
Homework #1 Odd Numbered Answers

1. From Wikipedia, there are many very readable accounts of the life and technical achievements of J.C.
Maxwell, and H.R. Hertz, G. Marconi, and N. Tesla. Their backgrounds, personalities, professional recog-
nitions, and financial successes from their works, varied great. ”History of Radio,” is another interesting
article on Wikipedia on wireless communications. This article also referenced a PBS documentary pro-
gram by Ken Burns entitle, ” Empire of the Air: The Men Who Made Radio,” 1992. Besides the book,
”History of Wireless,” by T.K. Sarkar, et al, J. Wiley, 2006, many other books on early workers in this
area appeared in the references at the end of the article,”History of Radio.”

3. a. For R = 1 G bits/sec. , the new power requirement becomes PT = 5.68× 10−5 watts.

b. For R = 100 K bits/sec., the new power requirement becomes PT = 5.54× 10−5 watts. If this power is
too demanding, we can get closer to the base-station with a range of r = 1 km. Then PT = 2.22×10−6

watts. If this power is still considered to be too high, perhaps we can attach an external higher gain
antenna with GT = 2. Then PT = 1.11× 10−6 watts.

c. Under the new conditions, the power requirement becomes PT = 1, 680 watts. This power requirement
is definitely not reasonable for a small UAV. If GT = 100, then PT = 168 watts, perhaps may still
be too demanding.

d. For a low-altitude satellite, the power becomes PT = 3.65 × 10−5 watts. By using a lower gain
GT = 1, 000, the power becomes PT = 3.65× 10−4 watts, which is still very modest.

5. Using the Matlab fminsearch.m function to minimize the residual of ||y − as||l1, with an initial starting
point of 0.4, we obtained âAE0 = 0.5545312500000005 with an AE error of ϵAE(â

AE
0 ) = 4.724562499999993.

Using an an initial starting point of 0.6, we obtained âAE0 = 0.5545605468749999 with an AE error of
ϵAE(â

AE
0 ) = 4.724484374999999. We can conclude that regardless of the initial starting points, both

solutions are extremely close. Furthermore, ϵAE(ã1) = 11.208 and ϵAE(ã2) = 5.188. Clearly, both ϵAE(ã1)
and ϵAE(ã2) are greater than ϵAE(â

AE
0 ), since ϵAE(â

AE
0 ) is the minimum AE error.

7. Using (6-15) for x̂ and y2, the explicit solution of the optimum LSE solution âLS0 = 1.601464615384616.
Using the Matlab fminsearch.m function to minimize the residual of ||y2− as||l1, with an initial starting
point of 0.53, we obtained âAE0 = 0.5558271484375. The following left figure, plots x vs y2 and a straight
line of slope âLS0 . The following right figure, plots x vs y2 and a straight line of slope âAE0 . In both figures,
we notice two outliers at x = 3 and x = 5. However, in the right figure, most of the values of y2 are quite
close to the straight line with the âAE0 slope, whilte in the left figure most of the values of y2 are quite far
from the straight line with the âLS0 slope. This example shows the robust property of linear estimation
based on the LAE Criterion over that based on the LSE Criterion.

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

x

y

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

x

y

9. From (6-35) - (6-37), we obtained for n = 1, ân = [0.4] and ϵMS(ân) = 0.68. For n = 2, ân =
[0.011905, 0.39524]T and ϵMS(ân) = 0.67976 . For n = 3, ân = [0.0048193, 0.01, 0.39518]T and ϵMS(ân) =
0.67972. For n = 4, ân = [0.0016389, 0.0040404, 0.0099773, 0.39517]T and ϵMS(ân) = 0.67972. Thus, we
note that all the terms in a1X(1) + a2X(2) + . . .+ an−1X(n− 1) do contribute (although not much) in
reducing the MMSE values of ϵMS(ân) for increasing values of n.
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Chapter 2
Review of Probability and Random Processes

Odd Numbered Homework Solutions

1. Bernoulli: p, q ≥ 0, p+ q = 1.

fX(x) = qδ(x) + pδ(x− 1), FX(x) = qu(x) + pu(x− 1), µX = p, σ2
X = pq.

Binomial: p, q ≥ 0, q + q = 1, n ≥ 1.

Pn(k) =
(n
k

)
pkqn−k, 0 ≤ k ≤ n, fX(x) =

n∑
k=0

Pn(k)δ(x− k), FX(x) =
n∑
k=0

Pn(k)u(x− k),

µX = np, σ2
X = npq.

Poisson: b > 0.

Pk =
bk

k!
e−b, k = 0, 1, 2, . . . , fX(x) =

∞∑
k=0

Pkδ(x− k), FX(x) =
∞∑
k=0

Pku(x− k),

µX = b, σ2
X = b.

Cauchy: a > 0.

fX(x) =
a

π(x2 + a2)
, | −∞ < x <∞, FX(x) =

1

π
tan−1

(x
a

)
+

1

2
,−∞ < x <∞.

The mean and variance of the Cauchy random variable are undefined.

Exponential: λ > 0.

fX(x) =

{
λe−λx, x ≥ 0
0, otherwise

, FX(x) =

{
1− e−λx, x ≥ 0
0, otherwise

, µX =
1

λ
, σ2

x =
1

λ2
.

Gaussian:

fX(x) = 1√
2πσX

exp

(
−(x− µX)2

2σ2
X

)
,−∞ < x <∞, FX(x) = Φ

(x− µX
σX

)
,−∞ < x <∞.

µX = E[X], σ2
X = Var[X]

Laplace: b > 0.

fX(x) =
b

2
exp(−b|x|), | −∞ < x <∞, µX = 0, σ2

X =
2

b2
,

FX(x) =

{
1
2e
bx, −∞ < x < 0,

1− 1
2e

−bx, 0 ≤ x <∞.

Raleigh: b > 0.

fX(x) =

{
2x
b exp

(
−x2

b

)
, x ≥ 0

0, otherwise,
FX(x) =

{
1− exp

(
−x2

b

)
, x ≥ 0

0, otherwise,

µX =
√

πb
4 , σ2

X = (4− π) b4

3. a.

1 = c

∫ 1

0

∫ 1

0

(x+ y) dx dy = c

∫ 1

0

( 12x
2 + xy)

∣∣1
0
dy = c

∫ 1

0

( 12 + y) dy

= c ( 12y +
1
2y

2)
∣∣1
0
= c⇐⇒ c = 1.
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b.

FXY (x, y) =



0, x ≤ 0, −∞ < y <∞,
0, y ≤ 0, −∞ < x <∞,
xy(x+y)

2 , 0 < x < 1, 0 < y < 1,
x(x+1)

2 , 0 < 1 < 1, 1 ≤ y,
y(y+1)

2 , 1 ≤ x, 0 < y < 1,
1, 1 ≤ x, 1 ≤ y.

c.

FX(x) = FXY (x, 1) = x(x+1)
2 , 0 < x < 1

⇐⇒ fX(x) = d
dxFX(x) =

{
x+ 1

2 , 0 < x < 1,
0, elsewhere.

