
Introduction to Programming in R by Timothy DelSole

This document is a tutorial to the software package R to accompany Statistical Methods for Cli-
mate Scientists by Timothy DelSole and Michael K. Tippett. It is written in an informal tone to engage
the student in their first exposure to R.

To analyze climate data, it is essential to use a computer. Anyone of the following software pack-
ages could be used: Matlab, R, Python, SAS. This tutorial provides an introduction to a statistical
package known as R. No prior experience with these software packages is assumed in this tutorial. I
have chosen R because it is Open Source (i.e., free), well documented, supported by a large commu-
nity, specifically designed for data analysis and graphical display, and is widely used by statisticians.
Even though learning a new programming environment takes time, you will save more time as a result
of using R than you will spend learning R itself.

The following introduction assumes that you are familiar enough with computers to login, change
directories, and edit files. This introduction will familiarize you with the main commands in R that
are most needed to perform the statistical calculations described in the first few chapters of the book.

1 Installing R

You can either download R yourself or use the R code installed at the COLA computers. I personally
downloaded R onto my MAC laptop from http://cran.r-project.org/bin/macosx/ without any trouble
at all. I am not able to provide support for installing R.

You are advised to create a separate directory for each statistical project on which you work. I
suggest first creating the directory “CLIM762”, which will contain all your work for this class, and
then creating the subdirectory “R intro,” which will contain the work for this introductory session.

2 Running R

If you are on a Linux or Unix system, you start an R session by typing R (make sure you use capital
R, not lower case r– commands in UNIX and R are case sensitive). On the Mac or PC, you click the
R icon. In either case, you should see a greeting that looks something like the following:

1

1 R version 2.13.1 (2011-07-08)
2 Copyright (C) 2011 The R Foundation for Statistical Computing
3 ISBN 3-900051-07-0
4 Platform: i386-apple-darwin9.8.0/i386 (32-bit)
5

6 R is free software and comes with ABSOLUTELY NO WARRANTY.
7 You are welcome to redistribute it under certain conditions.
8 Type ’license()’ or ’licence()’ for distribution details.
9

10 Natural language support but running in an English locale
11

12 R is a collaborative project with many contributors.
13 Type ’contributors()’ for more information and
14 ’citation()’ on how to cite R or R packages in publications.
15

16 Type ’demo()’ for some demos, ’help()’ for on-line help, or
17 ’help.start()’ for an HTML browser interface to help.
18 Type ’q()’ to quit R.
19

20 [R.app GUI 1.41 (5874) i386-apple-darwin9.8.0]
21

22 >

The last line is the > symbol, which is the R prompt. You type commands at the R prompt interac-
tively. This interactive window is called the console.

For codes longer than a dozen lines or so, you will want to save code in a text file. For fu-
ture reference, we discuss how to do that here. Let the name of the file containing R code be
calculations.R. Then, when you want to run this code, you type

1 source("calculations.R")

After typing this command, R will accept input from the named file. In particular, each line in the
file calculations.R will be evaluated sequentially just as if they were typed in the interactive
window. After all expressions in the file have been evaluated, R will return to interactive mode. If an
error occurs, then R will terminate reading from the file. By default, none of the expressions inside
the source file will appear on the console. This can be problematic when an error occurs, because the
error message may give no clue as to which line caused the error. To force R to echo the expressions
to the terminal before evaluating them, use the echo=TRUE argument:

1 source("calculations.R",echo=TRUE)

Another valuable command for debugging is traceback(), which will display “the stack,”
which often (but not always) indicates the line number of the last error

2

3 Numeric Vectors

The easiest way to teach a programming language is by example. So, let’s get started. First, let us
create a variable named x and set its value to 5:

1 > x = 5
2 > x
3 [1] 5

In the above example, we typed x = 5 in line 1. This is an example of an assignment statement.
Assignments can be executed using either = or <-, where the latter is merely a ‘greater than’ symbol <
followed by a dash -. In certain situations, = does not work, so <- is preferred; nevertheless, we will
use = in this introduction. The command x = 5 performs two operations: first, it creates a variable
x, and second, it sets the value of x to 5. In line 2, we typed x by itself. Line 3 shows R’s response,
which is “[1] 5”, indicating that the first element of x is 5. It is worth emphasizing that the =
function does not mean “equal to,” but rather means “assign a value to.” This distinction is especially
important when the variable occurs on both sides of =. For instance, consider the following:

1 > x = 5
2 > x = x + 1
3 > x
4 [1] 6

If the function = were interpreted as “equal to,” then line 2 would define an equation to be solved
for x. Moreover, the solution to this equation is the null set– no value of x satisfies the equation
x = x + 1! However, the proper interpretation of line 2 is: first evaluate the right hand side by
incrementing the value of x by one, then assign the resulting value to x, thereby overwritting the
original value of x.

Most numerical calculations are performed on groups of numbers. The basic way of handling
groups of numbers in R is with vectors. A vector is a collection of elements each identified by
an index. A function for creating vectors is the concatenation function c(arg1, arg2, ...,
argn). This function combines an arbitrary number of objects end to end into a single vector.

1 > x = c(1,100,-4.5,8)
2 > x
3 [1] 1.0 100.0 -4.5 8.0

Line 1 creates a four-dimensional vector whose elements are 1, 100, -4.5, and 8. Next, typing x by
itself in line 2 tells R to write out all the elements of x.

Individual elements of a vector are accessed using brackets []. For instance, the 3rd element of
x is obtained as follows:

3

1 > x[3]
2 [1] -4.5

Multiple elements can be accessed by using vector arguments, as the following example illustrates.

1 > x = c(1,100,-4.5,8)
2 > x
3 [1] 1.0 100.0 -4.5 8.0
4 > x[c(1,4)]
5 [1] 1 8
6 > y = c(1,4)
7 > x[y]
8 [1] 1 8

More sophisticated ways of subsetting a vector will be discussed in sec. 11.

After a vector is created, any element can be accessed or written, including elements that have not
been assigned. A vector has as many elements as the last element that has been assigned. Elements
that have not been assigned are automatically assigned NA.

1 > rm(z) # remove the vector z
2 > z[10] # access 10th element of z (which is invalid since z does not exist)
3 Error: object ’z’ not found
4 > z = 1 # create a 1D vector and assign the first element 1
5 > z
6 [1] 1
7 > z[10] # access the 10th element of z
8 [1] NA
9 > z[10] = 4 # assign the 10 element of z to 4

10 > z
11 [1] 1 NA NA NA NA NA NA NA NA 4

In the above example, we have used # to insert comments. R will ignore all characters to the right of
on the same line.

