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Preface

This set of exercises and study guide has been developed for use with the text
book “The Physics and Chemistry of the Interstellar Medium” (A.G.G.M. Tie-
lens, 2005, Cambridge University Press: ISBN-13 978-0-521-82634-9). Note that
errata for the first printing are provided on the Cambridge University website:
http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521826349under the
button for online support material and you should get those before embarking
on these exercises.

The set of exercises were developed over several years teaching this course
and they serve several aims. First, I like to discuss many of the simple estimates
included here during the actual lectures to provide the students with a back-
off-the-envelope feeling for the problem. Second, some exercises are meant to
force the student to derive relationships given in the text. For many students,
deriving an equation gives them a better grip on the issues involved, as well as
forces them to assimilate the text. Third, some exercises are included for the
students to work out ‘real’ problems such as deriving physical conditions from
observations. This provides the student with valable hands-on experience in
working with these difficult matters. Finally, I have also included some questions
which should help the student focus on what they are supposed to have learned
in a chapter. These ‘compare and contrast’ questions are not meant to lead to
long essays but rather to a short synopsis of the key processes or issues. To the
instructor, these questions provide a good way of stimulating participation in a
class setting and to gauche how well the students have absorbed the subject.

To the students: Do not feel discouraged if you are unable to immediately
solve these exercises. It took me five years to write this book and develop these
questions and it took me a lifetime to get the hang of the interstellar medium.
In my experience, persistency always pays off and your time will come.

Acknowledgements I am very grateful to Jacquie Keane, Leticia Mart́ın-
Hernández, Chris Ormel, and Els Peeters for assistance in developing these
exercises.
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1.1 Chapter 1

Figure 1.1: The multiwavelength interstellar medium: maps of the Milky Way
at ten wavelengths, from radio waves to gamma rays. Taken from the website:
http://adc.gsfc.nasa.gov/mw/milkyway.html

1. The multiwavelength Milky Way

Figure 1.1 shows a set of images of the Milky Way at wavelengths rang-
ing from γ-rays to the radio regime. These are taken from the website,
http://adc.gsfc.nasa.gov/mw/milkyway.html, and you should go to this
url for this exercise. This data allows for a quick comparison of the Milky
Way at these different wavelength. Perusal of these images can be very
illuminating. The aim of this exercise is to gain an understanding of what
objects show up at certain wavelengths.

(a) Give two reasons why the galactic plane is hardly visible at optical
wavelengths while it is very prominent at near-infrared through far-
infrared wavelengths.

(b) Explain why the mid-plane of the galaxy is dominated by relatively
hard X-ray emission (1.5 keV), while emission at 0.25 keV dominates
at higher lattitudes.
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(c) Why is the diffuse γ-ray emission an excellent tracer of interstellar
gas ?

(d) Describe and explain the appearance of the supernova remnant, Cas
A (` = 112o), at the various wavelengths.

(e) At (`, b) = (50, 0)
o
, a discrete object is visible at certain wavelengths.

What kind of object might this be ? Explain your answer.

(f) Explain why the Crab pulsar is visible (at ` = 185o) in the radio,
X-ray, and γ-ray maps.

2. Many molecules are ionized or dissociated by photons in the range 6-
13.6 eV. For the interstellar radiation field (eqn (1.1)), calculate the mean
photon intensity in this range. Some species (eg., H2, CO, and C) are only
affected by photons above 11 eV. Calculate the mean photon intensity in
this range as well.

3. Contrast and compare the emission spectra of HII regions, reflection neb-
ula, dark nebula, photodissociation regions, and supernova remnants and
link these differences to the relevant physical processes.

4. Contrast and compare the emission spectra of the Warm Neutral Medium,
the Warm Ionized Medium, and the Hot Intercloud Medium.

5. Based upon their spectral characteristics, try to link the different phases
of the interstellar medium to classes of objects. What does this suggest
about the physical processes involved in the phase structure of the ISM ?

6. The vertical distribution of the various phases of the ISM are very different
(cf., Table 1.1). What could be the cause ?

7. Compare and contrast the characteristics of interstellar dust and interstel-
lar PAHs.

8. Examine the different energy sources for diffuse clouds in table 1.2 and
section 1.3. Many of these have very similar energy densities. Why, then,
do the heating rates differ by over an order of magnitude ?

9. Take on a lotus position and contemplate thermodynamic equilibrium. In
order to become one with the universe, equilibrium is preferred. However,
astronomers like the opposite. Why would that be ?

1.2 Chapter 2

1. Calculate the force constants from the vibrational frequency of the stretch-
ing vibration in CO (ν = 2140 cm−1). In what sense would the force
constant change for the CO transition in a carbonyl and in an ether ?

2. Rotational spectroscopy: Consider CO as a linear, rigid rotor.
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(a) The frequency of the J=1-0 transition of the main isotope of CO
(12C16O) is 115.3 GHz. What is the internuclear distance in this
molecule ?

(b) How large a frequency shift can be expected for the J=1-0 transition
in the 13C16O isotope ? (Hint: the internuclear distance will not
change).

3. Derive the approximation for the partition function on the right-hand-side
of equation (2.14) (Hint: approximate the summation by an integration).

4. Calculate the Einstein A transition probability for the J = 1−0 transition
of CO. The dipole moment of CO is 0.108 Debey.

5. The line averaged optical depth, corrected for stimulated emission is given
by,

τul = (nlBlu − nuBul) hνul
∆z

∆ν
(1.1)

with ∆ν the linewidth. Using the relationships between the Einstein co-
efficients (Eq. (2.16-2.18), derive expression Eq. (2.43).

6. Derive an heuristic expression for the escape probability by considering
the decrease in the intensity emitted at optical depth τ and averaging this
over the slab (eg., calculate 〈exp [−τ ]〉). What is the physical significance
of the 1/τ dependence for large τ ? More exact approaches average this
escape factor over direction and/or frequency, but the significance is the
same.

7. Derive the expression for the emergent intensity from a homogeneous,
plane parallel, semi-infinite slab (Eq. (2.47) and (2.48) from equation
(2.46) using equations (2.20) (neglecting background radiation), (2.43),
and (2.44). Check both limits (eqn. (2.49) and (2.50)).

8. CO rotational emission:

(a) Assuming optically thin emission in LTE, what is the expected in-
tensity of the J = 1−0 line for a column of 1015 CO molecules cm−2

at T = 10 K ?

(b) For a line width of 2 km/s, what is the corresponding peak brightness
temperature ?

(c) What is the expected optically thick peak brightness temperature for
the line ?

(d) The measured peak brightness temperatures for the two main iso-
topes of CO are TB

(

12C16O
)

= 12.4 K and TB

(

12C16O
)

= 4.9 K.
Assuming that 12C16O is optically thick and 13C16O is optically thin
and adopting a 12C16O/13C16O ratio of 65, what is the column den-
sity of 12C16O ?
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9. CO rovibrational absorption. Consider a strong mid-infrared source (in-
tensity I0) behind a cold (T = 10 K) foreground molecular cloud with a
CO column density of 1017 cm−2.

(a) Starting from Eq. (2.2) for a harmonic oscillator and a rigid rotor,
derive the ro-vibrational absorption pattern of CO molecules in the
spectrum of the background source.

(b) The Einstein A coefficient for the transition from (v = 1, J ′′) →
to(v = 0, J ′) is given by

Aul =
64π4ν̃3

3h
|µv|2

L(J ′′)

gu
, (1.2)

with ν̃ the frequency of the transition in cm−1, µv is the dipole
moment (0.108 D for CO), and L(J ′′) the Hönl-London factor which
for a linear molecule is given by J ′′ for the P-branch and J ′′ + 1 for
the R-branch. Assuming thermodynamic equilibrium, calculate the
population of a number of low-lying lines, and the optical depth in
the relevant transitions, and sketch the spectrum.

(c) In what sense would the spectrum change if the temperature were
100 K ?

10. The cooling of the phases of the ISM

(a) Adopting the characteristics of the different phases in Table 1.1, es-
timate the cooling rate per atom in the HIM, WNM, and CNM from
Figure 2.10.

(b) Adopting the total masses of gas in these different phases given in
Table 1.1, show that the total luminosities are ∼ 1040, ∼ 5 × 1040,
and ∼ 3 × 1041 erg s−1 for the HIM, WNM, and CNM, respectively.

(c) Explain why – while the total luminosity of the CNM is substantially
larger than the luminosity of the other phases – the other phases can
still be readily observed.

11. List the Bracket lines (Hα, Hβ, Hγ, . . . ) in order of increasing Einstein
A transition coefficient. Do the same for the Lyman α, Bracket α, and
Paschen α transitions. Explain your ordering.