Similarly,

fY (y) =

{
y + 1

2 , 0 < y < 1,
0, elsewhere.

5. a. [ x1 x2 x3 ]Λ−1[ x1 x2 x3 ]T = 2x21 − x1x2 + x22 − 2x1x3 + 4x33. Denote Λ−1 = [σij ]. Then
σ11 = 2, σ22 = 1, σ33 = 4, σ23 = σ32 = 0, σ12 = σ21 = −1/2, and σ13 = σ31 = −1. Then

Λ−1 =

 2 −1/2 −1
−1/2 1 0
−1 0 4

 , Λ =

 2/3 1/3 1/6

1/3 7/6 1/12

1/6 1/12 7/24

 .
b. Since |Λ| = 1/6 by direct computation, C = ((2π)3/2|Λ|1/2)−1 =

√
6/(2π)3/2 ≃ 0.1555.

c. [ Y1 Y2 Y3 ]T = B[ X1 X2 X3 ]T yields,
Y1 = X1 −X2/4−X3/2; Y2 = X2 − 2X3/7; Y3 = X3.

d. [ X1 X2 X3 ] = B−1[ Y1 Y2 Y3 ] yields,
X1 = Y1 + Y2/4 + 4Y3/7; X2 = Y2 + 2Y3/7; X3 = Y3.

e. The Jacobian of transformation J yields |J | = |B| = 1.
Then −1

2 (2x
2
1 − x1x2 + x22 − 2x1x3 +4x23) = − 1

2 (2y
2
1 +7y22/8+ 24y23/7) and fY (y) = fX(x)J(X|Y ) =

fX(x). Thus, fY (y) = (6/(2π)3)1/2 exp(− 1
2 (2y

2
1 +7y22/8+ 24y23/7)) = [(2/2π)1/2 exp(−y21)]× [(1/2π ·

8/7)1/2 exp(−7y22/16)]× [(1/2π · 7/24)1/2 exp(−12y23/7)].

f. Since the 3-dimensional pdf factors as the product of three 1-dimensional pdfs, the three r.v.’s are
mutually independent. By inspection: µY1 = µY2 = µY3 = 0 and σ2

Y1
= 1/2, σ2

Y2
= 8/7, and

σ2
Y3

= 7/24.

7. a. µZ = E{Z} = µX + µY = λX + λY .

b. σ2
Z = V ar{Z} = σ2

X + σ2
Y = λX + λY .

c.

ϕZ(t) = E{et(X+Y )} = E{etX}E{etY )} = e−λXee
tλXe−λY ee

tλY = e−(λX+λY )ee
t(λX+λY ) .

⇕
Z is a Poisson rv with µZ = λX + λY andσ2

Z = λX + λY .

d.

P (X + Y = k) = P ({X = 0, Y = k} or {X = 1, Y = k − 1} or . . . {X = k, Y = 0})
=P (X = 0, Y = k) + P (X = 1, Y = k − 1) + . . .+ P (X = k, Y = 0)
=P (X = 0)P (Y = k) + P (X = 1)P (Y = k − 1) + . . .+ P (X = k)P (Y = 0)

=
e−λXλ0

X

0!
e−λY λk

Y

k! +
e−λXλ1

X

1!

e−λY λk−1
Y

(k−1)! + . . .+
e−λXλk

X

k!
e−λY λ0

Y

0!

= e−(λX+λY )
[
λ0
X

0!
λk
Y

k! +
λ1
X

1!

λk−1
Y

(k−1)! . . .+
λk
X

k!
λ0
Y

0!

]
.

But the sum in the bracket= (λX + λY )
k/k! .Thus,

P (X + Y = k) = e−(λX+λY )(λX + λY )
k/k! , k = 0, 1, . . . .

⇕
Z is a Poisson rv with µZ = λX + λY and σ2

Z = λX + λY .
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e. Use the moment generating function method to attack this problem.

ϕZ(t) = E{et(2X+3Y )} = E{et2X}E{et3Y )} = e−λXee
2tλXe−λY ee

3tλY = e−(λX+λY )ee
2tλX+e3tλY .

No.Z is not aPoissonrv , since itsϕZ(t) is not of the form e−λee
tλ.

9.

S(ω) = R(0) +R(1)[eıω + e−ıω] +R(2)[eı2ω + e−ı2ω]

= 1 + cos(ω) +
1

2
cos(2ω), −π ≤ ω < π.

R(n) =
1

2π

∫ π

−π
S(ω)eıωn dω =

1

2π

∫ π

−π
[1 + cos(ω) +

1

2
cos(2ω)]eıωn dω

=
1

2π

∫ π

−π
[eıωn +

1

2
(eıω(n+1) + eıω(n−1))

+
1

4
(eıω(n+2) + eıω(n−2))] dω

=
1

2π

∫ π

−π
{cos(ωn) + 1

2
[cos(ω(n+ 1)) + cos(ω(n− 1))]

+
1

4
[cos(ω(n+ 2)) + cos(ω(n− 2))]} dω

=
1

2π

{
sin(ωn

n
) +

1

2

(
sin(ω(n+ 1))

n+ 1
+

sin(ω(n− 1))

n− 1

)
+
1

4

(
sin(ω(n+ 2))

n+ 2
+

sin(ω(n− 2))

n− 2

)}∣∣∣∣π
−π

=
1

2π

{
2 sin(πn)

n
+

sin(π(n+ 1))

n+ 1
+

sin(π(n− 1))

n− 1

+
1

2

sin(π(n+ 2))

(n+ 2)
+

1

2

sin(π(n− 2))

(n− 2)

}
.

But
sin(πm)

m
=

{
π, m = 0
0, m ̸= 0.

Thus, R(n) in indeed yields

R(n) =



1 , n = 0,
1/2 , n = 1,
1/2 , n = −1,
1/4 , n = 2,
1/4 , n = −2,
0 , all other integral n.

11. a.

E{X(t,Θ)} =

∫ 2π

0

Acos(ωt+ θ)
dθ

2π
= 0.

b.

RX(t, t+ τ) = E{X(t, θ)X(t+ τ, θ)} =

∫ 2π

0

Acos(ωt+ θ)Acos(ω(t+ τ) + θ)
dθ

2π

=
A2

2

∫ 2π

0

[cos(ωτ) + cos(2ωt+ 2θ)]
dθ

2π
=
A2

2
cos(ωτ),

where we used the identity cos(u)cos(v) = (1/2)cos(u+ v) + (1/2)cos(u− v).

c.

< X(t, θ) >= limT→∞
1

2T

∫ T

−T
Acos(ωt+ θ)dt = 0.

This integral is zero since there is as much area above the abscissa as below due to the symmetry of
the problem. Of course, if we do the integration, we will find the same result.
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d.