4 Functions for Creating Numeric Vectors

An R function is of the form

1 fun.name(arg1,arg2,...)

where fun.name is the name of the function, and arg1, arg2, ... are arguments to the
function. We have already met a function in the preceding section, namely the concatenation function
c(). Two other frequently used functions are seq and rep. The function seq, for “sequence,”
generates regular sequences of numbers, as illustrated by the following examples:

4

1 > seq(from=1,to=10)
2 [1] 1 2 3 4 5 6 7 8 9 10
3 > seq(from=1,to=10,by=2)
4 [1] 1 3 5 7 9
5 > seq(from=0,length.out=7,by=0.5)
6 [1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Regular sequences occur frequently in data analysis and graphical procedures, so this function will
be seen often in future examples. The special case of step size 1 can be handled using the : syntax.
The sequence also may be in decreasing order, include negative numbers, and be non-integers:

1 > 1:10
2 [1] 1 2 3 4 5 6 7 8 9 10
3 > 3:-7
4 [1] 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
5 > 2.4:9.4
6 [1] 2.4 3.4 4.4 5.4 6.4 7.4 8.4 9.4

The rep function, short for “repeat,” replicates an object. When the object is a vector, the behavior of
rep can be controlled with the arguments each and times, as illustrated in the following examples:

1 > x = c(2,4,6)
2 > rep(x,times=3)
3 [1] 2 4 6 2 4 6 2 4 6
4 > rep(x,each=3)
5 [1] 2 2 2 4 4 4 6 6 6

Of course, the above functions can be combined in an infinite variety of ways to create new vectors:

1 > x = seq(2,8,2)
2 > x
3 [1] 2 4 6 8
4 > y = rep(1:3,4)
5 > y
6 [1] 1 2 3 1 2 3 1 2 3 1 2 3
7 > z = c(rep(x,2),y)
8 > z
9 [1] 2 4 6 8 2 4 6 8 1 2 3 1 2 3 1 2 3 1 2 3

R has a variety of functions for getting properties of vectors, some of the most useful of which
are summarized in table 1.

5

length(x) number of elements in x
min(x) smallest element in x
max(x) largest element in x
range(x) c(min(x),max(x))
sum(x) sum of the elements of x
prod(x) product of the elements of x
mean(x) average of the elements of x
median(x) median of the elements of x
sort(x) sort the elements of x in ascending order

Table 1: Common R functions for extracting properties of a vector

5 Vector Arithmetic

The arithmetic operators for add, subtract, multiply, and divide are +, -, *, /, respectively. The
power operator is ˆ; e.g., 2 ˆ 3 is 8. The modulo operator %% gives the remainder when the first
argument is divided by the second. Arithmetic operators applied to vectors are performed element-
by-element.

1 > 2+3 # add 2 and 3
2 [1] 5
3 > 2*3 # multiply 2 and 3
4 [1] 6
5 > 10 %% 4 # divide 10 by 4 and give the remainder
6 [1] 2
7 > x = c(1,2,3)
8 > 1/x # divide 1 by each element of x
9 [1] 1.0000000 0.5000000 0.3333333

10 > y = c(4,5,6)
11 > x * y # multiply x and y elementwise
12 [1] 4 10 18
13 > x / y # divide x by y elementwise
14 [1] 0.25 0.40 0.50
15 > y ˆ x # take each element of y to the corresponding power of x
16 [1] 4 25 216

The vectors occurring in the same expression do not need to be the same length. If the vectors
have different sizes, then shorter vectors are reused cyclically until they match the length of the
longest vector. This process is called recycling.

6

1 > x = c(1,2,3,4,5,6)
2 > y = c(1,3)
3 > x * y
4 [1] 1 6 3 12 5 18
5 > 2 * y
6 [1] 2 6
7 > z = x * y + 2 * y + 1
8 > z
9 [1] 4 13 6 19 8 25

In line 3, the term x * y is evaluated by first cyclically repeating the y vector three times, yielding
the vector (1,3,1,3,1,3), then multiplying this vector by x element by element, yielding line 4.
Similarly, line 5 is evaluated by repeating 2 twice, yielding the vector (2,2), then multiplying this
vector by y element wise, yielding line 6.

If one of the smaller vectors is not an integral fraction of the longest vector, then R correctly evalu-
ates the arithmetic expression, but also generates a warning message. This warning message is useful
for debugging purposes since many important applications of recycling require integral recycling.

An example that illustrates many of the above features is the following. Consider a vector xi for
i = 1, 2, . . . , N . Compute the unbiased variance estimate

σ̂2X =
1

N − 1

N∑
i=1

(xi − µ̂X)2 , (1)

where µ̂X is the sample mean of xi. A solution is shown in line 5 below:

1 > set.seed(1)
2 > x = rnorm(5)
3 > x
4 [1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078
5 > x.var = sum((x-mean(x))ˆ2)/(length(x)-1)
6 > x.var
7 [1] 0.9235968
8 > var(x)
9 [1] 0.9235968

It is important to fully understand how line 5 is evaluated. First, the function mean(x) is evaluated,
which generates a single number, then this number is repeated five times so that it can be subtracted
from the vector x element by element. The resulting difference is then squared element-wise and
summed. This number is then divided by length(x)-1, which is 4 in this example. Line 9 verifies
that the variance computed in line 5 matches the variance computed by the function var(x).

6 Plotting X-Y Data

For 2-dimensional data, the main function for graphically illustrating data is plot(). This function
is illustrated in fig. 1.

7

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

−10 −5 0 5 10

0
20

40
60

80
10

0

x

y

1 ntot = 10
2 x = (-ntot):ntot
3 y = xˆ2
4 plot(x,y)

Figure 1:

Invariably, you will want to change the look of the plot. Here, we would like to increase the font
size. The size of the axis labels can be increased using par:

1 par(cex.lab=1.5)

This command magnifies the current setting of cex.lab, which controls the size of the x and y
lables, by 1.5; i.e., the size is increased by 50%. A list of all graphics parameters can be obtained
by typing par(). The purpose of each parameter is described in the manual page, which can be
obtained by typing ?par. If you know the parameter you want to change, then you can re-set its
value as in the above example for cex.lab.

In addition to changing the size of the figure, we usually want to add labels, and modify the
symbols or the lines used to plot the data. Such changes can be made by including appropriate
arguments in plot. A list of valid arguments can be generated by typing ?plot.default. An
example of these changes is shown in fig. 2. Hopefully, the result is self-explanatory.

We often want to overlay multiple plots on the same frame. The easiest way is to use the lines
and points commands, which add curves or points to a figure. Another way is to use the plot
command again, except that you need to type par(new=TRUE) before the second plot, otherwise
plot will delete the previous plot and create a new plot. Also! plot() creates a new set of axes

8

−10 −5 0 5 10

0
20

40
60

80
10

0

Plot of wind vs temperature

wind

te
m

pe
ra

tu
re

1 ntot = 10; x = (-ntot):ntot; y = xˆ2
2 par(cex.lab=1.5,cex.axis=1.5,cex.main=1.5)
3 plot(x,y,xlab="wind",ylab="temperature",type="l",
4 col="black",lwd=2,main="Plot of wind vs temperature")

Figure 2:

with each call, whereas you usually want the axes to be the same. Therefore, the axes need to be
determined before any plotting and held fixed for subsequent plots using the arguments xlim and
ylim. The appropriate range for the axes can be found using the range command. Also, for each
subsequent plot, it is unnecessary to re-plot the axes or axis labels. The axes can be suppressed by
including axes=FALSE in the argument list to plot(), and axis labels can be suppressed using
blank labels. A legend can be inserted using legend. All of these steps are illustrated in fig. 3.