12. The optical spectra of laboratory plasma’s are characterized by allowed
transitions, while for interstellar plasma’s, forbidden lines are prominent.
HII regions are a case in point. Explain this difference. In what interstel-
lar environment do you expect that allowed recombination lines will far
outshine forbidden transitions ?

13. Why does a molecule have so many more transitions than an atom ?
Ignoring electronic excitation, in LTE at a fixed temperature, what does
this mean for the internal energy of an H atom as compared to an H2
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molecule ? And, assuming equal mass, for the internal energy of an atomic
hydrogen gas as compared to a molecular hydrogen gas ? How would this
change at the low densities of the ISM ?

14. Compare the emission spectrum of CO gas at 10 K and 1000 K. Compare
the emission spectrum of CO gas and C gas at 10 K. Explain the differ-
ences. For the same energy input, would CO gas be warmer, cooler, or at
the same temperature as C gas ?

15. Radiative transfer of cooling lines has a large influence on the thermal
structure of a cloud. Describe these effects qualitatively.

1.3 Chapter 3

1. Estimate the heating rate by stellar photons in an HII region, assuming a
neutral hydrogen fraction of 10−3. Adopt a total stellar ionizing photon
luminosity of 5 × 1049 photons s−1, a mean photon energy of 25 eV, a
distance of 1 pc, and an average photo-ionization cross section αH =
3 × 10−19 cm2.

2. Estimate the heating rate due to CI ionization (per H-atom) in an HI
region due to the average interstellar radiation field for a neutral carbon
fraction, f(CI). Adopt a mean CI photo-ionization cross section of 10−17

cm2, a gas phase carbon abundance of 10−4, a mean CI-ionizing photon
intensity of 106 cm−2 s−1 sr−1, and a mean photon energy of 12 eV.
Compare your result to Eq. (3.8).

3. Estimate the photo-electric heating rate per H-atom due to the ioniza-
tion of neutral PAHs in the average interstellar radiation field. Adopt
an ionization potential of 6 eV, a mean photo-ionization cross section per
C-atom of 7 × 10−18 cm2, a fraction of the carbon locked up in PAHs
of 0.05, an elemental carbon abundance of 3.5 × 10−4, a mean ionizing
photon intensity of 107 cm−2 s−1 sr−1, and a mean photon energy of 10
eV. Compare your result to Eq. (3.17).

4. Estimate the cosmic ray heating rate. Adopt the interstellar proton cosmic
ray flux after correction for Solar wind modulation (Fig. 1.11), an aver-
age cross section of 1 Å2, 0.8 secondaries per primary ionization, and an
average energy per ionization of 7 eV. Compare your result to Eq. (3.31).

5. Estimate the unattenuated X-ray heating rate. Adopt the photon flux
and cross section for 125 Å(' 0.1 keV; cf, Fig. 1.9 and 3.6), and a mean
kinetic energy of the electron of 2 eV.

6. Estimate the H-column required for unit optical depth at 0.1 and 1 keV.
Can you now understand the general behavior of the X-ray heating rate
in Fig. 3.7 ?
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7. Derive the expression for the Kolmogorov energy spectrum (Eq. 3.37).

8. Compare and contrast the important heating sources of ionized and neu-
tral atomic gas.

1.4 Chapter 4

1. Using the potentials given (Eq. 4.11 and 4.13), derive the general expres-
sions for the rate coefficients of neutral-neutral (Eq. 4.12) and ion-molecule
(Eq. 4.14) reactions. Hint: Adopt an effective potential, Veff (r) = V (r)+
L2/2mr2, with L = mvb the angular momentum in the collision (v and
b are the velocity and impact parameter at large distances). The second
term in this expression is the centrifugal barrier. Assume that a reaction
will occur if this centrifugal barrier can be overcome. Thus, calculate the
maximum impact parameter, which leads to orbiting of the colliding parti-
cles; e.g., at closest approach, the effective potential has to be zero. Then
average this impact parameter over the Maxwellian velocity distribution.

2. Evaluate the energy absorbed/released in the reaction: CH + O −→ CO
+ H at 0 K and atmospheric pressure using the heats of formation given
in Table 4.5.

3. Chemical thermodynamics is an important tool for chemist. It will tell
whether two species will react when brought together. If a reaction occurs,
it will also provide the energy released and the equilibrium abundances
of the species (reactants and products) involved. However, chemical ther-
modnamics will not provide reaction rates. Here, we will consider the
reaction of H2 with O2 forming H2O.

(a) Write down this reaction.

(b) Evaluate the energy absorbed/released at 0 K and atmospheric pres-
sure using the heats of formation (change in enthalpies) given in Table
4.5 (Note the error in the first printing of the book. How did you
guess that this was in error ?).

(c) The equilibrium constant of a reaction, Ke, is given by ∆G = RT ln Ke

with ∆G the change in the Gibbs free energy and R the gas constant.
The Gibbs free energy is given by ∆G = ∆H − T∆S with ∆S the
change in entrpy. Thus, a reaction will tend to proceed in the di-
rection of decreased energy (negative ∆H) and maximum disorder
(positive ∆S). At the low T of the ISM, we can ignore the entropy
change. Calculate the equilibrium constant.

(d) Do you think this reaction will occur in the ISM ? Explain your
answer.

4. Cosmic ray ionization of molecular hydrogen leads to the formation of
H+

3 . This species can transfer its “excess” proton to other species present
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in a cloud. We will consider here: coronene and CO. If we assume that
the degree of ionization is very low (eg., ignore recombination timescale),
where would this extra proton eventually wind up.

5. Evaluate and plot the lifetime of the activated complex (Eq. (4.20)) as a
function of energy (eg., n) for a fixed size of s = 9 and s = 12. Discuss
your results.

6. Consider the molecule AB formed through the following reactions,

A + B −→ AB + hν k1 (1.3)

and

A + BC −→ AB + C k2 , (1.4)

and destroyed through the reactions

AB + D −→ A + BD k3 (1.5)

and

AB + hν −→ A + B k4 . (1.6)

Derive expressions for the steady state abundance of AB in terms of the
abundances of the other species.

7. Consider a species physisorbed on a grain surface. Evaluate, as a function
of binding energy (between 300 and 800 K), the evaporation timescale
and the thermal hopping timescale at a temperature of 10 K and 30 K.
Compare your results graphically with the rate of arrival of coreactants
on a grain of 1000 Å for a gas phase density of coreactants of 1 cm−3. CO
is the main accreting species with a density of 10 cm−3. If we assume that
CO is chemically inert on a grain surface, evaluate (and compare) the rate
at which newly accreted species are buried in the ice.

8. Assume that a newly accreted H atom can react with one CO or one O3

molecule, evaluate the relative probability for reaction. Do the same for
a newly accreted D atom. Compare these probabilities. What does this
imply for deuterium fractionation on grain surfaces ?

9. Compare and contrast the various chemical gas phase reactions. Describe
the “general” rules controlling gas phase routes in the ISM and their “ra-
tional”.

10. Describe the various factors controlling surface reactions. Describe the
“general” rules controlling grain surface routes in the ISM and their “ra-
tional”.

11. Describe the pro’s and con’s of the various theoretical methods devised to
describe grain surface chemistry.
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1.5 Chapter 5

1. Extinction by dust in our galaxy is very patchy. Here, we will consider a
cloud with a size of 5 pc, a hydrogen density of 50 H-atoms cm−3 and a
dust-to-gas mass fraction of 10−2. We will asssume spherical dust grains
with a radius of 0.1 µm and a specific density of 3 g cm−3. What is the
visual extinction through this cloud if these grains absorb with unit effi-
ciency ? If clouds are randomly distributed and the mean visual extinction
is 1.8 mag kpc−1 in the plane of the Milky Way, on average, how many
clouds are there per kpc ?

2. Because of radiation pressure, a dust grain at a distance ro from a star
with luminosity L? will be accelerated to a terminal velocity,

v (term) =

(

3L?Qrp

8croaρs

)1/2

(1.7)

with a the grain size, ρs the specific density of the grain material, and Qrp

the radiation pressure efficiency.

(a) Derive this expression, starting from

Frp = Crp
F

c
(1.8)

with Crp the radiation pressure efficiency. (Hint: F = mvdv/dr).

(b) Calculate the terminal velocity for a grain radius of 0.1 µm, a spe-
cific density of 3 g cm−3, a radiation pressure efficiency of 1, and a
luminosity of 104 L�.