< X(t, θ)X(t+ τ, θ) >= limT→∞
1

2T

∫ T

−T
Acos(ωt+ θ)Acos(ω(t+ τ) + θ)dt

=
A2

2
limT→∞

1

2T
{
∫ T

−T
cos(ωτ)dt+

∫ T

−T
cos(2ωt+ ωτ + 2θ)dt} =

A2

2
cos(ωτ).

e. Yes, both the ensemble and time averaged means and autocorrelations are the same for this random
process. Of course, we can not claim this process is ergodic having shown only these two averages
are equivalent.
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Chapter 3
Hypothesis Testing

Odd Numbered Homework Solutions

1. a. erf(x) = 2√
π

∫ x
0
e−t

2

dt = 2 1√
2π· 1√

2

∫ x
0
e

−t2

2· 1
2 dt = 1− 2 ·Q(x/ 1√

2
).

Q(x) = 1
2 − 1

2 · erf( x√
2
) = 1

2 · erfc( x√
2
).

b&c. x Q(x) Q1(x) Q2(x) logQ(x) logQ1(x) logQ2(x)

0.5000 0.3085 0.7041 0.3085 -0.5107 -0.1523 -0.5107

1.0000 0.1587 0.2420 0.1587 -0.7995 -0.6162 -0.7995

1.5000 0.0668 0.0863 0.0668 -1.1752 -1.0638 -1.1752

2.0000 0.0228 0.0270 0.0228 -1.6430 -1.5687 -1.6430

2.5000 0.0062 0.0070 0.0062 -2.2069 -2.1542 -2.2069

3.0000 0.0013 0.0015 0.0013 -2.8697 -2.8305 -2.8697

3.5000 0.0002 0.0002 0.0002 -3.6333 -3.6032 -3.6333

4.0000 0.0000 0.0000 0.0000 -4.4993 -4.4755 -4.4991

4.5000 0.0000 0.0000 0.0000 -5.4688 -5.4495 -5.4684

5.0000 0.0000 0.0000 0.0000 -6.5426 -6.5267 -6.5420

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−7

−6

−5

−4

−3

−2

−1

0

x

A
pp

ro
xi

m
at

io
n 

va
lu

es
 o

f L
og

10
Q

(x
)

Approximations of Log
10

Q(x) by Log
10

Q
1
(x) and Log

10
Q

2
(x)

log
10

Q(x)
Log

10
Q

l
(x)

Log
10

Q
2
(x)

3. Under H0, p0(x) = (1/2)e−x/2, x ≥ 0; under H1, p1(x) = (x2/16)e−x/2, x ≥ 0. Then Λ(x) = 2x2, x ≥ 0.
Thus, R1 = {x : Λ(x) ≥ Λ0 = 1} = {x : x2 ≥ 8} = {x : x ≥ 2

√
2} and R0 = {x : 0 ≤ x ≤ 2

√
2}.

Then PFA = P (x ∈ R1|H0) =
∫∞
2
√
2
(1/2)exp(−x/2)dx = exp(−

√
2) = 0.243 and PD(x ∈ R1|H1) =∫∞

2
√
2
(x2/16)exp(−x/2)dx = (1/16)exp(−

√
2)(32 + 16

√
2) = 0.830 .

5. We are given

pN (n) =

{
e−n, 0 ≤ n <∞,
0, n < 0.

Then

p0(x) =

{
e−x, 0 ≤ x <∞,
0, x < 0,

p1(x) =

{
e−(x−1), 1 ≤ x <∞,
0, x < 1.

Thus,

Λ(x) =
p1(x)

p0(x)
=

{
e, 1 ≤ x <∞,
0, 0 ≤ x < 1.

We note, Λ(x) is not defined (and need not be defined) for x < 0, since p0(x) and p1(x) are zero for x < 0.
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If P ({x : Λ(x) = Λ0}) = 0, then we can arbitrarily associate the equality of Λ(x) = Λ0 with R1 and have

R1 = {x : Λ(x) ≥ Λ0}
R0 = {x : Λ(x) < Λ0}.

If P ({x : Λ(x) = Λ0}) > 0 (which is the case for this problem), we need to associate the equality with R1

and R0 in a “fairer” manner consistent with other constraints.

If we set 0 < Λ0 < e, then

R1 = {1 ≤ x <∞} = {x : e = Λ(x) > Λ0}
R0 = {0 ≤ x < 1} = {x : 0 = Λ(x) < Λ0}

For this case,

PFA =

∫
R1

p0(x) dx =

∫ ∞

1

e−x dx = e−1 ≃ 0.37 ̸= 0.1,

as required. Thus 0 < Λ0 < e is not possible.

If we set e < Λ0 <∞, then

{1 ≤ x <∞ : e = Λ(x) < Λ0} ⊂ R0

{0 ≤ x < 1 : 0 = Λ(x) < Λ0} ⊂ R0.

Thus,

R0 = {0 ≤ x <∞},
R1 = ∅.

For this case,

PFA =

∫
R1

p0(x) dx = 0 ̸= 0.1,

as required. Thus, e < Λ0 <∞ is not possible.

Thus, we must have Λ0 = e. In this case R1 cannot contain any x ∈ {0 ≤ x < 1}, since these x’s satisfy
0 = Λ(x) < Λ0 = e. Then R1 includes only those x ∈ [1,∞) such that

PFA =

∫
R1

p0(x) dx = 0.1. (1)

a. Clearly, there are many possible R1 that can satisfy (1). Two examples are given in (b) and (c). Thus,
R1 and R0 are not unique.

b. Suppose we pick R1 = {x : 1 ≤ x1 ≤ x}. The we need

PFA =

∫ ∞

x1

e−x dx = e−x1 = 0.1.

Thus, x1 = − ln 0.1 = ln 10 ≃ 2.3 and

PD1 =

∫
R1

p1(x) dx =

∫ ∞

1

e−(x−1) dx = e

∫ ∞

x1

e−x dx = 0.1e.

This shows,

R1 = {x : x1 = ln 10 ≤ x},
R0 = {x : 0 ≤ x < x1 = ln 10}.

c. Suppose we pick R1 = {x : 1 ≤ x ≤ x2}. Then

PFA =

∫
R1

p0(x) dx =

∫ x2

1

e−x dx = e−1 − e−x2 = 0.1.
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Thus, x2 = − ln(e−1 − 0.1) ≃ 1.32 and

PD2
=

∫
R1

p1(x) dx =

∫ x2

1

e−(x−1) dx = e

∫ x2

1

e−x dx = 0.1e.

This shows,

R1 = {x : 1 ≤ x ≤ x2 = − ln(e−1 − 0.1)},
R0 = {x : x2 < x} ∪ {x : 0 ≤ x < 1}.

d. Consider any R1 ⊂ [1,∞) such that

PFA =

∫
R1

p0(x) dx = 0.1.

For x ∈ R1, Λ(x) = p1(x)/p0(x) = Λ0 = e or p1(x) = p0(x)e. Thus,

PD =

∫
R1

p1(x) dx = e

∫
R1

p0(x) dx = 0.1e.

Indeed, it is consistent that PD1 = PD2 = PD = 0.1e.