In the end, you often need to generate a graphics file that can be inserted in a paper or report. This
can be done by using the pdf or postscript commands before the plot commands, and then ending
with dev.off(), as illustrated below:

1 pdf(’figure.pdf’,width=8,height=4)
2 ALL PLOT COMMANDS....
3 dev.off()

The above generates a PDF file called figure.pdf. To generate the postscript file figure.eps, type

9

−10 −5 0 5 10

−
10

0
0

50

x data

y
or

 z

Plot of X vs. Y and Z

y
z

1 ntot = 10; x = (-ntot):ntot; y = xˆ2; z = xˆ3/10
2 xrange = range(x)
3 yrange = range(y,z)
4 par(mfcol=c(1,1),mar=c(5,5,3,1))
5 par(cex.lab=1.5,cex.axis=1.5,cex.main=1.5)
6 plot(x,y,xlab="x data",ylab="y or z",type="l",
7 lwd=3,xlim=xrange,ylim=yrange)
8 par(new=TRUE)
9 plot(x,z,xlab="",ylab="",type="l",axes=FALSE,

10 lwd=3,xlim=xrange,ylim=yrange,lty="dashed")
11 title(main=’Plot of X vs. Y and Z’)
12 legend("bottomright",legend=c("y","z"),
13 lwd=2,lty=c(’solid’,’dashed’),cex=2)

Figure 3:

1 postscript(’figure.eps’,horizontal=FALSE,
2 onefile=FALSE,height=4,width=8,pointsize=12)
3 ALL PLOT COMMANDS....
4 dev.off()

7 Functions Related to Probability Theory

R contains a variety of functions related to probability theory. For example, typing rnorm(25) in
the R console tells R to generate 25 random numbers from a (standardized) normal distribution:

10

1 > rnorm(25)
2 [1] -0.62645381 0.18364332 -0.83562861 1.59528080 0.32950777
3 [6] -0.82046838 0.48742905 0.73832471 0.57578135 -0.30538839
4 [11] 1.51178117 0.38984324 -0.62124058 -2.21469989 1.12493092
5 [16] -0.04493361 -0.01619026 0.94383621 0.82122120 0.59390132
6 [21] 0.91897737 0.78213630 0.07456498 -1.98935170 0.61982575

Lines 2-6 show the response from R. The bracketed numbers [1], [6], [11], [16], [21]
at the beginning of each line give the index of the first number on that line. For example, 1.51178117
is the 11th random number generated.

To fit the above printout into this document, a shortened line width is used. Also, the precise
numbers generated by rnorm(25) differ for each execution, so the numbers you obtain will differ
from those above. To achieve the same random numbers as above, type set.seed(1) just before
rnorm(25). This function sets the initial “seed” value for generating pseudorandom numbers, using
a procedure whose details are not important at the moment. It is recommended that the seed value be
set explicitly for all your programs. This coding practice ensures that the same random numbers will
be generated for each execution, a property that facilitates debugging. You should then change the
seed value and verify that your results are insensitive to the seed value. Also, to achieve the same line
width as used in this introduction, type options(width=70):

1 > options(width=70)
2 > set.seed(1)
3 > rnorm(25)
4 [1] -0.62645381 0.18364332 -0.83562861 1.59528080 0.32950777
5 [6] -0.82046838 0.48742905 0.73832471 0.57578135 -0.30538839
6 [11] 1.51178117 0.38984324 -0.62124058 -2.21469989 1.12493092
7 [16] -0.04493361 -0.01619026 0.94383621 0.82122120 0.59390132
8 [21] 0.91897737 0.78213630 0.07456498 -1.98935170 0.61982575

You should now see precisely the same output in your R console as shown above.

More details of a function can be obtained by typing the function name preceded by a question
mark, as follows.

1 ?rnorm

After typing this command, you will see documentation, which may not make much sense at this
point. However, one of the lines is

1 rnorm(n, mean = 0, sd = 1)

This line states that the function rnorm has three arguments, namely n, mean, sd. Moreover,
the argument n is required while the parameters mean and sd have default values equal to 0 and
1, respectively. Further reading of the documentation reveals that rnorm(n) generates n random

11

numbers from a normal distribution with zero mean and unit variance. To draw normal random
numbers from a normal distribution with a different mean and standard deviation, say a mean of 2
and standard deviation of 3, we would type the following

1 > set.seed(1)
2 > rnorm(25,mean=2,sd=3)
3 [1] 0.1206386 2.5509300 -0.5068858 6.7858424 2.9885233 -0.4614052
4 [7] 3.4622872 4.2149741 3.7273441 1.0838348 6.5353435 3.1695297
5 [13] 0.1362783 -4.6440997 5.3747928 1.8651992 1.9514292 4.8315086
6 [19] 4.4636636 3.7817040 4.7569321 4.3464089 2.2236950 -3.9680551
7 [25] 3.8594772

It is not necessary to explicitly state the name of each argument. For instance, rnorm(25,2,3)
is equivalent to rnorm(25,mean=2,sd=3), because R assumes that the order of the un-named
arguments matches the order specified in the manual pages. On the other hand, if the parameters are
explicitly named, then they can occur in any arbitrary order. The first un-named argument is assumed
to be the first un-specified argument:

1 > set.seed(1)
2 > rnorm(sd=3,n=25,mean=2)
3 [1] 0.1206386 2.5509300 -0.5068858 6.7858424 2.9885233 -0.4614052
4 [7] 3.4622872 4.2149741 3.7273441 1.0838348 6.5353435 3.1695297
5 [13] 0.1362783 -4.6440997 5.3747928 1.8651992 1.9514292 4.8315086
6 [19] 4.4636636 3.7817040 4.7569321 4.3464089 2.2236950 -3.9680551
7 [25] 3.8594772

R has functions not only for generating random numbers, but also for evaluating various proba-
bilities, such as the cumulative distribution function P (Z ≤ z), the probability density function p(z),
and the quantile function. The following illustrates the use of these functions:

1 > pnorm(0) # probability that Z < 0
2 [1] 0.5
3 > dnorm(0) # probability density at z = 0
4 [1] 0.3989423
5 > qnorm(0.975) # the smallest z such that P(Z < z) > 0.975
6 [1] 1.959964

R also has similar functions for other distributions. The most useful for introductory statistics are
summarized in table 2.

To evaluate the cumulative distribution, probability density, and quantile of the F distribution, say
with parameters df1=5, df2=5, ncp=0, we would use the following commands:

12

R name distribution parameters defaults
chisq chi-squared df, ncp -,0
f F df1, df2, ncp -, -, 0
norm normal mean, sd 0, 1
t Student’s t df, ncp -, 0
unif uniform min, max 0, 1

Table 2: R functions for common distributions.

1 > pf(0.5,5,10) # probability that F < 0.5, for F-dist with 5 and 10 dof
2 [1] 0.2299751
3 > df(0.5,5,10) # density of F at x = 0, for F-dist with 5 and 10 dof
4 [1] 0.687607
5 > qf(0.95,5,10) # smallest x such that P(F<x) > 0.95
6 [1] 3.325835

R has a number of functions for numerical computation, including the familiar functions log,
exp, sin, cos, tan, sqrt, abs. Many other functions can be found by typing ?Math.
All standard functions in R will accept vectors as arguments and evaluate the function element wise.