3. Derive equation (5.26) from equations (5.24) and (5.22).

4. The 2175 Å bump in the interstellar extinction curve is often represented
by a Drude profile. In conductors, the valence and conduction bands
overlap and electrons can be excited even by low energy photons. The
optical response of the “free” electrons in conductors can be described by
the Lorentz model without restoring forces and the dielectric constants
are given by the Drude model (Eqn. (5.31) with ω0 = 0),

ε = 1 − ω2
p

ω2 + iγω
(1.9)

with real and imaginary parts,

ε1 = 1 − ω2
p

ω2 + γ2
(1.10)

ε2 =
ω2

pγ

ω (ω2 + γ2)
(1.11)
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We will adopt here ωp = 8.7 × 1015 s−1 and γ = 1.9 × 1015 s−1. For
spheres, this will result in a feature centered at 2175 Å with a width of 1
µm−1.

(a) Calculate the optical constants between 1400-4000 Å and the extinc-
tion profile for spheres in the Rayleigh approximation (Eqn. (5.26).
Check that peak and width correspond to those observed in the in-
terstellar extinction curve.

(b) Calculate the extinction properties for small disks. Compare the peak
and the profile in this case with those in the case of a sphere.

(c) Demonstrate that the shift in peak position is given by
√

L.

5. Derive equation (5.34) from equations (5.33) and (5.32).

6. Calculate the temperature of a silicate grain in the diffuse interstellar
medium, adopting the Planck mean efficiencies given in equation (5.35),
a UV absorption efficiency of unity, and an integrated interstellar photon
radiation field, 4πNIRSF = 108 photons cm−2 s−1 and a mean photon
energy of 10 eV.

7. Consider a comet with a radius of 1 km and a mean density of 1 g cm−3

at a distance of 4 AU from the Sun.

(a) Calculate the temperature, assuming that the comet can be repre-
sented by a black body.

(b) Calculate the temperature of a 0.1 µm silicate dust grain ejected by
this comet (use eqn. (5.35) in the IR and a UV/visual absorption
efficiency of 1).

(c) If the Deep Impact mission had catastrophically destroyed this comet
into a big cloud (eg., all dust grains see the same Solar radiation field)
of 0.1 µm fragments, calculate the total IR emission. Compare this
to the IR emission of the comet itself.

8. Assuming a balance between the photo-electric effect and electron colli-
sions, calculate the grain charge and potential in the IC63 PDR (G0 =
6 × 102, ne = 6 cm−3 and T = 200 K). Adopt a work function of 5 eV.

9. Generally for PDRs, G0/n ∼ 1 and hence γ ∼ 105. The resulting high
grain potential reduces then the photoelectric effect substantially. We will
examine the implications here. Start with equation (5.59) and assume,
for simplicity, a constant UV dust absorption cross section, σd, a constant
yield, Y (adopt Y = 0.1), and approximate the FUV photon field by
4πN = 1.5× 10−8 (νH/ν)3 G0 photons cm−2 s−1 Hz−1. Balance this with
collisional electron charging (Eqn. (5.51)) with a sticking coefficient, se, of
unity and a reduced rate, J̃ , given by (1 + Zde

2/akT ). Realize now that
if Zd � 1, the integration limit in equation (5.59) is linked to ionization
potential and the grain charge by Zde

2/a = hνZd
− W . Introducing the
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following parameters, x = νZd
/νH, xd = W/hνH, xk = kT/hνH, and

γ1 = 2.9 × 10−5 γ with γ = G0T
1/2/ne, we can rewrite the ionization

balance to

x3 + (xk − xd + γ1) x2 − γ1 = 0 (1.12)

(a) Derive this equation.

(b) We will assume that xk � xd. When the photo-electric ejection rate
is small, γ1 � xd and we are in the limit of uncharged grains. Derive
an expression for the grain charge in this limit (assume x − xd = δ
with δ small). Because of the various approximations, these results
are slightly different from eqn. (5.81) in the book. Calculate the grain
charge for a 1000 Å grain.

(c) Again, we will assume that xk � xd. When the photo-electric ejec-
tion rate is large, γ1 � xd and the grains will be highly charged. De-
rive an expression for the grain charge in this limit (assume 1−x = δ
with δ small). Calculate the grain charge for a 1000 Å grain.

(d) The heating rate is given by

nΓd = ndσd Y

∫ νH

νZ
d

4πN (hν − hνZd
) dν (1.13)

For the total dust cross section, ndσd per unit volume, adopt 5 ×
10−22δuvn cm −1 with n the density of H nuclei and δuv the increased
dust cross section compared to classical grains (responsible for the
visual extinction; δuv = 1.8). The heating rate can then be written
as,

nΓd = 2.7 × 10−26 δuvnG0

[

(1 − x)
2

x

]

. (1.14)

Derive this expression. Note that the heating decreases with increas-
ing grain charge because fewer photons can further ionize a grain and
because the energy per ionization is less. Derive limiting expressions
for large and small γ1.

(e) Calculate the heating rate as a function of density, using an electron
abundance of 1.5 × 10−4, T = 300 K, and G0 = 10−5. (Hint: solve
the grain ionization equation for γ1 as a function of x and derive for
the adopted x the value of n). Compare your result with the results
from Eqn. (3.16) and (3.17) in the book. Note the differences for large
γ1 (low density). This reflects the presence of a charge distribution
which the formalism in the book takes into account.

The notation is slightly different from the book because it adheres to the
formalism first developed by de Jong, T., 1977, A & A, 55, 137.

10. The grain size distribution.
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(a) Adopt the MRN grain size distribution (Eqn. (5.97)), calculate the
total surface area and total volume of interstellar dust grains.

(b) Calculate the fraction of the surface area in grains less than 200Å
and the fraction of the total volume in grains larger than 200 Å.

(c) Suppose the grain size distribution extends into the molecular regime
(e., down to 5 Å). Again, calculate the fraction of the surface area in
grains less than 200Å.

11. Compare and contrast the processes that heat and cool interstellar dust
to those of interstellar gas. Do you expect dust to be hotter or cooler than
gas in HII regions ? And in neutral atomic regions ? And in molecular
clouds ? Explain your answer.

12. Compare and contrast the processes that contribute to the charging of
interstellar dust and the conditions when they dominate.

13. Describe the various methods to determine the mass of interstellar dust
and their results.

14. Describe the various methods to determine the sizes of interstellar dust
and their results.

15. Summarize the composition of interstellar dust and the observations sup-
porting their identification.

1.6 Chapter 6

1. In this exercise, we will contrast the absorption and emission characteris-
tics of a 50 C-atom PAH molecule with a spherical graphite dust particle
with a radius of 100 Å (and a specific density of 2.2 g cm−3).

(a) Calculate the radiative equilibrium temperature of the graphite grain
in the interstellar radiation field (cf., Eqn. (5.42)).

(b) If we assume that both the PAH and the dust grain are at 20 K,
calculate the energy content (in eV) of each, given a energy per mode
of 0.05 cm−1.

(c) Calculate the UV absorption timescale for the PAH molecule (Eqn. (6.4))
and for the graphite grain (adopt the interstellar UV radiation field,
(eg., G0 = 1 or 4πNUV = 108 photons cm−2 s−1) and a UV extinction
efficiency of 1).

(d) Assume that each absorbs a 10 eV photon. Calculate the tempera-
ture of each immediately after absorption. (Hint: For the PAH use
Eq. (6.18). For the dust grain, assume a heat capacity given by,
CV = 3.84 × 102 V T 2 erg K−1, which results in a slightly higher
temperature than Eqn. 6.18 would predict).
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(e) The (energy) cooling rate (kE ≡ dE/dt) is given by

k−1
E = 4π

∫ ∞

0

σ(ν)B(ν, T ) dν (1.15)

i. Calculate the cooling timescale for the dust grain, adopting the
expression for the Planck mean efficiency for graphite grains
(Eqn. (5.36)).

ii. Calculate the cooling timescale for the PAHs, assuming that their
emission is dominated by one mode at 1600 cm−1 with an inte-
grated strength of σ = 4 × 10−7 cm−2 Hz−1 (C-atom)−1.

iii. Derive expressions relating the temperature cooling timescale
(dT/dt) to the energy cooling rate. (Hint: use Eqn. (6.18) for
the PAH and the expression for the heat capacity for the grain
given above). Evaluate these expressions immediately after UV
photon absorption.

(f) Following Figure 6.5, sketch the time dependence of the temperature
of the PAH and the graphite grain over an interval of a year. How
will this figure change if G0 increases to 105, appropriate for a PDR
? Explain your answer.