7. Often we denote as PI , the probability of error of type I, for the probability of declaring H1 given H0 is
true, and PII , for the probability of error of type II, for the probability of declaring H0 given H1 is true.
Thus,PFA = PI = P (Declare H1|H0) = P (X ≤ 5|p = 0.05) =

∑5
k=0 C

200
k (0.05)k(.95)200−k. We can use

the Poisson approximation to the binomial probability using λ = np = 200 × 0.05 = 10. Thus, PFA ≈∑5
k=0 exp(−10) 10

k

k! = 0.067 or P (Declare H0|H0) = 1 − PFA = 1 − 0.067 = 0.933. Similarly,PM = PII =
P (Declare H0|H1) = P (X > 5|p = 0.02) =

∑∞
k=6 C

200
k (0.02)k(.98)200−k. Now, λ = np = 200 × 0.02 = 4

and PM ≈ 1−
∑5
k=0 exp(−4) 4

k

k! = 0.215.
In plain English, if one uses the existing manufacturing process (i.e., H0), then one has a probability of
0.933 of having declaring more than 5 defective items in a sample of 200 items, while if one uses the new
manufacturing process (i.e., H1), then one has a much lower probability of 0.215 of declaring more than 5
defective items in a sample of 200 items. The manufacturing manager will be much happier with the new
manufacturing process.

9. a. From the LR Test, we know R1 = {x : x > x0} and R0 = {x : x < x0} where x0 = 1
2 + lnΛ0 =

1
2 + ln π

1−π . Then

C̄(π, π) = C̄(π) = π

∫ ∞

x0

1√
2π
e−x

2/2 dx+ (1− π)

∫ x0

−∞
e−(x−1)2/2 dx

= πQ(x0) + (1− π)(1−Q(x0 − 1)).

b. π C̄(π) C̄(π, 0.1) C̄(π, 0.5) C̄(π, 0.9)
1E−3 1E−3 4.4477E−3 0.30854 0.95422
0.01 0.01 0.013013 0.30854 0.94566
0.1 0.098664 0.098664 0.30854 0.86001
0.2 0.18616 0.19383 0.30854 0.76484
0.3 0.253 0.289 0.30854 0.66967
0.4 0.2945 0.38417 0.30854 0.5745
0.5 0.30854 0.47933 0.30854 0.47933
0.6 0.2945 0.5745 0.30854 0.38417
0.7 0.253 0.66967 0.30854 0.289
0.8 0.18616 0.76484 0.30854 0.19383
0.9 0.098664 0.866001 0.30854 0.098664
0.99 0.01 0.94566 0.30854 0.013013
0.999 1E−3 0.95422 0.30854 4.4477E−3

Table 1. C̄(π) and C̄(π, π0) vs. π.

c. C̄(π, π0) = πQ(x1) + (1− π)(1−Q(x1 − 1)), where x1 = 1
2 + ln( π0

1−π0
).

d. See Table 1.

e. Plots of C̄(π) and C̄(π, π0) vs. π.
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11. From the solution of Problem 6, we know

Λ(x) = p0(x)
p1(x)

= (m1/m0)
m2

0+x
2

m2
1+x

2 , −∞ < x <∞ , m1 > m0 ,

Λ(x) ≥ Λ0 ⇔ m2
0+x

2

m2
1+x

2 ≥ (m0/m1)Λ0 = γ .

If γ ≤ 0, then R1 = ℜ and R0 = ∅. If γ > 0, then R1 = {x : |x| ≥ √
γ} and R0 = {x : |x| ≤ √

γ}. This
shows that R1 and R0 are functions of the parameter m1. Furthermore,

PFA =
−√

γ∫
−∞

p0(x)dx +
∞∫

√
γ

p0(x)dx =1−
√
γ∫

−√
γ

p0(x)dx

=1− 2m
π

√
γ∫

0

dx
m2

0+x
2 = 1− 2

π tan
−1
(√

γ

m0

)
⇔ m0 tan ((π/2)(1− PFA)) =

√
γ .

This shows that PFA is indeed a function of the parameter m1, and thus this LR test is not UMP.

13. a.

Lm(xm) =
θxm
1 (1− θ1)

m−xm

θxm
0 (1− θ0)

m−xm
.

b.

log(B) < xn log(θ1/θ0) + (m− xm) log((1− θ1)/(1− θ0)) < log(A) , b+ cm < xm < a+ cm ,

b = log(B)
log(θ1(1−θ0)/(θ0(1−θ1))) , a = log(A)

log(θ1(1−θ0)/(θ0(1−θ1))) , c =
log((1−θ1)/(1−θ0))

log(θ1(1−θ0)/(θ0(1−θ1))) .

c.

A ≃ β

α
=

0.95

0.05
= 19 , B ≃ 1− β

1− α
=

0.05

0.95
= 0.0526 .

n̄H0 ≃ log(B)(1−α)+log(A)β
E{z|H0} , n̄H1 ≃ log(B)β+log(A)(1−β)

E{z|H1} ,

E{z|H0} = EH0

{
log
[
pXi

(xi|H1)

pXi
(xi|H0)

]}
= EH0

{
log
[
θ
xi
1 (1−θ1)1−xi

θ
xi
0 (1−θ0)1−xi

]
|

}
= θ0 log

(
θ1
θ0

)
+ (1− θ0) log

(
1−θ1
1−θ0

)
= θ0

[
log
(
θ1
θ0

)
− log

(
1−θ1
1−θ0

)]
+ log

(
1−θ1
1−θ0

)
=θ0 log

(
θ1(1−θ0)
θ0(1−θ1)

)
+ log

(
1−θ1
1−θ0

)
= 0.2 log

(
0.6×0.8
0.2×0.4

)
+ log

(
0.4
0.8

)
= −0.3348 ,

n̄H0 ≃ −2.79778+0.14722
−0.3346 = 7.92 ,

E{z|H1} = EH1

{
log
[
pXi

(xi|H1)

pXi
(xi|H0)

]}
= 0.3820; n̄H1 ≃ −1.4725+2.7972

0.3820 = 6.94 .
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d. Under the H0 simulation, the 10 Ln values are: {4.6875e− 002, 4.2235e− 002, 3.1250e− 002, 3.1250e−
002, 3.5156e − 002, 3.1250e − 002, 3.1250e − 002, 4.6875e − 002, 4.6875e − 002, 4.6875e − 002} . The
associated n values are: {7, 33.5, 5, 10, 5, 5, 7, 7, 7}. Thus, the average number of terms of these real-
izations is n̄ = 9.10 . The theoretical value is given by n̄H0 = 7.92. We note, simulation result of n̄ is
fairly close to the theoretical value of n̄H0 .

Under the H1 simulation, the 10 Ln values are: {4.5562e+001, 2.7000e+001, 3.0375e+001, 2.0250e+
001, 2.0250e + 001, 2.7000e + 001, /, 2.7000e + 001, 2.5629e + 001, 2.5629e + 001}. The associated n
values are: {10, 3, 8, 6, 6, 3, /, 3, 3, 16, 15} Thus, the average number of terms of these realizations is
n̄H1 = 7.79 . The theoretical value is given by n̄H1 = 6.94. We note, in realization 7, even after
considering up to n = 35, the Ln value still did not exceed the threshold value of A = 19. Thus,
by omitting that outlier, only 9 terms were used in the evaluation of n̄H1 . We also note, simulation
result of n̄ is fairly close to the theoretical value of n̄H1 .