1 > x = c(1,2,3,4,5)
2 > sqrt(x)
3 [1] 1.000000 1.414214 1.732051 2.000000 2.236068
4 > log(x)
5 [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
6 > log(x)/sqrt(x)
7 [1] 0.0000000 0.4901291 0.6342841 0.6931472 0.7197625

8 Logical Vectors

In addition to numerical vectors, R uses logical vectors. A logical vector is a vector that takes on the
values TRUE or FALSE (or NA when missing data exists, as explained later). The abbreviations T and
F can be used for assignments, although this is generally discouraged. Logical vectors can be created
using c and rep.

1 > x = c(T,F,T)
2 > x
3 [1] TRUE FALSE TRUE
4 > rep(x,2)
5 [1] TRUE FALSE TRUE TRUE FALSE TRUE
6 > rep(x,each=2)
7 [1] TRUE TRUE FALSE FALSE TRUE TRUE

Logical vectors also can be created using the comparison operators summarized in table 3. Note that
equality is tested using the double equal sign ==, which should be sharply distinguished from the

13

single equal sign =, which is used for assignments. If the comparison operator is applied to vectors,
the comparison operator is applied element-by-element.

< “less than”
> ‘greater than”
<= ‘less than or equal to”
>= ‘greater than or equal to”
== ‘equal to”
! = ‘not equal to”

Table 3: Comparison operators in R

1 > 2 > 4
2 [1] FALSE
3 > 2 < 4
4 [1] TRUE
5 > x = c(1,2,3)
6 > y = c(-1,3,-5)
7 > x < y
8 [1] FALSE TRUE FALSE

Vectors can be assigned the value of comparison operators.

1 > x = c(1,2,3)
2 > y = c(0,2,4)
3 > z = x == y
4 > z
5 [1] FALSE TRUE FALSE
6 > w = x <= y
7 > w
8 [1] FALSE TRUE TRUE

Line 3 may confuse you if you haven’t caught the difference between the assignment = and com-
parison ==. To be clear, the comparison operator == is evaluated first, so x == y yields the value
FALSE TRUE FALSE, which is then assigned to z.

Logical expressions can be combined using the logical operators &, |, !, which correspond to the
logical and, or, and not.

14

1 > x = c(1,2,3)
2 > xge2 = x >= 2
3 > xge2
4 [1] FALSE TRUE TRUE
5 > !xge2
6 [1] TRUE FALSE FALSE
7 > y = c(-1,3,-5)
8 > yg1 = y > 1
9 > yg1

10 [1] FALSE TRUE FALSE
11 > xge2 & yg1
12 [1] FALSE TRUE FALSE

Two useful functions for summarizing logical vectors are any and all, which take logical vec-
tors and return a single TRUE or FALSE, depending on whether any or all elements are TRUE.

1 > x = c(-1, 8, 5, -3)
2 > any(x > 0) # is any element of x is positive?
3 [1] TRUE
4 > all(x > 0) # are all elements of x are positive?
5 [1] FALSE

When arithmetic operators are applied to logical variables, TRUE and FALSE are coerced into the
integers 1 and 0, respectively, then the arithmetic operator is applied. This feature is especially useful
for determining the fraction of cases that satisfy a condition.

1 > set.seed(1)
2 > x = rnorm(10)
3 > x
4 [1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 -0.8204684
5 [7] 0.4874291 0.7383247 0.5757814 -0.3053884
6 > x < 0
7 [1] TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
8 > mean(x<0) # determine the fraction of cases in which x < 0
9 [1] 0.4

9 Character Vectors

Character variables are contained in single quotes or double quotes. Double quotes is preferred to
avoid confusion with other symbols in certain fonts. Character vectors may be concatenated using
c().

15

1 > x = c("mike","tim","tony")
2 > x
3 [1] "mike" "tim" "tony"
4 > x[2]
5 [1] "tim"

A more sophisticated concatenation function is paste(), which coerces its arguments to char-
acter strings and then concatenates them, separated by the string sep, whose default value is " ".
If the arguments are vectors, then paste concatenates the vectors term-by-term. If the vectors have
different sizes, then shorter vectors are reused cyclically until all elements of the longest vector have
been concantenated.

1 > x = c("mike","tim","tony")
2 > paste(x,3)
3 [1] "mike 3" "tim 3" "tony 3"
4 > paste(x,1:3)
5 [1] "mike 1" "tim 2" "tony 3"
6 > paste(x,1:3,sep=" is number ")
7 [1] "mike is number 1" "tim is number 2" "tony is number 3"

To concatenate vectors into a single string, use the collapse argument:

1 > x = c("mike","tim","tony")
2 > paste(x,1:3,collapse=" ")
3 [1] "mike 1 tim 2 tony 3"
4 > paste(x,1:3,sep=" is number ",collapse = " and ")
5 [1] "mike is number 1 and tim is number 2 and tony is number 3"

Numbers and logicals can be coerced into character strings using as.character. The function
is.character is used to determine whether a variable is a character. A number of functions for
parsing strings also exist, including substr, nchar, strsplit, sub, grep.

10 Modes

Each object in R has a mode. The most common modes are "null", "logical", "numeric",
"complex", "character", "list". Many operations that are applied to groups of variables
require the variables to have the same mode, otherwise the variables are coerced into the required for-
mat. For instance, all items in a vector must have the same mode. If the concatenation function is
applied to objects with differing modes, such as a mix of numeric and character strings, then the ob-
jects are coerced into the same mode according to certain rules (as spelled out in the documentation
page). The mode of x can be ascertained using mode(x). To test whether a variable has a certain
mode, use functions like is.null, is.logical, is.character. To coerce an object into
a certain mode, use functions like as.null, as.logical, as.character.

16

11 Vector Indexing

A very powerful feature of R is that particular elements of a vector can be extracted or assigned using
the format x[index], where index is a vector. This process is called indexing. The value of
index can take on different forms, each of which has important applications.

1. index can be a vector of positive integers, in which case x[index] will access the elements
of x corresponding to the indices given by index.

1 > x = c(18,-22,34,11,-25,33)
2 > index = 1 # extract the 1st element of x
3 > x[index]
4 [1] 18
5 > index = 1:3 # extract the first three elements of x
6 > x[index]
7 [1] 18 -22 34
8 > index = c(1,5,5,3) # extract the 1st, 5th, 5th, 3rd elements of x
9 > x[index]

10 [1] 18 -25 -25 34
11 > y = c(1,3,2) # any vector can be used (e.g., ’y’ instead of ’index’)
12 > x[y]
13 [1] 18 34 -22

Note that an index can be repeated more than once and can appear out of order, as in line 8.
Indexing also can be used to re-assign the value of x, as shown below.

1 > x = c(18,-22,34,11,-25,33)
2 > x[1] = -13 # assign the 1st element of x to -3
3 > x
4 [1] -13 -22 34 11 -25 33
5 > index = 3:6
6 > x[index] = c(0,1) # assign elements 3-6 of x to the vector (0,1,0,1)
7 > x
8 [1] -13 -22 0 1 0 1

Line 2 reassigns the first element of x to -3. Line 6 re-assigns lines 3-6 to the vector (0,1,0,1)
(where the vector c(0,1) is recycled).

