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Chapter 3: Limits and Continuity
Part A: Limits

Amber Habib Calculus



Table of Contents

wu = QVAMBRIDGE

IVERSITY PRESS

@ Limit Theorems

(3) One—Sided ||m|ts

«0O)>» «Fr «=»r < o

it
v



Limits Limit Theorems One-sided limits

O@00000000000 000000000000 00 000000
BB CAMBRIDGE
A n EXa m ple "’ LCI\‘IVERSITY PRESS

Consider f(x) = 2x + 5. What happens if we take values of x that
approach 07 Here are some calculations.

x |1 01 001 0001 00001 0.00001
f(x) |7 52 502 5002 5.0002 500002
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Consider f(x) = 2x + 5. What happens if we take values of x that
approach 07 Here are some calculations.

x |1 01 001 0001 00001 0.00001
f(x) |7 52 502 5002 5.0002 500002

We see that as x gets closer to 0, f(x) appears to be getting closer
to 5. Can we control this? Can we get the output f(x) close to 5
within any required accuracy level, simply by making the input x
appropriately close to 07
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Consider f(x) = 2x + 5. What happens if we take values of x that
approach 07 Here are some calculations.

x |1 01 001 0001 00001 0.00001
f(x) |7 52 502 5002 5.0002 500002

We see that as x gets closer to 0, f(x) appears to be getting closer
to 5. Can we control this? Can we get the output f(x) close to 5
within any required accuracy level, simply by making the input x
appropriately close to 07

Suppose € is some positive number and we need f(x) = 2x + 5 to
be within € of 5. Now,

|(2x +5) —5| <€ < |2x| < e <= |x| <¢/2.
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Consider f(x) = 2x + 5. What happens if we take values of x that
approach 07 Here are some calculations.

x |1 01 001 0001 00001 0.00001
f(x) |7 52 502 5002 5.0002 500002

We see that as x gets closer to 0, f(x) appears to be getting closer
to 5. Can we control this? Can we get the output f(x) close to 5
within any required accuracy level, simply by making the input x
appropriately close to 07

Suppose € is some positive number and we need f(x) = 2x + 5 to
be within € of 5. Now,

|(2x +5) —5| <€ < |2x| < e <= |x| <¢/2.

Thus, if |x|] < €/2, we are guaranteed that |f(x) — 5| < e.
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We say Ii_r)n f(x) = L if for every € > 0 there is a corresponding
x—p

d>0suchthat 0 < |x—p|<d = |f(x)—L| <e.
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We say IiLn f(x) = L if for every € > 0 there is a corresponding
x=p
d>0suchthat 0 < |x—p|<d = |f(x)—L|<e

Three observations about the definition of limit:

@ It sets up 0 as depending on e.
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We say IiLn f(x) = L if for every € > 0 there is a corresponding
x=p

d>0suchthat 0 < |x—p|<d = |f(x)—L|<e

Three observations about the definition of limit:

@ It sets up 0 as depending on e.

® We do not care about the value of f(p), or even whether it is
defined.
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We say IiLn f(x) = L if for every € > 0 there is a corresponding
x=p
d>0suchthat 0 < |x—p|<d = |f(x)—L|<e

Three observations about the definition of limit:

@ It sets up 0 as depending on e.

® We do not care about the value of f(p), or even whether it is
defined.

© Since the definition is intended for situations where x can
approach p, it should only be applied to such situations. So
we shall only consider the limit of f at p if there is an a > 0
such that the open interval (p — «, p + ) is contained in the
domain of f, except perhaps for p itself.
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We say IiLn f(x) = L if for every € > 0 there is a corresponding
x=p
d>0suchthat 0 < |x—p|<d = |f(x)—L|<e

Three observations about the definition of limit:
@ It sets up 0 as depending on e.

® We do not care about the value of f(p), or even whether it is
defined.

© Since the definition is intended for situations where x can
approach p, it should only be applied to such situations. So
we shall only consider the limit of f at p if there is an a > 0
such that the open interval (p — «, p + ) is contained in the
domain of f, except perhaps for p itself.
We may also write ‘f(x) — L as x — p' for )li_r)np f(x) =L
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Visualising Limits
The two stages in a limit process.

CAMBRIDGE

UNIVERSITY PRESS

u}
‘ o)
it

DA



Limits Limit Theorems One-sided limits

O00e000000000 000000000000 00 000000
1 el mi BH CAMBRIDGE
Visualising Limits WP o s

The two stages in a limit process.

In the first stage, we have a requirement to make the output f(x)
lie between L — € and L +e.
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The two stages in a limit process.

In the first stage, we have a requirement to make the output f(x)
lie between L — e and L + .

In the second stage, we meet the requirement by finding a ¢ such
that input being between p — § and p + & guarantees that the
output is between L — € and L + € (except perhaps at p itself).
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Uniqueness of Limit
Theorem 1
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At most one number can satisfy the definition of the limit of a
given function at a given point.
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Theorem 1
At most one number can satisfy the definition of the limit of a
given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which
satisfy the definition of Iil;n f(x).
X—ra
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Theorem 1

At most one number can satisfy the definition of the limit of a
given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which
satisfy the definition of Iil;n f(x).
X—ra

Choose e = [M — L|/2.
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Theorem 1

At most one number can satisfy the definition of the limit of a
given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which
satisfy the definition of IiL‘n f(x).
X—ra
Choose e = [M — L|/2.
Then there are §;,dp > 0 such that
O<|x—al<d = |f(x)—L|<e§,
O0<|x—al <y = |f(x)— M| <e
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Theorem 1

At most one number can satisfy the definition of the limit of a
given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which
satisfy the definition of IiL‘n f(x).
X—ra
Choose e = [M — L|/2.
Then there are §;,dp > 0 such that

O<|x—al<d = |f(x)—L|<e§,
O0<|x—al <y = |f(x)— M| <e
Let § = min{d;,dp} and xp € (a —d,a+9).
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Uniqueness of Limit O SaMERIDSE
Theorem 1

At most one number can satisfy the definition of the limit of a
given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which
satisfy the definition of IiL‘n f(x).
X—ra
Choose e = [M — L|/2.
Then there are §;,dp > 0 such that
O<|x—al<d = |f(x)—L|<e§,
O0<|x—al <y = |f(x)— M| <e
Let § = min{d;,dp} and xp € (a —d,a+9).
Then |f(x0) — L| < e and |f(x0) — M| < e.
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Theorem 1

At most one number can satisfy the definition of the limit of a
given function at a given point.

