

Figure 1: Sketch of the stratification profile for problem 6.

6: An unstable layer in an inviscid fluid

Knowing that $\operatorname{sech}^2(0) = 1$ and $\operatorname{sech}^2(\pm \infty) = 0$, we can tell that B_z goes to B_{z0} far from z = 0 and $-B_{z0}$ at z = 0 (figure 1). In a layer surrounding z = 0 (specifically -0.88 < z < 0.88), B_z is negative.

We seek a solution of (2.29) for the special case $\tilde{k} = \alpha$:

$$\sigma^2 \Big(\frac{\mathrm{d}^2}{\mathrm{d}z^2} - \alpha^2 \Big) \hat{w} = B_z \alpha^2 \hat{w}.$$

Try the suggested function $\hat{w} = \operatorname{sech}^2 \beta z$, and seek a value of β for which the equation is satisfied. Guessing $\beta = \alpha$, we find that the equation is satisfied and the growth rate is

$$\sigma=\sqrt{B_{z0}/3}.$$