
WS 11.3 Interaction between an unmodulated beam and a gap

©  2018 Richard G Carter 

This Mathcad 14 worksheet is designed to accompany the author's book "Microwave and RF Vacuum Electronic Power Sources", Cambridge University

Press (2018). The section, equation, and figure numbers refer to the corresponding sections, equations, and figures in the book. Data input fields are

highlighted in yellow and output fields are highlighted in green.

This resource is provided free of charge by Cambridge University Press with permission of the author, but is subject to copyright. You are permitted to view,

print and download this resource for your own personal use only, provided any copyright lines are not removed or altered in any way. Any other use, including

but not limited to, distribution of the resource in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the

author and provided you give appropriate acknowledgement of the source. 

The contents of this sheet are provided for educational purposes only and no warranty is expressed or implied that they are suitable for use as professional

design tools.

This worksheet is designed for investigation of the interaction between an unmodulated electron beam, represented by ND discs of charge in one electron

wavelength, and the RF field of a gap centred at z = 0 (see Section 11.8). Normalised values ore used for position (θ βe z⋅=  ) and time (ϕ ω t⋅=  ).

Input data

Beam voltage V0 25 kV⋅:= Normalised tunnel radius γa 1.0:= Bunch centre starting position θ0 2− π:=

Beam current I0 4.4 A⋅:= Normalised beam radius βb 0.629:= Initial time ϕ0 θ0:=

Frequency f 1 GHz⋅:= Normalised gap length βgap 1.0:= Final position θf 2π:=

Space-charge (0 or 1) SCF 0:= Number of discs ND 12:= Final time ϕf 5θf:=

Normalised gap voltage ( X = MVg/V0 ) X 1.2:= Phase of gap voltage ( Φ = 0 for accelerating field) Φ1 90 deg⋅:=
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Constants

Charge/mass ratio of the electron η 1.759 10
11

⋅
C

kg
⋅:= μS 10

6−
S⋅:= μP μA V

1.5−
⋅:= Perv I0 V0

1.5−
⋅:=

Beam parameters

Electron velocity u0 c 1
1

1
η V0⋅

c
2

+








2
−













0.5

⋅:= Rel
1

1
u0

2

c
2

−

:=
u0 9.049 10

7
×

m

s
=

Propagation constants ω 2 π⋅ f⋅:= βe
ω

u0

:= λe
2 π⋅

βe

:= γe βe( ) βe
2 ω

2

c
2

−:=

Physical dimensions a
γa

γe βe( )
:= b

βb

βe

:= gap
βgap

βe

:= a 15.11 mm⋅=

b 9.06 mm⋅=

Small-signal parameters

gap 14.40 mm⋅=

Gap coupling factor M βe( )
2 I1 γe βe( ) b⋅( )⋅

γe βe( ) b⋅( ) I0 γe βe( ) a⋅( )⋅

sin 0.5 βe⋅ gap⋅( )
0.5 βe⋅ gap⋅









⋅:=  Equations 11.36 and 11.38 M βe( ) 0.792=

Beam loading susceptance Gb βe( )
1

Rel Rel 1+( )⋅
−

I0

V0

⋅ M βe( )⋅ βe⋅
βe

M βe( )
d

d
⋅:=  Equation 11.23 Gb βe( ) 24.6 μS⋅=

Plasma frequency ωp0

η I0⋅

ε0 π⋅ b
2

⋅ u0⋅

:= ωp ωp0
1

Rel
3

⋅:=  Equation 11.57 et seq. 
ωp

ω
0.287=
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Find the reduced plasma frequency (see Worksheet 11.2)

f11 βb A, ( )
1

βb

I1 βb( ) K0 A βb⋅( )⋅ I0 A βb⋅( ) K1 βb( )⋅+

I0 βb( ) K0 A βb⋅( )⋅ I0 A βb⋅( ) K0 βb( )⋅−
⋅:=

where A
a

b
=

τb βb m, p, ( ) βb

1

p
2

1−

1

p
2

2 m
2

1−( )⋅−

1−















1

2

⋅:=

f2 βb m, p, ( )