Proof. Suppose L, M are two distinct numbers, both of which
satisfy the definition of IiL‘n f(x).
X—ra
Choose e = [M — L|/2.
Then there are §;,dp > 0 such that
O<|x—al<d = |f(x)—L|<e§,
O0<|x—al <y = |f(x)— M| <e
Let § = min{d;,dp} and xp € (a —d,a+9).
Then |f(x0) — L| < € and |f(x0) — M| < e. Hence,
IM —L| <|M—f(x0)|+|f(x0) — L <e+e=|M-L|,

which gives the impossible statement |[M — L| < |[M.— L|. &
Amber Habib Calculus
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Consider lim x.
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Basic Examples
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Consider lim x.
X—a
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This amounts to asking “What does x approach when x
approaches a?”
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Consider lim x.
X—a

This amounts to asking “What does x approach when x
approaches a?"

Obviously, our response has to be that it will approach a, that is,

im x = a.
X—ra
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Consider lim x.
X—a

This amounts to asking “What does x approach when x
approaches a?"

Obviously, our response has to be that it will approach a, that is,

im x = a.
X—ra

Let us work it out with the e-§ formulation, for practice.
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Consider lim x.
X—a

This amounts to asking “What does x approach when x
approaches a?"

Obviously, our response has to be that it will approach a, that is,

im x = a.
X—ra

Let us work it out with the e-§ formulation, for practice.

We start by considering an € > 0. We need to find a 6 > 0 such
that [x —a] <d = |x — a| < e. Clearly 6 = e will work.
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Consider lim x.
X—a

This amounts to asking “What does x approach when x
approaches a?"

Obviously, our response has to be that it will approach a, that is,

im x = a.
X—ra

Let us work it out with the e-§ formulation, for practice.

We start by considering an € > 0. We need to find a 6 > 0 such
that [x —a] <d = |x — a| < e. Clearly 6 = e will work.

Task: Let f(x) = c be a constant function. Show that

)!@p f(x)=c.
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Consider the limit of y = x? at x = 2. A natural guess is that

x2 — 22 =4 as x — 2. We test this for some values of ¢ > 0.
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Consider the limit of y = x? at x = 2. A natural guess is that
x2 =22 = 4 as x — 2. We test this for some values of ¢ > 0.

Suppose € = 0.5. We need § > 0 such that x € (2 -4, 2+ )
implies x2 € (4 — 0.5, 4+0.5) = (3.5, 4.5).

Amber Habib Calculus



Limits Limit Theorems One-sided limits
O00000e000000 0000000000000 0 000000

2 BH CAMBRIDGE

Example Of y = X @) UNIVERSITY PRESS
Consider the limit of y = x? at x = 2. A natural guess is that
x2 =22 = 4 as x — 2. We test this for some values of ¢ > 0.

Suppose € = 0.5. We need § > 0 such that x € (2 -4, 2+ )
implies x2 € (4 — 0.5, 4+0.5) = (3.5, 4.5).

We note that the function maps (v/3.5, v/4.5) into (3.5, 4.5).
The interval (v/3.5, v/4.5) contains 2 but is not centered on it.

0.129 0.121

(
\

|
I
V3.5 p=2

%\/
o
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Consider the limit of y = x? at x = 2. A natural guess is that
x2 = 22 =4 as x — 2. We test this for some values of € > 0.

Suppose € = 0.5. We need § > 0 such that x € (2 -4, 2+ )
implies x2 € (4 — 0.5, 4+0.5) = (3.5, 4.5).

We note that the function maps (v/3.5, v/4.5) into (3.5, 4.5).
The interval (v/3.5, v/4.5) contains 2 but is not centered on it.

0.129 0.121

( )
\ )

|

I
V3.5 p=2 V4.5
d = V4.5 —2=10.121 works, since (2 -, 2+ J) C (v/3.5, V4.5).
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Consider the limit of y = x? at x = 2. A natural guess is that
x2 = 22 =4 as x — 2. We test this for some values of € > 0.

Suppose € = 0.5. We need § > 0 such that x € (2 -4, 2+ )
implies x2 € (4 — 0.5, 4+0.5) = (3.5, 4.5).

We note that the function maps (v/3.5, v/4.5) into (3.5, 4.5).
The interval (v/3.5, v/4.5) contains 2 but is not centered on it.

0.129 0.121

( )
\ )

|

I
V3.5 p=2 V4.5
d = V4.5 —2=10.121 works, since (2 -, 2+ J) C (v/3.5, V4.5).

Consider € = 0.01. Can you confirm that 6 = v/4.01 — 2 meets the
requirements?

Amber Habib Calculus
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Consider the limit of y = x? at x = 2. A natural guess is that
x2 = 22 =4 as x — 2. We test this for some values of € > 0.

Suppose € = 0.5. We need § > 0 such that x € (2 -4, 2+ )
implies x2 € (4 — 0.5, 4+0.5) = (3.5, 4.5).

We note that the function maps (v/3.5, v/4.5) into (3.5, 4.5).
The interval (v/3.5, v/4.5) contains 2 but is not centered on it.

0.129 0.121

( )
\ )

|
I
V35 p=2 V4.5

d = V4.5 —2=10.121 works, since (2 -, 2+ J) C (v/3.5, V4.5).

Consider € = 0.01. Can you confirm that 6 = v/4.01 — 2 meets the
requirements?