2. index can be a vector of logical values, in which case x[index] will access the elements
for which the corresponding value of index is TRUE. This form of indexing is very useful for
extracting values of a vector that satisfy certain conditions.

17

1 > rain = c(21,14,32,26)
2 > index = c(FALSE,TRUE,FALSE,TRUE)
3 > rain[index]
4 [1] 14 26
5 > temp = c(13,22,15,24)
6 > index = rain < 23
7 > index
8 [1] TRUE TRUE FALSE FALSE
9 > rain[index]

10 [1] 21 14
11 > index = rain < 23 & temp >= 14
12 > index
13 [1] FALSE TRUE FALSE FALSE
14 > rain[index]
15 [1] 14

3. index can be a vector of negative integers, in which case x[index]will produce all elements
of x except the corresponding elements of -index. This feature is especially useful for leave-
K-out cross validation procedures.

1 > x = c(18,-22,34,11,-25,33)
2 > index = -3 # extract all BUT the 3rd element
3 > x[index]
4 [1] 18 -22 11 -25 33
5 > index = -c(3,5) # extract all BUT the 3rd and 5th element
6 > index
7 [1] -3 -5
8 > x[index]
9 [1] 18 -22 11 33

4. index can be character strings. This feature will be discussed in sec. ?.

12 Missing Values

In some cases, certain elements of a vector are not known, perhaps because the corresponding obser-
vations are “missing” or “not available.” The special value NA can be assigned to such elements. Any
operation involving NA is set to NA.

1 > x = c(2, -4, NA, 3)
2 > x
3 [1] 2 -4 NA 3
4 > y = rep(1,4)
5 > y
6 [1] 1 1 1 1
7 > x + y
8 [1] 3 -3 NA 4

18

Different functions treat NA in different ways, often depending on certain arguments. This fact is
illustrated in the following example.

1 > x = c(2, -4, NA, 3)
2 > sum(x)
3 [1] NA
4 > sum(x,na.rm=TRUE)
5 [1] 1
6 > mean(x,na.rm=TRUE)
7 [1] 0.3333333

Line 1 creates a four-element vector, with one element assigned to NA. Line 3 shows that the sum of
the elements of x is assigned NA, because one of the elements is NA. Lines 5 and 7 give the sum and
mean of the elements of x, after all NA’s have been removed.

The elements of vector that are NA can be determined using the is.na function. In particular,
is.na(x) generates a logical vector such that TRUE indicates that the corresponding element in
x is NA. Note that the logical expression x == NA is NA for any x, reflecting the fact that testing
equality with respect to an unknown value is not defined.

It is good programming practice to initialize all vectors with NA; e.g., using x = rep(NA,10).
For instance, if all elements of the initialized vector are expected to be assigned a numerical value,
then finding a vector containing NA at the end of a code indicates a programming bug.

Other forms of “missing” values are produced by arithmetic operations. For instance, 1/0 is
assigned Inf, while 0/0 is assigned NaN. The functions is.infinite and is.nan are used to
determine whether an element is Inf and NaN, respectively.

Another value worth mentioning is NULL, which is essentially an “empty” object. Concatenating
a set of vectors with the NULL value results in just the vectors without the NULL value; in contrast,
concatenating a set of vectors with NA will include NA values.

1 > c(1,2,3,NULL)
2 [1] 1 2 3
3 > c(1,NULL,2,NA)
4 [1] 1 2 NA

The command is.null(x) is TRUE if x is assigned to NULL. The NULL value has several uses
which will be explained as needed.

13 Loops

Many calculations need to be performed repeatedly with different calculations depending on inter-
mediate results. Such calculations often require control-flow constructs. We have avoided discussing
control-flow for a very good reason: R is efficient at evaluating vectorized expressions, so it is impor-
tant to perform iterative calculations in vectorized form if at all possible. If this is not possible, then
the most common control-flow construct is the for loop construction, which has the form

19

1 for (i in vector) expr

where i is a variable that is assigned to each element of vector successively, and expr is an
expression that is evaluated once for each assignment. Usually, expr depends on i. As a simple
example, let us add the vectors x and y together to form z. The vectorized approach is to type z =
x + y, while an equivalent approach using the for-loop is

1 for (i in 1:ntot) z[i] = x[i] + y[i]

In this example, the statement for (i in 1:ntot) tells R to execute the expression follow-
ing it for i=1, then i=2, etc. until i = ntot. Thus, R first evaluates the expression z[1] =
x[1] + y[1], followed by z[2] = x[2] + y[2], and so on until z[ntot] = x[ntot]
+ y[ntot].

Although the above loop is equivalent to the vectorized expression z = x + y, the two ap-
proaches have very different execution times, which can be shown using the command system.time.

1 > ntot = 1000000
2 > x = rnorm(ntot)
3 > y = rnorm(ntot)
4 > z = numeric(length=ntot)
5 > system.time(z <- x + y)
6 user system elapsed
7 0.012 0.002 0.014
8 > system.time(for (i in 1:ntot) z[i] = x[i] + y[i])
9 user system elapsed

10 3.006 0.010 3.000

The above shows that the vectorized calculation takes only 0.014 seconds, while the for loop takes
3 second– over 200 times longer. This simple example should make clear that vectorized calculations
are preferred over for-loops, when possible.

A subtle point in the above example should be emphasized: the vector z was created before the
for-loop was executed. The reason for creating the vector z is that the brackets [] cannot extract
an element of a vector unless the vector itself exists, as the following example illustrates:

1 > rm(x,y,z)
2 > ntot = 10
3 > x = rnorm(ntot)
4 > y = rnorm(ntot)
5 > for (i in 1:ntot) z[i] = x[i] + y[i]
6 Error in z[i] = x[i] + y[i] : object ’z’ not found

As the error message indicates, the for-loop failed because z did not exist: the rm command in line
1 “removed” the vector z from memory. To avoid this error, the variable z needs to exist before the

20

loop. One way to do this is to use the command z = numeric(length=ntot), which creates a
numeric vector of length ntot with all elements equal to zero. However, a good habit is to initialize
vectors with NA:

1 > z = numeric(length=10)
2 > z
3 [1] 0 0 0 0 0 0 0 0 0 0
4 > z = as.numeric(rep(NA,10))
5 > z
6 [1] NA NA NA NA NA NA NA NA NA NA

Commands may be grouped with braces and separated by either semicolons or new lines. As a
simple example, we use a for loop to calculate the correlation coefficient between two independent
random variables 1000 times

1 > set.seed(1)
2 > ntot = 1000; ndim = 10
3 > xy.cor = as.numeric(rep(NA,ntot))
4 > for (i in 1:ntot) {
5 + x = rnorm(ndim); y = rnorm(ndim)
6 + xy.cor[i] = cor(x,y)
7 + }
8 > mean(xy.cor)
9 [1] 0.01644176

10 > var(xy.cor)
11 [1] 0.1105325

Note the prompt + inside the for-loop, which indicates that the command is not syntactically com-
plete. In general, if a command is not complete at the end of a line, then R gives the + prompt on each
subsequent line until the command is syntactically complete.

Other looping constructs include repeat and while.

The object used for looping need not be numeric. For instance, the following example loops over
character strings:

1 > iall = c("red","blue","green")
2 > for (i in iall) print(i)
3 [1] "red"
4 [1] "blue"
5 [1] "green"

Loops over character objects are especially useful when indexing objects by character name, or when
only text or graphic output is desired with each iteration.