1
1

p
2

−








τb βb m, p, ( )

I1 τb βb m, p, ( )( )

I0 τb βb m, p, ( )( )
⋅:=

f0 βb A, m, p, ( )
1

f11 βb A, ( )

1

f2 βb m, p, ( )
−:= p1 0.9:= p βb A, m, ( ) root f0 βb A, m, p1, ( ) p1, ( ):=

ωq p γe βe( ) b⋅
a

b
, 100, 








ωp⋅:= (Set m = 100 to represent confined flow) λq

ω

ωq

λe⋅:=

ωq

ω









0.100=

Large-signal disc model

The beam is modelled as ND identical rigid discs. The motions of the electrons at the central planes of the discs are tracked. We define
their initial positions and velocities using the disc thickness ∆L. As the Mathcad ODE solver rkfixed does not accept variables with

dimensions the dimensionless variables: θ βe z⋅=   and ϕ ωt=   are used.

Disc thickness ∆L
λe

ND
:= Normalised disk thickness θd βe ∆L⋅:=

Normalised disk starting

positions and velocities

relative to the gap centre.  

θ

θ
j

j 0.5⋅ θd⋅ θ0+ π−←

θ
j 1+

1←

j 0 2, 2 ND⋅ 1−( )..∈for

θ

:= Disk charge Q
2 π⋅ I0

ω ND⋅
:=

Check f Q⋅ ND⋅ 4.400 A= I0 4.400A=

(c) 2018 Richard G Carter
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Space-Charge Field 

Based on the equations given in 

J.R. Hechtel, "The effect of potential beam energy on the performance of linear beam devices", 

IEEE Transactions on Electron Devices ED-17, pp.999-1009, Nov. 1970

The first ten zeros of the Bessel function J0(z). μB
1

a
2.405 5.520 8.654 11.791 14.931 18.071 21.212 24.352 27.494 30.635( )

T
⋅:=

Calculate the axial electric field of a disc having a charge of 1 C at 100 points up to one electronic wavelength from the centre of the disc 

ESn

θ
n

0.02 n⋅ π⋅←

z
n

θ
n

βe

←

ES
n

4−

ε0 π b
2

⋅ ∆L⋅( )⋅







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅









2

⋅ exp μB
m

− z
n

⋅( )⋅ sinh

μB
m
∆L⋅

2









⋅











∑
=

⋅← θ
n

0.5 θd⋅≥if

ES
n

4−

ε0 π b
2

⋅ ∆L⋅( )⋅







 0

9

m

1

μB
m

J1 μB
m

b⋅( )
μB

m
a⋅ J1 μB

m
a⋅( )⋅









2

⋅ exp μB
m

−
∆L

2
⋅









sinh μB
m

z
n

⋅( )⋅








⋅











∑
=

⋅← otherwise

n 0 100..∈for

ES

:=

Normalised positions at which ES was calculated Define a continuous function for the field by linear interpolation

θn

θ
n

0.02 n⋅ π⋅←

n 0 100..∈for

θ

:= Es θ( ) sign θ( ) linterp θn ESn, θ, ( )⋅:= ES θ( ) Es θ 2 π⋅+( ) θ π−<if

Es θ 2 π⋅−( ) θ π>if

Es θ( ) otherwise

:=

(c) 2018 Richard G Carter
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θ1 π−( ) 0.999− π⋅( ), π..:=

1− 0.5− 0 0.5 1
1−

0.5−

0

0.5

1

Normalised space-charge field

Axial position (Radians / pi )

E
_

sc
 /

 E
_

sc
 (

m
ax

)

The space-charge field of adjacent

bunches is included by assuming that

the field is periodic in z. This is not

correct but tests with an initially

unmodulated beam and three

wavelengths of electrons give almost

identical results for the trajectories and

the current harmonics except well

beyond the first bunch and at

microperveance greater than 2.