(g) When the emitters are not in radiative equilibrium, we can approxi-
mate the IR intensity by

I(ν) = niσiB(ν, T )
kUV

kE
(1.16)

evaluated directly after absorption. Calculate the IR spectrum as-
suming a density of PAH of 3×10−7n and a density of small graphite
grains of 2×10−9n. For the emission properties adopt the single mode
at 1600 cm−1 for the PAH and a β-law (Eqn. (5.32)) for the dust
(β = 1.2 is appropriate for amorphous carbon grains). In addition,
assume the presence of 2000 Å dust grains in radiative equilibrium
with the interstellar radiation field at 20 K and with an abundance of
4×10−13 per H nuclei (set kUV equal to kE for radiative equilibrium).

(h) Plot these spectra and compare them to the observed IR spectrum
of the interstellar medium (Fig. 5.13). Realize that the actual spec-
trum of the small dust grains will be somewhat broadened to longer
wavelengths. How will these spectra change if G0 increases to 105

appropriate for PDRs ? Explain your answer.

2. The ionization balance for PAHs:

(a) Derive equation (6.58) for a PAH with two accessible ionization stages,
neutral and singly ionized.

(b) As for dust grains, the ionized fractions of PAHs are given by equa-
tions (5.49) and (5.50). Consider coronene in the diffuse ISM. The



1.7. CHAPTER 7 15

various rates involved in the ionization balance are given in Table
6.2. Calculate the charge distribution and compare to Figure 6.7 (γ
in Figure 6.7 is defined as G0T

1/2/ne).

3. Unimolecular reactions involving PAHs:

(a) Adopt the Arrhenius dissociation rate for the unimolecular reaction
(Eqn. (6.73)) and calculate the H-loss rate from coronene assuming
a critical energy of 3.3 eV and a pre-exponential factor of 3 × 1016

s−1 after absorption of a 10 eV photon.

(b) With an IR cooling timescale of 1 s, what is the probability of disso-
ciation ?

(c) Recalculate the probability for dissociation if the molecule has lost 2
eV through IR radiation.

(d) With the UV absorption rate given by equation (6.4) and an associa-
tion rate of 2×10−8 cm3 s−1, calculate the fraction of circumcoronene
molecules that will have lost an H-atom in the diffuse ISM (G0 = 1,
n = 50 cm−3).

(e) What will this fraction be in a PDR (G0 = 105, n = 105 cm−3) ?

4. Derive equation (6.86) from fIR/(1 − fIR) = τFUV(PAHs)/τFUV(dust).
With fIR = 0.13, check that the abundance of 50 C-atom PAHs is 3×10−7

per H nuclei.

5. Describe the heating and cooling of interstellar PAHs and make a com-
parison with the heating and cooling of large interstellar dust grains. In
this, focus on understanding figure 6.5.

6. Compare and contrast the processes that contribute to the charging of
interstellar PAHs and contrast them to those involved in the ionization
balance of interstellar dust.

7. Discuss the photochemistry of interstellar PAHs

8. Describe the infrared characteristics of interstellar PAHs and discuss how
size and abundance of interstellar PAHs can be derived from the observa-
tions.

9. Compare and contrast the characteristics (temperature, spectra) of inter-
stellar PAH, fullerenes, nano-diamonds, and nano-silicon.

1.7 Chapter 7

1. The ionization structure of HII regions containing only H:
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(a) Calculate the stellar photon radiation field at a distance of 0.5 pc
from an O4 star (Table 7.1). What is the timescale for ionization of
a neutral H atom due to this radiation field if the average ionization
cross section is equal to 5 × 10−2α0 (with the threshold ionization
cross section, α0 equal to 6.3 × 10−18 cm2) ?

(b) The recombination timescale for a proton is given by (βBne)
−1 with

βB = 2.6 × 10−13 cm3 s−1 the recombination rate coefficient to all
levels with n ≥ 2. Assume that essentially all H is ionized, compare
these timescales and derive the neutral fraction at a density of 103

cm−3.

(c) Following the same procedure, what is the neutral fraction at a dis-
tance of 1 pc from an O4 star ?

(d) Adopt an average neutral fraction of 10−3 in the nebula and calculate
the optical depth for stellar photons at a distance of 0.5 pc and 1 pc,
respectively.

(e) Derive equations (7.21) and (7.22) from equations (7.19) and (7.20).

(f) Plot the neutral fraction and the optical depth through an HII region
with a density of 103 cm−3 ionized by an O4 star.

(g) Calculate the Strömgren radius of an HII region ionized by an O4
star with a density of 103 and 104 cm−3, respectively. Check that
the HII region with the lower density has a higher mass of gas. What
is the origin of this apparent contradiction ?

2. The effect of dust on the ionization structure of HII regions:

(a) Substitute equation (7.19) into equation (7.45) and make the assump-
tion 1 − x � 1 and the substitution τ = ln u to arrive at equation
(7.46).

(b) Derive the solution, equation (7.47), by substituting y = u exp[τdz]
and using the standard integral

∫

x2 exp[ax] dx =
exp[ax]

a

(

x2 − 2x

a
+

2

a2

)

(1.17)

and the boundary conditions tau(z = 0) = 0.

(c) Get the correct expressions for equations (7.48) and (7.49) from
the errata. Derive the right-hand-side of these equations from the
left-hand-side and derive equation (7.50) from equations (7.48) and
(7.49).

(d) Write down the expression for the size, z0 of the HII region in the
presence of dust. Plot the size of the HII region as a function of τd

(Hint: This transcendental equation is readily solved by substituting
y0 = τdz0, realizing that 6/τ3

d = 6z3
0/y3

0 , and solving for z0 for given
y0. The τd corresponding to a resulting z0 can then be found from
y0.)



1.7. CHAPTER 7 17

3. Here, we will consider the ionization structure of trace species with Neon
as an example. Neon has three relevant ionization stages for HII regions
(eg., Ne0 with an IP of 21.6 eV, Ne+ with an ionization potential of 41
eV, and Ne2+ with an ionization potential 54 eV, the ionization potential
of He+): we will label these 0, 1, and 2. The relevant ionization cross
sections averaged over a 50000 K black body are equal to α0 = 8× 10−18

cm2 and α1 = 8×10−18 cm2. The radiative recombination rates are given
by β1 = 2.2 × 10−13 cm3 s−1 and β2 = 2.2 × 10−13 cm3 s−1 at Te = 104

K. For simplicity, we will adopt a black body radiation field and consider
only ionization by the stellar radiation field.

(a) The abundances of the three ionization stages –relative to the total
Neon abundance – are given by

X1 =

(

1 +
β1

α0 4πN0
+

α1 4πN1

β2

)−1

(1.18)

X0 =
β1

α0 4πN0
X1 (1.19)

X2 =
α1 4πN1

β2
X1 (1.20)

where z is R/Rs and 4πNi are the relvant stellar ionization photon
fields. Derive these expressions from the ionization balance equations
and the conservation equation.

(b) Calculate the ionization parameter, U – as defined in equation (7.34)
– for an O4 star and a density of 103 cm−3.

(c) The relevant ionizing radiation fields can be written in terms of the
ionization parameter as,

4πNi =
cUfi

z2

(

1 − z3
)

(1.21)

The factors f0 (0.32) and f1 (0.021) are the fractions of the stellar
ionizing photon radiation field that can ionize Ne0 and Ne+. The z2

factor takes spherical dilution into account while the 1 − z3 factor
accounts for attenuation. Derive this expression (hint: use equation
(7.21)).

(d) Plot the ionization structure of Neon as a function of z for this ioniza-
tion parameter as well as for an ionization parameter corresponding
to a density which is a factor 102 higher. Discuss these results by
comparing and contrasting them with each other as well as with those
for O and N in Figure 7.4.

4. Derive equation (7.58) from (7.57). Solve equation (7.58) and compare
your results with figure 7.7 (Hint: solve for TH as a function of Te over
the relevant range).
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5. Consider an HII region heated by photo-ionization of H and cooled through
emission by transitions of [OIII]. Solve the energy balance equations (7.59)-
(7.61) and show that the electron temperature is approximately 7000 K
under the assumptions used in these equations.

6. Solve the energy balance for the HII region in the previous excercise as-
suming an [OIII] abundance which is a factor of 3 higher. [Hint: for sim-
plicity, treat each of the [OIII] finestructure levels as a two level system
(cf., Eqn (2.30)). Relevant parameters are given in Table 2.6].

7. Derive Equations (763) and (7.64) from equation (7.62).

8. Derive Equation (7.71). Use Equation (7.68) to write an expression for
the radio emission in the high and low optical depth limits in terms of the
electron temperature, emission measure and frequency. Sketch the radio
spectrum for an emission measure of 103, 106, and 109 cm−6 pc. Explain
your result.

9. HII regions and the “energy balance” of the Milky Way

(a) Adopt for the typical HII region in the Milky Way an average density
of 30 cm−3 and an average ionizing photon energy of 20 eV, calculate
the total cooling rate per atom.