The command seq(along.with = x) generates the sequence 1,2, ... length(x),
which is handy for generating integer indices for looping.

21

In some cases, we want to build a vector with each iteration, for instance using the concatenation
function. The tricky part is starting the process, since the very first time the loop is executed the vector
needs to exist before it can be concatenated. This is where the NULL value becomes useful:

1 > rm(x)
2 > for (i in 1:10) x = c(x,i)
3 Error: object ’x’ not found
4

5 > x = NULL
6 > for (i in 1:10) x = c(x,i)
7 > x
8 [1] 1 2 3 4 5 6 7 8 9 10

Line 3 shows that the loop failed because the concatenation function attempted to concatenate x and i
when x did not exist (it was “removed” from memory by line 1). Lines 5-8 show that if x is initialized
with NULL, then concatenating it with i leaves just i.

14 Conditional Execution

R has an if construct of the form

1 if (condition) expr_1

which executes the expression expr 1 only if condition is TRUE. The if-else construct can
be used to execute one expression when the condition is true and another statement when the condition
is false:

1 if (condition) expr_1 else expr_2

The expressions expr 1 and expr 2 could contain further if-else constructs.

A vectorized version of if-else is ifelse, which takes the form

1 ifelse (condition, x, y)

and returns a vector of the length of the longest argument, with elements x[i] if condition[i]
is true, otherwise y[i].

15 Lists

In certain complex calculations, it is useful to return a wide variety of variables. For instance, in
fitting a linear model, we may want the value of the fitted parameters, their uncertainties, and perhaps

22

text that describes the data. Similarly, a data set may contain numeric, logical, and character values
that need to be grouped together. The function list can be used to group objects of different modes
together. Each object in the list is called a component.

As an example, suppose we have five temperature measurements in units of Kelvin, and for each
measurement there is a logical variable indicating cloudiness. This data set could be grouped into a
list as follows.

1 > temp = c(275, 279, 285, 300, 294)
2 > cloudy = c(T,F,F,T,F)
3 > tunits = "Kelvin"
4 > stat.data = list(temp,cloudy,tunits)
5 > stat.data
6 [[1]]
7 [1] 275 279 285 300 294
8

9 [[2]]
10 [1] TRUE FALSE FALSE TRUE FALSE
11

12 [[3]]
13 [1] "Kelvin"

Line 4 creates an object called stat.data that groups together the data defined in lines 1-3. Line
5 asks R to write out the contents of the list. The resulting output shows that the list has three
components, indicated by the double bracket [[...]]. Below each component, R writes out the
contents of the respective component. Components of a list are automatically numbered and can be
accessed using the double brackets [[...]]. If the component is a vector, individual elements of
the vector can be accessed using subscripting.

1 > stat.data[[1]]
2 [1] 275 279 285 300 294
3 > stat.data[[1]][3]
4 [1] 285
5 > stat.data[[2]][c(2,3)]
6 [1] FALSE FALSE

Individual components of a list also can be named and accessed using these names in a variety of
ways, as illustrated below

23

1 > stat.data = list(temperature=temp,cloudiness=cloudy,units=tunits)
2 > stat.data$temperature
3 [1] 275 279 285 300 294
4 > stat.data[[1]]
5 [1] 275 279 285 300 294
6 > stat.data[["temperature"]]
7 [1] 275 279 285 300 294
8 > stat.data[1]
9 $temperature

10 [1] 275 279 285 300 294

The use of names can be very helpful when the list contains many components– you might for-
get which number corresponds to a particular component. Note the difference in outputs between
stat.data[[1]] and stat.data[1] after lines 4 and 8: the operator [[...]] extracts the
first object in the list and produces a result with the same mode as the object, whereas the operator
[...] is a general subscripting operator and therefore returns a sublist of the original list.

1 > mode(stat.data[[1]])
2 [1] "numeric"
3 > mode(stat.data[1])
4 [1] "list"
5 > stat.data[c(1,3)]
6 $temperature
7 [1] 275 279 285 300 294
8

9 $units
10 [1] "Kelvin"
11

12 > stat.data[1]$temperature
13 [1] 275 279 285 300 294

16 Data Frames

A data frame is a special case of a list in which each component has the same number of elements.
For most purposes, a data frame can be interpreted as a matrix with a fixed number of rows and
columns, but differing from a matrix in that the columns may have different modes. Data frames can
be constructed using the function data.frame:

24

1 > temp = c(275, 279, 285, 300, 294)
2 > cloudy = c(T,F,F,T,F)
3 > tunits = "Kelvin"
4 > stat.data = data.frame(temp,cloudy,tunits)
5 > stat.data
6 temp cloudy tunits
7 1 275 TRUE Kelvin
8 2 279 FALSE Kelvin
9 3 285 FALSE Kelvin

10 4 300 TRUE Kelvin
11 5 294 FALSE Kelvin

Note that the component tunits was recycled to complete the matrix. Also, the name of each
column, listed in line 6, is taken from the name of the variable. These names can be set by the user,
similar to the way the names are set in lists. The components of the data frame can be accessed in a
variety of ways, as the following example illustrates:

1 > stat.data = data.frame(temperature=temp,cloudy,tunits)
2 > stat.data
3 temperature cloudy tunits
4 1 275 TRUE Kelvin
5 2 279 FALSE Kelvin
6 3 285 FALSE Kelvin
7 4 300 TRUE Kelvin
8 5 294 FALSE Kelvin
9 > stat.data[1]

10 temperature
11 1 275
12 2 279
13 3 285
14 4 300
15 5 294
16 > stat.data["temperature"]
17 temperature
18 1 275
19 2 279
20 3 285
21 4 300
22 5 294
23 > stat.data[["temperature"]]
24 [1] 275 279 285 300 294
25 > stat.data$temperature
26 [1] 275 279 285 300 294

Many data sets are stored in files with a fixed number of rows and columns. A convenient way to
read these files and load the data into a data frame is to use the command read.table().

Data frames can be augmented using the commands cbind and rbind, which stand for ‘column-
bind’ and ’row-bind’.

25

1 > stat.data = data.frame(temperature=temp,cloudy,tunits)
2 > precip = c(1,0.5,0.3,2.1,1.4)
3 > stat.data = cbind(stat.data,precip)
4 > stat.data
5 temperature cloudy tunits precip
6 1 275 TRUE Kelvin 1.0
7 2 279 FALSE Kelvin 0.5
8 3 285 FALSE Kelvin 0.3
9 4 300 TRUE Kelvin 2.1

10 5 294 FALSE Kelvin 1.4
11 > stat.data = rbind(stat.data,c(288,TRUE,’Kelvin’,0.8))
12 > stat.data
13 temperature cloudy tunits precip
14 1 275 TRUE Kelvin 1
15 2 279 FALSE Kelvin 0.5
16 3 285 FALSE Kelvin 0.3
17 4 300 TRUE Kelvin 2.1
18 5 294 FALSE Kelvin 1.4
19 6 288 TRUE Kelvin 0.8

Data frames also can be truncated using the usual subscripting with negative integers:

1 > stat.data[-3]
2 temperature cloudy precip
3 1 275 TRUE 1
4 2 279 FALSE 0.5
5 3 285 FALSE 0.3
6 4 300 TRUE 2.1
7 5 294 FALSE 1.4
8 6 288 TRUE 0.8

Elements of a data frame can be extracted in a wide variety of ways, as illustrated below.