The field of the gap 

The electric field for unit gap voltage is found from the Fourier Transform of the field in the gap (assumed to be constant). The average of the

field over the beam is used. Linear interpolation on the values calculated at regular intervals is used to provide a fast look-up function.

En

θ
n

0.02 n⋅ π⋅←

γ β( ) β
2

ω
2

c
2−

−←

E
n

V

π
−

0

20 π⋅

gap

β
2 I1 γ β( ) b⋅( )⋅

γ β( ) b⋅( ) I0 γ β( ) a⋅( )⋅

sin 0.5 β⋅ gap⋅( )

0.5 β⋅ gap⋅









⋅ cos
β

βe

θ
n

⋅








⋅

⌠



⌡

d⋅←

n 0 100..∈for

E

:= Egap θ( ) linterp θn En, θ, ( ):=

 Equation 3.79 

CHECK the gap coupling factor
2−

βe V⋅
0

2π

θEgap θ( ) cos θ( )⋅
⌠

⌡

d⋅ 0.792= M βe( ) 0.792=

(c) 2018 Richard G Carter
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Electric field of the gap as function of normalised position and time

Vg

X V0⋅

M βe( )
:= Ez θ ϕ, ( ) Re

Vg

V
Egap θ( )⋅ exp j ϕ Φ1−( )⋅ 









:= Vg 37.883 kV⋅=

2− 1− 0 1 2
0

0.2

0.4

0.6

0.8

Normalised gap field

Normalised axial position (Radians / pi)

E
_

z 
/ 

E
_

0The blue chain-dotted line is the initial

position of the first electron in the

bunch. It should lie outside the range

of the gap field. 

Turn space-charge force off until the electrons reach the gap centre to

avoid non-physical dispersion of the initial group of electrons.
SC θ( ) SCF θ 0≥if

0 otherwise

:=

(c) 2018 Richard G Carter
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Equations of motion

The Coefficients of the Differential Equations for the motions of the electrons are defined. Definitions of normalised variables

D ϕ θ, ( )

D
j

θ
j 1+

←

D
j 1+

η

ω u0⋅
− 1

u0

c
θ

j 1+
⋅









2

−









1.5

⋅ Ez θj
ϕ, ( ) SC θ

j( ) Q⋅

0

ND 1−

i

ES θ
j

θ
2 i⋅

−( )∑
=

⋅+











⋅←

j 0 2, 2 ND 1−( )⋅..∈for

D

:=
ϕ ω t⋅= θ βe z⋅= θ'

v

u0

=

t
z

d

d
v=

ϕ
θ

d

d

v

u0

=

t
v

d

d
η− E⋅=

ϕ

v

u0

d

d

η E⋅

ω u0⋅
=

The Equations are Solved using with nmax time steps starting from ϕ0 which is defined in such a way that the centre electron would

cross the gap centre at t = 0 if it travelled with a constant velocity u0. The final time is ϕf

Number of integration steps nmax 100:= The variable tol specifies the tolerance on the solution of the

differential equations. 10E-6 works well normally but much

smaller values may be needed at low drive levels

tol 10
6−

:=

Z AdamsBDF θ ϕ0, ϕf, nmax, D, tol, ( ):=

The results are in a single table (Z) in which the first column (0) is the time and the other columns are the positions and velocities of the

electrons in the same order as before at each value of n.

(c) 2018 Richard G Carter
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Extract the vector of normalised time, the matrices containing the normalised positions and velocities of the disks, and the vector of the

final velocities of the electrons

ϕn

ϕ
n

Z
n 0, 

←

n 0 nmax..∈for

ϕ

:= θn

θ
n j, 

Z
n 2 j⋅ 1+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

θ

:= un

u
n j, 

Z
n 2 j⋅ 2+, 

←

n 0 nmax..∈for

j 0 ND 1−( )..∈for

u

:= umax

u
j

Z
nmax 2 j⋅ 2+, 

←

j 0 ND 1−( )..∈for

u

:=

Total kinetic energy of the electrons at each time step.

