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This sheet uses the method described in 

Fujisawa, K. (1958). "General treatment of klystron resonant cavities."  IRE Transactions on Microwave Theory and Techniques  MTT-6 (10): 344-358.

It also models the coupling into a cavity using a loop

Section 3.5.2  Fujisawa's model of re-entrant cavities

Define physical constants

ε0 8.854 10
12−

×
F

m
⋅= μ0 1.257 10

6−
×

H

m
⋅= η 1.759 10

11
⋅

C

kg
⋅:= dB 1:=

c 2.998 10
8

×
m

s
= Z0

μ0

ε0

:= Y0
1

Z0

:=
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Define the cavity dimensions

The cavity is defined as a singly re-entrant cavity divided into three regions numbered I, II and III starting from the axis. The height of region i  is zi and its

outer radius is ri

 

I II III 

r1 

r2 

r3 

r 

z2 

z1 

z3 

z 
r1 27.5 mm⋅:= r2 50 mm⋅:= r3 150 mm⋅:=

z1 200 mm⋅:= z2 20.5 mm⋅:= z3 99 mm⋅:=

The properties of a doubly re-enetrant cavity with all the height dimensions

doubled are calculated from those of the singly re-entrant cavity. Note that the

equations in the book assume a doubly re-entrant cavity.

Calculate the contributions to the capacitance from the three regions

Lim
2 10

4
⋅

m
:= CI r z, ( ) 2ε0 r⋅

Lim−

Lim

β
I1 β r⋅( )

β I0 β r⋅( )⋅

sin β z⋅( )

β z⋅
⋅

⌠


⌡

d⋅:=  Equation 3.81 CI r1 z2, ( ) 0.906 pF⋅=

CII

ε0 π⋅ r2
2

r1
2

−



⋅

z2

:=  Equation 3.82 CII 2.366 pF⋅=
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CIII 4 ε0⋅ r2⋅ ln
e r3 r2−( )

2
z3

2
+⋅

2z2











⋅:=  Equation 3.83 CIII 3.955 pF⋅=

The total capacitance is CS CI r1 z2, ( ) CII+ CIII+:= CS 7.226 pF⋅=

Calculate the inductance

LS

μ0 z3⋅

2π
ln

r3

r2









⋅:=  Equation 3.86 LS 2.175 10
8−

× H=

Calculate the resonant frequency and R/Q

ω0
1

CS LS⋅
:= f0

ω0

2 π⋅
:= f0 0.401 GHz⋅=

R_QS

LS

CS

:= R_QS 54.865Ω=

For a doubly re-entrant cavity R_QD 2 R_QS⋅:= R_QD 109.73Ω=

Calculate the surface resistance 

The factor surf can used to adjust the effective conductivity to obtain Q in agreement with experiment

σ 5.959 10
7

⋅ S⋅ m
1−

⋅:= surf 0.15:= Rs

ω0 μ0⋅

2 σ⋅ surf⋅
:=  Equation 3.50 Rs 0.013Ω=
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Calculate the stored energy and power dissipation for unit circulating current

WH

μ0 z3⋅

4 π⋅
ln

r3

r2









⋅:=  Equation 3.87 

 Equation 3.88 
PL

Rs

4 π⋅

z3

r3

z3 z2−

r2

+ ln
r3

r2









+








⋅:=

Note: the power dissipation is calculated on the curved surfaces and the

annular surface so it applies only to a doubly re-entrant cavity

Calculate the unloaded Q and the shunt impedance of a doubly re-entrant cavity

QD

ω0 WH⋅

PL

:=  Equation 3.12 QD 7778=

RCD R_QD QD⋅:= RCD 853.5 kΩ⋅=

rC

RCD

QD
2

:= rC 0.014Ω=
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z3

r3

r2

r4

r5

w

Section 3.6.1  Loop coupling

Parameters of a doubly re-entrant cavity from Fujisawa's model above

CC 0.5 CS⋅:= LC 2 LS⋅:= RC RCD:=

CC 3.613 pF= LC 0.044μH= RC 853.5 kΩ=

Characteristic impedance of the input transmission line

Zc 50 Ω⋅:=

Dimensions of the loop made of wire with radius r0

r4 87 mm⋅:= r5 136 mm⋅:= w 31 mm⋅:= r0 2.5 mm⋅:=

Calculate the mutual inductance when the plane of the loop is at an angle θ

to the axis of the cavity by calculating the flux linked to the loop for unit

current circulating in the cavity

ML θ( )
μ0 cos θ( )⋅

2 π⋅
w⋅ ln

r5

r4









⋅:= ML 0( ) 0.0028μH=

The coupling factor is the fraction of the flux in the cavity which is linked to

the loop. Using Fujisawa's approximation this is

k θ( )
ML θ( )

LC

:= k 0( ) 0.064=
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Estimate the self-inductance of the loop in free space

(a)  Loop inductance calculated from the formula for a circular wire loop in Ramo, S., J. R. Whinnery, et al. (1965). 