Generally, for any € > 0, take 6 = min{2 — /4 —¢, V/4+ ¢ —2}.
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Characterisations of Limit

Theorem 2

lim f
X—p
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x)=L — )!E)np(f(x) -L)=0 < ,I'[)no f(p+h)=L.
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Characterisations of Limit

Theorem 2

lim f
X—p

CAMBRIDGE
x)=L — )!E)np(f(x) -L)=0 < flrlno f(p+h)=L.
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Proof. We simply match the definitions of the three limits:
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Characterisations of Limit & GAMBRIDGE
Theorem 2

li
X—p X—p

lim f(x) =L < m(f(x)—L)zO(z)Ai_r)nof(p—i-h):L. J

Proof. We simply match the definitions of the three limits:

e lim f(x) = L: For every € > 0 there is a corresponding 6 > 0
X—p

such that 0 < |x — p| <0 = |f(x) —L| <e.
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Characterisations of Limit & GAMBRIDGE
Theorem 2
lim f(x) = L lim (f(x) — L) =0 lim f h) = L.
Jim, (x) — Xgnp( (x) = L) < lim (p+h) J

Proof. We simply match the definitions of the three limits:

e lim f(x) = L: For every € > 0 there is a corresponding § > 0
X—p

such that 0 < |x — p| <0 = |f(x)—L| <e.

e lim(f(x) — L) =0: For every € > 0 there is a corresponding
X—p

d >0 suchthat0 < |x —p| <6 = |(f(x)—L)—0]<e.
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Theorem 2

li
X—p X—p

lim f(x) =L < lim(f(x) - L) =0 <= Ai_r)nof(p—i-h):L. J

Proof. We simply match the definitions of the three limits:

e lim f(x) = L: For every € > 0 there is a corresponding § > 0
su)é;pthat 0<|x—p|<d = |f(x)—L|l<e.

e lim(f(x) — L) =0: For every € > 0 there is a corresponding

4] X>H(§Jsuch that 0 < [x — p| <d = [(f(x)—L)—0| <e.

° ))i_r}no f(p+ h) = L: For every e > 0 there is a corresponding 6 > 0

such that 0 < |h| <§ = |f(p+h)—L|<e.
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Theorem 2
Iim f(x)=L < Im(f(x)—L)=0 < Iimf h) = L.
Jim, (x) Hp( (x) = L) Jim (p+h) J

Proof. We simply match the definitions of the three limits:

. )!ignp f(x) = L: For every € > 0 there is a corresponding § > 0
such that 0 < |x — p| < d = |f(x) — L| <e.

o Jlnp(f(x) — L) =0: For every € > 0 there is a corresponding
d >0 suchthat0 < |x —p| <6 = |(f(x)—L)—0]<e.

. ’I)imo f(p+ h) = L: For every e > 0 there is a corresponding 6 > 0
—5
such that 0 < |h| <§ = |f(p+h)—L|<e.

The first two are identical. The first can be converted to the third,
and conversely, by the substitution x = p + h. 0

Amber Habib Calculus



Zero Limit
The0rem 3
X—p —

mmlm CAMBRIDGE
lim f(x) =0 <= )!Epp|f(x)| _0
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Zero Limit CAMERIDGE
Theorem 3
lim £(x) =0 <= im |£(x)| = 0. J

Proof. The definition of lim |f(x)| =0 is:
X—p

For every € > 0O there is a corresponding § > 0 such that
0<|x—p|<d = |If(x)]—0] <e.
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Zero Limit

Theorem 3

llnpf(x)—o = I|m |f(x)| = 0.

One-sided limits
000000
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Proof. The definition of Ii_n)w [f(x)|=0s:
x—p

For every € > 0 there is a corresponding § > 0 such that
0<|x—p|<d = |If(x)]—0] <e.
Now note that ||f(x)| — 0| = |f(x) — 0|

Amber Habib Calculus
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Theorem 3
lim f(x) =0 < I|m |f(x)| = 0. J
X—p

Proof. The definition of Ii_n)w [f(x)|=0s:
x—p

For every € > 0 there is a corresponding § > 0 such that
0<|x—p|<d = |If(x)]—0] <e.

Now note that ||f(x)| — 0| = |f(x) — 0| O
Theorem 4
lim £() = M — fim [£(x)] = |M]|. J

Amber Habib Calculus
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Zero Limit

Theorem 3

)!inpf(x)fo — I|m |f(x)| = 0.

One-sided limits
000000
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Proof. The definition of Ii_n)w [f(x)|=0s:
X—p

For every € > 0 there is a corresponding § > 0 such that
0<|x—p|<d = |If(x)]—0] <e.
Now note that ||f(x)| — 0| = |f(x) — 0|
Theorem 4
lim f(x) =M = lim |f(x)| = |M]|.

X—p

X—p

Proof. The triangle inequality gives ||f(x)| — [M|| < |f(x) —

Amber Habib Calculus
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Zero Limit

Theorem 3

llnpf(x)—o = I|m |f(x)| = 0.

One-sided limits
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Proof. The definition of Ii_n)w [f(x)|=0s:
X—p

For every € > 0 there is a corresponding § > 0 such that
0<|x—p|<d = |If(x)]—0] <e.
Now note that ||f(x)| — 0| = |f(x) — 0|
Theorem 4
lim f(x) =M = lim |f(x)| = |M]|.

X—p

X—p

Proof. The triangle inequality gives ||f(x)| — [M|| < |f(x) —

Let € > 0. Since Ii_r;n f(x) = M, there is a § > 0 such that
x—p

0<|x—p|<d = |f(x)—M|<e

Amber Habib Calculus
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Theorem 3
lim f(x) =0 <= lim |[f(x)| = 0.
X—p X—p

Proof. The definition of Ii_n)w [f(x)|=0s:

X—+p
For every € > 0 there is a corresponding § > 0 such that
0<|x—p|<d = |If(x)]—0] <e.

Now note that ||f(x)| — 0| = |f(x) — 0| O
Theorem 4
lim £() = M — fim [£(x)] = |M]|. J

Proof. The triangle inequality gives ||f(x)| — [M|| < |f(x) — M]|.
Let € > 0. Since Ii_r;n f(x) = M, there is a § > 0 such that

x—p
0<|x—p|<d = |f(x) — M| <e. The same & works for |f(x)|
since |f(x) — M| < e implies ||f(x)| — |[M|| < |f(x)— M| <e B
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Non-existence of Limit: Example 1
Consider the signum function, sgn(x) =

-1

CAMERIDSE
if x <0,
0 ifx=0,
1 ifx>0.
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-1 ifx<0,
Consider the signum function, sgn(x) = 0 ifx=0,
1 ifx>0.

Suppose lim sgn(x) = L.
x—0
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Non-existence of Limit: Example 1 TP S
-1 ifx<0,
Consider the signum function, sgn(x) = 0 ifx=0,
1 ifx>0.

