

Chapter 3: Limits and Continuity Part A: Limits

Table of Contents

Limits

Limit Theorems

One-sided limits

Consider f(x) = 2x + 5. What happens if we take values of x that approach 0? Here are some calculations.

Consider f(x) = 2x + 5. What happens if we take values of x that approach 0? Here are some calculations.

$$x$$
 1
 0.1
 0.01
 0.001
 0.0001
 0.00001

 $f(x)$
 7
 5.2
 5.02
 5.002
 5.0002
 5.0002
 5.00002

We see that as x gets closer to 0, f(x) appears to be getting closer to 5. Can we control this? Can we get the output f(x) close to 5 within any required accuracy level, simply by making the input x appropriately close to 0?

Consider f(x) = 2x + 5. What happens if we take values of x that approach 0? Here are some calculations.

We see that as x gets closer to 0, f(x) appears to be getting closer to 5. Can we control this? Can we get the output f(x) close to 5 within any required accuracy level, simply by making the input x appropriately close to 0?

Suppose ϵ is some positive number and we need f(x) = 2x + 5 to be within ϵ of 5. Now,

$$|(2x+5)-5|<\epsilon\iff |2x|<\epsilon\iff |x|<\epsilon/2.$$

Consider f(x) = 2x + 5. What happens if we take values of x that approach 0? Here are some calculations.

We see that as x gets closer to 0, f(x) appears to be getting closer to 5. Can we control this? Can we get the output f(x) close to 5 within any required accuracy level, simply by making the input x appropriately close to 0?

Suppose ϵ is some positive number and we need f(x) = 2x + 5 to be within ϵ of 5. Now,

$$|(2x+5)-5|<\epsilon\iff |2x|<\epsilon\iff |x|<\epsilon/2.$$

Thus, if $|x| < \epsilon/2$, we are guaranteed that $|f(x) - 5| < \epsilon$.

We say $\lim_{x\to p} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.

We say $\lim_{x\to p} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.

Three observations about the definition of limit:

1 It sets up δ as depending on ϵ .

We say $\lim_{x\to p} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.

Three observations about the definition of limit:

- **1** It sets up δ as depending on ϵ .
- 2 We do not care about the value of f(p), or even whether it is defined.

We say $\lim_{x\to p} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.

Three observations about the definition of limit:

- 1) It sets up δ as depending on ϵ .
- 2 We do not care about the value of f(p), or even whether it is defined.
- 3 Since the definition is intended for situations where x can approach p, it should only be applied to such situations. So we shall only consider the limit of f at p if there is an $\alpha>0$ such that the open interval $(p-\alpha,p+\alpha)$ is contained in the domain of f, except perhaps for p itself.

We say $\lim_{x\to p} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.

Three observations about the definition of limit:

- **1** It sets up δ as depending on ϵ .
- 2 We do not care about the value of f(p), or even whether it is defined.
- 3 Since the definition is intended for situations where x can approach p, it should only be applied to such situations. So we shall only consider the limit of f at p if there is an $\alpha>0$ such that the open interval $(p-\alpha,p+\alpha)$ is contained in the domain of f, except perhaps for p itself.

We may also write ' $f(x) \to L$ as $x \to p$ ' for $\lim_{x \to p} f(x) = L$.

Visualising Limits

The two stages in a limit process.

Visualising Limits

The two stages in a limit process.

In the first stage, we have a requirement to make the output f(x) lie between $L - \epsilon$ and $L + \epsilon$.

Visualising Limits

The two stages in a limit process.

In the first stage, we have a requirement to make the output f(x) lie between $L - \epsilon$ and $L + \epsilon$.

In the second stage, we meet the requirement by finding a δ such that input being between $p-\delta$ and $p+\delta$ guarantees that the output is between $L-\epsilon$ and $L+\epsilon$ (except perhaps at p itself).

Theorem 1

At most one number can satisfy the definition of the limit of a given function at a given point.

Theorem 1

At most one number can satisfy the definition of the limit of a given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which satisfy the definition of $\lim_{x\to a} f(x)$.

Theorem 1

At most one number can satisfy the definition of the limit of a given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which satisfy the definition of $\lim_{x \to a} f(x)$.

Choose
$$\epsilon = |M - L|/2$$
.

Theorem 1

At most one number can satisfy the definition of the limit of a given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which satisfy the definition of $\lim_{x \to a} f(x)$.

Choose $\epsilon = |M - L|/2$.

Then there are $\delta_L, \delta_M > 0$ such that

$$0<|x-a|<\delta_L\implies |f(x)-L|<\epsilon,$$

$$0<|x-a|<\delta_{M}\implies |f(x)-M|<\epsilon.$$

Theorem 1

At most one number can satisfy the definition of the limit of a given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which satisfy the definition of $\lim_{x \to a} f(x)$.

Choose $\epsilon = |M - L|/2$.

Then there are $\delta_L, \delta_M > 0$ such that

$$0 < |x - a| < \delta_L \implies |f(x) - L| < \epsilon,$$

$$0 < |x - a| < \delta_M \implies |f(x) - M| < \epsilon.$$

Let $\delta = \min\{\delta_L, \delta_M\}$ and $x_0 \in (a - \delta, a + \delta)$.

Theorem 1

At most one number can satisfy the definition of the limit of a given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which satisfy the definition of $\lim_{x \to a} f(x)$.

Choose $\epsilon = |M - L|/2$.

Then there are $\delta_L, \delta_M > 0$ such that

$$0 < |x - a| < \delta_L \implies |f(x) - L| < \epsilon,$$

$$0 < |x - a| < \delta_M \implies |f(x) - M| < \epsilon.$$

Let $\delta = \min\{\delta_L, \delta_M\}$ and $x_0 \in (a - \delta, a + \delta)$. Then $|f(x_0) - L| < \epsilon$ and $|f(x_0) - M| < \epsilon$.

Theorem 1

At most one number can satisfy the definition of the limit of a given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which satisfy the definition of $\lim f(x)$.

Choose $\epsilon = |M - L|/2$.

Then there are δ_{I} , $\delta_{M} > 0$ such that

$$0 < |x - a| < \delta_L \implies |f(x) - L| < \epsilon,$$

$$0 < |x - a| < \delta_M \implies |f(x) - M| < \epsilon.$$

Let $\delta = \min\{\delta_I, \delta_M\}$ and $x_0 \in (a - \delta, a + \delta)$.

Then $|f(x_0) - L| < \epsilon$ and $|f(x_0) - M| < \epsilon$. Hence,

$$|M - L| \le |M - f(x_0)| + |f(x_0) - L| < \epsilon + \epsilon = |M - L|,$$

which gives the impossible statement $|M-L| \le |M-L|$.

Consider $\lim_{x \to a} x$.

Consider $\lim_{x\to a} x$.

This amounts to asking "What does x approach when x approaches a?"

Consider $\lim_{x\to a} x$.

This amounts to asking "What does x approach when x approaches a?"

Obviously, our response has to be that it will approach a, that is, $\lim_{x\to a} x = a$.

Consider $\lim_{x\to a} x$.

This amounts to asking "What does x approach when x approaches a?"

Obviously, our response has to be that it will approach a, that is, $\lim_{x\to a} x = a$.

Let us work it out with the ϵ - δ formulation, for practice.

Consider $\lim_{x\to a} x$.

This amounts to asking "What does x approach when x approaches a?"

Obviously, our response has to be that it will approach a, that is, $\lim_{x\to a} x = a$.

Let us work it out with the ϵ - δ formulation, for practice.

