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An Example

Consider f (x) = 2x + 5. What happens if we take values of x that
approach 0? Here are some calculations.

x 1 0.1 0.01 0.001 0.0001 0.00001

f (x) 7 5.2 5.02 5.002 5.0002 5.00002

We see that as x gets closer to 0, f (x) appears to be getting closer
to 5. Can we control this? Can we get the output f (x) close to 5
within any required accuracy level, simply by making the input x
appropriately close to 0?
Suppose ϵ is some positive number and we need f (x) = 2x + 5 to
be within ϵ of 5. Now,

|(2x + 5)− 5| < ϵ ⇐⇒ |2x | < ϵ ⇐⇒ |x | < ϵ/2.

Thus, if |x | < ϵ/2, we are guaranteed that |f (x)− 5| < ϵ.
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Definition of Limit

We say lim
x→p

f (x) = L if for every ϵ > 0 there is a corresponding

δ > 0 such that 0 < |x − p| < δ =⇒ |f (x)− L| < ϵ.

Three observations about the definition of limit:

1 It sets up δ as depending on ϵ.

2 We do not care about the value of f (p), or even whether it is
defined.

3 Since the definition is intended for situations where x can
approach p, it should only be applied to such situations. So
we shall only consider the limit of f at p if there is an α > 0
such that the open interval (p − α, p + α) is contained in the
domain of f , except perhaps for p itself.

We may also write ‘f (x) → L as x → p’ for lim
x→p

f (x) = L.
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Visualising Limits

The two stages in a limit process.

p

L
L+ ϵ

L− ϵ

p

L
L+ ϵ

L− ϵ

p − δ p + δ

In the first stage, we have a requirement to make the output f (x)
lie between L− ϵ and L+ ϵ.
In the second stage, we meet the requirement by finding a δ such
that input being between p − δ and p + δ guarantees that the
output is between L− ϵ and L+ ϵ (except perhaps at p itself).
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Uniqueness of Limit

Theorem 1

At most one number can satisfy the definition of the limit of a
given function at a given point.

Proof. Suppose L,M are two distinct numbers, both of which
satisfy the definition of lim

x→a
f (x).

Choose ϵ = |M − L|/2.
Then there are δL, δM > 0 such that

0 < |x − a| < δL =⇒ |f (x)− L| < ϵ,

0 < |x − a| < δM =⇒ |f (x)−M| < ϵ.

Let δ = min{δL, δM} and x0 ∈ (a− δ, a+ δ).
Then |f (x0)− L| < ϵ and |f (x0)−M| < ϵ. Hence,

|M − L| ≤ |M − f (x0)|+ |f (x0)− L| < ϵ+ ϵ = |M − L|,
which gives the impossible statement |M − L| < |M − L|. □
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Basic Examples

Consider lim
x→a

x .

This amounts to asking “What does x approach when x
approaches a?”

Obviously, our response has to be that it will approach a, that is,
lim
x→a

x = a.

Let us work it out with the ϵ-δ formulation, for practice.

We start by considering an ϵ > 0. We need to find a δ > 0 such
that |x − a| < δ =⇒ |x − a| < ϵ. Clearly δ = ϵ will work.

Task: Let f (x) = c be a constant function. Show that
lim
x→p

f (x) = c .
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Example of y = x2

Consider the limit of y = x2 at x = 2. A natural guess is that
x2 → 22 = 4 as x → 2. We test this for some values of ϵ > 0.

Suppose ϵ = 0.5. We need δ > 0 such that x ∈ (2− δ, 2 + δ)
implies x2 ∈ (4− 0.5, 4 + 0.5) = (3.5, 4.5).

We note that the function maps (
√
3.5,

√
4.5) into (3.5, 4.5).

The interval (
√
3.5,

√
4.5) contains 2 but is not centered on it.

p = 2
(√
3.5

)√
4.5

0.129 0.121

δ =
√
4.5− 2 = 0.121 works, since (2− δ, 2 + δ) ⊂ (

√
3.5,

√
4.5).

Consider ϵ = 0.01. Can you confirm that δ =
√
4.01− 2 meets the

requirements?

Generally, for any ϵ > 0, take δ = min{2−
√
4− ϵ,

√
4 + ϵ− 2}.
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√
4.01− 2 meets the

requirements?

Generally, for any ϵ > 0, take δ = min{2−
√
4− ϵ,

√
4 + ϵ− 2}.
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Limits Limit Theorems One-sided limits

Characterisations of Limit

Theorem 2

lim
x→p

f (x) = L ⇐⇒ lim
x→p

(f (x)− L) = 0 ⇐⇒ lim
h→0

f (p + h) = L.