Suppose lim sgn(x) = L. Consider ¢ = 1.
x—0
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Non-existence of Limit: Example 1 TP S
-1 ifx<0,
Consider the signum function, sgn(x) = 0 ifx=0,
1 ifx>0.

Suppose lim sgn(x) = L. Consider ¢ = 1.
x—0

There isa § > 0 such that 0 < |x| < § = [sgn(x) — L| < 1.

Amber Habib Calculus
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Non-existence of Limit: Example 1 TP S
-1 ifx<0,
Consider the signum function, sgn(x) = 0 ifx=0,
1 ifx>0.

Suppose lim sgn(x) = L. Consider ¢ = 1.
x—0

There isa § > 0 such that 0 < |x| < § = [sgn(x) — L| < 1.
Then |sgn(d/2) — L] <1 and |sgn(—d/2) — L| < 1.
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Non-existence of Limit: Example 1 TP S
-1 ifx<0,
Consider the signum function, sgn(x) = 0 ifx=0,
1 ifx>0.

Suppose Iim0 sgn(x) = L. Consider e = 1.
X—
There isa § > 0 such that 0 < |x| < § = [sgn(x) — L| < 1.
Then |sgn(d/2) — L] <1 and |sgn(—d/2) — L| < 1.
Therefore, by triangle inequality,
|sgn(6/2) — sgn(—6/2)| < [sgn(5/2) — L[ + [sgn(—6/2) — L|
<1+1=2.
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Non-existence of Limit: Example 1 TP S
-1 ifx<0,
Consider the signum function, sgn(x) = 0 ifx=0,
1 ifx>0.

Suppose lim sgn(x) = L. Consider ¢ = 1.
x—0

There isa § > 0 such that 0 < |x| < § = [sgn(x) — L| < 1.
Then |sgn(d/2) — L] <1 and |sgn(—d/2) — L| < 1.
Therefore, by triangle inequality,

sgn(d/2) — sgn(—d/2)| < |sgn(0/2) — L| + [sgn(—5/2) — L|
<l4+1=2

On the other hand, using the definition of sgn(x), we have

sgn(5/2) — sgn(=6/2)| = |1 — (~1)] = 2.
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Non-existence of Limit: Example 1 TP S
-1 ifx<0,
Consider the signum function, sgn(x) = 0 ifx=0,
1 ifx>0.

Suppose Iim0 sgn(x) = L. Consider e = 1.
X—
There isa § > 0 such that 0 < |x| < § = [sgn(x) — L| < 1.
Then |sgn(d/2) — L] <1 and |sgn(—d/2) — L| < 1.
Therefore, by triangle inequality,
|sgn(6/2) — sgn(—6/2)| < [sgn(5/2) — L[ + [sgn(—6/2) — L|
<1+1=2.

On the other hand, using the definition of sgn(x), we have
[sgn(d/2) —sgn(—=6/2)[ = |1 — (=1)| = 2.

This equality contradicts the previous inequality. So IimO sgn(x)
X—>

does not exist.
Amber Habib Calculus
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Define f: R — R by f(0) = 0 and f(x) = 1/x when x # 0.

( l
- 15
n

Suppose Iim0 f(x) = L and consider e = 1/2.
X—

N~——

—
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Non-existence of Limit: Example 2 WP o s

Define f: R — R by f(0) = 0 and f(x) = 1/x when x # 0.

K.
!

Suppose Iim0 f(x) = L and consider e = 1/2.
X—

N~——

Now take any § > 0. By the Archimedean property, (—6,¢)
contains points of the form 1/n and 1/(n+ 1) with n € N.
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Non-existence of Limit: Example 2 WP o s

Define f: R — R by f(0) = 0 and f(x) = 1/x when x # 0.

A

14
n

N~——

Suppose Iim0 f(x) = L and consider e = 1/2.
X—

Now take any § > 0. By the Archimedean property, (—6,¢)
contains points of the form 1/n and 1/(n+ 1) with n € N.

Then f(1/(n+1)) — f(1/n) =1 and so it is impossible that both
f(1/(n+1)) and f(1/n) are within a distance e = 1/2 of L.

Amber Habib Calculus
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Let S: [-1,1] — R be defined by S(1/n) = (—1)" for each n € N
and let its graph be a straight line on each interval between these
points. Further, let $(0) = 0.
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Let S: [-1,1] — R be defined by S(1/n) = (—1)" for each n € N

and let its graph be a straight line on each interval between these
points. Further, let $(0) = 0.

AN/ ITITAN

TR}

In any (=9, 9) interval, S takes both the values +1 and so we can

argue as in the previous two examples to show that IimOS(x) does
X—
not exist.

Amber Habib Calculus



Limit and function value

CAMBRIDGE
lim f(x) =0.
xino (X) 0

Let f(x) = 0 when x # 0 and f(0) = 1. We will show that



Limit and function value

CAMBRIDGE
lim f(x) =0.
xino (X) 0

Let f(x) = 0 when x # 0 and f(0) = 1. We will show that
Consider any € > 0. Let § = 1.
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Limit and function value & GAMBRIDGE

Let f(x) = 0 when x # 0 and f(0) = 1. We will show that
Iim0 f(x) =0.
X—

Consider any € > 0. Let § = 1.
Then

0<|x—0]<d = x#0 = f(x)=0 = |f(x)—0|=0<e.

Amber Habib Calculus
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Let f(x) = 0 when x # 0 and f(0) = 1. We will show that
Iim0 f(x) =0.
X—

Consider any € > 0. Let § = 1.
Then

0<|x—0]<d = x#0 = f(x)=0 = |f(x)—0|=0<e.

So the limit exists at x = 0 but does not equal f(0).

Amber Habib Calculus



Table of Contents

wumw.\ CAMBRIDGE
UN!