We start by considering an $\epsilon > 0$. We need to find a $\delta > 0$ such that $|x - a| < \delta \implies |x - a| < \epsilon$. Clearly $\delta = \epsilon$ will work.

Consider $\lim_{x \to a} x$.

This amounts to asking "What does x approach when x approaches a?"

Obviously, our response has to be that it will approach a, that is, $\lim_{x\to a} x = a$.

Let us work it out with the ϵ - δ formulation, for practice.

We start by considering an $\epsilon > 0$. We need to find a $\delta > 0$ such that $|x - a| < \delta \implies |x - a| < \epsilon$. Clearly $\delta = \epsilon$ will work.

Task: Let f(x) = c be a constant function. Show that $\lim_{x \to p} f(x) = c$.

Consider the limit of $y = x^2$ at x = 2. A natural guess is that $x^2 \to 2^2 = 4$ as $x \to 2$. We test this for some values of $\epsilon > 0$.

Consider the limit of $y = x^2$ at x = 2. A natural guess is that $x^2 \to 2^2 = 4$ as $x \to 2$. We test this for some values of $\epsilon > 0$.

Suppose $\epsilon = 0.5$. We need $\delta > 0$ such that $x \in (2 - \delta, 2 + \delta)$ implies $x^2 \in (4 - 0.5, 4 + 0.5) = (3.5, 4.5)$.

Consider the limit of $y=x^2$ at x=2. A natural guess is that $x^2 \to 2^2 = 4$ as $x \to 2$. We test this for some values of $\epsilon > 0$.

Suppose $\epsilon = 0.5$. We need $\delta > 0$ such that $x \in (2 - \delta, 2 + \delta)$ implies $x^2 \in (4 - 0.5, 4 + 0.5) = (3.5, 4.5)$.

We note that the function maps $(\sqrt{3.5}, \sqrt{4.5})$ into (3.5, 4.5). The interval $(\sqrt{3.5}, \sqrt{4.5})$ contains 2 but is not centered on it.

Consider the limit of $y=x^2$ at x=2. A natural guess is that $x^2 \to 2^2 = 4$ as $x \to 2$. We test this for some values of $\epsilon > 0$.

Suppose $\epsilon = 0.5$. We need $\delta > 0$ such that $x \in (2 - \delta, 2 + \delta)$ implies $x^2 \in (4 - 0.5, 4 + 0.5) = (3.5, 4.5)$.

We note that the function maps $(\sqrt{3.5}, \sqrt{4.5})$ into (3.5, 4.5). The interval $(\sqrt{3.5}, \sqrt{4.5})$ contains 2 but is not centered on it.

$$\delta = \sqrt{4.5} - 2 = 0.121$$
 works, since $(2 - \delta, 2 + \delta) \subset (\sqrt{3.5}, \sqrt{4.5})$.

Consider the limit of $y=x^2$ at x=2. A natural guess is that $x^2 \to 2^2 = 4$ as $x \to 2$. We test this for some values of $\epsilon > 0$.

Suppose $\epsilon = 0.5$. We need $\delta > 0$ such that $x \in (2 - \delta, 2 + \delta)$ implies $x^2 \in (4 - 0.5, 4 + 0.5) = (3.5, 4.5)$.

We note that the function maps $(\sqrt{3.5}, \sqrt{4.5})$ into (3.5, 4.5). The interval $(\sqrt{3.5}, \sqrt{4.5})$ contains 2 but is not centered on it.

$$\delta = \sqrt{4.5} - 2 = 0.121$$
 works, since $(2 - \delta, 2 + \delta) \subset (\sqrt{3.5}, \sqrt{4.5})$.

Consider $\epsilon = 0.01$. Can you confirm that $\delta = \sqrt{4.01} - 2$ meets the requirements?

Consider the limit of $y = x^2$ at x = 2. A natural guess is that $x^2 \to 2^2 = 4$ as $x \to 2$. We test this for some values of $\epsilon > 0$.

Suppose $\epsilon = 0.5$. We need $\delta > 0$ such that $x \in (2 - \delta, 2 + \delta)$ implies $x^2 \in (4 - 0.5, 4 + 0.5) = (3.5, 4.5)$.

We note that the function maps $(\sqrt{3.5}, \sqrt{4.5})$ into (3.5, 4.5). The interval $(\sqrt{3.5}, \sqrt{4.5})$ contains 2 but is not centered on it.

$$\delta = \sqrt{4.5} - 2 = 0.121$$
 works, since $(2 - \delta, 2 + \delta) \subset (\sqrt{3.5}, \sqrt{4.5})$.

Consider $\epsilon = 0.01$. Can you confirm that $\delta = \sqrt{4.01} - 2$ meets the requirements?

Generally, for any $\epsilon>$ 0, take $\delta=\min\{2-\sqrt{4-\epsilon},\sqrt{4+\epsilon}-2\}.$

Characterisations of Limit

Theorem 2

$$\lim_{x\to p} f(x) = L \iff \lim_{x\to p} (f(x) - L) = 0 \iff \lim_{h\to 0} f(p+h) = L.$$

Characterisations of Limit

Theorem 2

$$\lim_{x\to p} f(x) = L \iff \lim_{x\to p} (f(x) - L) = 0 \iff \lim_{h\to 0} f(p+h) = L.$$

Proof. We simply match the definitions of the three limits:

Characterisations of Limit

Theorem 2

$$\lim_{x\to p} f(x) = L \iff \lim_{x\to p} (f(x) - L) = 0 \iff \lim_{h\to 0} f(p+h) = L.$$

Proof. We simply match the definitions of the three limits:

• $\lim_{x\to p} f(x) = L$: For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.

Characterisations of Limit

Theorem 2

$$\lim_{x\to p} f(x) = L \iff \lim_{x\to p} (f(x) - L) = 0 \iff \lim_{h\to 0} f(p+h) = L.$$

Proof. We simply match the definitions of the three limits:

- $\lim_{x\to p} f(x) = L$: For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.
- $\lim_{x\to p} (f(x)-L)=0$: For every $\epsilon>0$ there is a corresponding $\delta>0$ such that $0<|x-p|<\delta \implies |(f(x)-L)-0|<\epsilon$.

Characterisations of Limit

Theorem 2

$$\lim_{x \to p} f(x) = L \iff \lim_{x \to p} (f(x) - L) = 0 \iff \lim_{h \to 0} f(p+h) = L.$$

Proof. We simply match the definitions of the three limits:

- $\lim_{x\to p} f(x) = L$: For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.
- $\lim_{x\to p} (f(x)-L)=0$: For every $\epsilon>0$ there is a corresponding $\delta>0$ such that $0<|x-p|<\delta \implies |(f(x)-L)-0|<\epsilon$.
- $\lim_{h\to 0} f(p+h) = L$: For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |h| < \delta \implies |f(p+h) L| < \epsilon$.

Characterisations of Limit

Theorem 2

$$\lim_{x \to p} f(x) = L \iff \lim_{x \to p} (f(x) - L) = 0 \iff \lim_{h \to 0} f(p+h) = L.$$

Proof. We simply match the definitions of the three limits:

- $\lim_{x\to p} f(x) = L$: For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$.
- $\lim_{x\to p} (f(x)-L) = 0$: For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x-p| < \delta \implies |(f(x)-L)-0| < \epsilon$.
- $\lim_{h\to 0} f(p+h) = L$: For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |h| < \delta \implies |f(p+h) L| < \epsilon$.

The first two are identical. The first can be converted to the third, and conversely, by the substitution x = p + h.