Proof. We simply match the definitions of the three limits:

• lim
x→p

f (x) = L: For every ϵ > 0 there is a corresponding δ > 0

such that 0 < |x − p| < δ =⇒ |f (x)− L| < ϵ.

• lim
x→p

(f (x)− L) = 0: For every ϵ > 0 there is a corresponding

δ > 0 such that 0 < |x − p| < δ =⇒ |(f (x)− L)− 0| < ϵ.

• lim
h→0

f (p + h) = L: For every ϵ > 0 there is a corresponding δ > 0

such that 0 < |h| < δ =⇒ |f (p + h)− L| < ϵ.

The first two are identical. The first can be converted to the third,
and conversely, by the substitution x = p + h. □
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Limits Limit Theorems One-sided limits

Zero Limit

Theorem 3

lim
x→p

f (x) = 0 ⇐⇒ lim
x→p

|f (x)| = 0.

Proof. The definition of lim
x→p

|f (x)| = 0 is:

For every ϵ > 0 there is a corresponding δ > 0 such that
0 < |x − p| < δ =⇒ ||f (x)| − 0| < ϵ.
Now note that ||f (x)| − 0| = |f (x)− 0|. □

Theorem 4

lim
x→p

f (x) = M =⇒ lim
x→p

|f (x)| = |M|.

Proof. The triangle inequality gives ||f (x)| − |M|| ≤ |f (x)−M|.
Let ϵ > 0. Since lim

x→p
f (x) = M, there is a δ > 0 such that

0 < |x − p| < δ =⇒ |f (x)−M| < ϵ. The same δ works for |f (x)|
since |f (x)−M| < ϵ implies ||f (x)| − |M|| ≤ |f (x)−M| < ϵ. □
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Limits Limit Theorems One-sided limits

Non-existence of Limit: Example 1

Consider the signum function, sgn(x) =


−1 if x < 0,
0 if x = 0,
1 if x > 0.

Suppose lim
x→0

sgn(x) = L. Consider ϵ = 1.

There is a δ > 0 such that 0 < |x | < δ =⇒ |sgn(x)− L| < 1.
Then |sgn(δ/2)− L| < 1 and |sgn(−δ/2)− L| < 1.
Therefore, by triangle inequality,

|sgn(δ/2)− sgn(−δ/2)| ≤ |sgn(δ/2)− L|+ |sgn(−δ/2)− L|
< 1 + 1 = 2.

On the other hand, using the definition of sgn(x), we have

|sgn(δ/2)− sgn(−δ/2)| = |1− (−1)| = 2.

This equality contradicts the previous inequality. So lim
x→0

sgn(x)

does not exist.
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Limits Limit Theorems One-sided limits

Non-existence of Limit: Example 2

Define f : R → R by f (0) = 0 and f (x) = 1/x when x ̸= 0.

1

n

n

( )
−δ δ

Suppose lim
x→0

f (x) = L and consider ϵ = 1/2.

Now take any δ > 0. By the Archimedean property, (−δ, δ)
contains points of the form 1/n and 1/(n + 1) with n ∈ N.

Then f (1/(n + 1))− f (1/n) = 1 and so it is impossible that both
f (1/(n + 1)) and f (1/n) are within a distance ϵ = 1/2 of L.
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Limits Limit Theorems One-sided limits

Non-existence of Limit: Example 3

Let S : [−1, 1] → R be defined by S(1/n) = (−1)n for each n ∈ N
and let its graph be a straight line on each interval between these
points. Further, let S(0) = 0.

11
2

−1

1
3

In any (−δ, δ) interval, S takes both the values ±1 and so we can
argue as in the previous two examples to show that lim

x→0
S(x) does

not exist.
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Limits Limit Theorems One-sided limits

Limit and function value

Let f (x) = 0 when x ̸= 0 and f (0) = 1. We will show that
lim
x→0

f (x) = 0.

Consider any ϵ > 0. Let δ = 1.

Then

0 < |x−0| < δ =⇒ x ̸= 0 =⇒ f (x) = 0 =⇒ |f (x)−0| = 0 < ϵ.

So the limit exists at x = 0 but does not equal f (0).
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Functions with zero limit

Lemma 5

Let f , g be real functions with lim
x→p

f (x) = lim
x→p

g(x) = 0. Then

1 lim
x→p

c f (x) = 0 (c ∈ R),

2 lim
x→p

(f (x) + g(x)) = 0,

3 lim
x→p

f (x)g(x) = 0,

4 If lim
x→p

h(x) = 1 then lim
x→p

f (x)

h(x)
= 0.

Proof.

1 This is trivial if c = 0. Suppose c ̸= 0. For ϵ > 0 there is a
δ > 0 such that 0 < |x − p| < δ implies |f (x)| < ϵ/|c |. Now,
0 < |x − p| < δ implies |cf (x)− 0| = |c ||f (x)| < |c | ϵ

|c |
= ϵ.
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Functions with zero limit

(proof continued)

2 Take any ϵ > 0.

There is a δ1 > 0 such that 0 < |x − p| < δ1 implies
|f (x)| < ϵ/2.