1 > stat.data[2,]
2 temperature cloudy tunits precip
3 2 279 FALSE Kelvin 0.5
4 > stat.data[2,][3]
5 tunits
6 2 Kelvin
7 > stat.data[2,][[3]]
8 [1] Kelvin
9 Levels: Kelvin

10 > stat.data[2,3]
11 [1] Kelvin
12 Levels: Kelvin
13 > stat.data[,2]
14 [1] "TRUE" "FALSE" "FALSE" "TRUE" "FALSE" "TRUE"
15 > stat.data[[2]][3]
16 [1] "FALSE"

26

Note that lines 9 and 12 introduce another form of output, namely Levels. Characters in a data
frame are interpreted as “levels” in Analysis of Variance and other statistical procedures. To suppress
this action, use stringsAsFactors=FALSE:

1 > stat.data = data.frame(temperature=temp,cloudy,tunits)
2 > stat.data[2,3]
3 [1] Kelvin
4 Levels: Kelvin
5 > stat.data = data.frame(temperature=temp,cloudy,tunits,stringsAsFactors=FALSE)
6 > stat.data[2,3]
7 [1] "Kelvin"

17 Functions

In addition to supplying standard functions like c(), mean(), sin(), R allows the user to cre-
ate functions. User-created functions provide a powerful way of consolidating calculations, especially
if the function is simple to use. A function is defined by an assignment statement of the form

1 function_name = function(arg_1, arg_2, ...) expression

After this assignment, the function may be called using the command function name(arg 1,
arg 2, ...), where arg 1, arg 2, ... are expressions giving the value of the arguments.
The value of the function, which may be any mode, is the result of the last expression in the group
evaluated. To illustrate, we take the example in sec. 13 for computing realizations of the correlation
coefficient for random data, and write it as a function:

1 > cor.random = function(ntot,ndim) {
2 + set.seed(1)
3 + xy.cor = as.numeric(rep(NA,ntot))
4 + for (i in 1:ntot) {
5 + x = rnorm(ndim); y = rnorm(ndim)
6 + xy.cor[i] = cor(x,y)
7 + }
8 + xy.cor
9 + }

10 >
11 > ntot = 1000; ndim = 10
12 > z = cor.random(ntot,ndim)
13 > mean(z)
14 [1] 0.01644176
15 > var(z)
16 [1] 0.1105325

27

It is possible to write functions that have optional arguments. Optional arguments are indicated
by = expr in the function definition, where expr is an expression. For instance,

1 f = function(x,y=2) {...}

defines a function with arguments x and y, where y will be assigned the value 2 if the user does
not specify y. Thus, f(1,3) calls the function f with the arguments x=1, y =3, while f(1)
calls the function with the arguments x=1, y=2. As a further illustration, consider the function
cor.random defined above. Suppose we want to change the seed value from 1 to 2 in a particular
call, but for general calls, we would prefer not to specify this argument, in which case the seed value
should automatically be assigned to 1. A function that does this is the following:

1 > cor.random = function(ntot,ndim,iseed=1) {
2 + set.seed(iseed)
3 + xy.cor = as.numeric(rep(NA,ntot))
4 + for (i in 1:ntot) {
5 + x = rnorm(ndim); y = rnorm(ndim)
6 + xy.cor[i] = cor(x,y)
7 + }
8 + xy.cor
9 + }

10 > mean(cor.random(ntot,ndim))
11 [1] 0.01644176
12 > mean(cor.random(ntot,ndim,1))
13 [1] 0.01644176
14 > mean(cor.random(ntot,ndim,2))
15 [1] 0.01491169

In lines 10 and 12, the function is called with the argument iseed=1. In line 14, the function is
called with the argument iseed=2, which is why it gives a slightly different result.

The next point is very important: functions can access objects that were defined at the time the
function comes into existence, even if these objects do not appear as arguments:

1 > d = 10
2 > e = 20
3 > dumf = function(f) print(f+e)
4 > dumf(d)
5 [1] 30
6 > e = 30
7 > dumf(d)
8 [1] 40
9 > rm(e)

10 > dumf(d)
11 Error in print(f + e) : object ’e’ not found

28

Line 3 creates a function named dumf that prints the sum f+e, where f is an argument and e is a
variable that existed at the time dumf was created. Line 4 calls dumf with the argument d, which
has been assigned the value 10. Since the value of e when the function was called is 20, the result is
10 + 20 = 30. If the value of e is changed after the function is defined, a subsequent function call
will use the latest value of the object, as illustrated in lines 6-8. If e is removed, then a subsequent
function call produces an error.

For most statistical applications, we strongly advise you to avoid using objects defined outside
the function definition. Instead, this feature should be reserved for advanced applications. Extensive
use of this feature requires understanding the concepts of scope and environment, which are beyond
the scope of this introduction.

18 A First Example Analyzing Data

We now show an example in the context of a real data set. Specifically, we use an index called
the Pacific Decadal Oscillation (PDO) index, which is a particular linear combination of sea surface
temperatures in the Pacific Ocean poleward of 20N.1. The January-March mean value of this index is
plotted in fig. 4. A glance at the figure suggests a difference in variability across 1976. The goal of
this example is to answer the question “has the variability of the PDO changed in recent decades?”

To address the above question, first download the file PDO.latest.txt from the website1.
Because the file format is not standard (e.g., blank columns, metadata at the top and bottom, asterisks
next to some data values, and a blank line between header and data), R needs a little help reading the
file. To read this data file, put it in a directory, say /data/indices/, then type in the R console:

1 iyst.read = 1900
2 iynd.read = 2016
3 nyrs.read = iynd.read - iyst.read + 1
4 dir.indices = ’/data/indices/’
5 fdata = paste(dir.indices,’PDO.latest.txt’,sep=’’)
6 header.pdo = scan(fdata,what=’character()’,skip=32,nlines=1,quiet=TRUE)
7 index.pdo = read.table(fdata,col.names=header.pdo,skip=34,nrows=nyrs.read)
8 if (index.pdo[1,1] != iyst.read) stop(’first year is not 1900, as expected’)
9 index.pdo[,1] = iyst.read:iynd.read

Assuming no error messages appear, you can then look at the data by typing index.pdo. The
output should look something like this:

1 for more details and data, see http://jisao.washington.edu/pdo/

29

1950 1960 1970 1980 1990 2000 2010

−
2

−
1

0
1

2

year

J
F

M
 P

D
O

 I
n

d
e
x

JFM Average PDO Index

Figure 4: The January-March mean Pacific Decadal Oscillation (PDO) index.