Fields and Waves in Communication Electronics. New York, Wiley. Section 5.24, equation (2). The RF current flows in a thin surface layer of the wire

and the internal inductance is zero.

Loop area AL w r5 r4−( )⋅:= Equivalent circular loop radius RL

AL

π
:= RL 22 mm⋅=

Note: If the loop is made of wire with a rectangular section its properties

can be approximated by using a round wire with the same perimeter.

Loop inductance LaL μ0 RL⋅ ln
8 RL⋅

r0









2−








⋅:= LaL 0.062 μH⋅=

(b)  Loop treated as a short-circuited two-wire line using the formula for the characteristic impedance in Ramo, S., J. R. Whinnery, et al. (1965).

Fields and Waves in Communication Electronics. New York, Wiley. Table 8.09.

ZCL

Z0

π
acosh

w

2 r0⋅









⋅:= ZCL 301Ω= Electrical length of the line ϕ
ω0

c
r5 r4−( )⋅:= ϕ 23.62 deg⋅=

LbL

ZCL

ω0

tan ϕ( )⋅:= LbL 0.052 μH⋅=

(c)  Loop inductance from formula in Engala, K. R., A. A. Kishk, et al. (2000). "Simple computation of the coupling coefficient for loop-coupled

resonant cavities." Microwave and Optical Technology Letters 27(6): 400-404. Equation (5) corrected. 

a1 31 mm⋅:= b1 r5 r4−:= d1 a1
2

b1
2

+:=

LcL

μ0

π
a1 ln

2 a1⋅ b1⋅

r0 a1 d1+( )⋅









⋅ b1 ln
2 a1⋅ b1⋅

r0 b1 d1+( )⋅









⋅+ 2 a1 b1+ d1−( )⋅−

a1 b1+( )
4

+








⋅:= LcL 0.070 μH⋅=
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Note: The loop inductances calculated by these three methods agree with one another to around +/- 20%.

When the loop is placed in the cavity the flux generated by it is contained by the walls of the cavity. This increases the
reluctance of the flux path and decreases the flux generated by unit current and, hence, the self-inductance of the loop.
The loop inductance can be measured experimentally by using a frequency distant from the resonant frequency of the
cavity. The measured value of the loop inductance can then be used to model its effects.

In the absence of an experimental result we can get a very rough idea of its value by noting the the flux density at the
centre of a round wire loop of radius a in free space is

 B
μ0 I⋅

2 a⋅
=

If the flux line through the centre of the loop is constrained by the cavity to be a circle with the same diameter as the
loop and the magnetic field is assumed to be uniform along this line, then at the centre of the loop

B
μ0 I⋅

2 π⋅ a
=

suggesting that the inductance calculated in free space should be divided by π.

Taking the average of the values of the loop inductance in free space calculated above

LL

LaL LbL+ LcL+

3
:=

The input impedance of the cavity is

Zin ω θ, LF, ( ) j ω⋅ LF⋅ LL⋅

k θ( )
2

RC⋅

1 j QD⋅
ω

ω0

ω0

ω
−









⋅+

+:=  Equation 3.91 

where LF is the correction factor for the inductance. The voltage reflection coefficient and the scattering parameter at the input to the cavity are

ρ ω θ, LF, ( )
Zin ω θ, LF, ( ) Zc−

Zin ω θ, LF, ( ) Zc+
:= S11 ω θ, LF, ( ) 20 log ρ ω θ, LF, ( )( )⋅:=
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Loop angle θ 39 deg⋅:= Loop correction factor LF
1

π
:=

Investigate the effect of changing the loop angle
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 Figure 3.20

Note that this figure differs slightly from the one in

the book because of a difference in the assumption

about the self-inductance of the loop in free space. 
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Calculate the loop reactance, the external resistance, and the external Q of the loaded cavity assuming that the source impedance is equal to the

characteristic impedance of the input line.

XL ω0 LL⋅ LF⋅:= RE

Zc
2

XL
2

+

k θ( )
2

Zc⋅

:=  Equation 3.93 QE

RE

ω0 LC⋅
:= QE 368=

The resonant frequency ( ω1 ) of the loaded cavity is the solution of 

( )

2

2 2

1
0

C

C S

k X
C

L R X
ω

ω
− − =

+
 Equation 3.95 

Fn ω( ) ω CC⋅
1

ω LC⋅
−

XL k θ( )
2

⋅

Zc
2

XL
2

+





−:= ω ω0:= ω1 root Fn ω( ) ω, ( ):=

ω1

2 π⋅
0.402 GHz=

ω1

ω0

1.00134=

At resonance S11 ω1 θ, LF, ( ) 0.825− dB⋅=
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