(b) Adopting the total mass in HII regions given in Table 1.1, calculate
the total luminosity of ionzed gas in the Milky Way.

(c) Adopting the physical characteristics of the WIM given in Table 1.1,
calculate the total cooling rate per atom for this phase.

(d) Adopting the total mass in the WIM given in Table 1.1, calculate the
total cooling luminosity of this phase in the galaxy.

(e) Comparing these values with those derived for the phases of the ISM
(exercise 10 in chapter 2), explain why – on a galaxy-wide scale –
ionized gas is so much more luminous than neutral gas.

(f) Compare the derive total luminosity originating from ionized gas with
the stellar radiative luminosities and the dust far-IR luminosity given
in Table 1.3. What do you conclude ?

10. Describe qualitatively the ionization structure and energy balance of HII
regions, focussing on the Strömgren sphere, the neutral fraction, the ion-
ization front, and the effects of helium, trace species, and dust.

11. Describe the emission characteristics of HII regions.

12. Describe how the observed spectra of HII regions can be analyzed to de-
termine the physical characteristics of the gas and ionizing star.
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1.8 Chapter 8

1. The ionization balance:

(a) Derive Equation (8.3) for the ionization balance of carbon in the
diffuse interstellar medium, balancing photo-ionization with radiative
electron recombination.

(b) Derive expression (8.4) for the ionization balance in the presence
of PAHs. For carbon, include photo-ionization and recombination
with PAH anions. For PAHs, assume that radiative association of
electrons with neutral PAHs is balanced by photo-ionization of PAH
anions (eg., ignore the presence of PAH cations; cf., Fig. (6.7)).

(c) Derive equantion (8.9) for the degree of ionization of hydrogen by
assuming that cosmic ray ionization is balanced by proton-electron
recombinations.

(d) How is equation (8.9) modified in the presence of PAHs (eg., as for
the C+ ionization balance assume that cosmic ray ionization of H is
balanced by H+-PAH− recombination; cf., exercise 1b).

2. The energy balance:

(a) Derive equations (8.10), (8.11), (8.12) and (8.13) by balancing the
appropriate heating and cooling processes.

(b) The loci of thermal equilibrium for interstellar gas can be found di-
rectly from the cooling curve. At low densities, the ratio of the
cooling rate per atom (nΛ(T )) to the thermal pressure (nT ) is equal
to Λ(T )/T and is independent of density. This function is shown in
Figure 1.2 for a low electron fraction (cf., Figure 2.10). Following
Field, Goldsmith and Habing – the pioneers of interstellar thermal
equilibrium studies – we will only consider heating by cosmic ray
ionization,

ΓCR = 3 × 10−27

(

ζCR

2 × 10−16 s−1

)

erg s−1. (1.22)

For a constant pressure P/k = 3000 cm−3 K, estimate the char-
acteristics of the phases of the ISM adopting a primary cosmic ray
ionization rate of 2 × 10−16, 2 × 10−15, and 2 × 10−14 s−1. Explain
your answer.

3. Derive the vertical density distribution (eqn. (8.23)) from the equation for
hydrostatic equilibrium (eqn. (8.22)), assuming a isothermal layer.

4. The filling factor of the HIM plays a central role in the structure of the
interstellar medium.



20 CHAPTER 1. EXERCISES

Figure 1.2: The low density cooling rate for interstellar gas as a function of
temperature is plotted in the form Λ/T .

(a) Assume that the hot gas inside a SNR occupies an average volume,
Vsnr, and survives for a time, τsn. In addition, assume that super-
nova explosions occur randomly in the galaxy at a rate of ksn per
unit volume and per unit time. Derive equation (8.33) for the filling
factor of the hot gas in the galaxy. (hint: The rate of change of
the probability that a point is inside a SNR, f is given by df/dt =
−f/τsn + (1 − f)ksnrVsnr).

(b) Basically this derivation assumes that SN do not explode within an
existing cavity. Or to phrase it differently, the SN rate has to be
corrected downwards for SN that do explode within existing cavities
while the final volume and lifetime have to be corrected upwards for
the rejuvenation associated with those SN that do explode within
existing cavities. There is some discussion on this in Chapters 8.5.4
and 13.3. Adopt an effective supernova rate of ksn = 5 × 10−5 yr−1

kpc−3 (an effective timescale for SN explosions of 8 × 10−3 yr−1 in
the galaxy), which accounts for correlated SNe. The final volume
and lifetime should be corrected by increasing the energy released by
SNe in eqn. (8.29) and (8.30). Following the discussion in Chapter
13.3, this increase is only modest (ESN ' 1.5× 1051 erg). These two
parameters depend actually mainly on the ambient density. Adopting
an ambient density of 0.5 and 3 × 10−3 cm−3, calculate the filling
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factor of the HIM.

(c) We can also approach this problem from the opposite point of view
where we use Poisson statistics to evaluate the probability that a SN
explodes within a pre-existing cavity under the assumption that SNR
do not interact. Derive this expression and calculate the filling factor
(hint: consider a Poisson process with an average normalized SNR
volume Q).

5. The photo-destruction of H2 is controlled by the penetration of FUV pho-
tons into the cloud. Calculating the dissociating photon-flux at a given
depth is of course the same problem as calculating the photon flux escap-
ing from that depth; eg., the self-shielding factor (Eq. (8.40)) is analogous
to the escape probability. Often the opacity is dominated by H2 molecules
located between the point under consideration and the surface. Here, we
will look at this in some more detail. Consider a plane-parallel slab and
an FUV flux incident perpendicular to its surface and one molecular line
characterized by a peak frequency, ν0, and a damping width, γ, which is
the inverse of the lifetimes. The self-shielding factor is then

βss (N (H2)) =

∫ ∞

0

H (a, v) exp [−τ0H (a, v)] dv , (1.23)

with v = (ν − ν0)/∆νD the normalized frequency and a = γ/∆νD the
normalized damping constant where ∆νD is the Doppler width of the line.
The optical depth at line center is given by τ0 a /

√
π =

(

πe2/mec
)

(fg/γ)N (H2) a/
√

π
with f the oscillator strength and g the statistical weight. The line profile
is described by the well-known, normalized Voigt function, H (a, v), which
can be approximated by a Doppler core exp

[

−v2
]

and a Lorentzian wing
a
√

π v−2. The average oscillator strength is f ' 10−2, the average Ein-
stein A ' 109 s−1, the peak wavelength is ' 1000 Å, and the statistical
weight is 1/4 and 3/4 for para and ortho hydrogen.

(a) Calculate the H2 column density for which optical depth effects start
playing a role (τ0 a/

√
π > 1). Now you should understand the signif-

icance of N0 in Eq. (8.40).

(b) Evaluate the self-shielding factor for high optical depth and show

that it is given by βss = (τ0)
−1/2

.

Note that the somewhat steeper dependence on H2 column density
in Eq. (8.40) reflects the effect of line-overlap. Also, this discussion
ignores the intermediate optical depth regime which gives rise to the
logarithmic portion of the so-called curve-of-growth. This is discussed
in a different context in more detail in D. Mihalas, 1978, Stellar
Atmospheres, Freeman & Co.

6. Assuming that H2 formation on grains is balanced by H2 photodestruction,
derive equation (8.45) for the abundance of H2. Then, noting the error in
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equation (8.47), derive the total column density at which half the gas is
molecular.

7. Adopting a molecular hydrogen formation rate coefficient of kd = 3×10−17

cm−3 s−1, quantitatively evaluate the fractional abundance of molecular
hydrogen in the diffuse interstellar medium as a function of column density
and compare to the data in Figure 8.6 (use NH = 5.9×1021 EB−V cm−2).

8. Molecular hydrogen formation in the early universe.

(a) In the early universe (z < 100), H2 is formed through the H− channel
(eqn. (8.51), (8.52)). At this point in time, there is a small amount of
residual hydrogen ionization (X(e) ' 3× 10−4) left after recombina-
tion. Because of the expansion, the radiation temperature is given by
TR = To(1 + z) with To = 2.73 and photo-ionization of H− is unim-
portant. Adopting a temperature of 300 K, calculate the abundance
of H−.

(b) Here we will adopt a Hubble constant of Ho = 100h = 67 km s−1

and a ratio of the density to the critical density of Ωb = 4 × 10−2

with the critical density given by ncr ' 10−5h2 cm−3. The density is
then given by n = Ωbncr (1 + z)3. For a closure parameter of unity,
the relationship between time and z is given by dt/dz = −H−1

o (1 +
z)−5/2. Estimate the molecular hydrogen abundance around z = 100.

