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Disk model

The bunch is represented by a set of rigid disks of equal dimensions whose charges are equal. The motion of ND disks of charge is tracked with time

as the independent variable using Runge-Kutta integration. The results of the calculation are transferred into the space domain at nmax equally spaced

reference planes. Good results are normally obtained with: ND = 24, nmax = 100. The initial position of the bunch should be such that no electrons have

entered the field of the first gap. The final time should be great enough to ensure that all the electrons have moved clear of the output gap.

The space-charge calculation is based on the field of a disc of charge in a conducting tunnel found using the quasi-static approximation. This works well

for low beam voltages. For high beam voltages the space-charge is reduced by the factor SCF which is imported from WS 13.1. If SCF = 0 the model is

run without space-charge. For simplicity the space-charge force is assumed to be periodic in space and the fields acting on the discs are averaged

across them. Electrons are treated as positive, the beam current is positive and the r.f. current is positive at the bunch centre.

The gap voltages for the same input power are imported from WS 13.1 to overcome significance errors at low drive levels. Good results are obtained if

these voltages are used except for the last two cavities and any cavities tuned to harmonic frequencies.
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Define the parameters of the model - SLAC 50 MW klystron

Anode voltage Beam current Frequency Input power Input phase Tunnel radius Beam radius

Va 315 kV⋅:= I0 354 A⋅:= f 2856 MHz⋅:= Pin 50 W⋅:= ϕin 0 deg⋅:= a 15.9 mm⋅:= b 11.0 mm⋅:=

Number of cavities Small-signal results used up to cavity SCAV Space-charge factor imported from WS13.1

NCAV 6:= SCAV 4:= SCF 0.46:=

Number of discs (even)  Number of integration steps Number of reference planes Gap field parameter

ND 24:= nmax 500:= NP 1000:= kgap 4:=

Bunch centre initial position (θ = βez) Initial time (ϕ = ωt) Final position Final time

θ0 2− π:= ϕ0 θ0:= θf 18 π⋅:= ϕf 2 θf⋅:=

Define the cavity parameters 

NB. The first element of each vector is not used. The cavity count starts from 1. A cavity is unloaded if Qe >= 95000.

Cavity frequency Cavity harmonic External Q Unloaded Q R/Q Gap length Gap position

fc

0

2860

2870

2890

2910

2970

2853





















MHz⋅:= nh

0

1

1

1

1

1

1





















:= Qe

0

200

95000

95000

95000

95000

21





















:= Q0

0

2000

2000

2000

2000

2000

2000





















:= R_Q

0

80

75

87

96

96

85





















Ω⋅:= gap

0

0.0068

0.0072

0.0082

0.011

0.0116

0.0162





















m⋅:= zg

0

0

0.056

0.111

0.166

0.444

0.555





















m⋅:=

The detailed calculations can be hidden to allow the data and results to be viewed on the screen simultaneously

(c) 2018 Richard G Carter
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Define the charge/mass ratio of the electron. Note that the primary electric constant and the velocity of light are already defined in Mathcad.

η 1.759 10
11

⋅
C

kg
⋅:= ε0 8.854 10

12−
×

F

m
⋅= c 2.998 10

8
×

m

s
= μPerv μA V

1.5−
⋅:= dB 1:=

Calculate tube constants and small-signal parameters

Calculate the beam voltage and velocity allowing for space-charge potential depression and relativity

 Equation 7.8  Equation 1.4 

V0 V
0

Va←

u
n

c 1
1

1

η V
n

⋅

c
2

+








2
−













0.5

⋅←

V
n 1+

V
0

I0

2 π⋅ ε0⋅ u
n

⋅

1

2
ln

a

b






+






⋅−←

n 0 3..∈for

V
n 1+

return

:=
u0 c 1

1

1
η V0⋅

c
2

+






2
−













0.5

⋅:= Rel
1

1
u0

2

c
2

−

:=

V0 291.1 kV⋅= u0 2.311 10
8

× m s
1−

⋅⋅= Rel 1.570=

I0

Va
1.5

2.00 μPerv⋅= G0

I0

Va

1.124
1

kΩ
⋅=:=

Electronic propagation constant ω 2 π⋅ f⋅:= βe
ω

u0

:= λe
2 π⋅

βe

:= γe βe
2 ω

2

c
2

−:=

γe b⋅ 0.5= γe a⋅ 0.787=

(c) 2018 Richard G Carter
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Compute the parameters of the cavities

βeg βe gap⋅:= θg βe zg⋅:=  Equation 3.5 

Shunt conductance External conductance Cavity admittance at beam harmonic frequency 