Theorem 3

$$\lim_{x\to p} f(x) = 0 \iff \lim_{x\to p} |f(x)| = 0.$$

Theorem 3

$$\lim_{x\to p} f(x) = 0 \iff \lim_{x\to p} |f(x)| = 0.$$

Proof. The definition of $\lim_{x\to p} |f(x)| = 0$ is:

For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x - p| < \delta \implies ||f(x)| - 0| < \epsilon$.

Theorem 3

$$\lim_{x\to p} f(x) = 0 \iff \lim_{x\to p} |f(x)| = 0.$$

Proof. The definition of $\lim_{x\to p} |f(x)| = 0$ is:

For every $\epsilon>0$ there is a corresponding $\delta>0$ such that

$$0<|x-p|<\delta\implies ||f(x)|-0|<\epsilon.$$

Now note that
$$||f(x)| - 0| = |f(x) - 0|$$
.

Theorem 3

$$\lim_{x\to p} f(x) = 0 \iff \lim_{x\to p} |f(x)| = 0.$$

Proof. The definition of $\lim_{x\to p}|f(x)|=0$ is:

For every $\epsilon>0$ there is a corresponding $\delta>0$ such that

$$0<|x-p|<\delta\implies ||f(x)|-0|<\epsilon.$$

Now note that
$$||f(x)| - 0| = |f(x) - 0|$$
.

Theorem 4

$$\lim_{x\to p} f(x) = M \implies \lim_{x\to p} |f(x)| = |M|.$$

Theorem 3

$$\lim_{x\to p} f(x) = 0 \iff \lim_{x\to p} |f(x)| = 0.$$

Proof. The definition of $\lim_{x\to p} |f(x)| = 0$ is:

For every $\epsilon>0$ there is a corresponding $\delta>0$ such that

$$0<|x-p|<\delta\implies ||f(x)|-0|<\epsilon.$$

Now note that
$$||f(x)| - 0| = |f(x) - 0|$$
.

Theorem 4

$$\lim_{x\to p} f(x) = M \implies \lim_{x\to p} |f(x)| = |M|.$$

Proof. The triangle inequality gives $||f(x)| - |M|| \le |f(x) - M|$.

Theorem 3

$$\lim_{x\to p} f(x) = 0 \iff \lim_{x\to p} |f(x)| = 0.$$

Proof. The definition of $\lim_{x\to p} |f(x)| = 0$ is:

For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x - p| < \delta \implies ||f(x)| - 0| < \epsilon$.

Now note that ||f(x)| - 0| = |f(x) - 0|.

Theorem 4

$$\lim_{x\to p} f(x) = M \implies \lim_{x\to p} |f(x)| = |M|.$$

Proof. The triangle inequality gives $||f(x)| - |M|| \le |f(x) - M|$. Let $\epsilon > 0$. Since $\lim_{x \to p} f(x) = M$, there is a $\delta > 0$ such that $0 < |x - p| < \delta \implies |f(x) - M| < \epsilon$.

Theorem 3

$$\lim_{x\to p} f(x) = 0 \iff \lim_{x\to p} |f(x)| = 0.$$

Proof. The definition of $\lim_{x\to p} |f(x)| = 0$ is:

For every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < |x - p| < \delta \implies ||f(x)| - 0| < \epsilon$.

Now note that ||f(x)| - 0| = |f(x) - 0|.

Theorem 4

$$\lim_{x\to p} f(x) = M \implies \lim_{x\to p} |f(x)| = |M|.$$

Proof. The triangle inequality gives $||f(x)| - |M|| \le |f(x) - M|$. Let $\epsilon > 0$. Since $\lim_{x \to p} f(x) = M$, there is a $\delta > 0$ such that

$$0 < |x - p| < \delta \implies |f(x) - M| < \epsilon$$
. The same δ works for $|f(x)|$ since $|f(x) - M| < \epsilon$ implies $||f(x)| - |M|| \le |f(x)| - M| < \epsilon$.

Consider the signum function,
$$\operatorname{sgn}(x) = \left\{ \begin{array}{ll} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{array} \right.$$

Consider the signum function,
$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$
 Suppose $\lim_{x \to 0} \operatorname{sgn}(x) = L$.

Consider the signum function,
$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$
 Suppose $\lim_{x \to 0} \operatorname{sgn}(x) = L$. Consider $\epsilon = 1$.

Consider the signum function,
$$sgn(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Suppose
$$\lim_{x\to 0} \operatorname{sgn}(x) = L$$
. Consider $\epsilon = 1$.

There is a
$$\delta > 0$$
 such that $0 < |x| < \delta \implies |\operatorname{sgn}(x) - L| < 1$.

Consider the signum function,
$$sgn(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Suppose
$$\lim_{x\to 0} \operatorname{sgn}(x) = L$$
. Consider $\epsilon = 1$.

There is a
$$\delta > 0$$
 such that $0 < |x| < \delta \implies |\operatorname{sgn}(x) - L| < 1$.

Then
$$|\operatorname{sgn}(\delta/2) - L| < 1$$
 and $|\operatorname{sgn}(-\delta/2) - L| < 1$.

Consider the signum function,
$$sgn(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Suppose $\lim_{x\to 0} \operatorname{sgn}(x) = L$. Consider $\epsilon = 1$.

There is a $\delta > 0$ such that $0 < |x| < \delta \implies |\operatorname{sgn}(x) - L| < 1$.

Then $|\operatorname{sgn}(\delta/2) - L| < 1$ and $|\operatorname{sgn}(-\delta/2) - L| < 1$.

Therefore, by triangle inequality,

$$|\operatorname{sgn}(\delta/2) - \operatorname{sgn}(-\delta/2)| \le |\operatorname{sgn}(\delta/2) - L| + |\operatorname{sgn}(-\delta/2) - L| < 1 + 1 = 2.$$

Consider the signum function,
$$sgn(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Suppose $\lim_{x\to 0} \operatorname{sgn}(x) = L$. Consider $\epsilon = 1$.

There is a $\delta > 0$ such that $0 < |x| < \delta \implies |\operatorname{sgn}(x) - L| < 1$.

Then $|\operatorname{sgn}(\delta/2) - L| < 1$ and $|\operatorname{sgn}(-\delta/2) - L| < 1$.

Therefore, by triangle inequality,

$$|\operatorname{sgn}(\delta/2) - \operatorname{sgn}(-\delta/2)| \le |\operatorname{sgn}(\delta/2) - L| + |\operatorname{sgn}(-\delta/2) - L| < 1 + 1 = 2.$$

On the other hand, using the definition of sgn(x), we have

$$|\operatorname{sgn}(\delta/2) - \operatorname{sgn}(-\delta/2)| = |1 - (-1)| = 2.$$

Consider the signum function,
$$sgn(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Suppose $\lim_{x\to 0} \operatorname{sgn}(x) = L$. Consider $\epsilon = 1$.

There is a $\delta > 0$ such that $0 < |x| < \delta \implies |\operatorname{sgn}(x) - L| < 1$.

Then $|\operatorname{sgn}(\delta/2) - L| < 1$ and $|\operatorname{sgn}(-\delta/2) - L| < 1$.

Therefore, by triangle inequality,

$$|\operatorname{sgn}(\delta/2) - \operatorname{sgn}(-\delta/2)| \le |\operatorname{sgn}(\delta/2) - L| + |\operatorname{sgn}(-\delta/2) - L| < 1 + 1 = 2.$$

On the other hand, using the definition of sgn(x), we have

$$|\operatorname{sgn}(\delta/2) - \operatorname{sgn}(-\delta/2)| = |1 - (-1)| = 2.$$

This equality contradicts the previous inequality. So $\lim_{x\to 0} \operatorname{sgn}(x)$ does not exist.