9. Molecular hydrogen formation on grain surfaces.

(a) Derive the equations describing the surface abundance of atomic hy-
drogen in physisorbed and chemisorbed sites (eqn. (8.58)-(8.60)).

(b) Explain why the abundance of atomic hydrogen in chemisorbed sites
is 1/2.

(c) Derive the equations describing physisorbed hydrogen (eqn. (8.62)
and (8.63)) and the H2 formation efficiency (eqn. (8.64)). Make sure
that you understand the origin of each term in the latter equation;
eg., take the appropriate limits in the original equations and rederive
this equation.

10. Derive the relationship between the observed line strength and the HI
column density (equation (8.78)).

11. Using Figure 2.10 on page 59, estimate the cooling time scale at a tem-
perature of 3 × 105 K (page 311). What is the cooling timescale at a
temperature of 3× 106 K ? This difference in the cooling timescale is very
important in the dynamical evolution of supernova remnants (Chapter
12.3).

12. For a Hα intensity corresponding to 3 Rayleighs, calculate the emission
measure of the Warm Ionized Medium. Adopting a scale length of 1 kpc,
what is the root-mean-square density ?
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13. Absorption lines

(a) The equivalent with of the R(0) absorption line of C2 at 8757.7 Å is
measured to be 0.9 mÅ towards the star ζ Oph. With an oscillator
strength of 1.7× 10−3, what is the C2 column density in this state.

(b) The equivalent width of the Q(10) line at 8780.1 Å towards this star
is 0.65 mÅ. The oscillator strength is 8.5× 10−4. This state is 200 K
above ground. Assuming thermodynamic equilibrium, calculate the
temperature of the absorbing gas.

(c) Explain why pure rotational radiative transitions are not expected
to affect the level populations of this molecule under conditions ap-
propriate for diffuse interstellar clouds.

(d) The rotational level populations in the ground vibrational state can
be affected by electronic fluorescence. Electronic excitation after ab-
sorption of a photon followed by radiative decay to the ground state
may leave the species in a different rotational state than from which
it started. With a typical photon excitation rate of 6× 10−9 G0 s−1,
a collisional cross section of 5×10−16 cm2, and a kinetic temperature
of 100 K typical for diffuse clouds, estimate the range of density and
interstellar radiation field intensity for which the level populations
will probe the physical conditions in diffuse clouds. Discuss your
results.

Figure 1.3: The calculated ratio of the excited fine-structure levels, 3P1 (C∗) and
3P2 (C∗∗) relative to the total CI for various pressures and temperatures. The
effects of UV pumping has been included as well in these calculations. The curves
are labelled by log temperature and the labelled dots are density. Tickmarks
indicate 0.1 in dex for density. Figure taken from Jenkins and Shaya (1979,
ApJ, 231, 55).
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Table 1.1: Measured column densities of the finstructure levels of CI

Star CI CI (3P1) CI (3P2) T
[cm−2] [cm−2] [cm−2] [cm−2] [cm−2] [cm−2] [K]

ζ Oph 15.25 15.35 14.90 15.10 14.27 14.33 75
o Per 15.45 15.75 14.58 14.78 14.18 14.38 48
ζ Per 15.44 15.52 14.11 14.36 14.04 14.14 57

aTaken from Jenkins and Shaya (1979, ApJ, 231, 55).

14. The population of fine structure levels is a sensitive measure of the den-
sity overthe density range their critical densities. Using the measured
equivalent width of FUV absorption lines, the populations of the 3 CI
ground state finestructure levels have been determined and these have
been translated into pressure this way. This is more involved than the two
level system discussed in chapter 2. Here, we will use the calculated ratios
of the finestructure levels for different densities and pressures (Fig. 1.3) to
take this last step. Table 1.1 gives the column densities associated with
the CI fine structure levels towards three well-known stars. These are
reported in terms of upper and lower limits.

(a) Plot for each star the measured range in these ratios on figure 1.3
and determine the density range over the relevant temperature range
shown. Estimate the pressure range allowed by the observations.

(b) Using the temperature determined from the observed level popula-
tions of the lowest rotational levels of H2 – which have very low
critical densities and are thus expected to be in LTE –, what is the
interstellar pressure along these sight lines ?

(c) The populations can also be affected by FUV pumping. This has
been included in figure 1.3 for the average interstellar radiation field.
However, these diffuse clouds might be close to the star and hence
the incident radiaion field may be much higher than the average in-
terstellar radiation field. How would this affect the level populations
? And how does that influence the pressures that you determined ?
Explain your answer.

15. Describe the processes that play a role in the ionization balance of the
different phases of the interstellar medium.

16. Describe the processes that play a role in the energy balance of the different
phases of the interstellar medium.

17. Describe the role of massive stars in the phase structure of the interstellar
medium.

18. Discuss the formation and destruction of H2 in the diffuse ISM.
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19. Describe the chemistry of the diffuse ISM.

20. Discuss how the cosmic ray ionization rate can be determined from molec-
ular observations.

21. Describe the emission characteristics of the different phases of the ISM and
how the observations can be analyzed to derive the physical conditions in
these phases.

1.9 Chapter 9

1. Derive equation (9.4) from equations (9.1)-(9.3) and the density-size rela-
tion of HII regions.

2. Write the ionization balance for carbon photo-ionization and C+-e radia-
tive recombination. Manipulate this equation to arrive at equation (9.6).

3. Compare the photo-ionization rate of magnesium with the cosmic ray ion-
ization rate of H2 and arrive at equation (9.7). Inserting a neutral Mg
gas phase abundance of 3 × 10−6, a primary cosmic ray ionization rate
appropriate for dense clouds (ζCR = 3 × 10−17, and the photo-ionization
rate from Table 8.1, show that the depth in a molecular cloud where these
two processes contribute equally to the ionization balance is Av ' 6.

4. Balancing the photo-electric heating rate and the [OI] 63µm cooling rate,
derive equation (9.8).

5. Balancing the photo-electric heating rate and the [CII] 158µm cooling rate,
derive equation (9.9).

(a) Starting from equation (9.15) arrive at equation (9.18).

(b) Starting from equation (5.40) derive equation (9.19).

(c) Explain (physically) why τ100µm is independent of G0.

6. Here, we will compare the intensities of the [CII] 158 µm and [SiII] 34.8
µm lines. We will consider the optical thin limit, assume that C+ and Si+

are the dominant ionization stages of carbon and silicon, and include only
excitation by atomic H (and all hydrogen is atomic).

(a) Give expressions for n2Λ as a function of temperature and density
for [CII] and [SiII].

(b) Give an expression for the [CII]/[SiII] line intensity ratio.

(c) Plot the [CII]/[SiII] line intensity ratio for the density range of 10 <
n < 107 cm−3 at temperatures of 100, 300, and 1000 K.

(d) Give a physical explanation for the general behavior of these curves,
paying particular attention to the limits.
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(e) What density range is best probed by this ratio ? Compare this range
to the critical densities of these transitions.

7. Explain the equation for the steady state timescale of H2 (equation (9.24)).

8. Derive the relationship between the [CII] line flux and the total mass of
the emitting gas (equation (9.33)).

9. The physical conditions in the NGC 2023 PDR

(a) Estimate the intensity of the incident FUV field, G0 from the ob-
served infrared dust emission, using equation (9.29) and assuming a
geometry factor of unity.

(b) Estimate the temperature of the emitting gas from equation (9.31)
(cf., Table 9.3), adopting a line width 5 km/s corresponding to a
Doppler broadening parameter of 2.5 km/s.

(c) Adopt this gas temperature and estimate from figure 9.2 (see errata)
the gas density from the observed [CII]158µm/[OI] 63µm line ratio
(cf., Table 9.3).

(d) Estimate the photo-electric heating efficiency from the observed [OI]
and [CII] line intensities and estimate the gas density from figure 3.4.

(e) Use figure 9.9 to estimate the density and incident FUV field (cf.,
Table 9.3).

(f) Calculate the total gas mass of the PDR associated with NGC 2023
(assume a [CII] line flux of 1× 10−9 erg cm−2 s−1 and a distance of
450 pc).

(g) Contrast your results with those for the Orion Bar (Table 9.1).

10. Discuss the interrelationship, similarities and differences of PDRs and HII
regions.

11. Describe the chemistry of PDRs.

12. Describe the emission characteristics of PDRs and how the observations
can be analyzed to derive the physical conditions.

1.10 Chapter 10

1. The ionization balance

(a) Derive equation (10.1) for the degree of ionization by balancing cos-
mic ray ionization with the recombination of molecular cations with
PAH anions.

