Worksheet 11.1 Calculation of coupling factors and beam loading for gridded and ungridded gaps
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1. Gridded Gaps
The coupling factor and beam loading conductance are calculated in terms of the gap transit angle 6 = .9

M(8) := sinc(0.5-0) Equation 11.7 Gb(8) := 0.5-sinc(0.5-0)-(sinc(0.5-8) — cos(0.5-0))
1 4 ) Equation 11.20
=—0— Equation 11.22 5 .
Cg(6) = 8- -M(6) quation Bb(0) = 0.5 25030 G (0.5-6) - c0s(0.5-0))
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2. Coupling in an ungridded gap

Radial Coupling Factor

See Garland M. Branch: Electron Beam Coupling in Interaction Gaps of Cylindrical Symmetry
IRE Trans ED Vol.ED-8, pp.193-207 (1961)

a. Brillouin Beam: interaction concentrated on beam surface.

pg(A,~b) = _10evb) Equation 11.40

mu_B

10(Ab)

~

0.8

N
\\\\\

0.6
0.4 \-\‘i
0.27“0 b/a=
00 b/a=0.6 \‘\
AAA b/a=0.8
0 I
0 0.5 1 1.5 2

gamma * b

Figure 11.7(a)

where A = 2
b

b. Confined flow: Coupling averaged over area of beam

He(A,b) =

mu_

2-11(~b)

~b-I0(A-~b)

Equation 11.38
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Computation of Beam Loading Admittance of an ungridded gap by a beam in confined flow

Define the propagation constant, the coupling coefficient and the normalised gap loading conductance in terms of the transit angle 6 (in

radians) and the dimensions of the beam and the gap

sin(O.S-G))

6 = (3. 0) =
Beg p‘d() ( 0.5-6

M(a.b.g.0) = py(a.b.g.6)14(6)

5a6) i ? ab.e6) 2.11(Be(g, 0)-b)
(g,0) = — a,b,g,0) :=
g ™ B2, 6)-b-10(Be(g, 6)-2)

-1 d 2
Gy(a,b,g,0) = —-0-—M(a,b,g,0)
b 4 do

a:=1 b:= 0.7 Gb(g.0) == Gy(a,b,g,6)
0.2 \
3¢ a/g = 2.0
+++ a/g=1.0
BE8 a/g=0.5
009 a/g = 0.
015/ \ /+ ve=02 ]
3 \
5 0-1 Figure 11.16
(Gb/GO only)
0.05 Compare fig.6 in
' Craig, E.J., The beam loading admittance of gridless klystron gaps,
IEEE Trans. Vol.ED-14, No.5, pp.273-278 (1967)
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Beam Loading Admittance for a relativistic beam

Based on E. J. Craig, "Relativistic beam-loading admittance," IEEE Transactions on Electron Devices, vol. 16, pp. 139-139, 1969 and using
his notation. The results are for an ungridded gap assuming uniform field in the gap.

Assume that the normalised reduced plasma frequency is

Ratio of beam velocity to velocity of light

a = tunnel radius
b = beam radius
gap = gap length
beta = beta_e

2-5in(0.5-B- gap)z(IO(’Y-b)z - Il('\{-b)z)

Rel(B,v.a,b,gap) = 2 2

1

G2(B,a,b,gap) =
b &ap 2:R-(R+1)wq_w

Zeroes of the Bessel function J,

X:= | for ne 1. nmax
X & N

>\n < root(JO(x), x)

return A

-|:ReI|:(1 — wq_w)-B,(lng_w).B,a,b,gap} - Rel[(l + wq_w)-B,%,a,b,gap:H

wq_w:= 0.05
1
u0_c:= 0.01 Ri=— N = B8
, 2 R
1 —-u0_c
gap = 2

[ Equation 11.101 |

Equation 11.100
(Real part)

Number of terms in the series nmax := 3

for ne 1..nmax

A_-gap a2
r « ° -1 = a_B -uO_c2
n a >\n

return r

(3,2, gap) == [Equation 11.103|
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N%I&B,a,gap) = | for ne 1..nmax
-1
2
N « 1—(a'—6] w0_c
n N
n
return N
x(a,b,gap) := | for ne 1..nmax [ Equation 11.106 | y(a,b,gap) := | for ne 1..nmax [ Equation 11.107 |
b-X\ 2 b-\ 2
n n
gap-JO| —— gap-J1| —
| —ta) R i WP
a~J1(>\n) a~J1(>\n)
return x return x
A(B,a,b,gap) := | for ne 1..nmax [ Equation 11.104 |
(18.0.8p), 1+ exp(-1(B.a,g20), )
A <« 2-N((3,a,gap) -(x(a,b,gap) + y(a,b,gap) |-
) B.a.gap) -(x(a,b.gap) + y(a.b,gap) ) Pazm),
return A
B(B,a,b,gap) := | for ne 1..nmax [ Equation 11.105 |
i 3-2:1(B.a,gap) (3 +1(B.a,gap) )-exp(-r(B.a,gap) )
B, < |N(B.a,gap) -(x(a,b. gap) + y(ab.gap) ;
(v(B.a,2ap) )
2-x(a,b,gap)n-(r(ﬁ,a,gap)n -1+ exp(—r(B,a,gap)n))
+
3
I (v(B.a, 2ap) ) |
return B
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-oap — sin(B- )2 — I1(~-b)> nmax A(B.a,b, gap) B((3,a,b, gap)
ImI(B.~.a.b, gap) = (B-gap —sin(B gap))(IO(“{ b)” —Tl(yb) ) +2.Bogap Z n B n
87 gap - 10(v-2)” 2 2 3 [Bz‘gap2 + (r(B a, gap) )2}
n=l [B gap + (r(B,a,gap)n)} T
[ Equation 11.102 |
_ 1 (1 —wq_w)-B (1+ wq_w)-B Equation 11.100
B2(B,a,b, gap) = TR+ l)wq_w-[lml[(l - wq_w)-B,T,a,b,gap} - Iml[(l + wq_w)-B,T,a,b,gapﬂ (Imaginary part)
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