IVERSITY PRESS

© Limits
@ Limit Theorems

(3) One—Sided ||m|ts

«0O)>» «Fr «=»r < o

it
v



Limits Limit Theorems One-sided limits
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Lemma 5
Let f, g be real functions with lim f(x) = lim g(x) =0. Then
X—p X—p
® limcf(x)=0 (ceR),
X—p
@ lim (f(x) +g(x)) =0,
X—p
© lim f(x)g(x) =0,

@ If lim h(x) =1 then lim fx) =0.

x—p x—p h(x)
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Lemma 5
Let f, g be real functions with lim f(x) = lim g(x) = 0. Then
X—p X—=p
O limcf(x)=0 (ceR),
X—p
@ lim (f(x) + g(x)) =0,
X—p
© lim f(x)g(x) =0,

@ If lim h(x) =1 then lim fx) =0.

x—p x—p h(x)

Proof.
@ This is trivial if ¢ = 0. Suppose ¢ # 0.
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Functions with zero limit o SRR
Lemma 5
Let f, g be real functions with lim f(x) = lim g(x) =0. Then
X—p X—p
® limcf(x)=0 (ceR),
X—p
® lim(f(x) +g(x)) =0,
X—p
© lim f(x)g0) =0,
- . f(x)
(4] If)!ﬂwp h(x) =1 then )!@p o) 0.

Proof.
@ This is trivial if ¢ = 0. Suppose ¢ # 0. For € > 0 there is a
d > 0 such that 0 < |x — p| < ¢ implies |f(x)| < €/|c|.
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Lemma 5
Let f, g be real functions with lim f(x) = lim g(x) = 0. Then
X—p X—p
® limcf(x)=0 (ceR),
X—p
@ lim (f(x) +g(x)) =0,
X—p
© lim f(x)g(x) =0,

@ If lim h(x) =1 then lim fx) =0.

x—p x—p h(x)

Proof.
@ This is trivial if ¢ = 0. Suppose ¢ # 0. For € > 0 there is a
d > 0 such that 0 < |x — p| < 6 implies |f(x)| < €/|c|. Now,
0 < |x — p| < & implies |cf(x) — 0] = |c||f(x)] < || = =e.

el
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(proof continued)
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|f(x)| < €/2.

There is a §1 > 0 such that 0 < |x — p| < d1 implies
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(proof continued)
® Take any ¢ > 0.

There is a d; > 0 such that 0 < |x — p| < d1 implies
|f(x)| < €/2.

There is a d2 > 0 such that 0 < |x — p| < 7 implies
lg()| < e/2.

Amber Habib Calculus
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(proof continued)
® Take any ¢ > 0.

There is a d; > 0 such that 0 < |x — p| < d1 implies
|f(x)| < €/2.

There is a d2 > 0 such that 0 < |x — p| < 7 implies
lg()| < e/2.
Let 6 = min{d1,d2}. Then

0<|x—p[<d = [f(x)+g(x) =0 < |F(x)] + [g(x)|

<L €
2 2
= €.
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Functions with zero limit
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(proof continued)
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© Take any € > 0.

There is a 91 > 0 such that 0 < |x — p| < d; implies
1F()] < Ve
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(proof continued)
© Take any € > 0.

There is a §; > 0 such that 0 < |x — p| < 071 implies
[F(x)] < Ve
There is a d2 > 0 such that 0 < |x — p| < &2 implies

lg(x)] < Ve
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Functions with zero limit o SRR
(proof continued)

© Take any € > 0.

There is a §; > 0 such that 0 < |x — p| < 071 implies
[F(x) < Ve

There is a d2 > 0 such that 0 < |x — p| < &2 implies
lg(x) < Ve

Let 6 = min{d1,d2}. Then

0< |x—pl <8 = [F(x)g(x)] < Veve =e.
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Functions with zero limit

GANERIDSE
(proof continued)
O Take any € > 0.

There is a §; > 0 such that 0 < |x — p| < 01 implies
— < h(x) < 3
2 2
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(proof continued)
O Take any € > 0.

There is a §; > 0 such that 0 < |x — p| < &1 implies
L by <3
2 STV S

There is a d2 > 0 such that 0 < |x — p| < d2 implies

F()] < 5
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(proof continued)
O Take any € > 0.

There is a §; > 0 such that 0 < |x — p| < &1 implies

1 3

There is a d2 > 0 such that 0 < |x — p| < d2 implies

F()] < 5

Let 6 = min{él,ég}. Then
2 _

f(x
0<|x—p|<d = 'h(x) <1/2_e
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Theorem 6
Let f, g be real functions such that lim f(x) = M and
X—p

lim g(x) = N. Then
@ limcf(x)=cM (cER),
® lim (F(x) +g(x) = M+ N,
© lim(F(x) ~ g(x) = M~ N,
@ lim f(x)g(x) = MN,

im [ _ M
© Jinpg(x) N (N #0).
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Algebra of Limits

Theorem 6

Let f, g be real functions such that lim f(x) =

X—p

lim g(x) = N. Then
@ limcf(x)=cM (c€R),
® lim (f(x) +g(x)) = M+ N,
© lim (f(x) —g(x)) =M - N,
© lim f(x)g(x) = MN,

. f(x) M
®lm s N N7O

One-sided limits
000000

BEB® CAMBRIDGE
@ P UNIVERSITY PRESS

M and

We shall use Ii_r>n F(x) =K < lim(F(x) — K) =0 to reduce
x—p

X—p
these to the previous lemma.

Amber Habib Calculus



Algebra of Limits
Proof
@ lim
X—p
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(C f(x)—c M)

= lim ¢

X—p (f(x) _ M) L

(By part 1 of the Lemma)
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Proof.
o lim (c f(x) — c M) = lim ¢ (f(x) - M) = 0.
(By part 1 of the Lemma)

(2]
tim ((F() + () — (M + )
= lim (£ = M) + (gl) — W) =0

(By part 2 of the Lemma)
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Proof.
o lim (c f(x) — c M) = lim ¢ (f(x) - M) = 0.
(By part 1 of the Lemma)

(2]
tim ((F() + () — (M + )
= lim (£ = M) + (gl) — W) =0

(By part 2 of the Lemma)
©® Combine parts 1 and 2 of this theorem, using c = —1.