Gc

Gc
n

R_Q
n

Q0
n

⋅( )
1−

←

n 1 NCAV..∈for

Gcreturn

:= Ge

Ge
n

R_Q
n

Qe
n

⋅( )
1−

← Qe
n

95000<if

Ge
n

0← otherwise

n 1 NCAV..∈for

Gereturn

:= Yc

Yc
n

Gc
n

1 j Q0
n

⋅

f nh
n

⋅

fc
n

fc
n

f nh
n

⋅
−







⋅+






⋅←

n 1 NCAV..∈for

Ycreturn

:=

Axial gap coupling factor  Equation 11.36 adapted for non-uniform field Radial coupling factor averaged across the beam

 Equation 11.38 

μd β gap, k, ( ) μd

k β cosh
gap k⋅

2







⋅ sin
β gap⋅

2







⋅ k sinh
gap k⋅

2







⋅ cos
β gap⋅

2







⋅+






⋅

β
2

sinh
gap k⋅

2







⋅ k
2

sinh
gap k⋅

2







⋅+

← k 0>if

μd sinc
βe gap⋅

2









← otherwise

:= μr γe( )
2 I1 γe b⋅( )⋅

γe b⋅( ) I0 γe a⋅( )⋅
:=

Small-signal gap coupling factor
 Equation 11.35 

Mg βe( )

Mg
n

μr nh
n
βe⋅( ) μd βe gap

n
, 

kgap

gap
n

, 








⋅←

n 1 NCAV..∈for

Mgreturn

:=

(c) 2018 Richard G Carter
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The beam is modelled as ND rigid discs of thickness ∆L. The motions of the electrons at the disc centres are followed.

Normalised disk thickness θd
2 π⋅

ND
:= Disk charge Q

2 π⋅ I0

ω ND⋅
:= Q 5.165 10

9−
× C=

Define normalised initial positions and velocities of the discs 

The initial positions are symmetrical about the bunch centre.   

j 0 2, 2 ND⋅ 1−..:=

θ

θ
j

θ0 π−
π j 1+( )⋅

ND
+←

θ
j 1+

1←

j 0 2, 2 ND 1−( )⋅..∈for

θ

:=

0 10 20 30 40
3−

2.5−

2−

1.5−

1−

Initial disk positions

θj

π

j

Check the D.C. beam current calculated from the disks is correct.

0

ND 1−

j

f Q⋅( )∑
=

354.000 A= I0 354.000 A=

The Space-Charge Field ES(θ) is found from the equations given by J.R. Hechtel, "The effect of potential beam energy on the performance of linear

beam devices", IEEE Transactions on Electron Devices ED-17, pp.999-1009, Nov. 1970. The potential distribution of a cylinder of charge of radius b,

length ∆L and charge density ρ within a conducting cylinder of radius a in cylindrical polar coordinates whose origin is at the centre of the cylinder is

calculated for a disc charge of 1C

Disc thickness ∆L
θd

βe

:= ∆L 3.371 mm⋅= Charge density ρ0
1

π b
2

⋅ ∆L⋅

:=

(c) 2018 Richard G Carter
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Compute the space-charge field at npts points npts 100:=

The first ten zeros of J0(z). μB
1

a
2.405 5.520 8.654 11.791 14.931 18.071 21.212 24.352 27.494 30.635( )

T
⋅:=

ESn

θ
n

2 n⋅ π⋅

npts
←

z
n

θ
n

βe

←

ES
n

4 ρ0⋅

ε0







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅







2

⋅ exp μB
m

− z
n

⋅( )⋅ sinh

μB
m
∆L⋅

2









⋅











∑
=

⋅← θ
n

0.5 θd⋅≥if

ES
n

4 ρ0⋅

ε0







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅







2

⋅ exp μB
m

−
∆L

2
⋅







sinh μB
m

z
n

⋅( )⋅






⋅











∑
=

⋅← otherwise

n 0 npts..∈for

ES

:=

Find the space-charge field as a continuous function by linear interpolation

θn

θ
n

2 n⋅ π⋅

npts
←

n 0 npts..∈for

θ

:= ES θ( ) Es θ( ) sign θ( ) linterp θn ESn, θ, ( )⋅←

Es θ 2 π⋅+( ) θ π−<if

Es θ 2 π⋅−( ) θ π>if

Es θ( ) otherwise

:=

(c) 2018 Richard G Carter
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The space-charge field of adjacent bunches is included by assuming
that the field is periodic in z. This is not correct but tests with an
initially unmodulated beam and three wavelengths of electrons give
almost identical results for the trajectories and the current harmonics
except well beyond the first bunch and at microperveance greater than
2.