Define $f: \mathbb{R} \to \mathbb{R}$ by f(0) = 0 and f(x) = 1/x when $x \neq 0$.

Suppose $\lim_{x\to 0} f(x) = L$ and consider $\epsilon = 1/2$.

Define $f: \mathbb{R} \to \mathbb{R}$ by f(0) = 0 and f(x) = 1/x when $x \neq 0$.

Suppose $\lim_{x\to 0} f(x) = L$ and consider $\epsilon = 1/2$.

Now take any $\delta>0$. By the Archimedean property, $(-\delta,\delta)$ contains points of the form 1/n and 1/(n+1) with $n\in\mathbb{N}$.

Define $f: \mathbb{R} \to \mathbb{R}$ by f(0) = 0 and f(x) = 1/x when $x \neq 0$.

Suppose $\lim_{x\to 0} f(x) = L$ and consider $\epsilon = 1/2$.

Now take any $\delta>0$. By the Archimedean property, $(-\delta,\delta)$ contains points of the form 1/n and 1/(n+1) with $n\in\mathbb{N}$.

Then f(1/(n+1)) - f(1/n) = 1 and so it is impossible that both f(1/(n+1)) and f(1/n) are within a distance $\epsilon = 1/2$ of L.

Let $S: [-1,1] \to \mathbb{R}$ be defined by $S(1/n) = (-1)^n$ for each $n \in \mathbb{N}$ and let its graph be a straight line on each interval between these points. Further, let S(0) = 0.

Let $S: [-1,1] \to \mathbb{R}$ be defined by $S(1/n) = (-1)^n$ for each $n \in \mathbb{N}$ and let its graph be a straight line on each interval between these points. Further, let S(0) = 0.

In any $(-\delta, \delta)$ interval, S takes both the values ± 1 and so we can argue as in the previous two examples to show that $\lim_{x\to 0} S(x)$ does not exist.

Let
$$f(x) = 0$$
 when $x \neq 0$ and $f(0) = 1$. We will show that $\lim_{x \to 0} f(x) = 0$.

Let f(x) = 0 when $x \neq 0$ and f(0) = 1. We will show that $\lim_{x \to 0} f(x) = 0$.

Consider any $\epsilon > 0$. Let $\delta = 1$.

Let f(x) = 0 when $x \neq 0$ and f(0) = 1. We will show that $\lim_{x \to 0} f(x) = 0$.

Consider any $\epsilon > 0$. Let $\delta = 1$.

Then

$$0 < |x-0| < \delta \implies x \neq 0 \implies f(x) = 0 \implies |f(x)-0| = 0 < \epsilon.$$

Let f(x) = 0 when $x \neq 0$ and f(0) = 1. We will show that $\lim_{x \to 0} f(x) = 0$.

Consider any $\epsilon > 0$. Let $\delta = 1$.

Then

$$0 < |x-0| < \delta \implies x \neq 0 \implies f(x) = 0 \implies |f(x)-0| = 0 < \epsilon.$$

So the limit exists at x = 0 but does not equal f(0).

Table of Contents

Limits

Limit Theorems

One-sided limits

Lemma 5

Let f, g be real functions with $\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0$. Then

- $\lim_{x\to p} c f(x) = 0 \quad (c\in\mathbb{R}),$
- $\lim_{x\to p}f(x)g(x)=0,$
- 4 If $\lim_{x \to p} h(x) = 1$ then $\lim_{x \to p} \frac{f(x)}{h(x)} = 0$.

Lemma 5

Let f, g be real functions with $\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0$. Then

- $\lim_{x\to p} c f(x) = 0 \quad (c\in\mathbb{R}),$
- $\lim_{x\to p}f(x)g(x)=0,$
- $If \lim_{x \to p} h(x) = 1 \text{ then } \lim_{x \to p} \frac{f(x)}{h(x)} = 0.$

Proof.

1 This is trivial if c = 0. Suppose $c \neq 0$.

Lemma 5

Let f, g be real functions with $\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0$. Then

- $\lim_{x\to p} c f(x) = 0 \quad (c\in\mathbb{R}),$
- $\lim_{x\to p}f(x)g(x)=0,$
- $If \lim_{x \to p} h(x) = 1 \text{ then } \lim_{x \to p} \frac{f(x)}{h(x)} = 0.$

Proof.

1 This is trivial if c=0. Suppose $c\neq 0$. For $\epsilon>0$ there is a $\delta>0$ such that $0<|x-p|<\delta$ implies $|f(x)|<\epsilon/|c|$.

Lemma 5

Let f, g be real functions with $\lim_{x\to p} f(x) = \lim_{x\to p} g(x) = 0$. Then

- $\lim_{x\to p} c f(x) = 0 \quad (c\in\mathbb{R}),$
- $\lim_{x\to p}f(x)g(x)=0,$
- $If \lim_{x \to p} h(x) = 1 \text{ then } \lim_{x \to p} \frac{f(x)}{h(x)} = 0.$

Proof.

1) This is trivial if c=0. Suppose $c\neq 0$. For $\epsilon>0$ there is a $\delta > 0$ such that $0 < |x - p| < \delta$ implies $|f(x)| < \epsilon/|c|$. Now, $0<|x-p|<\delta \text{ implies } |cf(x)-0|=|c||f(x)|<|c|\frac{c}{|c|}=\epsilon.$

CAMBRIDGE UNIVERSITY PRESS

(proof continued)

 $\textbf{2} \ \, \mathsf{Take \ any} \,\, \epsilon > 0.$

(proof continued)

2 Take any $\epsilon > 0$.

There is a $\delta_1 > 0$ such that $0 < |x - p| < \delta_1$ implies $|f(x)| < \epsilon/2$.

(proof continued)

2 Take any $\epsilon > 0$.

There is a $\delta_1 > 0$ such that $0 < |x - p| < \delta_1$ implies $|f(x)| < \epsilon/2$.

There is a $\delta_2 > 0$ such that $0 < |x - p| < \delta_2$ implies $|g(x)| < \epsilon/2$.

(proof continued)

2 Take any $\epsilon > 0$.

There is a $\delta_1 > 0$ such that $0 < |x - p| < \delta_1$ implies $|f(x)| < \epsilon/2$.

There is a $\delta_2 > 0$ such that $0 < |x - p| < \delta_2$ implies $|g(x)| < \epsilon/2$.

Let $\delta = \min\{\delta_1, \delta_2\}$. Then

$$0 < |x - p| < \delta \implies |f(x) + g(x) - 0| \le |f(x)| + |g(x)|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon.$$

(proof continued)

3 Take any $\epsilon > 0$.

(proof continued)

3 Take any $\epsilon > 0$.

There is a $\delta_1 > 0$ such that $0 < |x - p| < \delta_1$ implies $|f(x)| < \sqrt{\epsilon}$.

(proof continued)

3 Take any $\epsilon > 0$.

There is a $\delta_1 > 0$ such that $0 < |x - p| < \delta_1$ implies $|f(x)| < \sqrt{\epsilon}$.

There is a $\delta_2>0$ such that $0<|x-p|<\delta_2$ implies $|g(x)|<\sqrt{\epsilon}$.

(proof continued)

3 Take any $\epsilon > 0$.

There is a $\delta_1 > 0$ such that $0 < |x - p| < \delta_1$ implies $|f(x)| < \sqrt{\epsilon}$.

