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The helix is represented by in this model by a thin helically conducting cylinder, and the support rods whose relative permittivity is €, are represented by an
equivalent uniform dielectric cylinder. The dispersion may be adjusted by the addition of metal vanes

D Metal vanes!

a:= 3-mm &= 2a vi=15a 1V = 10-deg N,=3 0 := 20-deg €= 10
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Section 4.3.1 Equivalent circuit model of the sheath helix

This sheet implements the method described in S. F. Paik, "Design formulas for helix dispersion shaping," IEEE Transactions on Electron Devices, vol. 16,
pp. 1010-1014, (1969) with corrections given in Basu, B. "Equivalent circuit analysis of a dielectric-supported helix in a metal shell." International Journal of
Electronics 47(3): 311-314 (1979).

Sheath helix in free space

The dispersion equation is (%)

(19) 2y = 200K (710)
(ka)2 Io(7oa)Ko(7oa)

This can be expressed in terms of the equivalent circuit parameters where it is assumed that B = y,. Note Ba = 3 /a etc.

Series inductance Lo(Ba) = %-Il(ﬁa)KI(ﬁa) Cot(w)z
-TC
. 2'7['50 -
Shunt capacitance Cy(Ba) = ——————
10(3a)-KO(3a)
Phase velocity vpo(Ba) = 1 7= Ho
\/ Lo(Ba)-Co(Ba) 0~ | ¢ o
. d
Group velocity =2 (Ba
veo(B) d(Ba)(ﬁa vpo(Ba))
w/c k(Ba) := Ba
C'\/ Lo(Ba)-Co(Ba)
Bp Bp(Ba) = 2-m-Ba-tan(1)
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Transverse impedance and Pierce impedance according to Paik equations (2) and (3)

L
o(B) £ = O 1

-Z,(Ba) [see Equation 4.9 |
Co(Ba) vgo( Ba) T0( Ba)2

Pierce impedance according to PiercePierce, J. R. (1950). Traveling-Wave Tubes. Princeton, N.J., D. van Nostrand.

-1
ZP(z) = —S—. @.L.KO(Z).(H(Z) @) | Ko@) Kl | ij
vpo(z) gg z- 10(z) \I0(z) 1Il(z) Kil(z) KO(z) z

The two formulae give identical results

Comparison of Pierce impedance
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Sheath helix with a shield and dielectric loading sa= = va= ~
a a
Series inductance L,(Ba,sa) == Lo(Ba) |1 — [1(Ba)-K1(Ba-sa)
11(Ba-sa)-K1(Ba)
. e . . N6
Relative permittivity of uniform cylinder gy=1+|— -(ar - 1) €, =2.50
2.1t
Effective relative permittivity (Paik) Pe.ie(Ba,sa,e;) = 1 + (g, — 1)-Ba-10(Ba)-K1(Ba)
Effective relative permittivity (Basu) eet(Bassa,ey) = 1+ (g5 — 1)-Ba-10(Ba)-K1(Ba)-| 1 + 11(Ba) KO(Ba-sa)
K1(Ba)-I0(Ba-sa)

Basu's correction to the effective BC((a,sa) =

relative permittivity

Shunt capacitance

Phase velocity

Group velocity

Pierce impedance

Eeff(ﬁa, sa, 62)

PEeff( Ba, sa, 82)

10( Ba)-KO( Ba-sa) ﬂ' !

C(Ba,sa,e,) = Co(ﬁa)feff(ﬁa’sa’@)'[l - (Io(ga-sa)KO(Ba)

1
\/Ll(Ba, sa)-Cl(Ba,va,Ez)

vp( Ba,sa,va) =

vg( (Ba,sa,va) = d(—(ﬁa-vp( fa, sa,va))

d(Ba)

1 vp(Ba,sa, va) L;(Ba,sa)
2. ve(Ba,sa, va) . Cl(ﬁa,va,sz)

Zp(Ba,sa,va) =

10(Ba)

Equation 4.78

Equation 4.82

Equation 4.80

Equation 4.81
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Basu's correction

—s/a=1.5
----- sla=2
sla=3
1.08
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Plotting range Ba:= 0.01,0.02..12
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Figure 4.16(a)
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Figure 4.16(b)
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Vane loaded helix
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Properties in the low frequency limit

In the low frequency limit the capacitance is equal to that of a coaxial line and the inductance is

that of a coaxial line with a helical inner conductor.

Coaxial line shunt capacitance divided by €,

Coaxial line with helical inner conductor series
inductance divided by y,

Plotting range sa=1.1,12..4
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