This space-charge calculation is based on a quasi-static analysis. This
is adequate for low beam voltages. For higher beam voltages it is
important to make a correction based on the use of γ in place of β
when calculating the small-signal plasma frequency reduction factor p.
Since the square of the plasma frequency is proportional to the charge
density in the beam the space-charge field should be multiplied by the
correction factor

SCF
p γ( )

p β( )







2

=

This factor is calculated in WS 13.1 and imported. With this correction
it is found that the reduced plasma wavelength computed  by this
sheet is within 2% of that computed by WS 13.1. 

A further problem is that the reduced plasma wavelength is too small
for low drive levels. It increases with increasing drive level to the
correct value and then decreases again as expected. This is believed
to be caused by significance errors. To avoid the problem the voltages
for the first few gaps are imported from WS 13.1. The results only
change slightly when TOL is changed from the default value to 1E-6.

1− 0.5− 0 0.5 1
1−

0.5−

0

0.5

1

Normalised space-charge field

Axial position (Radians / pi )

E
_

sc
 /

 E
_

sc
 (

m
ax

)

The space-charge field is set to zero until the electrons reach θ = 0 to

avoid non-physical dispersion of the electrons.

SCF1 θ( ) SCF θ 0≥if

0 otherwise

:=

(c) 2018 Richard G Carter
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The Interaction Field is found from the Fourier Transform of the field in the gap. The average of the field over the beam is used. Linear interpolation on

the values calculated at regular intervals is used to provide a fast look-up function.

En γ β( ) β
2 ω

2

c
2

−←

θ
n

2 n⋅ π⋅

npts
←

E
n ng, 

V

π

0

20 π⋅ βe⋅

βegng

β
2 I1 γ β( ) b⋅( )⋅

γ β( ) b⋅( ) I0 γ β( ) a⋅( )⋅
μd β gap

ng
, 

kgap

gap
ng

, 








⋅ cos
β

βe

θ
n

⋅








⋅

⌠



⌡

d⋅←

n 0 npts..∈for

ng 1 NCAV..∈for

Ereturn

:= Egap θ( )

E
ng

linterp θn En
ng〈 〉

, θ, ( )←

ng 1 NCAV..∈for

Ereturn

:=

Plot the normalised field of gap n ng 1:=

1− 0.5− 0 0.5 1
0

0.2

0.4

0.6

0.8

Normalised gap field

Normalised axial position (Radians / pi)

E
_

z 
/ 

E
_

0

Superimpose the electric fields of the gaps using absolute phase

Ez θ ϕ, ( ) Re

1

NCAV

n

Vg
n

V
Egap θ θg

n
−( )n⋅ exp j nh

n
⋅ ϕ⋅( )







∑

=











:=

(c) 2018 Richard G Carter
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CHECK small-signal coupling factors by direct integration of the field.

Mg

M
n

1

βe V⋅
2− π

2π

θEgap θ( )
n

cos nh
n
θ⋅( )⋅

⌠

⌡

d⋅←

n 1 NCAV..∈for

Mreturn

:=

Mg

0.000

0.879

0.877

0.873

0.856

0.852

0.813





















= Mg βe( )

0.000

0.759

0.757

0.753

0.739

0.735

0.702





















=

The Coefficients of the Differential Equations for the motions of the electrons are defined. 

The rows represent, in order, the position in radians and the normalised velocity of the electrons.

Definitions of normalised variables

ϕ ω t⋅= θ βe z⋅= θ'
v

u0

=

D ϕ θ, ( )

D
j

θ
j 1+

←

D
j 1+

η

ω u0⋅
1

u0

c
θ

j 1+
⋅









2

−







1.5

⋅ Ez θj
ϕ, ( ) SCF1 θ

j( ) Q⋅

0

ND 1−

i

ES θ
j

θ
2 i⋅

−( )( )∑
=

⋅+











⋅←

j 0 2, 2 ND 1−( )⋅..∈for

D

:=

t
z

d

d
v=

ϕ
θ

d

d

v

u0

=

t
v

d

d
η− E⋅=

ϕ

v

u0

d

d

η E⋅

ω u0⋅
−=

The Equations are Solved using with nmax time steps starting from ϕ0 which is defined in such a way that the centre electron would cross the gap

centre at t = 0 if it travelled with a constant velocity u0. The final time is ϕf.

Z rkfixed θ ϕ0, ϕf, nmax, D, ( ):=

(c) 2018 Richard G Carter
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The results are in a single table (Z) in which the first column (0) is the time and the other columns (1-12) are the positions and velocities of the electrons

in the same order as before at each value of n.