There is a $\delta_2>0$ such that $0<|x-p|<\delta_2$ implies $|g(x)|<\sqrt{\epsilon}.$

Let $\delta = \min\{\delta_1, \delta_2\}$. Then

$$0 < |x - p| < \delta \implies |f(x)g(x)| < \sqrt{\epsilon}\sqrt{\epsilon} = \epsilon.$$

CAMBRIDGE UNIVERSITY PRESS

(proof continued)

4 Take any $\epsilon > 0$.

(proof continued)

4 Take any $\epsilon > 0$.

There is a $\delta_1>0$ such that $0<|x-p|<\delta_1$ implies $\frac{1}{2}< h(x)<\frac{3}{2}.$

(proof continued)

4 Take any $\epsilon > 0$.

There is a $\delta_1>0$ such that $0<|x-p|<\delta_1$ implies $\frac{1}{2}< h(x)<\frac{3}{2}.$

There is a $\delta_2>0$ such that $0<|x-p|<\delta_2$ implies $|f(x)|<\frac{\epsilon}{2}.$

(proof continued)

4 Take any $\epsilon > 0$.

There is a $\delta_1>0$ such that $0<|x-p|<\delta_1$ implies $\frac{1}{2}< h(x)<\frac{3}{2}.$

There is a $\delta_2>0$ such that $0<|x-p|<\delta_2$ implies $|f(x)|<\frac{\epsilon}{2}.$

Let $\delta = \min\{\delta_1, \delta_2\}$. Then

$$0 < |x - p| < \delta \implies \left| \frac{f(x)}{h(x)} \right| < \frac{\epsilon/2}{1/2} = \epsilon.$$

Theorem 6

Let f, g be real functions such that $\lim_{x \to p} f(x) = M$ and

 $\lim_{x\to p} g(x) = N$. Then

- $3 \lim_{x \to p} (f(x) g(x)) = M N,$
- $4 \lim_{x \to p} f(x)g(x) = MN,$
- $\lim_{x\to p}\frac{f(x)}{g(x)}=\frac{M}{N} \quad (N\neq 0).$

Theorem 6

Let f, g be real functions such that $\lim_{x \to p} f(x) = M$ and

$$\lim_{x\to p} g(x) = N$$
. Then

- $3 \lim_{x \to p} (f(x) g(x)) = M N,$
- $4 \lim_{x \to p} f(x)g(x) = MN,$
- $\lim_{x\to p}\frac{f(x)}{g(x)}=\frac{M}{N} \quad (N\neq 0).$

We shall use $\lim_{x\to p} F(x) = K \iff \lim_{x\to p} (F(x) - K) = 0$ to reduce these to the previous lemma.

Proof.

$$\lim_{x \to p} \left(c f(x) - c M \right) = \lim_{x \to p} c \left(f(x) - M \right) = 0.$$
 (By part 1 of the Lemma)

Proof.

$$\lim_{x \to p} \left(c f(x) - c M \right) = \lim_{x \to p} c \left(f(x) - M \right) = 0.$$
(By part 1 of the Lemma)

2

$$\lim_{x \to p} \left((f(x) + g(x)) - (M+N) \right)$$

$$= \lim_{x \to p} \left((f(x) - M) + (g(x) - N) \right) = 0$$

(By part 2 of the Lemma)

Proof.

$$\lim_{x \to p} \left(c f(x) - c M \right) = \lim_{x \to p} c \left(f(x) - M \right) = 0.$$
(By part 1 of the Lemma)

2

$$\lim_{x \to p} \left((f(x) + g(x)) - (M+N) \right)$$

$$= \lim_{x \to p} \left((f(x) - M) + (g(x) - N) \right) = 0$$

(By part 2 of the Lemma)

3 Combine parts 1 and 2 of this theorem, using c = -1.

(proof continued)

4 We use part 3 of the Lemma and parts 1, 2, 3 of this theorem:

$$\lim_{x \to p} \left(f(x)g(x) - MN \right) = \lim_{x \to p} \left((f(x) - M)(g(x) - N) + Mg(x) + Nf(x) - 2MN \right)$$

$$= \lim_{x \to p} \left((f(x) - M)(g(x) - N) \right)$$

$$+ \lim_{x \to p} (Mg(x)) + \lim_{x \to p} (Nf(x)) - \lim_{x \to p} 2MN$$

$$= 0 + MN + NM - 2MN = 0.$$

(proof continued)

5 Due to part 4 of this theorem, it is enough to prove that

$$\lim_{x\to p}\frac{1}{g(x)}=\frac{1}{N}$$
:

(proof continued)

5 Due to part 4 of this theorem, it is enough to prove that

$$\lim_{x\to p}\frac{1}{g(x)}=\frac{1}{N}$$
:

$$\lim_{x \to p} \left(\frac{1}{g(x)} - \frac{1}{N} \right) = \lim_{x \to p} \frac{N - g(x)}{g(x)}$$

$$= \lim_{x \to p} \frac{1 - g(x)/N}{g(x)/N}$$

$$= 0. \quad \text{(Part 4 of the Lemma)}$$

By (2) of Algebra of Limits, we have

$$\lim_{x \to 2} (x^2 + 9) = \lim_{x \to 2} x^2 + \lim_{x \to 2} 9 = \lim_{x \to 2} x^2 + 9.$$

1 Calculate $\lim_{x\to 2} (x^2+9)$:

By (2) of Algebra of Limits, we have

$$\lim_{x \to 2} (x^2 + 9) = \lim_{x \to 2} x^2 + \lim_{x \to 2} 9 = \lim_{x \to 2} x^2 + 9.$$

By (4) we have

$$\lim_{x \to 2} x^2 = (\lim_{x \to 2} x)(\lim_{x \to 2} x) = 2 \cdot 2 = 4.$$

1 Calculate $\lim_{x\to 2} (x^2+9)$:

By (2) of Algebra of Limits, we have

$$\lim_{x \to 2} (x^2 + 9) = \lim_{x \to 2} x^2 + \lim_{x \to 2} 9 = \lim_{x \to 2} x^2 + 9.$$

By (4) we have

$$\lim_{x \to 2} x^2 = (\lim_{x \to 2} x)(\lim_{x \to 2} x) = 2 \cdot 2 = 4.$$

Hence
$$\lim_{x\to 2} (x^2 + 9) = 4 + 9 = 13$$
.

CAMBRIDGE UNIVERSITY PRESS

By (2) of Algebra of Limits, we have

$$\lim_{x \to 2} (x^2 + 9) = \lim_{x \to 2} x^2 + \lim_{x \to 2} 9 = \lim_{x \to 2} x^2 + 9.$$

By (4) we have

$$\lim_{x \to 2} x^2 = (\lim_{x \to 2} x)(\lim_{x \to 2} x) = 2 \cdot 2 = 4.$$

Hence
$$\lim_{x\to 2} (x^2 + 9) = 4 + 9 = 13$$
.

2 Calculate $\lim_{x\to 2} (7x)^9$:

1 Calculate $\lim_{x\to 2} (x^2+9)$:

By (2) of Algebra of Limits, we have

$$\lim_{x \to 2} (x^2 + 9) = \lim_{x \to 2} x^2 + \lim_{x \to 2} 9 = \lim_{x \to 2} x^2 + 9.$$

By (4) we have

$$\lim_{x \to 2} x^2 = (\lim_{x \to 2} x)(\lim_{x \to 2} x) = 2 \cdot 2 = 4.$$

Hence
$$\lim_{x\to 2} (x^2 + 9) = 4 + 9 = 13$$
.

- 2 Calculate $\lim_{x\to 2} (7x)^9$:
 - By (1) of Algebra of Limits, we have $\lim_{x\to 2} (7x)^9 = 7^9 \lim_{x\to 2} x^9$.