Amber Habib Calculus
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(proof continued)

O We use part 3 of the Lemma and parts 1, 2, 3 of this theorem:

lim (£()g(x) = MN) = lim ((£(x) = M)(g(x) - N)
+ Mg(x) + Nf(x) — 2MN)
= lim ((£(x) = M)(g(x) - )
+ lim (Mg (x)) + Jim (NF(x)) ~ lim 2MN

=0+ MN + NM —2MN = 0.
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@ Due to part 4 of this theorem, it is enough to prove that
1 1

im — = —:
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Algebra of Limits TP S
(proof continued)
@ Due to part 4 of this theorem, it is enough to prove that
1 1
lim — = —:
pg(x) N
1 1 —
fim (2~ L) = i V=8
o \gl) N) T gx)
i 1—g(x)/N
= lim ———"—
x=p  g(x)/N

=0. (Part 4 of the Lemma)
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® Calculate lim (x? 4 9):
xX—2
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Examples
® Calculate lim (x? 4 9):
xX—2

GANERIDSE
By (2) of Algebra of Limits, we have
lim (x® +9) = lim x*> + lim 9 =

X—2 X—

x—2

lim x% +9.
x—2
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® Calculate lim (x* 4 9):
X—2
By (2) of Algebra of Limits, we have
I|m(x +9) = I|m2x + lim 9 = I|m2x +9.

x—2

By (4) we have
lim x* = (lim x)(lim x) =2-2 = 4.

x—2 xX—2 x—2

Amber Habib Calculus
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® Calculate lim (x* 4 9):
X—2
By (2) of Algebra of Limits, we have
I|m(x +9) = I|m2x + lim 9 = I|m2x +9.

x—2

By (4) we have
lim x* = (lim x)(lim x) =2-2 = 4.

x—2 xX—2 x—2

Hence lim (x® +9) =4 +9 = 13.
X—2

Amber Habib Calculus
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® Calculate lim (x* 4 9):
X—2
By (2) of Algebra of Limits, we have
I|m(x +9) = I|m2x + lim 9 = I|m2x +9.

x—2

By (4) we have
lim x* = (lim x)(lim x) =2-2 = 4.

X—2 X—2 X—2
Hence lim (x® +9) =4 +9 = 13.
X—2
® Calculate lim (7x)°:
X—2
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® Calculate lim (x* 4 9):
X—2
By (2) of Algebra of Limits, we have
I|m(x +9) = I|m2x + lim 9 = I|m2x +9.

x—2

By (4) we have
lim x* = (lim x)(lim x) =2-2 = 4.

X—2 X—2 X—2
Hence lim (x® +9) =4 +9 = 13.
X—2
® Calculate lim (7x)°:
X—2

By (1) of Algebra of Limits, we have lim (7x)° = 7° lim x°.

x—2 x—2
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® Calculate lim (x* 4 9):
X—2
By (2) of Algebra of Limits, we have
I|m(x +9) = I|m2x + lim 9 = I|m2x +9.

x—2

By (4) we have
lim x* = (lim x)(lim x) =2-2 = 4.

X—2 X—2 X—2
Hence lim (x® +9) =4 +9 = 13.
X—2
® Calculate lim (7x)°:
X—2

By (1) of Algebra of Limits, we have Iim2(7x)9 =7° lim x°.
X—

x—2
By (4) we have lim x® = (lim x)---(lim x) = (lim x)° = 2°.
x—2 x—2 x—2 x—2
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Examples O SaMERIDSE
® Calculate lim (x* 4 9):
X—2
By (2) of Algebra of Limits, we have
I|m(x +9) = I|m2x + lim 9 = I|m2x +9.

x—2

By (4) we have
lim x* = (lim x)(lim x) =2-2 = 4.

X—2 X—2 X—2
Hence lim (x® +9) =4 +9 = 13.
X—2
® Calculate lim (7x)°:
X—2

By (1) of Algebra of Limits, we have lim (7x)° = 7° lim x°.
x—2 x—2
By (4) we have lim x® = (lim x)---(lim x) = (lim x)° = 2°.
x—2 x—2 x—2 x—2
Hence lim (7x)° = 7°2° = 14°

x—2
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Examples
—1 2
© Calculate ||m u
x—1 X

2_1
The limit of the denominator is

lim (x> —1) = lim x> — lim1=12-1=0.
x—1

CAMBRIDGE

UNIVERSITY PRESS

X

—1

X—

u}
‘ o)
n
it

DA



Limits Limit Theorems One-sided limits

0000000000000 0000000000 e000 000000
BB CAMBRIDGE
EXa m pleS "’ LCI\‘IVERSITY PRESS

(x —1)?

Calculate lim ~—5——:
© x—1 x2—1

The limit of the denominator is

lim(x>—1)=limx* - lim1=12-1=0.

x—1 x—1 x—1 . )
So we can't apply the rule for ratios. However, we can first
simplify the expression and remove this obstacle.
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(x —1)°

Calculate lim :
e x—1 X2 -1

The limit of the denominator is
lim(x>—1)=limx* - lim1=12-1=0.

x—1 x—1 x—1 . )
So we can't apply the rule for ratios. However, we can first
simplify the expression and remove this obstacle.

. (x —1)? ox—1
—_— _— m .
x—1 x2—1 x—1 (X— 1)(X+1) x—1x+1
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(x —1)?

Calculate lim ~—5——:
© x—1 x2—1

The limit of the denominator is

lim(x>—1)=limx* - lim1=12-1=0.

x—1 x—1 x—1 . )
So we can't apply the rule for ratios. However, we can first
simplify the expression and remove this obstacle.

(x —1)? .ox—1
- 7 = — = |IMm .
x—1 x2—1 x—1 (X—l)(X+1) x—=1x+1

The cancellation in the last step is allowed because when we

calculate Iim1 we work with x # 1 and hence x — 1 # 0.
X—r
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(x —1)?

Calculate lim ~—5——:
© x—1 x2—1

The limit of the denominator is

lim(x>—1)=limx* - lim1=12-1=0.

x—1 x—1 x—1 . )
So we can't apply the rule for ratios. However, we can first
simplify the expression and remove this obstacle.

(x —1)? .ox—1
- 7 = — = |IMm .
x—1 x2—1 x—1 (X—l)(X+1) x—=1x+1

The cancellation in the last step is allowed because when we
calculate Iim1 we work with x # 1 and hence x — 1 # 0.

X—r
This simplified form is easily dealt with:
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o (x—1)?

Calculate lim ~—5——:
© . XTI x2 -1

The limit of the denominator is

lim(x>—1)=limx* - lim1=12-1=0.

x—1 x—1 x—1 . )
So we can't apply the rule for ratios. However, we can first
simplify the expression and remove this obstacle.

(x —1)? .ox—1

~— 7 = |lm—-t = .
x—1 x2—1 xﬁnl (x —1)(x+1) x[;nlx—&—l

The cancellation in the last step is allowed because when we
calculate Iim1 we work with x # 1 and hence x — 1 # 0.