Extract the vector of phases, the matrices containing the normalised positions and velocities of the disks and the vector of the final velocities of the electrons

ϕn

ϕ
n

Z
n 0, 

←

n 0 nmax..∈for

ϕ

:= θn

θ
n j, 

Z
n 2 j⋅ 1+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

θ

:= un

u
n j, 

Z
n 2 j⋅ 2+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

u

:= umax

u
j

Z
nmax 2 j⋅ 2+, 

←

j 0 ND 1−( )..∈for

u

:=

Check for reflected electrons MESSAGE M "No reflected electrons "←

M "REFLECTED ELECTRONS"←

break

un
nmax j, 

0≤if

j 0 ND 1−( )..∈for

Mreturn

:=

The Kinetic Energy of the bunch at each time step is calculated using the relativistically correct formulae by summing the

energies of the disks. The figure becomes unstable when siginificant cross-overs occur. It is essential to ensure that the final

time is great enough for all electrons to have left the interaction region.

KE

KE
n

Q c
2

⋅

η
0

ND 1−

j

1

1

un
n j, 

u0⋅( )
2

c
2

−

1−










∑
=

⋅←

n 0 nmax..∈for

KE

:= PDC Va I0⋅:= PDC 111.5 MW⋅=

Check that the frequency times the intial KE is equal to the DC beam power

allowing for space-charge potential depression.

V0 I0⋅ 103.0 MW⋅= KE
0

f⋅ 103.0 MW⋅=

(c) 2018 Richard G Carter
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Define a set of equally-spaced reference planes in θ and compute the phases and velocities at which the electrons cross them

using linear interpolation. Also find the times relative to an electron travelling at constant velocity u0.

Plane positions Absolute phase Relative phase

θp ∆θ
θf θ0−

NP
←

θ
p

p ∆θ⋅ θ0+←

p 0 NP..∈for

θreturn

:= ϕp

flag 0←

flag 1← θn
n j, 

θp
p

>if

ϕp
p j, 

ϕn
n 1−

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
ϕn

n
ϕn

n 1−
−( )⋅+← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

ϕpreturn

:= ϕr

ϕr
p j, 

ϕp
p j, 

θp
p

−←

p 0 NP..∈for

j 0 ND 1−..∈for

ϕrreturn

:=

∆θ
θf θ0−

NP
:=

Normalised velocities (u / u0) of the electrons at the reference planes Sum of the kinetic energies of the electrons at each plane. 

up

flag 0←

flag 1← θn
n j, 

θp
p

>if

up
p j, 

un
n 1− j, 

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
un

n j, 
un

n 1− j, 
−( )⋅+← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

upreturn

:= KEp

KE
p

Q c
2

⋅

η
0

ND 1−

j

1

1

up
p j, 

u0⋅( )
2

c
2

−

1−










∑
=

⋅←

p 0 NP..∈for

KE

:=

(c) 2018 Richard G Carter
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0 2 4 6 8
0.2

0.4

0.6

0.8

1

Normalised axial position

N
o

rm
al

is
ed

 k
in

et
ic

 e
n

er
g

y

Calculate the complex current harmonics at each plane by superimposing the Fourier components of the discs. 

Ip

Ip
p 0, 

Q

∆L

1

2 π⋅
⋅

0

ND 1−

j

θd∑
=

⋅←

up
p j, 

10
6−

← up
p j, 

0=if

j 0 ND 1−..∈for

Ip
p h, 

Q

∆L

2

π h⋅
⋅

0

ND 1−

j

up
p j, 

sin
h θd⋅

2 up
p j, 

⋅







⋅ exp j− h⋅ ϕp
p j, 

⋅( )⋅






∑
=

⋅←

h 1 0.5 ND⋅..∈for

p 0 NP..∈for

Ip u0⋅return

:=

  Instantaneous current = 

Q up
p j, 

⋅

∆L
 

  Pulse duration =
θd

up
p j, 

Find the variation of current with time at plane p

by Fourier synthesis

IP p ϕ, ( ) Re

0

0.5 ND⋅

n

Ip
p n, 

exp j n⋅ ϕ⋅( )⋅( )∑
=











:=

(c) 2018 Richard G Carter
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Fundamental RF current and its relative phase at the reference planes Function for plotting the positions of the cavities

ϕg θ( )

ϕg 2← θ θg
n

−

βeg
n

2
≤if

n 1 NCAV..∈for

2ϕg 2−return

:=
Ip1 Ip

1〈 〉
:= argrI1

argrI1
p

arg Ip1
p

exp j θp
p

⋅( )⋅( )←

p 0 NP..∈for

argrI1return

:=

Calculation of the induced curent in each cavity

Find the serial number of the plane at the centre of each cavity and plane numbers at the edges of the gap field. The gap

field is assumed to be zero at 10g from the gap centre. Note: θc2 for the last cavity must be less than θf.