There is a δ2 > 0 such that 0 < |x − p| < δ2 implies
|g(x)| < ϵ/2.

Let δ = min{δ1, δ2}. Then

0 < |x − p| < δ =⇒ |f (x) + g(x)− 0| ≤ |f (x)|+ |g(x)|

<
ϵ

2
+

ϵ

2
= ϵ.
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Functions with zero limit

(proof continued)

4 Take any ϵ > 0.

There is a δ1 > 0 such that 0 < |x − p| < δ1 implies
1

2
< h(x) <

3

2
.

There is a δ2 > 0 such that 0 < |x − p| < δ2 implies

|f (x)| < ϵ

2
.

Let δ = min{δ1, δ2}. Then

0 < |x − p| < δ =⇒
∣∣∣∣ f (xh(x)

∣∣∣∣ < ϵ/2

1/2
= ϵ.
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Algebra of Limits

Theorem 6

Let f , g be real functions such that lim
x→p

f (x) = M and

lim
x→p

g(x) = N. Then

1 lim
x→p

c f (x) = cM (c ∈ R),

2 lim
x→p

(f (x) + g(x)) = M + N,

3 lim
x→p

(f (x)− g(x)) = M − N,

4 lim
x→p

f (x)g(x) = MN,

5 lim
x→p

f (x)

g(x)
=

M

N
(N ̸= 0).

We shall use lim
x→p

F (x) = K ⇐⇒ lim
x→p

(F (x)− K ) = 0 to reduce

these to the previous lemma.
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Algebra of Limits

Proof.

1 lim
x→p

(
c f (x)− c M

)
= lim

x→p
c
(
f (x)−M

)
= 0.

(By part 1 of the Lemma)

2

lim
x→p

(
(f (x) + g(x))− (M + N)

)
= lim

x→p

(
(f (x)−M) + (g(x)− N)

)
= 0

(By part 2 of the Lemma)

3 Combine parts 1 and 2 of this theorem, using c = −1.
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Algebra of Limits

(proof continued)

4 We use part 3 of the Lemma and parts 1, 2, 3 of this theorem:

lim
x→p

(
f (x)g(x)−MN

)
= lim

x→p

(
(f (x)−M)(g(x)− N)

+Mg(x) + Nf (x)− 2MN
)

= lim
x→p

(
(f (x)−M)(g(x)− N)

)
+ lim

x→p
(Mg(x)) + lim

x→p
(Nf (x))− lim

x→p
2MN

= 0 +MN + NM − 2MN = 0.
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Algebra of Limits

(proof continued)

5 Due to part 4 of this theorem, it is enough to prove that

lim
x→p

1

g(x)
=

1

N
:

lim
x→p

(
1

g(x)
− 1

N

)
= lim

x→p

N − g(x)

g(x)

= lim
x→p

1− g(x)/N

g(x)/N

= 0. (Part 4 of the Lemma)

□
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Algebra of Limits

(proof continued)
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Examples

1 Calculate lim
x→2

(x2 + 9):

By (2) of Algebra of Limits, we have

lim
x→2

(x2 + 9) = lim
x→2

x2 + lim
x→2

9 = lim
x→2

x2 + 9.

By (4) we have

lim
x→2

x2 = ( lim
x→2

x)( lim
x→2

x) = 2 · 2 = 4.

Hence lim
x→2

(x2 + 9) = 4 + 9 = 13.

2 Calculate lim
x→2

(7x)9:

By (1) of Algebra of Limits, we have lim
x→2

(7x)9 = 79 lim
x→2

x9.

By (4) we have lim
x→2

x9 = ( lim
x→2

x) · · · ( lim
x→2

x) = ( lim
x→2

x)9 = 29.

Hence lim
x→2

(7x)9 = 7929 = 149.
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Examples

3 Calculate lim
x→1

(x − 1)2

x2 − 1
:

The limit of the denominator is
lim
x→1

(x2 − 1) = lim
x→1

x2 − lim
x→1

1 = 12 − 1 = 0.

So we can’t apply the rule for ratios. However, we can first
simplify the expression and remove this obstacle.

lim
x→1

(x − 1)2

x2 − 1
= lim

x→1

(x − 1)2

(x − 1)(x + 1)
= lim

x→1

x − 1

x + 1
.

The cancellation in the last step is allowed because when we
calculate lim

x→1
we work with x ̸= 1 and hence x − 1 ̸= 0.