15. There are three typos on p. 90. In Table 3.3, 1., for n = 20, αA should = 0.13159 and 2., for n = 10, αA
should = 0.005909 . 3. Five lines below Table 3.3, α should = −Φ(γ0/

√
n).

The answer to this problem is tabulated below in Table 1.

n αA βG and βST
n = 10

αA = 0.17188
βG = 0.95680 > βST = 0.87913

αA = 0.010742
βG = 0.64135 > βST = 0.37581

n = 20
αA = 0.13159

βG = 0.99591 > βST = 0.96786
αA = 0.005909

βG = 0.89368 > βST = 0.62965

Table 1: Comparisons of probability of detection PD(Gaussian) = βG to PD(SignTest) = βST for n = 10,
αA = 0.17188 and 0.010742, and for n = 20, αA = 0.13159 and 0.005909, with p = 0.8.
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Chapter 4
Detection of Known Binary Deterministic Signals in Gaussian Noises

Odd Numbered Homework Solutions

1.
‖s0‖2 = 12 + 22 + 32 = 1 + 4 + 9 = 14 = ‖s1‖2

Λ0 =
π0(C10 − C00)

π1(C01 − C11)
=

0.25× (2− 0)

0.75× (1− 0)
=

0.50

0.75
=

2

3
; σ2 = 1.

γ = σ2 ln Λ0 +
1

2
‖s1‖2 −

1

2
‖s0‖2 = −0.406.

xT (s1 − s0) ≥ γ ⇒ H1. − 2[x1, x2, x3]

 1
2
3

 ≥ γ ⇒ H1.

η1 = x1 + 2x2 + 3x3 ≤
0.406

2
= 0.203⇒ H1.

µη1|H0
= E{η1|H0} = ‖s0‖2 = 14

µη1|H1
= −14

σ2
η1 = 12 + 22 + 32 = 14.

R1 = {x : η1 = xT s0 ≤ 0.203} , R0 = {x : η1 ≥ 0.203}.

PFA = P{η1 ≤ 0.203|H0} =
1√

2π × 14

∫ 0.203

−∞
e−(η1−14)

2/28 dη1

=
1√
2π

∫ (0.203−14)/
√
14

−∞
e−t

2/2 dt =
1√
2π

∫ −13.8/3.74
−∞

e−t
2/2 dt

=
1√
2π

∫ ∞
3.69

e−t
2/2 dt = Q(3.69) = 0.000112.

PD = P{η1 ≤ 0.203|H1} =
1√
2π

∫ 0.203

−∞
e−(η1+14)2/28 dη1

=
1√
2π

∫ 14.203/3.74

−∞
e−t

2/2 dt =
1√
2π

∫ 3.80

−∞
e−t

2/2 dt

= 1−Q(3.80) = 0.999928.

Since s0 = [2,−
√

6, 2]T = −s1 has the same norm as s0 = [1, 2, 3]T = −s1, all the previous results on R0,
R1, PFA, and PD apply.

3. a. From theory, we know for a binary detection of deterministic waveform in WGN, the sufficient statistic

is given by η =
∫ T
0
x(t)[s1(t)− s0(t)]dt = 10

∫ T
0
x(t) sin(2πf0t)dt. Futhermore, the threshold constant

for η is given by γ = (N0/2)ln(Λ0) + 0.5
∫ T
0

[s21(t) − s20(t)]dt = 50
∫ T
0

sin2(2πf0t)dt = 25. Then
R1 = {x(t) : η ≥ γ} and Ro = {x(t) : η ≤ γ}.

b. Since η is a Gaussian r.v., we need to find its means and variances under H0 and H1. µ0 = E{η|H0} = 0.

µ1 = E{η|H1} = 100
∫ T
o

sin2(2πf0)tdt = 50. σ2
η = E{(η − µ0)2|H0} = 100

∫ T
0

sin2(2πf0t)dt = 50.
Then PFA = Q(γ/ση) = Q(3.5355) = 2.035E − 4. PD = Q((γ − µ1)/ση) = 0.9998.

c. Now, η′ =
∫ T
0
x(t)s′(t)dt. Then µ0 = E{η′|H0} = 0.

µ1 = E{η′|H1} = 100× 2× 105
∫ 0.5×10−5

0
sin(2πf0t)dt = 200/π = 63.6620.

σ2
η′ = 100

∫ T
0

(s′(t))2dt = 100× 1 = 100.
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P ′FA = Q(γ/ση′) = Q(25/10) = Q(2.5) = 6.2E − 3.

P ′D = Q((25− 63.662)/10) = Q(−3.8662) = 0.9999.

We note, P ′D > PD (which is good), but P ′FA > PFA (which is bad.) Thus, it is hard to compare the
performance of the receiver using s′(t) instead of s(t) explicitly if we allow both probability of false
alarm and probability of detection to vary as compared to the original optimum case.

d. In order to find a new γ′, we set PFA = P ′FA(γ′) = 2.035E− 4. Then, we must have 3.5355 = γ′/10, or
γ′ = 35.355. Then P ′D(γ′) = Q((γ′−63.662)/10) = Q(−2.8307) = 0.9977. We note, this P ′D(γ′) < PD.
In other words, having used the sub-optimum s′(t) instead of the optimum s(t) at the receiver, for the
same fixed probability of false alarm, the probability of detection went down from 0.9998 to 0.9977.
The degradation of the probability of detection is very small. However, the reduction of complexity
of the receiver is fairly significant.

5. Under H1, the output signal is given by

so(to) =



0, to < 0,∫ to

o

s(τ)h(to − τ)dτ, 0 ≤ to ≤ T,

∫ T
o
s(τ)h(to − τ)dτ, T ≤ to.

Under H0, so(to) = 0. The output noise under both hypothesis is given by

Ñ(to) =

∫ to

o

N(τ)h(t− τ)dτ.

Since the mean of Ñ(.) is zero, its variance is given by

σ2
o(to) =



0, to < 0,

(No/2)

∫ to

o

h2(to − τ)dτ, 0 ≤ to ≤ T,

(No/2)
∫ T
o
h2(to − τ)dτ, T ≤ to.

The output SNR can be defined by SNR(to) = s2o(to)/σ
2
o(to). For to < 0, SNR(to) is not defined.

Under H0, for 0 < to, then SNR(to) = 0. From Schwarz Inequality, we have (
∫ b
a
f(t)h(t)dt)2 ≤∫ b

a
f2(t)dt

∫ b
a
h2(t)dt, with equality if and only if f(t) = ch(t) for some constant c. Then under H1,

we have

Max{h(.)}{SNR(to)} = (2/N0)

∫ to

0

s2(τ)dτ, 0 ≤ to ≤ T,

Max{h(.)}{SNR(to)} = (2/N0)

∫ T

0

s2(τ)dτ, T ≤ to.

Thus,

Max{0≤to;h(.)}{SNR(to)} = (2/N0)

∫ T

0

s2(τ)dτ.