1 Calculate $\lim_{x\to 2} (x^2+9)$:

By (2) of Algebra of Limits, we have

$$\lim_{x \to 2} (x^2 + 9) = \lim_{x \to 2} x^2 + \lim_{x \to 2} 9 = \lim_{x \to 2} x^2 + 9.$$

By (4) we have

$$\lim_{x \to 2} x^2 = (\lim_{x \to 2} x)(\lim_{x \to 2} x) = 2 \cdot 2 = 4.$$

Hence
$$\lim_{x\to 2} (x^2 + 9) = 4 + 9 = 13$$
.

- 2 Calculate $\lim_{x\to 2} (7x)^9$:
 - By (1) of Algebra of Limits, we have $\lim_{x\to 2} (7x)^9 = 7^9 \lim_{x\to 2} x^9$.

By (4) we have
$$\lim_{x \to 2} x^9 = (\lim_{x \to 2} x) \cdots (\lim_{x \to 2} x) = (\lim_{x \to 2} x)^9 = 2^9$$
.

1 Calculate $\lim_{x\to 2} (x^2+9)$:

By (2) of Algebra of Limits, we have

$$\lim_{x \to 2} (x^2 + 9) = \lim_{x \to 2} x^2 + \lim_{x \to 2} 9 = \lim_{x \to 2} x^2 + 9.$$

By (4) we have

$$\lim_{x \to 2} x^2 = (\lim_{x \to 2} x)(\lim_{x \to 2} x) = 2 \cdot 2 = 4.$$

Hence
$$\lim_{x\to 2} (x^2 + 9) = 4 + 9 = 13$$
.

- 2 Calculate $\lim_{x\to 2} (7x)^9$:
 - By (1) of Algebra of Limits, we have $\lim_{x\to 2} (7x)^9 = 7^9 \lim_{x\to 2} x^9$.

By (4) we have
$$\lim_{x \to 2} x^9 = (\lim_{x \to 2} x) \cdots (\lim_{x \to 2} x) = (\lim_{x \to 2} x)^9 = 2^9$$
.

Hence $\lim_{x\to 2} (7x)^9 = 7^9 2^9 = 14^9$.

3 Calculate
$$\lim_{x\to 1} \frac{(x-1)^2}{x^2-1}$$
:

3 Calculate $\lim_{x\to 1} \frac{(x-1)^2}{x^2-1}$: The limit of the denominator is $\lim_{x\to 1} (x^2-1) = \lim_{x\to 1} x^2 - \lim_{x\to 1} 1 = 1^2 - 1 = 0$.

3 Calculate $\lim_{x \to 1} \frac{(x-1)^2}{x^2-1}$: The limit of the denominator is $\lim_{x \to 1} (x^2-1) = \lim_{x \to 1} x^2 - \lim_{x \to 1} 1 = 1^2 - 1 = 0$. So we can't apply the rule for ratios. However, we can first simplify the expression and remove this obstacle.

3 Calculate $\lim_{x \to 1} \frac{(x-1)^2}{x^2-1}$: The limit of the denominator is $\lim_{x \to 1} (x^2-1) = \lim_{x \to 1} x^2 - \lim_{x \to 1} 1 = 1^2 - 1 = 0$. So we can't apply the rule for ratios. However, we can first simplify the expression and remove this obstacle.

$$\lim_{x \to 1} \frac{(x-1)^2}{x^2 - 1} = \lim_{x \to 1} \frac{(x-1)^2}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x-1}{x+1}.$$

3 Calculate $\lim_{x \to 1} \frac{(x-1)^2}{x^2-1}$:

The limit of the denominator is $\lim_{x\to 1} (x^2 - 1) = \lim_{x\to 1} x^2 - \lim_{x\to 1} 1 = 1^2 - 1 = 0.$

So we can't apply the rule for ratios. However, we can first simplify the expression and remove this obstacle.

$$\lim_{x \to 1} \frac{(x-1)^2}{x^2 - 1} = \lim_{x \to 1} \frac{(x-1)^2}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x-1}{x+1}.$$

The cancellation in the last step is allowed because when we calculate $\lim_{x\to 1}$ we work with $x\neq 1$ and hence $x-1\neq 0$.

3 Calculate $\lim_{x \to 1} \frac{(x-1)^2}{x^2-1}$:

The limit of the denominator is $\lim_{x\to 1} (x^2 - 1) = \lim_{x\to 1} x^2 - \lim_{x\to 1} 1 = 1^2 - 1 = 0.$

So we can't apply the rule for ratios. However, we can first simplify the expression and remove this obstacle.

$$\lim_{x \to 1} \frac{(x-1)^2}{x^2 - 1} = \lim_{x \to 1} \frac{(x-1)^2}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x-1}{x+1}.$$

The cancellation in the last step is allowed because when we calculate $\lim_{x\to 1}$ we work with $x\neq 1$ and hence $x-1\neq 0$.

This simplified form is easily dealt with:

3 Calculate $\lim_{x\to 1} \frac{(x-1)^2}{x^2-1}$:

The limit of the denominator is $\lim_{x\to 1} (x^2-1) = \lim_{x\to 1} x^2 - \lim_{x\to 1} 1 = 1^2 - 1 = 0.$

So we can't apply the rule for ratios. However, we can first simplify the expression and remove this obstacle.

$$\lim_{x \to 1} \frac{(x-1)^2}{x^2 - 1} = \lim_{x \to 1} \frac{(x-1)^2}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x-1}{x+1}.$$

The cancellation in the last step is allowed because when we calculate $\lim_{x\to 1}$ we work with $x\neq 1$ and hence $x-1\neq 0$.

This simplified form is easily dealt with:

$$\lim_{x \to 1} (x-1) = 0 \text{ and } \lim_{x \to 1} (x+1) = 2 \implies \lim_{x \to 1} \frac{x-1}{x+1} = \frac{0}{2} = 0.$$

Theorem 7

Suppose that
$$f(x) \leq g(x) \leq h(x)$$
 in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p . If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

Theorem 7

Suppose that
$$f(x) \leq g(x) \leq h(x)$$
 in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p . If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x - p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$.

Theorem 7

Suppose that $f(x) \leq g(x) \leq h(x)$ in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p. If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x - p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$. There is $\delta_h > 0$ s.t. $0 < |x - p| < \delta_h$ implies $L - \epsilon < h(x) < L + \epsilon$.

Theorem 7

Suppose that $f(x) \leq g(x) \leq h(x)$ in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p. If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x - p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$. There is $\delta_h > 0$ s.t. $0 < |x - p| < \delta_h$ implies $L - \epsilon < h(x) < L + \epsilon$. Let $\delta = \min\{\delta_f, \delta_h, \alpha\}$. Now, if $0 < |x - p| < \delta$, then

Theorem 7

Suppose that $f(x) \leq g(x) \leq h(x)$ in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p. If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x - p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$. There is $\delta_h > 0$ s.t. $0 < |x - p| < \delta_h$ implies $L - \epsilon < h(x) < L + \epsilon$. Let $\delta = \min\{\delta_f, \delta_h, \alpha\}$. Now, if $0 < |x - p| < \delta$, then

•
$$\delta \leq \delta_f \implies L - \epsilon < f(x) < L + \epsilon$$
,

Theorem 7

Suppose that $f(x) \leq g(x) \leq h(x)$ in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p. If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x - p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$. There is $\delta_h > 0$ s.t. $0 < |x - p| < \delta_h$ implies $L - \epsilon < h(x) < L + \epsilon$. Let $\delta = \min\{\delta_f, \delta_h, \alpha\}$. Now, if $0 < |x - p| < \delta$, then

- $\delta \leq \delta_f \implies L \epsilon < f(x) < L + \epsilon$,
- $\delta \leq \delta_h \implies L \epsilon < h(x) < L + \epsilon$,

Theorem 7

Suppose that $f(x) \leq g(x) \leq h(x)$ in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p. If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x-p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$. There is $\delta_h > 0$ s.t. $0 < |x-p| < \delta_h$ implies $L - \epsilon < h(x) < L + \epsilon$. Let $\delta = \min\{\delta_f, \delta_h, \alpha\}$. Now, if $0 < |x-p| < \delta$, then

- $\delta \leq \delta_f \implies L \epsilon < f(x) < L + \epsilon$,
- $\delta \leq \delta_h \implies L \epsilon < h(x) < L + \epsilon$,
- $\delta \leq \alpha \implies f(x) \leq g(x) \leq h(x)$.