(b) Derive the equation for the degree of ionization in the absence of
PAHs by balancing cosmic ray ionization with the recombination of
metal cations with electrons.
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(c) At a density of 105 cm−3, calculate the expected degree of ionization
for these two limiting cases. Adopt a primary cosmic ray ionization
rate of 3 × 10−17 s−1.

2. Derive equation (10.4) from equation (4.6) and (10.3).

3. Using figure 10.4 as a guide, derive equation (10.17). For an electron
abundance of 10−7 and a CO abundance of 10−4, calculate the deuterium
fractionation of HCO+ in a dark cloud. What is the expected fractionation
in a hot core with a temperature of 200 K ?

4. Consider the chemistry involved in the cosmic ray ionization of H2; viz.,

H2 + CR −→ H+
2 + e (1.24)

H+
2 + H2 −→ H+

3 + H (1.25)

H+
3 + CO −→ HCO+ + H2 (1.26)

with the rates given in chapter 4. Adopt a CO abundance of 10−4 relative
to H2, calculate the steady state abundances of H+

2 and H+
3 .

5. In dense cloud cores (n ∼ 106 cm−3) where all the CO has frozen out on
grains, sequential reactions with HD, can drive deuterium fractionation all
the way to D+

3 . Derive an equation for the D+
3 /H+

3 ratio in this situation
(cf., equation 10.19) and insert typical numerical values.

6. Inside a dense molecular cloud, atomic hydrogen is produced by cosmic
ray ionization of H2. Derive equation (10.24) by balancing H formation
by cosmic rays with accretion of H on grains. What could be the cause of
a higher atomic hydrogen abundance inside dense clouds ?

7. Accretion of ice mantles inside dense molecular clouds will increase the
average grain size. All grains will acquire the same mantle thickness (cf.,
equation 10.25). Adopt the MRN size distribution for interstellar grains
(equation 5.97) and calculate the increase in grain size if all the available
gas phase oxygen (cf., Table 5.3) condenses out as H2O.

8. Thermal spikes in a dust grain can lead to the ejection of a weakly-bound
surface species. This process is discussed in section 6.4 in the context
of the photochemistry of PAHs. The desorption probability, pd, after a
heating event is given by equation (6.82). For the IR cooling rate, kIR

adopt 1 s−1. The unimolecular dissociation rate is given by equation (6.73)
with equation (6.18) and (6.75). Calculate the critical grain size (e.g., for
which pd = 1/2) for an internal energy of 2 eV (cf., Figure 10.8).

9. Cosmic ray driven desoption of ice molecules

(a) Using the expression for the heat capacity (equation (10.32), (10.33)),
calculate the heat content of an ice grain as a function of temperature
for a grain of 300Å and 1000Å radius.
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(b) Evaluate the temperature of a 300 and a 1000 Å grain after passage
of a 100 MeV/nucleon Fe cosmic ray (∆Edep = 5 × 104

(

a/1000 Å
)

eV).

(c) Evaluate the number (N = ∆Edep/∆Eb) of H2O (∆Eb = 0.5 eV) or
CO (∆Eb = 0.05 eV) molecules that evaporate.

(d) Evaluate the temperature of a 300 and 1000 Å ice grain when stored
chemical energy is released by an 100 MeV/nucleon Fe cosmic ray.
Adopt a radical concentration of 0.01 and 5eV per bond.

(e) Evaluate the number of H2O or CO molecules that evaporate in this
case.

10. CO line intensity

(a) For the CO J = 1− 0 transition, derive equation (10.37) from equa-
tion (10.36).

(b) The brightness temperature, TB , of a body which emits light with
intensity I(ν) at frequency ν is defined as

I(ν) = B(ν, TB) (1.27)

Derive the relation between the brightness temperature and the ob-
served integrated intensity of a line in the Rayleig limit

(c) Rewrite equation (10.36) in terms of the brightness temperature
(equation (10.39)).

(d) Using the expression for the partition function of a linear molecule,
derive the relation between the observed brightness temperature of
the CO J = 1 − 0 transition and the total column density of CO.

11. Virial theorem and the molecular cloud mass

(a) Assume an isolated, homogenous spherical cloud with radius, R,
mass, M and one dimensional velocity dispersion, σ. The internal
kinetic and potential (gravitational) energy of this cloud are given
by Ek = 3/2

(

Mσ2
)

and Ep = −3/5
(

GM2/R
)

with G the gravita-
tional constant. The Virial theorem states that 2Ek + Ep = 0. The
linewidth is then related to the mass and radius of the cloud - which
apart from a small numerical factor is given by equation (10.46). De-
rive this relation, recalling that the linewidth and velocity dispersion
are related by ∆v =

√
8 ln 2σ.

(b) Derive equation (10.47).

(c) Observationally, the one-dimensional velocity dispersion scales with
the size of the cloud, σ ' 0.55R0.5 km/s (with R in pc) and the mass
of the cloud (determined from CO isotopes) scales with the observed
velocity dispersion, σ ' 0.15M 1/4 km/s (with M in M�).
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i. Show that the observed CO luminosity of a cloud scales with the
observed velocity dispersion.

ii. The average density (ρ = 3M/4πR3) is also observed to scale
with the cloud size (ρ = 134R−1 M� pc−3). Show that this
relation follows immediately from the above relations.

iii. The average density-size relationship implies that all molecu-
lar clouds have the same column density. Calculate the visual
extinction corresponding to this column (cf., equation (5.96)).
Compare this estimate to the depth to which photons contribute
appreciably to the ionization of molecular clouds (exercise 3).
What conclusion do you draw ?

Figure 1.4: Calculated ratios of para-H2CO lines (taken from van Dishoeck et
al., 1995, ApJ, 447, 760).

12. Estimate the density and kinetic temperature from formaldehyde obser-
vations of the class 0 protostar, IRAS 16293-2422, using figure 1.4. The
observed line intensities of para formaldehyde lines are 3.35 (322 − 221),
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Table 1.2: Characteristics of the ice bands observed towards NGC 7538 IRS 9a

Species τ λ ∆ν
[µm] [cm−1]

H2O 3.0 3.1 440
CO 4.67 2.6 4.8
CO2 15.2 0.8 21
CH3OH 3.54 0.07 29
H2CO 5.85 0.06 30
CH4 7.6 0.09 11
NH39.0 0.2 68

aTaken from Gibb et al. (2004, ApJS, 151, 35).

13.2 (303 − 202), and 13.5 (505 − 404) K km/s. If the line intensities are
uncertain by 20% what is then the range in densities and temperatures ?

13. Determine the column densities of ice components observed towards NGC
7538 IRS 9. The ice band characteristics are given in Table 1.2. Trans-
late this into abundances using the observed 10µm silicate optical depth
(τ = 2.2) and typical interstellar silicate properties (section 5.5.1). For
comparison, the column density of gas phase CO towards this source is
1.4 × 1019 cm−2.

14. Assume that inside dense cloud cores, the gas phase abundance of CO is
set by the balance of accretion of CO molecules on grains and cosmic ray
driven evaporation. What is the abundance of CO as a function of density
if the ejection rate is ' 10−17 CO molecules s−1 (largely driven by 100
MeV/nucleon Fe CR hits of small ice grains). Internal stored energy could
raise this rate to ' 4 × 10−17 CO molecules s−1. What is the abundance
of gaseous CO in this case ?

15. Discuss the interrelationship, similarities and differences of diffuse and
dark clouds.

16. Describe the flow of ionization in molecular clouds and its role in driving
gas phase chemistry.

17. Link the observed molecular composition of interstellar clouds (gas and
grains) back to the processes driving the chemistry.

18. Discuss the interaction between dust and gas in molecular clouds.

19. Describe the emission characteristics of molecular clouds and how the
observations can be analyzed to derive the physical conditions.
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1.11 Chapter 11

1. Manipulate equations (11.1), (11.2), and (11.6) to arrive at equation (11.13)
and (11.14). Use these expressions together with equation (11.12) to arrive
at equation (11.15) and (11.16). Examine the high shock velocity limit.
What do you conclude about the pre- and postshock density and velocity
contrast ? And the pressure and temperature ?

2. In the case of magnetic cushioning, derive the temperature corresponding
to maximum compression (equation (11.31)).

3. Compare and contrast interstellar J and C shocks.

4. Discuss shock spectra and their diagnostic value.

1.12 Chapter 12

1. Derive equation (12.6) from the momentum and continuity equations.
Evaluate the two critical shock velocities and examine the characteristics
of those solutions.

2. During the initial phase of rapid ionization, derive an expression for the
time dependent evolution of the ionized volume (equation (12.15)), start-
ing from equation (12.12).

3. During the pressure-driven-expansion phase of the evolution of HII re-
gions, derive an expression for the time dependent size of the ionized vol-
ume (equation (12.20)), starting from the momentum equation (equation
(12.16)).