7. Let K(t) = h(t) and f(t) = exp(iω0t). Then denote t− s = u and ds = −du. Thus,

∞∫
−∞

K(t− s)f(s)ds = −
−∞∫
∞

h(u) exp(i ω0(t− u))du =


∞∫
−∞

h(u) exp(−i ω0u)du

 exp(i ω0t) = H(ω0) exp(i ω0t) .

This show that the eigenvalue λ = H(ω0) and the eigenfunction f(t) = exp(i ω0t).
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9. a.

R =

[
8 2
2 5

]
|R− λI| = 0

(8− λ)(5− λ)− 4 = 0 = 40− 13λ+ λ2 − 4 = λ2 − 13λ+ 36 = (λ− 9)(λ− 4)⇒ λ1 = 9, λ2 = 4.[
8 2
2 5

] [
θ11
θ12

]
= 9

[
θ11
θ12

]
⇒ 8θ11 + 2θ12 = 9θ11

2θ11 + 5θ12 = 9θ12
⇒ −θ11 + 2θ12 = 0

2θ11 − 4θ12 = 0

θ11 = 2θ12, 4θ
2
12 + θ212 = 1⇒ 5θ212 = 1⇒ θ12 = 1/

√
5, θ11 = 2/

√
5.[

8 2
2 5

] [
θ21
θ22

]
= 4

[
θ21
θ22

]
⇒ 8θ21 + 2θ22 = 4θ21

2θ21 + 5θ22 = 4θ22
⇒ 2θ21 + θ22 = 0

2θ21 + θ22 = 0

θ1 =

[
2
1

]
1√
5
, θ2 =

[
1
−2

]
1√
5

b. R−
1
2 = TD−

1
2TT

T =

[
2 1
1 −2

]
1√
5
, D =

[
9 0
0 4

]
⇒ D−

1
2 =

[
1
3 0
0 1

2

]
c. Whitening filter.

R−
1
2 =

1

5

[
2 1
1 −2

] [
1
3 0
0 1

2

] [
2 1
1 −2

]
=

1

5

[
2 1
1 −2

] [ 2
3

1
3

1
2 −1

]

=
1

5

[
4
3 + 1

2
2
3 − 1

2
3 − 1 1

3 + 2

]
=

1

5

[
8+3
6 − 1

3

− 1
3

1+6
3

]
=

1

5

[
11
6 − 1

3

− 1
3

7
3

]
=

1

30

[
11 −2
−2 14

]
Check.

R−1 =
1

25

[
121
36 + 1

9 − 11
18 −

7
9

− 11
18 −

7
9

1
9 + 49

9

]
=

1

25

[
125
36 − 25

18

− 25
18

50
9

]

=
1

9× 25

[
125
4 − 25

2

− 25
2 50

]
=

1

900

[
125 −50
−50 200

]

RR−1 =
1

900

[
1000− 100 −400 + 400
250− 250 −100 + 1000

]
=

[
1 0
0 1

]
d.

x R
-1/2 x

T
R

-1/2

x

R
-1/2

s -s1 0

xR
-1x

s -s1 0

~ ~= s -s1 0R
-1/2(s -s )1 0

= x
T
R

-1
(s -s )

1 0
� = x

T
R

-1
(s -s )

1 0
�

Whitening filter approach
to LR Receiver for CGN

Conventional approach
to LR Receiver for CGN
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η = xTR−
1
2 (s̃1 − s̃0) = xTR−1(s1 − s0)

H1
><
H0

0

= xT
1

900

[
125 −50
−50 200

] [
−60

60

]
H1
><
H0

0

=
5

3
xT
[
−7
10

]
H1
><
H0

0

= (−7x1 + 10x2)
H1
><
H0

0.

R1 = {10x2 − 7x1 ≥ 0}
R0 = {10x2 − 7x1 ≤ 0}.
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11.  

The integral equation of interest has the form 

 
T

tqdttqttR
0

),(')'()'(            0 ≤ t ≤ T.    (1) 

The power spectral density function of R(t) is given by 

   ( ) { ( )}S F R t  .  

Since the integral in the left hand side of (1) is a convolution, thus by using Fourier transform, 

this integral equation can be converted to  

)()()(  jQjQS  .        (2) 

Since S(ω) is an even function and if it is assumed to be a rational function, we can write it as 

)(/)()( 22   DNS ,   

and (2) becomes 

2 2( ) ( ) ( ) ( ) ,N Q j D Q j            (3)  

where  





m

k

k
kbN

0

22 )()(   and  



n

k

k
kaD

0

22 )()(  .    (4) 

We also have  

2 2 2 2( ) / ( ) ,j t j td e dt e           (5) 

thus from operational calculus (3) and (4) become 





n

k
k

k

k

m

k
k

k

k tq
dt

d
atq

dt

d
b

0
2

2

0
2

2

)()(  .     (6) 

We know that q(t) cannot contain any impulse function, and therefore the solutions to the above 

differential equation are also solutions to the integral equation. 

Let us consider the specific kernel of 
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)'exp()'( ttttR   .      (7) 

Then (1) becomes 

 
T

tqdttqtt
0

),(')'()'exp(            0  ≤  t  ≤  T.                                     (8) 

The Fourier transform of the kernel of (7) is given by  

  
2 2

2
( ) , .S

 
 

  


      (9)  

Then the integral equation of (8) can be converted to the following homogeneous differential 

equation of 

),()(")(2 2 tqtqtq                                                                 (10)  

which can be rewritten as  

0)()/2()("  tqtq  .      (11) 

The solution to this differential equation is given by 

)exp()exp()( tBtAtq   ,         (12) 

where                                           

2 1/2( 2 / ) .                                               (13) 

Substituting (12) into (1), and after some manipulation, we obtain 

  ( ) ( ) 0,A B              (14a) 

  ( )exp( ) ( )exp( ) 0.A T B T               (14b) 

For a solution to exist, the determinant of the matrix of the coefficients of these two equations 

must be 0.  Therefore 

)/()()exp(  T  ,                                         (15) 

where γ is a complex number. 
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To proceed, let  

,)/2( 2/12  j                                                        (16) 

then (15) becomes  

)./()()sin()cos( 222   jTjT     (17)  

From the real and imaginary components, we obtain 

  2 2cos( ) ( ) / 2 ,T             (18a) 

  sin( ) / ,T            (18b) 

when combined with (16) result in  

  2 2tan( ) 2 / ( ).T            (19) 

 Let ),cos(),sin( xx    then with ,2/Tx   (19) becomes 

).2//()2/()2/tan( TTT                                          (20) 

If we let )cos(),sin( xx   , and ,2/Tx   then (19) becomes 

).2//()2/()2/cot( TTT                               (21) 

Let ,2/Tkk    then from (20), we obtain 

  
/ 2

tan( ) ,k
k

T


         (22) 

and from (21), we obtain 

  
/ 2

cot( ) .k
k

T


          (23) 

The solutions to (22) are the intersections of the tangent function to a hyperbola and the solutions 

of (23) are the intersections of the -cotangent function to a hyperbola.  Both of these equations 

have countably infinite number of solutions and thus countably infinite number of eigenvalues. 
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 The hyperbola is monotonically decreasing in (0, ∞) and the tangent function and negative 

cotangent function have period of π and are monotonically increasing in each period.  In 

addition, they have discontinuities at multiples of π /2.  Thus, the hyperbola intersects these two 

functions alternatively, and the locations of the intersections increase with increasing 2/T .  In 

order to have a clearer picture of the solutions, these three functions are plotted in Fig. 1 with α = 

10 and β = 5.5.  (Without loss of generality, we picked T = 1). From Fig. 1, we can find the first 

three intersections corresponding to the three largest eigenvalues.  From Fig. 1, intersections 

occur at k  values of about 1.1, for k = 1,  of  about 2.4, for k = 2, and about 3.7, for k = 3.   