KE

KE
n

Q c
2

⋅

η
0

ND 1−

j

1

1

un
n j, 

u0⋅( )
2

c
2

−

1−












∑
=

⋅←

n 0 nmax..∈for

KE

:=
Check that the frequency times the intial KE is equal to the DC beam power

KE
0

f⋅ 110.0 kW⋅= PDC V0 I0⋅ 110.0 kW⋅=:=

KE
nmax( ) f⋅ 131.734 kW⋅=

Final total kinetic power in the beam

n 0 nmax..:=

0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

Time steps

N
o

rm
al

is
ed

 b
ea

m
 p

o
w

er
Beam loading conductance

Gbd

2 KE
nmax

KE
0

−( )⋅ f⋅

Vg
2

:=

Gbd 30.3 μS⋅=

(c) 2018 Richard G Carter
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Define a set of equally-spaced planes in θ and compute the times and velocities at which the electrons cross them using linear interpolation.

Reference plane interval ∆θ 0.01 π⋅:= Number of reference planes NP
θf θ0−

∆θ
:= NP 400=

Normalised positions Normalised times

θp

θ
p

p

NP
θf θ0−( )⋅ θ0+←

p 0 NP..∈for

θreturn

:= ϕp

flag 0←

flag 1← θn
n j, 

θp
p

>if

ϕp
p j, 

ϕn
n 1−

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
ϕn

n
ϕn

n 1−
−( )⋅+ θp

p
−← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

ϕpreturn

:=

Normalised velocities

up

flag 0←

flag 1← θn
n j, 

θp
p

>if

up
p j, 

un
n 1− j, 

θp
p

θn
n 1− j, 

−

θn
n j, 

θn
n 1− j, 

−
un

n j, 
un

n 1− j, 
−( )⋅+← flag 1=if

break( ) flag 1=if

n 1 nmax..∈for

p 0 NP..∈for

j 0 ND 1−( )..∈for

upreturn

:= Electron energies (eV) at the final plane

Vpf

V
j

c
2

η V0⋅

1

1

u0 up
NP j, ( )⋅ 

2

c
2

−

1−












⋅←

j 0 ND 1−( )..∈for

Vreturn

:=

(c) 2018 Richard G Carter
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Calculate the complex current harmonics at each plane by superimposing the Fourier components of the currents of the discs. 

For simplicity each disc is treated as having constant length.

Number of current harmonics NH 6:=

Ip

Ip
p 0, 

Q

2 π⋅ ∆L⋅
0

ND 1−

j

θd∑
=

⋅←

Ip
p h, 

2Q

π h⋅ ∆L⋅
0

ND 1−

j

sin
h θd⋅

2









exp j h⋅ ϕp
p j, 

⋅( )⋅






∑

=

⋅←

h 1 NH..∈for

p 0 NP..∈for

Ip u0⋅return

:=

Instantaneous current = 

Q
j

up
p j, 

⋅

∆L

Pulse phase duration = 
θd

up
p j, 

Find the position of the first maximum of the fundamental component of the RF beam current

pmax

Ip1
p

Ip
p 1, 

←

break( ) Ip1
p

Ip1
p 1−

<if

p 200 NP..∈for

preturn

:= θpmax θp
pmax

:= Ipmax Ip
pmax 1, 

:=

Plotting ranges for graphs j 0 ND 1−..:= x 0 0.1, 1.5..:= ϕ ϕ0 1.2ϕf..:= pp 0 NP..:=

(c) 2018 Richard G Carter
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Small-signal interaction with space-charge ( X = 0.1 ) 

