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Section 2.4.3 

The iris is assumed to be thin and symmetrical. The width of the gap is w. The iris can be represented by an inductive susceptance whose magnitude is

given by  Marcuvitz, N. Waveguide Handbook, McGraw-Hill (1951) pp.221-223. The reactance can be calculated from eq. (1a)
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Marcuvitz includes two further terms but the use of just these two gives good agreement with the published curves.

For a standard waveguide (e.g. WG16) 
a

λ
0.5=  at cut-off, 0.63 at the bottom and 0.95 at the top of the normal working band (8.2 and 12.4 GHz) where λ

is the free-space wavelength. When a / λ = 0 Term2 = 0.

Comparison of the three curves (see the figures below) shows that the second term is a small correction. Thus to a good approximation the normalised
susceptance depends only on the ratio w/a.
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Equivalent circuit

Now suppose that the iris can be represented by a short length of waveguide having the same cross-sectional dimensions as the iris and thickness δ

which represents the fringing fields. The equivalent circuit of the iris is that for a TE mode shown in the figure below

From the theory of the TE mode we know that the inductances and the characteristic impedance can be expressed in terms of the capacitance as
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For the moment let us assume that the impedance of L2 is small compared with Zg. Then the admittance of the iris is

( )
2

2 2

2

1 1 0

1
1 i i

i i i i

i

Cj
Y j C j C j jcC

L L C

δ βδ
ω δ ω δ ω ω δ

ω ω ω β

 
= − = − = − = 

 

where Ci is the capacitance per unit length of the iris.

The admittance added by the iris is found by subtracting the admittance when w = a
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Normalising to the waveguide impedance
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Now analysis of the equivalent circuit for a rectangular waveguide shows that the capacitance per unit length is proportional to w regardless of

the choice of definition of impedance. Thus
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Expressing this in terms of wavelengths
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 Equation 2.100 
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Hence the normalised susceptance plotted by Marcuvitz is
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 We note that both terms are negative and therefore the variation with a/λ given by the second term is in the wrong sense to reproduce the variation

given by the exact expression. Since we have ignored the series inductance we have assumed that the waveguide is close to cut-off and therefore λ=2a.

Hence
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Therefore the normalised susceptance depends only on the dimensions of the aperture including the, as yet undetermined, parameter d. We note that the

susceptance is negative and, therefore, inductive.

The condition that the series inductance is negligible is
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The expression derived is not a good fit to the exact curves. However, we note that only part of the longitudinal current in the waveguide is

intercepted by the iris. That fraction is given by 
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Since the equivalent circuit assumes that the whole of the current passes through the iris the impedance must be reduced (and the admittance

increased) to take account of this. Thus the admittance should be divided by k
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The value of the parameter δ/a  can be determined by taking the ratio of the approximate and exact expressions when a/λ = 0.
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From the curve it is apparent that a good

fit is obtained using (2.104)
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so the normalised inductive suceptance is given approximately by combining (2.103) with (2.104)
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Then, comparing the exact and approximate normalised reactance and susceptance
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