Upon solving (22) and (23) more precisely (e.g., using Newton’s Method), 1  = 1T/2  = 

1.16888, 2  = 2T/2 = 2.41995, and 3  = 3T/2  = 3.77161.  We note the plot on page 368 of 

McDonough and Whalen (2nd edition) are incorrect. 

             

0 1 2 3 4 5 6 7
0

5

10

15
(β T/2)/x, tan(x), & −cot(x)

x=(wT/2)

y

 

 
(β T/2)/x
tan(x)
−cot(x)

 

 Figure 1.  Intersections of (T/2)/x with tan (x) and –cot (x) for  = 10 and  = 5.5.  

We note from (16), we can obtain the eigenvalues  

2 22 / ( ) , 1,2, .k k k            (24) 
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For   = 10 and  = 5.5, (24) yields the three largest eigenvalues by the differential equation 

approach to be  

    ( )
1

DF = 3.07992, ( )
2

DF  =  2.04939, and  ( )
3

DF =  1.26219.     (25) 

The subscript of (DF) indicates these eigenvalues were obtained based on the differential 

equation method.  Shortly, we will evaluate these three largest eigenvalues by the matrix 

eigenvalue method.  

Substitute the above value of ( )DF
k in (25) into (16) and then into (15), we obtain 

)sin()cos()( tbtatq   ,  

where a and b are arbitrary constants.  To find the values of a and b, we substitute this q(t) into 

the original integral equation and obtain  

   0,a b           (26a) 

     cos( ) sin( ) sin( ) cos( ) 0,T T a T T b               (26b) 

which yields 

  2 2[tan( ) 2 / ( )] 0.T a            (27) 

From (19), this equation is already satisfied for any k , which is the solution to (22) and 23).  

The parameter a can be arbitrary, and the eigenfunctions we are looking for are 

     ,)sin()/()cos()( ttatq kkkkk     k = 1, 2, … ,    (28) 

with ak satisfying (29)  

dttt
a

T

k
k

k

k

2

02
)sin()cos(

1
 
















 


  ,  k = 1, 2, … ,   (29) 

so that these eigenfunctions will form an orthonormal set.  The three associated eigenfunctions 

corresponding to the eigenvalues in (25) are given by 
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 1( ) 0.483657 cos(2.33777 ) (2.35267)sin(2.33777 ) ,q t t t      (30) 

 2 ( ) 0.850800 cos(4.83990 ) (1.13639)sin(4.83990 ) ,q t t t      (31) 

 3( ) 1.07616 cos(7.54321 ) (0.729132)sin(7.54321 ) .q t t t      (32) 

Plots of these three eigenfunctions (given by (30) – (32)) obtained by the differential equation 

method are shown in Fig. 2.  

              

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Eigen functions of the three largest eigenvalues using dif. equ. method

t1

q1

 

 

λ(DE)
1

=3.07992

λ(DE)
2

=2.04939

λ(DE)
3

=1.26219

 

Figure 2.  Eigenfunctions associated with the three largest eigenvalues obtained by the differential equation method. 

From the plots in Figure 2, we can see the eigenfunction associated with the largest eigenvalue 

3.08 has no zero-crossing, one for eigenfunction associated with eigenvalue 2.05, and two for 

eigenfunction associated with eigenvalue 1.26.  The number of zero-crossings increases with 

decreasing eigenvalues. 

Now, consider the solution of this problem using the discretized matrix eigenvalue method as 

considered in Problem 10.  The three associated eigenvalues are now given by  

                           ( )
1

ME  = 3.08064 , ( )
2

ME  =  2.05085 , and  ( )
3

ME  =  1.26363.    (33) 
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The three largest eigenvalues obtained from the matrix eigenvalue method shown in (33) are 

extremely close to those three largest eigenvalues obtained from the differential equation method 

shown in (25).  Clearly, there are some numerical errors in the computations of these eigenvalues 

in both methods.  Figure 3 shows the plots of the three eigenvectors corresponding to the 

eigenvalues of (33) evaluated based on the matrix eigenvalue method.  

   

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Eigen functions of the three largest eigenvalues using matrix eigenvalue method

t2

q2

 

 

λ(ME)
1

=3.08064

λ(ME)
2

=2.05085

λ(ME)
2

=1.26363

 

Figure 3:  Eigenfunctions associated with the three largest eigenvalues obtained with discretized matrix eigenvalue method. 

Figure 4 plots the two eigenfunctions corresponding to ( )
1

DF and ( )
1

ME .  Similarly, Figure 5 plots 

the two eigenfunctions corresponding to ( )
2

DF and ( )
2

ME  and Figure 6 plots the two 

eigenfunctions corresponding to ( )
3

DF and ( )
3

ME .    We note, in Figures 4, 5, and 6, values of the 

eigenfunctions obtained from the differential equation method are essentially identical to those 

obtained from the matrix eigenvalue method.   
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0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Comparison of eigenfunctions of largest eigenvalues with two different methods

t

q

 

 
Diff eqn
Matrix eigenvalue

 

                    

Figure 4:  Eigenfunctions of two largest eigenvalues with two different methods. 

 

                

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Comparison of eigenfunctions of second largest eigenvalue with two different methods

t

q

 

 
Diff eqn
Matrix eigenvalue

 

Figure 5:  Eigenfunctions for second largest eigenvalues with two different methods. 
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0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Comparison of eigenfunctions of third largest eigenvalue with two different methods

t

q

 

 
Diff eqn
Matrix eigenvalue

 

 Figure 6.  Eigenfunctions for third largest eigenvalues with two different methods. 

KY wants to acknowledge the contributions of [16; pp. 361-370] and various students (and 
particularly S. Lee) in a class project dealing with this problem. 



13. a. The optimum correlation function {g(t), 0 ≤ t ≤ T} for the CGN problem is obtained from the solution
of ∫ T

o

R(t− t′)g(t′)dt′ = s(t), 0 ≤ t ≤ T. (1)

The CGN matched filter impulse response function h(t) is given by

h(t) =

{
g(T − t), 0 ≤ t ≤ T,
0, elsewhere.