X—r
This simplified form is easily dealt with:

x—1 0

Jmx=1) =0 and fin(+1) =2 = Jim 57 =7

Amber Habib Calculus
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Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — o, p + ),
with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
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Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — o, p + ),

with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
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Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — o, p + ),

with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
There is §, > 0s.t. 0 < |x — p| < 0, implies L — e < h(x) < L +e.
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Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — o, p + ),
with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.

There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
There is §, > 0s.t. 0 < |x — p| < 0, implies L — e < h(x) < L +e.
Let § = min{df, dopn, }. Now, if 0 < |x — p| < 4, then
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Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — o, p + ),
with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
There is §, > 0s.t. 0 < |x — p| < 0, implies L — e < h(x) < L +e.
Let § = min{df, dopn, }. Now, if 0 < |x — p| < 4, then

i< = L—e<f(x)<L+e
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Sandwich Theorem & GAMERIDGE
Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — o, p + ),
with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
There is §, > 0s.t. 0 < |x — p| < 0, implies L — e < h(x) < L +e.
Let § = min{df, dopn, }. Now, if 0 < |x — p| < 4, then

i< = L—e<f(x)<L+e

® §<0p = L—e<h(x)<L+e,

Amber Habib Calculus



Limits Limit Theorems One-sided limits

0000000000000 0000000000000 000000
. BB CAM IDGE
Sandwich Theorem & GAMERIDGE
Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — a, p + @),
with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
There is §, > 0s.t. 0 < |x — p| < 0, implies L — e < h(x) < L +e.
Let § = min{df, dopn, }. Now, if 0 < |x — p| < 4, then

i< = L—e<f(x)<L+e

® §<0p = L—e<h(x)<L+e,

* j<a = f(x)<g(x) < h(x).
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Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — a, p + @),
with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
There is §, > 0s.t. 0 < |x — p| < 0, implies L — e < h(x) < L +e.
Let § = min{df, dopn, }. Now, if 0 < |x — p| < 4, then

i< = L—e<f(x)<L+e

® §<0p = L—e<h(x)<L+e,

* j<a = f(x)<g(x) < h(x).
Combining these gives L — e < f(x) < g(x) < h(x) < L+e.
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Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — a, p + @),
with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
There is §, > 0s.t. 0 < |x — p| < 0, implies L — e < h(x) < L +e.
Let § = min{df, dopn, }. Now, if 0 < |x — p| < 4, then

i< = L—e<f(x)<L+e

® §<0p = L—e<h(x)<L+e,

* j<a = f(x)<g(x) < h(x).
Combining these gives L — e < f(x) < g(x) < h(x) < L+e.
Hence L —e < g(x) < L+e.
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Theorem 7

Suppose that f(x) < g(x) < h(x) in an interval (p — a, p + @),
with o > 0, except perhaps at p. If lim f(x) = lim h(x) = L then
X—p X—p

Jim g(x) = L.

Proof. Let € > 0.
There is §f > 0s.t. 0 < |x — p| < df implies L — e < f(x) < L+e.
There is §, > 0s.t. 0 < |x — p| < 0, implies L — e < h(x) < L +e.
Let § = min{df, dopn, }. Now, if 0 < |x — p| < 4, then

i< = L—e<f(x)<L+e

® §<0p = L—e<h(x)<L+e,

* j<a = f(x)<g(x) < h(x).
Combining these gives L — e < f(x) < g(x) < h(x) < L+e.
Hence L — e < g(x) < L+ €. Therefore )!i_r}npg(x) =L O
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Consider Iimo xS(x), where S(x) is the 3rd example of
X—

non-existence of limits.
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Application of Sandwich Theorem WP Ve e
Consider Iimo xS(x), where S(x) is the 3rd example of
X—

non-existence of limits. Since S(x) takes values between +1 it
follows that xS(x) takes values between =£x.
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Application of Sandwich Theorem WP Ve e
Consider Iimo xS(x), where S(x) is the 3rd example of
X—

non-existence of limits. Since S(x) takes values between +1 it
follows that xS(x) takes values between =£x.
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Application of Sandwich Theorem WP Ve e
Consider Iimo xS(x), where S(x) is the 3rd example of
X—

non-existence of limits. Since S(x) takes values between +1 it
follows that xS(x) takes values between =£x.

To avoid the x > 0 and x < 0 cases we work with [xS(x)]:

0<IS(x)| <1 = 0 < |xS(x)| < |x].
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Application of Sandwich Theorem WP Ve e
Consider Iimo xS(x), where S(x) is the 3rd example of
X—

non-existence of limits. Since S(x) takes values between +1 it
follows that xS(x) takes values between =£x.

To avoid the x > 0 and x < 0 cases we work with [xS(x)]:
0<|S(x)| <1 = 0 < |xS(x)| < |x]-

Since lim |x| = 0, the Sandwich Theorem gives lim |xS(x)| = 0.
x—0 x—0
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Application of Sandwich Theorem WP Ve e
Consider Iimo xS(x), where S(x) is the 3rd example of
X—

non-existence of limits. Since S(x) takes values between +1 it
follows that xS(x) takes values between =£x.

To avoid the x > 0 and x < 0 cases we work with [xS(x)]:
0<IS(x)| <1 = 0 < |xS(x)| < |x].
Since lim |x| = 0, the Sandwich Theorem gives lim |xS(x)| = 0.
x—0 x—0
Hence, lim xS(x) = 0.
x—0
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Let a > 0 and consider lim v/x.
X—a
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Let a > 0 and consider lim v/x.
X—a

The natural guess for this limit is \/a. To confirm this, we
calculate as follows:
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Let a > 0 and consider lim v/x.
X—a

The natural guess for this limit is \/a. To confirm this, we
calculate as follows:

x —a

R

0< |Vx—+Va| =

e
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Let a > 0 and consider lim v/x.
X—a

The natural guess for this limit is \/a. To confirm this, we
calculate as follows:

0< |Vx—+Va| =

x —a

R

e

0.

