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This sheet can be used to explore the properties of multipactor discharges between plane parallel electrons in the absence of a magnetic field

(see Section 18.8.1).

Define the frequency and the separation between the plates

f 1 GHz⋅:= d 10 mm⋅:=

Define the secondary emission constants using the The Furman and Pivi model for oxidised aluminium with data from Lin (2005)

δm 3.5:= Epm 400 V⋅:= ss 1.65:= Secondary emission energy V0 2 V⋅:=

Define the charge/mass ratio of the electron η 1.759 10
11

⋅
C

kg
⋅:=
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Secondary electron emission model

D x( )
ss x⋅

ss 1− x
ss

+

:= δ E( ) δm D
E

Epm









⋅:=  Equation 18.19 

Find the electron impact energies at which δ = 1

E1s 0 volt⋅:= Vmin root δ E1s( ) 1−( ) E1s,  := Vmin 47 V=

E2s 1.2 Epm⋅:= Vmax root δ E2s( ) 1−( ) E2s,  := Vmax 5869 V=
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RF voltage for resonance

ω 2 π⋅ f⋅:= ωd ω d⋅:=

V1 n V0, ωd, θ1, ( )
ωd ωd n π⋅ 2 η⋅ V0⋅⋅−( )⋅

η n π⋅ cos θ1( )⋅ 2 sin θ1( )⋅+( )⋅
:=  Equation 18.56 

θmax n( ) atan
2

n π⋅









:=  Equation 18.57 

Normalised RF voltage V1 n θ, ( )
V1 n V0, ωd, θ, ( )

V1 n V0, ωd, θmax n( ), ( )
:=
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Normalised electron position as a function of normalised time

Y θ n, V0, ωd, θ1, ( )
η V1 n V0, ωd, θ1, ( )⋅

ωd
2

θ θ1−( ) cos θ1( )⋅ sin θ( )− sin θ1( )+ ⋅
2 η⋅ V0⋅

ωd
θ θ1−( )⋅+:=  Equation 18.53 

Plotting ranges

θa 0 0.5 deg⋅, 180 deg⋅..:= θb 15− deg⋅ 14− deg⋅, 180 deg⋅..:= θc 30− deg⋅ 29− deg⋅, 180 deg⋅..:=
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Find the minimum phase for which an electron can escape from the first plate

θesc n V0, ωd, ( )
θi i− 1⋅ deg⋅←

Y1 Y θ θi+ n, V0, ωd, θi, ( )←

θi 0.1 deg⋅+return Y1 0<if

θ 0 0.1deg, 90deg..∈for

i 0 0.1, 60..∈for:= θesc 1 V0, ωd, ( ) 17.2− deg⋅=

Find the two limits of the initial phase which satisfy the phase focusing condition

θ1 n( ) θmax n( ):=

θ0 0:= θ2 n V0, ωd, ( ) atan
4nπ 2 η⋅ V0⋅⋅ 2 ωd⋅+

4 2 η⋅ V0⋅⋅ n π⋅ ωd⋅+ nπ( )
2

2 η⋅ V0⋅⋅−

−










:=  Equation 18.64 

N1 1 3, 9..:=

θ1 N1( )

32.5

12.0

7.3

5.2

4.0

deg⋅

= θ2 N1 V0, 0.1 ωd⋅, ( )
-57.3

74.9

31.9

18.1

12.4

deg⋅

=θ2 N1 V0, ωd, ( )
-35.286

-16.798

-12.827

-11.510

-11.244

deg⋅

= θ2 N1 V0, 10ωd, ( )
-32.764

-12.418

-7.714

-5.664

-4.520

deg⋅

=

The upper limit of θ is independent of ωd and equal to the phase corresponding to the minimum

of V1. The lower limit of θ varies with ωd
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Comparison between the lower phase limits set by electron escape and by phase focusing

ny 0.7 0.75, 2..:= Ωmm 2 π⋅ GHz⋅ mm⋅:=
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For all V0 the escape phase gets more negative as the order of the multipactor increases. The

phase focusing limit shows the opposite behaviour. When V0 = 0 the escape limit is theta = 0.

When V0 > 0 the limits are electron escape for n = 1.For V0 = 1V  and n = 3 the limit is phase

focusing up to fd = 50 GHz mm and escape thereafter. The crossover value of fd increases as V0

increases. For higher values of n the phase focusing limit dominates
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Find the limiting RF voltages for which the secondary electron emission coefficient is unity

Lower impact limit

VL n V0, ωd, ( ) V1 n V0, ωd, θmax n( ), ( ):=  Equation 18.56 

Select the greater of the two phases for the upper impact limit

θmin n V0, ωd, ( ) θa θ2 n V0, ωd, ( )←

θb θesc n V0, ωd, ( )←

θ θa θa θb>if

θb otherwise

←

θreturn

:=

VU n V0, ωd, ( )
ωd ωd n π⋅ 2 η⋅ V0⋅⋅−( )⋅

η n π⋅ cos θmin n V0, ωd, ( )( )⋅ 2 sin θmin n V0, ωd, ( )( )⋅+( )⋅
:=

Dependence of r.f. voltage on the impact velocity

Vi1 n V0, Vi, ωd, ( ) v0 2 η⋅ V0⋅←

vi 2 η⋅ Vi⋅←

V1
ωd

2 η⋅
ωd

n π⋅

2
vi v0+( )⋅−









2

vi v0−( )2
+⋅←

V1return

:=

 Equation 18.66 
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Find the line which is approximately

tangential to these curves
fd n( ) v0 2 η⋅ V0⋅←

vi 2 η⋅ Vmin⋅←

vi v0+( )
n

4
⋅

vi v0−( )2

vi v0+

1

n π
2

⋅

⋅+

:= Vd n( ) Vi1 n V0, Vmin, 2 π⋅ fd n( )⋅, ( ):=

Plot curves for which the impact voltage is equal to the lower voltage for which δ 1=  

Vi Vmin:=
Plot the Hatch diagrams for the first three modes

(Note: this is very slow)ny 1− 0.99−, 2..:= nn 1 3, 33..:= nny 0 0.01, 2..:=
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