This simplified form is easily dealt with:

lim
x→1

(x−1) = 0 and lim
x→1

(x+1) = 2 =⇒ lim
x→1

x − 1

x + 1
=

0

2
= 0.
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Limits Limit Theorems One-sided limits

Sandwich Theorem

Theorem 7

Suppose that f (x) ≤ g(x) ≤ h(x) in an interval (p − α, p + α),
with α > 0, except perhaps at p. If lim

x→p
f (x) = lim

x→p
h(x) = L then

lim
x→p

g(x) = L.

Proof. Let ϵ > 0.

There is δf > 0 s.t. 0 < |x − p| < δf implies L− ϵ < f (x) < L+ ϵ.
There is δh > 0 s.t. 0 < |x − p| < δh implies L− ϵ < h(x) < L+ ϵ.
Let δ = min{δf , δh, α}. Now, if 0 < |x − p| < δ, then

• δ ≤ δf =⇒ L− ϵ < f (x) < L+ ϵ,
• δ ≤ δh =⇒ L− ϵ < h(x) < L+ ϵ,
• δ ≤ α =⇒ f (x) ≤ g(x) ≤ h(x).

Combining these gives L− ϵ < f (x) ≤ g(x) ≤ h(x) < L+ ϵ.
Hence L− ϵ < g(x) < L+ ϵ. Therefore lim

x→p
g(x) = L. □
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Application of Sandwich Theorem
Consider lim

x→0
xS(x), where S(x) is the 3rd example of

non-existence of limits.

Since S(x) takes values between ±1 it
follows that xS(x) takes values between ±x .

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

To avoid the x > 0 and x < 0 cases we work with |xS(x)|:

0 ≤ |S(x)| ≤ 1 =⇒ 0 ≤ |xS(x)| ≤ |x |.

Since lim
x→0

|x | = 0, the Sandwich Theorem gives lim
x→0

|xS(x)| = 0.

Hence, lim
x→0

xS(x) = 0.
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Limit of square root function

Let a > 0 and consider lim
x→a

√
x .

The natural guess for this limit is
√
a. To confirm this, we

calculate as follows:

0 ≤ |
√
x −

√
a| =

∣∣∣∣ x − a√
x +

√
a

∣∣∣∣ ≤ |x − a|√
a

.

We have lim
x→a

|x − a|√
a

= 0.

Hence, by the Sandwich Theorem, lim
x→a

|
√
x −

√
a| = 0.
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Left and right limits

We say that lim
x→p+

f (x) = L if for every ϵ > 0 there is a

corresponding δ > 0 such that 0 < x − p < δ =⇒ |f (x)− L| < ϵ.

The quantity lim
x→p+

f (x) is called the right-hand limit of f at p.

We say that lim
x→p−

f (x) = L if for every ϵ > 0 there is a

corresponding δ > 0 such that 0 < p − x < δ =⇒ |f (x)− L| < ϵ.

The quantity lim
x→p−

f (x) is called the left-hand limit of f at p.

The right-hand limit at p can be considered if there is an α > 0
such that (p, p + α) is in the domain of f . The left-hand limit
needs an α > 0 such that (p − α, p) is in the domain.
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Visualising one-sided limits

p

L
L+ ϵ

L− ϵ

p + δ

Right-hand Limit

p

L
L+ ϵ

L− ϵ

p − δ

Left-hand Limit
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One-sided and two-sided limits

Theorem 8

lim
x→p

f (x) = L if and only if lim
x→p+

f (x) = lim
x→p−

f (x) = L.

Proof. ( =⇒ ): Let ϵ > 0.

There is a δ > 0 s.t. 0 < |x − p| < δ =⇒ |f (x)− L| < ϵ.
The same δ works for lim

x→p+
f (x) = L and lim

x→p−
f (x) = L.

(⇐=): Let ϵ > 0.
There is a δ1 > 0 s.t. 0 < x − p < δ1 =⇒ |f (x)− L| < ϵ.
There is a δ2 > 0 s.t. 0 < p − x < δ2 =⇒ |f (x)− L| < ϵ.
Then δ = min{δ1, δ2} works for lim

x→p
f (x) = L:

0 < |x − p| < δ =⇒ 0 < x − p < δ or 0 < p − x < δ

=⇒ 0 < x − p < δ1 or 0 < p − x < δ2

=⇒ |f (x)− L| < ϵ.

□
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An Example

Consider the Heaviside step function H(x) =

{
0 if x < 0,
1 if x ≥ 0.

We calculate the one-sided limits at zero:

lim
x→0+

H(x) = lim
x→0+

1 = 1,

lim
x→0−

H(x) = lim
x→0−

0 = 0.

Since the one-sided limits are not equal, lim
x→0

H(x) does not exist.
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An Exercise

Confirm that the Algebra of Limits and the Sandwich Theorem
also hold for one-sided limits.
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