We have |lim X — al =

x—a \/5
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Limit of square root function

Let a > 0 and consider lim v/x.
X—a

The natural guess for this limit is \/a. To confirm this,

calculate as follows:

0< VX - val = \

< x=al

Va

—a

We have |lim X — al =0.

x—a \/5

Hence, by the Sandwich Theorem, lim lvVx —+/a| = 0.
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We say that lim f(x) = L if for every € > 0 there is a
X—p+

corresponding 6 > 0 suchthat 0 < x —p < d = |f(x) — L| <e.
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Left and right limits TP S
We say that lim f(x) = L if for every € > 0 there is a
X—p+

corresponding 6 > 0 such that 0 < x —p < = |f(x) — L| <e.

The quantity Iim+ f(x) is called the right-hand limit of f at p.
X—>p
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Left and right limits TP S

We say that (x) = L if for every € > 0 there is a

lim f
x%lrp+
corresponding 6 > 0 such that 0 < x —p < = |f(x) — L| <e.

The quantity Iim+ f(x) is called the right-hand limit of f at p.
X—>p

We say that lim f(x) = L if for every € > 0 there is a
X—p—

corresponding 6 > 0 suchthat 0 < p—x <d = |f(x) —L| <e.
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Left and right limits TP S

We say that (x) = L if for every € > 0 there is a

lim f
x%lrp+
corresponding 6 > 0 such that 0 < x —p < = |f(x) — L| <e.

The quantity Iim+ f(x) is called the right-hand limit of f at p.
X—>p

We say that lim f(x) = L if for every € > 0 there is a
X—p—
corresponding 6 > 0 suchthat 0 < p—x <d = |f(x) —L| <e.

The quantity lim f(x) is called the left-hand limit of f at p.
X—p—
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Left and right limits TP S

We say that (x) = L if for every € > 0 there is a

lim f
x%lrp+
corresponding 6 > 0 such that 0 < x —p < = |f(x) — L| <e.

The quantity Iim+ f(x) is called the right-hand limit of f at p.
X—>p

We say that lim f(x) = L if for every € > 0 there is a
X—p—

corresponding 6 > 0 suchthat 0 < p—x <d = |f(x) —L| <e.

The quantity lim f(x) is called the left-hand limit of f at p.
X—p—

The right-hand limit at p can be considered if there is an a > 0
such that (p, p + «) is in the domain of f. The left-hand limit
needs an « > 0 such that (p — «, p) is in the domain.
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Right-hand Limit Left-hand Limit
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Jim () =1
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Theorem 8
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Proof. (= ): Let ¢ > 0.
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Jim () =1

Thereisad >0st. 0<|x—p|<d = |f(x)—L|<e.
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One-sided and two-sided limits O SAMBRIDGE
Theorem 8
)llnp f(x) = L if and only lfxlrg+ f(x) = XL”I,L f(x) = L. J

Proof. (= ): Let € > 0.
Thereisad >0st. 0<|x—p|<d = |f(x)—L|<e

The same § works for lim f(x) =L and lim f(x)=L.
X—p+ X—p—
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Theorem 8
lim f(x) =L if ly if lim f(x)= lim f(x)=L.
Jim, (x) if and only i Jim (x) Jim_ (x)

Proof. (= ): Let € > 0.

Thereisad >0st. 0<|x—p|<d = |f(x)—L|<e
The same § works for lim f(x) =L and lim f(x)=L.
X—rp+ X—p—

(<): Let e > 0.
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Theorem 8

lim f(x) =L ifand only if Ilim f(x)= lim f(x)= L.

lim £(x) yif lim ()= lim_(x)

Proof. (= ): Let € > 0.

Thereisad >0st. 0<|x—p|<d = |f(x)—L|<e
The same § works for lim f(x) =L and lim f(x)=L.
X—rp+ X—p—

(<): Let e > 0.

Thereisad; >0st. 0<x—p<d = |f(x)—L|<e.
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Theorem 8

lim f(x) =L ifand only if Ilim f(x)= lim f(x)= L.

lim £(x) yif lim ()= lim_(x)

Proof. (= ): Let € > 0.

Thereisad >0st. 0<|x—p|<d = |f(x)—L|<e
The same § works for lim f(x) =L and lim f(x)=L.
X—rp+ X—p—

(<): Let e > 0.

Thereisad; >0st. 0<x—p<d = |f(x)—L|<e.
Thereisado>0st. 0<p—x<d = |f(x)—L|<e.
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Theorem 8

lim f(x) =L ifand only if Ilim f(x)= lim f(x)= L.

lim £(x) yif lim ()= lim_(x)

Proof. (= ): Let € > 0.

Thereisad >0st. 0<|x—p|<d = |f(x)—L|<e
The same § works for lim f(x) =L and lim f(x)=L.
X—rp+ X—p—

(<): Let e > 0.

Thereisad; >0st. 0<x—p<d = |f(x)—L|<e.
Thereisado>0st. 0<p—x<d = |f(x)—L|<e.
Then 6 = min{d1, 62} works for )!ian f(x)=L:
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Theorem 8

lim f(x) =L ifand only if Ilim f(x)= lim f(x)= L.

lim £(x) yif lim ()= lim_(x)

Proof. (= ): Let € > 0.

Thereisad >0st. 0<|x—p|<d = |f(x)—L|<e
The same § works for lim f(x) =L and lim f(x)=L.
X—rp+ X—p—

(<): Let e > 0.

Thereisad; >0st. 0<x—p<d = |f(x)—L|<e.
Thereisado>0st. 0<p—x<d = |f(x)—L|<e.
Then 6 = min{d1, 62} works for )!ian f(x)=L:

O<|x—p|<d = 0<x—p<dor0<p—x<9
— 0<x—p<fhor0<p—x<dh
= |f(x)—L| <e.
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Consider the Heaviside step function H(x) = { 1

if x <0,
if x> 0.
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if x <0,

Consider the Heaviside step function H(x) = { (1J £ x>0

We calculate the one-sided limits at zero:

lim H(x)= lim 1=1,

x—0+ x—0+
lim H(x)= lim 0=0.
x—0— x—0—
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Consider the Heaviside step function H(x) = { (1) ::;( i 8’

We calculate the one-sided limits at zero:

lim H(x)= lim 1=1,

x—0+ x—04
lim H(x)= lim 0=0.
x—0— x—0—

Since the one-sided limits are not equal, Iim0 H(x) does not exist.
X—
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Confirm that the Algebra of Limits and the Sandwich Theorem
also hold for one-sided limits.
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