Reduced plasma frequency
ωq

ω
0.100= Gap coupling factor M βe( ) 0.792=

Bunching length
λq

4 λe⋅
2.50= Maximum I1 / I0

1

2

ω

ωq

⋅ X⋅ 5.988=

Disc model results

Bunching length
θpmax

2 π⋅
0.34= Maximum I1 / I0

Ipmax

I0

1.182=

0 0.2 0.4 0.6 0.8
1

0.5

0

0.5−

1−

Figure 11.25

theta / 2 * pi

R
el

at
iv

e 
p

h
as

e 
/ 

p
i

0 0.2 0.4 0.6 0.8 1
0

0.5

1

n = 1

n = 2

n = 3

n = 4

Figure 11.26

theta / 2 * pi
In

 /
 I

0

Note: For this figure SCF = 1 and θf 20 π⋅= . The sign of phase is

reversed so that accelerated electrons move upwards

(c) 2018 Richard G Carter
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Applegate diagram

Beam perveance Perv 1.11 μP⋅=

1− 0 1 2 3
0

1

2

3

4

omega * t / 2 * pi

b
et

a_
e 

*
 z

 /
 2

 *
 p

i
Normalised gap voltage

Vg

V0

1.515=

Note: Beam loading conductance

The text of the last paragraph of section 11.8.2 (p.423) is wrong.
The beam loading conductance calculated using the disc model
without space-charge is close to that from small-signal theory.
However, when space-charge is included the results are erratic
because the conversion of some energy into potential energy in
the bunched beam varies with position. The best results of the

disc model are obtained with θf 2 π⋅= .

Small-signal theory Gb βe( ) 24.6 μS⋅=

Using the disc model Gbd 30.3 μS⋅=

 Figure 11.24

 Note: for this figure X = 0.2, Φ = 90 deg and SCF = 0

(c) 2018 Richard G Carter
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 Approximate models of the beam/gap interaction

Calculate the exit energy as a function of ϕ using piecewise constant velocity and iteration to find the exit velocity. The results are compared with those

from the disk model.

1. Using the small-signal value of M

 Equation 11.8 
Vs0 ϕ X, Φ, ( ) 1 X cos ϕ Φ−( )⋅+:=

2. Effective value of M calculated as the mean of the values of M calculated at the initial and final velocities.

This is the version used in the book for fig. 11.31(a))

βe Ve( )
ω

c
1

1

1
η Ve⋅

c
2

+








2
−













0.5−

⋅:=

 Equation 11.168 
Vss2 ϕ X, Φ, Vs, ( ) 1

1

2
1

M βe V0 Vs⋅( )( )
M βe( )

+








⋅ X⋅ cos ϕ Φ−( )⋅+:=

Vs 0.2:= fn2 Vs ϕ, X, Φ, ( ) Vs Vss2 ϕ X, Φ, Vs, ( )−:= Vs2 ϕ X, Φ, ( ) root fn2 Vs ϕ, X, Φ, ( ) Vs, ( ):=

(c) 2018 Richard G Carter
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0.4− 0.2− 0 0.2 0.4
0

0.2

0.4

0.6

0.8

Figure 11.17(a)

Normalised axial position (Radians / pi)

E
_

z 
/ 

E
_

0

1− 0.5− 0 0.5 1
1

0.5

0

0.5−

1−

Figure 11.27(b)

theta / 2 * pi

R
el

at
iv

e 
p

h
as

e 
/ 

p
i

1− 0.5− 0 0.5 1
1−

0

1

2

3

Disc model

Approximation 1

Approximation 2

Figure 11.27(d)

phi / pi

V
1

 /
 V

0

0.5− 0.25− 0 0.25 0.5
0

0.5

1

1.5

2

Figure 11.27(c)

theta / 2 * pi

u
 /

 u
0

Note: For this figure X = 1.2,

SCF = 0 and θf 2 π⋅=

(c) 2018 Richard G Carter