Theorem 7

Suppose that $f(x) \leq g(x) \leq h(x)$ in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p. If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x - p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$. There is $\delta_h > 0$ s.t. $0 < |x - p| < \delta_h$ implies $L - \epsilon < h(x) < L + \epsilon$. Let $\delta = \min\{\delta_f, \delta_h, \alpha\}$. Now, if $0 < |x - p| < \delta$, then

- $\delta \leq \delta_f \implies L \epsilon < f(x) < L + \epsilon$,
- $\delta \leq \delta_h \implies L \epsilon < h(x) < L + \epsilon$,
- $\delta \leq \alpha \implies f(x) \leq g(x) \leq h(x)$.

Combining these gives $L - \epsilon < f(x) \le g(x) \le h(x) < L + \epsilon$.

Theorem 7

Suppose that $f(x) \leq g(x) \leq h(x)$ in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p. If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x - p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$. There is $\delta_h > 0$ s.t. $0 < |x - p| < \delta_h$ implies $L - \epsilon < h(x) < L + \epsilon$. Let $\delta = \min\{\delta_f, \delta_h, \alpha\}$. Now, if $0 < |x - p| < \delta$, then

- $\delta \leq \delta_f \implies L \epsilon < f(x) < L + \epsilon$,
- $\delta \leq \delta_h \implies L \epsilon < h(x) < L + \epsilon$,
- $\delta \leq \alpha \implies f(x) \leq g(x) \leq h(x)$.

Combining these gives $L - \epsilon < f(x) \le g(x) \le h(x) < L + \epsilon$.

Hence $L - \epsilon < g(x) < L + \epsilon$.

Theorem 7

Suppose that $f(x) \leq g(x) \leq h(x)$ in an interval $(p - \alpha, p + \alpha)$, with $\alpha > 0$, except perhaps at p. If $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$ then $\lim_{x \to p} g(x) = L$.

Proof. Let $\epsilon > 0$.

There is $\delta_f > 0$ s.t. $0 < |x - p| < \delta_f$ implies $L - \epsilon < f(x) < L + \epsilon$. There is $\delta_h > 0$ s.t. $0 < |x - p| < \delta_h$ implies $L - \epsilon < h(x) < L + \epsilon$. Let $\delta = \min\{\delta_f, \delta_h, \alpha\}$. Now, if $0 < |x - p| < \delta$, then

- $\delta \leq \delta_f \implies L \epsilon < f(x) < L + \epsilon$,
- $\delta \leq \delta_h \implies L \epsilon < h(x) < L + \epsilon$,
- $\delta \leq \alpha \implies f(x) \leq g(x) \leq h(x)$.

Combining these gives $L - \epsilon < f(x) \le g(x) \le h(x) < L + \epsilon$.

Hence $L - \epsilon < g(x) < L + \epsilon$. Therefore $\lim_{x \to \infty} g(x) = L$.

Consider $\lim_{x\to 0} xS(x)$, where S(x) is the 3rd example of non-existence of limits.

Consider $\lim_{x\to 0} xS(x)$, where S(x) is the 3rd example of non-existence of limits. Since S(x) takes values between ± 1 it follows that xS(x) takes values between $\pm x$.

Consider $\lim_{x\to 0} xS(x)$, where S(x) is the 3rd example of non-existence of limits. Since S(x) takes values between ± 1 it follows that xS(x) takes values between $\pm x$.

Consider $\lim_{x\to 0} xS(x)$, where S(x) is the 3rd example of non-existence of limits. Since S(x) takes values between ± 1 it follows that xS(x) takes values between $\pm x$.

To avoid the x > 0 and x < 0 cases we work with |xS(x)|:

$$0 \le |S(x)| \le 1 \implies 0 \le |xS(x)| \le |x|$$
.

Consider $\lim_{x\to 0} xS(x)$, where S(x) is the 3rd example of non-existence of limits. Since S(x) takes values between ± 1 it follows that xS(x) takes values between $\pm x$.

To avoid the x > 0 and x < 0 cases we work with |xS(x)|:

$$0 \le |S(x)| \le 1 \implies 0 \le |xS(x)| \le |x|.$$

Since $\lim_{x\to 0} |x| = 0$, the Sandwich Theorem gives $\lim_{x\to 0} |xS(x)| = 0$.

Consider $\lim_{x\to 0} xS(x)$, where S(x) is the 3rd example of non-existence of limits. Since S(x) takes values between ± 1 it follows that xS(x) takes values between $\pm x$.

To avoid the x > 0 and x < 0 cases we work with |xS(x)|:

$$0 \le |S(x)| \le 1 \implies 0 \le |xS(x)| \le |x|.$$

Since $\lim_{x\to 0} |x| = 0$, the Sandwich Theorem gives $\lim_{x\to 0} |xS(x)| = 0$. Hence, $\lim_{x\to 0} xS(x) = 0$.

Let a > 0 and consider $\lim_{x \to a} \sqrt{x}$.

Let a > 0 and consider $\lim_{x \to a} \sqrt{x}$.

The natural guess for this limit is \sqrt{a} . To confirm this, we calculate as follows:

Let a > 0 and consider $\lim_{x \to a} \sqrt{x}$.

The natural guess for this limit is \sqrt{a} . To confirm this, we calculate as follows:

$$0 \le |\sqrt{x} - \sqrt{a}| = \left| \frac{x - a}{\sqrt{x} + \sqrt{a}} \right| \le \frac{|x - a|}{\sqrt{a}}.$$

Let a > 0 and consider $\lim_{x \to a} \sqrt{x}$.

The natural guess for this limit is \sqrt{a} . To confirm this, we calculate as follows:

$$0 \le |\sqrt{x} - \sqrt{a}| = \left| \frac{x - a}{\sqrt{x} + \sqrt{a}} \right| \le \frac{|x - a|}{\sqrt{a}}.$$

We have
$$\lim_{x \to a} \frac{|x - a|}{\sqrt{a}} = 0$$
.

Let a > 0 and consider $\lim_{x \to a} \sqrt{x}$.

The natural guess for this limit is \sqrt{a} . To confirm this, we calculate as follows:

$$0 \le |\sqrt{x} - \sqrt{a}| = \left| \frac{x - a}{\sqrt{x} + \sqrt{a}} \right| \le \frac{|x - a|}{\sqrt{a}}.$$

We have $\lim_{x\to a} \frac{|x-a|}{\sqrt{a}} = 0$.

Hence, by the Sandwich Theorem, $\lim_{x\to a}|\sqrt{x}-\sqrt{a}|=0.$

Table of Contents

Limits

Limit Theorems

One-sided limits

We say that $\lim_{x \to p+} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < x - p < \delta \implies |f(x) - L| < \epsilon$.