4. Consider the ionization of a neutral globule. Starting from equation
(12.34), derive equations (12.39) and (12.40).

5. The book cover shows an IR image of the cometary globule, IC 1396A,
and figure 1.7 shows an infrared view of the “pillars of creation” in the
Eagle nebula. Here, we will compare the characteristics of these globules
with the theoretical discussion in section 12.2.4.

(a) The globule in IC 1396A is located at a projected distance of 3.8 pc
from the O6.5 ionizing star, HD 206267. CO observations estimate
the mass of this globule at ' 200 M�, while the density is approxi-
mately 2 × 104 cm−3. The size of the globule is 0.5 pc. The average
density of the ionized gas is ' 600 cm−3. Estimate the ionizing
photon flux, N?, at the base of the flow required to keep the flow
ionized.

(b) Pillar 1 in the Eagle nebula is located at a projected distance of
2 pc from the ionizing star cluster which contains several O5 stars
with an estimated ionizing luminosity of 2 × 1050 photons s−1. CO



32 CHAPTER 1. EXERCISES

observations estimate the mass of this globule at ' 9 M�, while the
density is approximately 105 cm−3. The ‘radius’ of the pillar is 0.1
pc. The average density of the ionized gas is ' 500 cm−3. Estimate
the ionizing photon flux, N?, at the base of the flow required to keep
the flow ionized.

(c) Compare these photon fluxes with those expected from the ionizing
stars. What do you conclude ?

(d) Evaluate the mass loss rate from these structures and their expected
lifetimes.

(e) The ionizing star of IC 1396A is a member of the cluster Trumpler
17 at the nucleus of the Cep OB2 association with an estimated age
of ' 4 × 106 years. The ionizing star cluster of the Eagle nebula
is at the core of the Ser OB1 association and the estimated age is
2 Myr. What could cause this discrepancy between the stellar age
and expected lifetime of the globule ? (hint: Examine the images in
detail. Also consider the evolution of the region).

6. Derive equations (12.49) and (12.52).

7. Derive the density distribution in a plane parallel blister HII region (equa-
tion 12.62).

8. The Sedov Taylor expansion phase of supernova remnants.

(a) For the Sedov-Taylor phase of a supernova blast wave expanding into
an intercloud medium (n = 0.5 cm−3) at 1000 km/s, evaluate the
cooling timescale and compare this to a relevant dynamical timescale.

(b) During the Sedov-Taylor expansion phase, the energy is conserved.
Because of self-similarity, the characteristics of the supernova rem-
nant depend on a combination of only three quantities: the explo-
sion energy, Esn, the density of the surrounding medium, ρ0, and
the time, t. Simple dimensional analysis yields then immediately
that Rs = (ξ0Esnt2/ρ0)

1/5 with ξ0 a constant. Derive this equation.
(Hint: write Rs ∼ Ea

snρb
0t

c and compare dimensions on the left- and
right-hand-side.)

(c) We can simplify the discussion in section 12.3.2 somewhat by assum-
ing (incorrectly) that the supernova remnant is homogeneous. The
total energy is then given by Esn = M (uT + uk) with M the to-
tal mass and uT and uk the internal and kinetic energy of the gas
per unit mass. These we will set equal to the values just behind
the shock front, 3/2 P1/ρ1 and 1/2 v2

1. Then using the strong shock
conditions (equations (11.18) and (11.19)) and recalling that the ex-
pansion velocity is equal to dRs/dt, we arrive at equation (12.79)
with ξ0 = 60/4π. Derive this equation and the value of ξ0.
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(d) Figure 1.4 shows optical emission from the Cygnus loop, the proto-
typical middle-aged supernova remnant. The whole remnant is some
10 pc in size (depending on the somewhat uncertain distance). The
observed X-ray luminosity of this supernova is Lx ∼ 1036 erg s−1and
the temperature of the gas is Tx ' 3 × 106 K. Ignoring the density
structure of the remnant, derive an expression for the luminosity of
the supernova remnant in terms of the cooling rate, Λ, density of
the surrounding medium, n0, and the size, Rs. Use this expression
to determine the density of the surrounding medium and the mass
swept up by the supernova remnant.

Figure 1.5: False color image of the optical emission from the Cygnus loop. The
supernova remnant expands from left to right. Blue indicates emission from
[OIII], red is emission from [SII], and green is emission from HI.

(e) Hα and [OIII] imaging of filaments in the northeast of the Cygnus
loop have revealed that their characteristics vary systematically. Specif-
ically, they show a transition from Balmer-dominated to [OIII]-dominated
(Figure 1.5). What could be causing these variations ? What does
this tell us about the shock velocity and the preshock density ? (Hint:
Reread section 11.2.3).

9. During the radiative phase, the expansion of supernova remnants is con-
trolled by momentum conservation (equation (12.83)). If we can ignore
the external pressure, then the flow is self-similar again. Assuming that
the size of the remnant scales with tη with η a constant, derive the value
of this constant.

10. During the evaporative phase of the expansion of supernova remnants,
the expansion is controlled by the mass equation (equation (12.107)) and
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energy conservation. Again, this flow is self-similar. Assume that the size
of the remnant scales with tη with η a constant and derive the value of
this constant. (Hint: note that T ∼ v2

s .).

11. Show that for an evaporative SNR, the expansion law (equation (12.109))
can be written in the standard form of a Sedov-Taylor blast wave (equation
(12.116)) but with a time-dependent density (equation (12.136)).

12. During the adiabatic phase of a hot wind bubble, the expansion is governed
by the energy and momentum equations (equations (12.124) and (12.125)).
Assuming that the size of the remnant scales with tη with η a constant,
show that the self-similar exponent describing the flow is η = 3/5. Explain
why this expression is very similar to that describing the adiabatic phase
of a SNR (equation (12.79)).

13. After reading the section on the structure of the dense shell (section 12.5.3)
and recalling the discussion on radio emission from ionized gas (section
7.4.3), derive the limb brightening intensity profile of an ionized wind
bubble.

14. Discuss the different phases in the expansion of HII regions and their
characteristics.

15. Discuss the effects of inhomogeneities on the evolution of HII regions.

16. Discuss the different phases in the expansion of supernova remnants and
their characteristics.

17. Compare and contrast the evolutionary characteristics of supernova rem-
nants in a homogeneous ISM with a two-phase and three-phase ISM.

18. Discuss the characteristics of wind bubbles.

1.13 Chapter 13

1. Examine figure 13.2 and demonstrate that the increase in velocity for large
grains is consistent with betatron acceleration.

2. Derive an expression for the collisional stopping length of grains moving
at velocity v relative to the gas (ignore Coulomb focussing). Evaluate the
stopping length for the grains and the physical conditions in the 100 km/s
shock shown in figure 13.2. Check your answer against the results shown
(Recall that NH = n0vst). Using the charging discussion in section 5.2.3,
check that Coulomb interaction is only a small correction to this result.

3. Explain why grains embedded in a hot gas decrease in size at a rate inde-
pendent of size.
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4. Estimate the sputtering yield for a carbon grain in a 106 K gas. How
long would a 100 Å grain survive at 3 kpc in the lower halo of the galaxy
? How does this compare to a typical dynamical timescale ? Use the
characteristics described in table 1.1.

5. Fraction of an element locked up in dust

(a) Derive the expression for the rate of change in the fraction of an
element locked up in dust (equation (13.12)). Develop the steady
state solution to this expression.

(b) Consider a two-phase medium where destruction occurs in the warm
medium at a rate, kdes, while accretion accurs in the diffuse cloud
medium at a rate, kacc. Include the effects of mixing. Derive the
expressions describing the fraction of an element locked up in dust in
the diffuse cloud medium and in the intercloud medium (equations
(13.14) and (13.15)).

6. Derive an expression for the fraction of silicates in the interstellar medium
with a crystalline structure. Consider that a fraction, δc, is injected as
crystalline silicates by stars while the remainder is in amorphous form.
Assume further that crystalline and amorphous silicates are destroyed by
interstellar shocks at the same rate. In addition, include the effects of
cosmic ray ion bombardment which amorphize crystalline silicates at a
rate kam. Evaluate the fraction of silicates in the interstellar medium
with a crystalline structure if δo = 0.15, kam = (70)−1 Myr−1. Use
typical values for the other rates as given in section 13.5. Do you expect a
difference in the crystalline fraction between the diffuse cloud phase and
the warm intercloud phase ?

7. Discuss the lifecycle of interstellar dust and the processes that play a role
in this cycle.

8. Compare and contrast the destruction of dust in adiabatic and radiative
shocks.