1 > index.pdo
2 YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP ...
3 1 1900 0.04 1.32 0.49 0.35 0.77 0.65 0.95 0.14 -0.24 ...
4 2 1901 0.79 -0.12 0.35 0.61 -0.42 -0.05 -0.60 -1.20 -0.33 ...
5 3 1902 0.82 1.58 0.48 1.37 1.09 0.52 1.58 1.57 0.44 ...
6 4 1903 0.86 -0.24 -0.22 -0.50 0.43 0.23 0.40 1.01 -0.24 ...
7 ...
8 116 2015 2.45 2.30 2.00 1.44 1.20 1.54 1.84 1.56 1.94 ...
9 117 2016 1.53 1.75 2.40 2.62 2.35 2.03 1.25 0.52 0.45 ...

We will consider only the January-March mean PDO index after 1950. The following commands will
compute such an index. Be sure you understand each line:

30

1 ## DEFINE METADATA
2 season = ’JFM’
3 iyst = 1950
4 if (season == ’JFM’) npic.season = 1:3
5

6 ## COMPUTE SEASONAL MEANS
7 pdo = rowMeans(index.pdo[,npic.season+1])
8

9 ## SPECIFY YEAR
10 year = index.pdo[,1]
11

12 ## USE ONLY YEARS GREATER THAN OR EQUAL TO ’IYST’
13 npic = year >= iyst
14 pdo = pdo[npic]
15 year = year[npic]
16 nyrs = length(year)

After the above commands have been executed, then R will have assigned the variables pdo, year,
nyrs. Using the command cbind (for ‘column bind’), the variables year and pdo should look
like this:

1 > cbind(year,pdo)
2 year pdo
3 [1,] 1950 -2.0566667
4 [2,] 1951 -1.5000000
5 [3,] 1952 -1.0333333
6 [4,] 1953 -0.5866667
7 ...
8 [66,] 2015 2.2500000
9 [67,] 2016 1.8933333

To create a figure, type:

1 par(mar=c(5,5,4,3),cex.lab=1.5,cex.axis=1.5,cex.main=1.5)
2 plot(year,pdo,type=’b’,pch=19,lwd=2,xlab="year",ylab="JFM PDO Index")
3 title(main=paste(season,’Average PDO Index’))
4 abline(h=0)

This figure should be consistent with fig. 4.

No we investigate whether the variability of the PDO has changed in recent decades. Variability
can be measured in many ways, but for Gaussian variables the most natural measure is variance. Thus,
we re-frame the question as: test the hypothesis that the PDO index during 1950-1977 and 1978-2016
were drawn from Gaussian distributions with the same variance. We will write a function that accepts
data sets as vector arguments, performs the equality of variance test described in chapter 2, and returns
a list variable with relevant information for the test. We will call the function var.equal.test.
Do not name it var.test, as this is a pre-defined function in R. As explained in chapter 2, we need

31

to compute the sample variances of the two data sets, take their ratio such that the larger variance is
over the smaller variance, and compare with the appropriate critical values of an F distribution. These
steps are completed by the following function:

1 var.equal.test = function(data1,data2,alpha=0.05) {
2 ### THIS FUNCTION TESTS EQUALITY OF VARIANCE OF TWO
3 ### IID NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ###
5 # INPUT:
6 # DATA1: [N1]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N2]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # F.MAX: RATIO OF VARIANCE, CONSTRUCTED TO BE GREATER THAN 1
11 # F.CRIT: THE UPPER CRITICAL THRESHOLD OF SIGNIFICANCE
12 # PVAL: P-VALUE OF THE F.MAX RATIO
13 # VAR1: UNBIASED ESTIMATE OF THE VARIANCE OF DATA1
14 # VAR2: UNBIASED ESTIMATE OF THE VARIANCE OF DATA2
15 # RATIO: VAR1/VAR2
16

17 n1 = length(data1); n2 = length(data2)
18 mean1 = sum(data1)/n1; mean2 = sum(data2)/n2
19 var1 = sum((data1-mean1)ˆ2)/(n1-1)
20 var2 = sum((data2-mean2)ˆ2)/(n2-1)
21

22 if (var1 > var2) {
23 f.max = var1/var2
24 f.crit = qf(alpha/2,n1-1,n2-1,lower.tail=FALSE)
25 pval = 2*pf(f.max,n1-1,n2-1,lower.tail=FALSE)
26 } else {
27 f.max = var2/var1
28 f.crit = qf(alpha/2,n2-1,n1-1,lower.tail=FALSE)
29 pval = 2*pf(f.max,n2-1,n1-1,lower.tail=FALSE)
30 }
31

32 ratio = f.max
33

34 list(f.max=f.max,f.crit=f.crit,pval=pval,var1=var1,var2=var2,ratio=ratio)
35 }

Applying this function to the data will look something like this:

32

1 ### SPLIT DATA INTO TWO PARTS
2 nbreak = which(year == 1977)
3 pdo1 = pdo[1:nbreak]
4 pdo2 = pdo[(nbreak+1):nyrs]
5

6 ## TEST EQUALITY OF VARIANCE
7 source(’var.equal.test.R’)
8 print(var.equal.test(pdo1,pdo2))
9 $f.max

10 [1] 1.276986
11

12 $f.crit
13 [1] 2.079678
14

15 $pval
16 [1] 0.511863
17

18 $var1
19 [1] 0.7420675
20

21 $var2
22 [1] 0.9476096
23

24 $ratio
25 [1] 1.276986

These results show that the ratio of the largest variance over the smallest variance is 1.28, which is less
than the 5% critical value of 2.1. Consistent with this, the p-value is greater than 5%. Therefore, the
ratio of variance is not sufficiently different from one to reject the null hypothesis of equal variance.
Thus, the answer to the question “has the variability of PDO changed in recent decades?” is “the
observed change is not strong enough to reject the hypothesis of no change in variance.”

As mentioned above, R has a built-in function called var.test that performs the equality-of-
variance test. This is illustrated in the following:

1 > var.test(pdo2,pdo1)
2

3 F test to compare two variances
4

5 data: pdo2 and pdo1
6 F = 1.277, num df = 38, denom df = 27, p-value = 0.5119
7 alternative hypothesis: true ratio of variances is not equal to 1
8 95 percent confidence interval:
9 0.6140306 2.5438093

10 sample estimates:
11 ratio of variances
12 1.276986

The above results are consistent with the results from our function.

33

19 Self-Test

Try to perform the following common applications before looking at the answer:

• A vector x contains “missing values” that are identified with the value -99.99. Set these missing
values to NA.

1 > x = c(1,3,-99.99,8,4,3,-99.99)
2 > x[x== -99.99] = NA
3 > x
4 [1] 1 3 NA 8 4 3 NA

• Given the vector x = c(2,4,6,8,10), insert the number ‘5’ between 4 and 6.

1 > x = c(2,4,6,8,10)
2 > x = c(x[1:2],5,x[3:5])
3 > x
4 [1] 2 4 5 6 8 10

20 Quick Examples of More Complicated Tasks

• Find the maximum value along each row of a matrix. There are two relevant functions: apply
or pmax. Also, the do.call function needs to be used in combination with pmax. In general,
the pmax function is faster, often by a lot.

1 > ntrials = 100000
2 > mset = 100
3 > z = rnorm(ntrials*mset)
4 > dim(z) = c(ntrials,mset)
5 > system.time(do.call(pmax,data.frame(z)))
6 user system elapsed
7 0.488 0.247 0.728
8 > system.time(apply(z,1,max))
9 user system elapsed

10 1.016 0.036 1.045

34