We say that $\lim_{x \to p+} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < x - p < \delta \implies |f(x) - L| < \epsilon$.

The quantity $\lim_{x\to p+} f(x)$ is called the **right-hand limit** of f at p.

We say that $\lim_{x \to p+} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < x - p < \delta \implies |f(x) - L| < \epsilon$.

The quantity $\lim_{x\to p+} f(x)$ is called the **right-hand limit** of f at p.

We say that $\lim_{x \to p^-} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that 0 .

We say that $\lim_{x \to p+} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < x - p < \delta \implies |f(x) - L| < \epsilon$.

The quantity $\lim_{x\to p+} f(x)$ is called the **right-hand limit** of f at p.

We say that $\lim_{x \to p^-} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that 0 .

The quantity $\lim_{x\to p-} f(x)$ is called the **left-hand limit** of f at p.

We say that $\lim_{x \to p+} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that $0 < x - p < \delta \implies |f(x) - L| < \epsilon$.

The quantity $\lim_{x\to p+} f(x)$ is called the **right-hand limit** of f at p.

We say that $\lim_{x \to p^-} f(x) = L$ if for every $\epsilon > 0$ there is a corresponding $\delta > 0$ such that 0 .

The quantity $\lim_{x\to p-} f(x)$ is called the **left-hand limit** of f at p.

The right-hand limit at p can be considered if there is an $\alpha>0$ such that $(p,p+\alpha)$ is in the domain of f. The left-hand limit needs an $\alpha>0$ such that $(p-\alpha,p)$ is in the domain.

Visualising one-sided limits

Theorem 8

$$\lim_{x\to p} f(x) = L \text{ if and only if } \lim_{x\to p+} f(x) = \lim_{x\to p-} f(x) = L.$$

Proof. (\Longrightarrow): Let $\epsilon > 0$.

Theorem 8

$$\lim_{x\to p} f(x) = L \text{ if and only if } \lim_{x\to p+} f(x) = \lim_{x\to p-} f(x) = L.$$

Proof. (\Longrightarrow): Let $\epsilon > 0$.

There is a $\delta > 0$ s.t. $0 < |x - p| < \delta \implies |f(x) - L| < \epsilon$.

Theorem 8

$$\lim_{x\to p} f(x) = L \text{ if and only if } \lim_{x\to p+} f(x) = \lim_{x\to p-} f(x) = L.$$

Proof. (\Longrightarrow): Let $\epsilon > 0$.

There is a $\delta > 0$ s.t. $0 < |x - p| < \delta \implies |f(x) - L| < \epsilon$.

The same δ works for $\lim_{x\to p+} f(x) = L$ and $\lim_{x\to p-} f(x) = L$.

Theorem 8

$$\lim_{x\to p} f(x) = L \text{ if and only if } \lim_{x\to p+} f(x) = \lim_{x\to p-} f(x) = L.$$

Proof. (\Longrightarrow): Let $\epsilon > 0$. There is a $\delta > 0$ s.t. $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$. The same δ works for $\lim_{x \to p+} f(x) = L$ and $\lim_{x \to p-} f(x) = L$. (\Longleftrightarrow): Let $\epsilon > 0$.

Theorem 8

$$\lim_{x\to p} f(x) = L \text{ if and only if } \lim_{x\to p+} f(x) = \lim_{x\to p-} f(x) = L.$$

Proof. (\Longrightarrow): Let $\epsilon > 0$.

There is a $\delta > 0$ s.t. $0 < |x - p| < \delta \implies |f(x) - L| < \epsilon$.

The same δ works for $\lim_{x\to p+} f(x) = L$ and $\lim_{x\to p-} f(x) = L$.

 $(\Leftarrow=)$: Let $\epsilon > 0$.

There is a $\delta_1 > 0$ s.t. $0 < x - p < \delta_1 \implies |f(x) - L| < \epsilon$.

Theorem 8

$$\lim_{x\to p} f(x) = L \text{ if and only if } \lim_{x\to p+} f(x) = \lim_{x\to p-} f(x) = L.$$

Proof. (\Longrightarrow): Let $\epsilon > 0$.

There is a $\delta > 0$ s.t. $0 < |x - p| < \delta \implies |f(x) - L| < \epsilon$.

The same δ works for $\lim_{x\to p+} f(x) = L$ and $\lim_{x\to p-} f(x) = L$.

$$(\Leftarrow=)$$
: Let $\epsilon > 0$.

There is a $\delta_1 > 0$ s.t. $0 < x - p < \delta_1 \implies |f(x) - L| < \epsilon$.

There is a $\delta_2 > 0$ s.t. 0 .

Theorem 8

$$\lim_{x\to p} f(x) = L \text{ if and only if } \lim_{x\to p+} f(x) = \lim_{x\to p-} f(x) = L.$$

Proof. (\Longrightarrow): Let $\epsilon > 0$. There is a $\delta > 0$ s.t. $0 < |x-p| < \delta \implies |f(x)-L| < \epsilon$. The same δ works for $\lim_{x \to p+} f(x) = L$ and $\lim_{x \to p-} f(x) = L$. (\Longleftrightarrow): Let $\epsilon > 0$. There is a $\delta_1 > 0$ s.t. $0 < x - p < \delta_1 \implies |f(x)-L| < \epsilon$. There is a $\delta_2 > 0$ s.t. 0 . $Then <math>\delta = \min\{\delta_1, \delta_2\}$ works for $\lim_{x \to p} f(x) = L$:

Theorem 8

$$\lim_{x\to p} f(x) = L \text{ if and only if } \lim_{x\to p+} f(x) = \lim_{x\to p-} f(x) = L.$$

Proof. (\Longrightarrow): Let $\epsilon > 0$.

There is a $\delta > 0$ s.t. $0 < |x - p| < \delta \implies |f(x) - L| < \epsilon$.

The same δ works for $\lim_{x\to p+} f(x) = L$ and $\lim_{x\to p-} f(x) = L$.

$$(\Leftarrow=)$$
: Let $\epsilon > 0$.

There is a $\delta_1 > 0$ s.t. $0 < x - p < \delta_1 \implies |f(x) - L| < \epsilon$.

There is a $\delta_2 > 0$ s.t. 0 .

Then $\delta = \min\{\delta_1, \delta_2\}$ works for $\lim_{x \to p} f(x) = L$:

$$0 < |x - p| < \delta \implies 0 < x - p < \delta \text{ or } 0 < p - x < \delta$$

$$\implies 0 < x - p < \delta_1 \text{ or } 0 < p - x < \delta_2$$

$$\implies |f(x) - L| < \epsilon.$$

An Example

Consider the Heaviside step function
$$H(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 0. \end{cases}$$

An Example

Consider the Heaviside step function $H(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 0. \end{cases}$

We calculate the one-sided limits at zero:

$$\lim_{x \to 0+} H(x) = \lim_{x \to 0+} 1 = 1,$$
$$\lim_{x \to 0-} H(x) = \lim_{x \to 0-} 0 = 0.$$

An Example

Consider the Heaviside step function $H(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 0. \end{cases}$

We calculate the one-sided limits at zero:

$$\lim_{x \to 0+} H(x) = \lim_{x \to 0+} 1 = 1,$$
$$\lim_{x \to 0-} H(x) = \lim_{x \to 0-} 0 = 0.$$

Since the one-sided limits are not equal, $\lim_{x\to 0} H(x)$ does not exist.

An Exercise

Confirm that the Algebra of Limits and the Sandwich Theorem also hold for one-sided limits.