0.784= dP 0.000=

Relative phase of the bunch /π ϕIV 0.406=

Beam velocity / phase velocity of helix u0_vp 1.048= Beam velocity / phase velocity of growing wave u0_vg 1.060=

Large-signal results

Saturated RF power Pmax 133 W⋅= Efficiency ηe 16.4 %⋅=

Saturated gain Sat_gain 41.2 dB⋅= Gain compression Compression 6.8 dB⋅=

Maximum normalised RF beam current Ip1max 1.102=

Initiation, trapping and saturation planes zi 22.5 mm⋅= zt 69.0 mm⋅= zs 89.5 mm⋅=

P ps:= Offset 2:=
Plotting plane and phase offset

(c) 2018 Richard G Carter
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