pc round
θg θ0−

∆θ









:= pc1 round
θg θ0− 10 βeg⋅−

∆θ









:= pc2 round
θg θ0− 10 βeg⋅+

∆θ









:=

Check that field of a cavity is zero at planes pc1 and pc2  

Cavity number cn 2:= pc1
cn

80= pc
cn

169= pc2
cn

258.00= θc1 pc1
cn

pc
cn

−( ) ∆θ⋅:= θc2 pc2
cn

pc
cn

−( ) ∆θ⋅:=

2− 1− 0 1 2
0

0.2

0.4

0.6

0.8

Normalised gap field

Normalised axial position (Radians / pi)

E
_

z 
/ 

E
_

0
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Induced current in each cavity Iind

Iind
n

∆θ−

βe V⋅
pc1n

pc2n

p

Ip
p nhn, 

Egap θp
p

θg
n

−( )n⋅( )∑
=











⋅←

n 2 NCAV..∈for

Iindreturn

:=  Equation 11.173

 The integral is approximated by a sum 

Revised gap voltage in each cavity Weighted gap voltages to be used for

the next iteration

Vgc

Vgc
n

0.5 Vgss
n

Vg
n

+( )←

n 1 SCAV..∈for

Vgc
n

0.5

Iind
n

Yc
n

Ge
n

+( )
Vg

n
+







⋅←

n SCAV 1+ NCAV..∈for

Vgcreturn

:= ModVg

MVg
n

Vgc
n

←

n 1 NCAV..∈for

MVgreturn

:=

Vg1 1 weight−( ) Vg⋅ weight Vgc⋅+:=

ArgrVgc

AVg
n

arg Vgc
n

exp j θg
n

⋅( )⋅( ) π+←

n 1 NCAV..∈for

AVgreturn

:=

RF output power from the change in KE RF output power from the output gap voltage Gain Efficiency

PKE KE
0

KE
nmax

−( ) f⋅:=
Pout

1

2
ModVg

NCAV( )
2

⋅ Ge
NCAV

⋅:= Gain 10 log
Pout

Pin









⋅:=
Efficiency

Pout

PDC

:=

Relative change in cavity voltages Power dissipated in each cavity Energy balance

Err

Err
n

Vg
n

Vgc
n

−

Vgc
n

←

n 2 NCAV..∈for

Errreturn

:= Pc

Pc
n

1

2
Vg

n( )
2

⋅ Gc
n

⋅←

n 1 NCAV..∈for

Pcreturn

:=

Energy_balance

Pout KE
nmax

f⋅+

1

NCAV

n

Pc
n∑

=

+

I0 V0⋅ Pin+
1−:=

(c) 2018 Richard G Carter
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Results
The results of the calculation are in the green cells below. On the first pass the voltages in the yellow matrix are set to zero. After each pass the

figures from the green matrix are copied into the yellow matrix. The process in repeated for successive passes until the difference in the vector

voltages measured by the 'Error' is considered to be small enough. The process is repeated until it converges. Note: the first element of each

matrix is not used. The gap voltages Vg1 are the weighted mean of initial and the revised gap voltages. Normally weight = 1 but other values (e.g.

0.5) sometimes lead to more rapid convergence of the results.

MESSAGE "No reflected electrons "= weight 1≡  Gap voltages imported from   WS13.1

Vg

0.000

0.837

3.376 3.583i+

13.925− 13.735i+

42.167− 53.087i−

129.825 237.557i+

410.708− 58.236i−





















kV≡ Vg1

0.000

0.837

3.376 3.583i+

13.925− 13.735i+

42.167− 53.087i−

129.830 237.513i+

410.636− 58.074i−





















kV⋅= Err

0.0

0.0

0.0

0.0

0.0

0.0

0.0





















%⋅= Pc

0.000

0.002

0.081

1.099

11.969

190.854

506.096





















kW⋅= Vgss

0.000

0.837

3.376 3.583i+

13.925− 13.735i+

42.167− 53.087i−

101.505 311.629i+

999.741− 402.708i−









































kV⋅≡

Pout 48.18 MW⋅= PKE 47.19 MW⋅= Gain 59.8 dB⋅= Efficiency 43.2 %⋅= Energy_balance 1.6 %⋅=

0 2 4 6 8
1

0.5

0
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1−
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p1 0 NP..:=
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