(2)

An approximation for the solution of g(t) in (1) for large T can be obtained from∫ ∞
−∞

R(t− t′)g(t′)dt′ = s(t), 0 ≤ t ≤ T. (3)

Denote N(ω) = F{R(t)} =
∫∞
−∞R(t)exp(−jωt)dt, S(ω) = F{s(t)}, G(ω) = F{g(t)}, and H(ω) =

F{h(t)}. Apply the Fourier transform to the convolutional equation in (3). Then

N(ω)G(ω) = S(ω), −∞ < ω <∞. (4)

Apply the Fourier transform to (2). Then

H(ω) = G∗(ω)e−jωT . −∞ < ω <∞. (5)

Combine (4) with (5) to obtain

H(ω) =
S∗(ω)

N∗(ω)
e−jωT =

S∗(ω)

N(ω)
e−jωT , −∞ < ω <∞. (6)

b. If the input is a CGN process of power spectral density

N(ω) =
K

ω2 + ω2
0

=
K1/2

jω + ω0
× K1/2

−jω + ω0
,

then the causal whitening filter HW (ω) satisfies

N(ω)|HW (ω)|2 = C, forany C > 0.

Thus,

|HW (ω)|2 =
C

N(ω)
=
C(ω2 + ω2

0)

K

and
HW (ω) = C0(jω + ω0), C0 = (C/K)1/2.

c. The Fourier transform of the input signal is S(ω). Then the signal component of the output of the
matched filter in the frequency domain is given by (|S(ω)|2/N(ω))exp(−jωT ). Thus the signal com-
ponent of the output of the matched filter in the time domain s0(t) is given by

s0(t) =
1

2π

∫ ∞
−∞

|S(ω)|2

N(ω)
ejw(t−T )dω.

d. From (4.211), we have

PD = Q

(
γc0 − µ1

σ1

)
,

where from (4.206)

γc0 =
1

2

∞∑
i=0

s2i
λi

+ ln(Λ0) ,

from (4.208)

µ1 =

∞∑
i=0

s2i
λi
,

14



and from (4.209)

σ1 =

√√√√ ∞∑
i=0

s2i
λi
.

Then

PD = Q

−1

2

√√√√ ∞∑
i=0

s2i
λi

+
ln(Λ0)√
∞∑
i=0

s2i
λi

 .

From Parseval Theoren

∞∑
i=0

s2i
λi

=
∞∑
i=0

Power ofsignals(t)inθi coordinate
Av.powerofnoiseN(t) inθi coordinate

= 1
2π

∞∫
−∞

|S(ω)|2
N(ω) dω = ∞ .

Thus, PD = Q(−∞) = 1 .

e. If N(ω) = 0 , ω ∈ {(−b , −a) ∪ (a, b)} , but S(ω) 6= 0 , ω ∈ {(−b , −a) ∪ (a, b)} ,, then

1

2π

∞∫
−∞

|S(ω)|2

N(ω)
dω = ∞ .

Thus, PD = Q(−∞) = 1 .

15
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15.   

In order to obtain the upper bound of    1T T s Λs s Λ s  in (4.242), where ||s||2 is taken to have unit norm, we can 

perform the following eigenvalue decomposition.  Denote  = UDUT  and  -1 = UD-1UT. where diag(D) = [1, …, n],  
with  1 > 2 > … n > 0. Since U is an orthogonal matrix, define a new n1 vector z =  UT s or s = U z and  sT = uT UT, 
with ||z||2 = 1.  
Thus,  
 

  

       

   

1 1

M M
1 2 2

i=1 i=1

  =  

  = / .

T T T T T T T T

T T
i i i iz z 

 

      
  
 

s Λ s s Λs z U UD U Uz z U UDU Uz

z D z z Dz
   (A1)    

             

Define n new variables 2 =   0 , 1,..., ,i iy z i n  and substitute them into (A1).  Then    

   

     
M M

1

i=1 i=1

 = / .T T
i i i iy y    

  
  
 s Λ s s Λs      (A2) 

 

Thus, the upper bound of    1T T s Λs s Λ s  is given by the solution of the following Theorem.   

 
Theorem.  The maximum of (A3) given by 
 

                  
n n

i=1 i=1

/ ,  i i i iy y   
  
  
         (A3) 

 
subject to 

 
n

i=1

 = 1 ,   0 , 1,..., ,  i iy y i n      (A4) 

and 

                      1 2 >  > ...  > 0,n          (A5)  

as attained by using           
   

1ˆ ˆ ˆ =  = 1/2,   = 0 , 2,..., 1 .  n iy y y i n                                (A6) 

 
Proof:  Consider the nonlinear minimization problem of  
 
               Min y  f(y) ,                   (A7) 
 
subject to 
 
                                                          gi(y)  0 , i= 1,…, M,                                                                                  (A8) 
 
    h(y) = 0 .                                                                           (A9) 
 

The celebrated Karush-Kuhn-Tucker (KKT) [4] necessary conditions for 
1

ˆ ˆ ˆ[ , ..., ]T

M
y y y y  to be a local minimum 

solution of (A7) subject to (A8) and (A9), are such that there exist constants I, i = 1,…, M, and  satisfying 
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1

ˆ ˆ ˆ1. ( ) ( ) ( ) 0,
M

i i
i

f g h 


     y y y         (A10) 

ˆ2. ( ) 0,  1,..., ,ig i M y                             (A11) 

ˆ3. ( ) 0,  1,..., ,h i M y                     (A12) 

4. 0,  1,..., ,i i M                       (A13) 

ˆ5. ( ) 0,  1,..., .i ig i M  y                    (A14) 

 
In order to use the KKT method for our maximization of (A7) with the constraints of (A8) and (A9), denote 
 
              ˆ( ) ( ) ( ),f A i B i y                          (A15) 

 

      ˆ( )  ,  1,..., ,i ig y i M  y               (A16) 

    
1

ˆ( )  1,
M

i
i

h y


 y                (A17) 

    1 > 2 > … M > 0 ,                        (A18) 
 
where we define 
 

      
1 1

( ) / , ( ) .
M M

i i i i
i i

A i y B i y 
 

          (A19) 

 
Now, we show the conditions of (1)- (5) of (A10) – (A14) are satisfied for the expressions  
of (A15) - (A18).  From Condition 1, by taking its partial derivative wrt to yi, i = 1, …, M, we have   
 

        ( ) ( )
1

0.i i
i

B j A j  



               (A20) 

 
Multiply (A20) by yi yields 
 

( ) ( ) 0.i
i i i i i

i

y
B j y A j y y  




       (A21) 

 

From Condition 4 and 0iy  , then 0.i iy   Thus, (A21) becomes 

 

( ) ( ) 0.i
i i i

i

y
B j y A j y 




               (A22) 

 
Summing (A22) over all i = 1, …, M, yields 
 

                
1

( ) ( ) ( ) ( ) ,
M

i
i

y A i B j B i A j


     

and from (A8),  we have 
 
                     ( ) ( ) ( ) ( ) 2 ( ) ( ).A i B j B i A j A j B j        (A23) 
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Substitute (A23) into (A22) yields 
 

( ) ( ) 2 ( ) ( ) 0,i
i i i

i

y
B j y A j y B j A j


     

 
or  

                
1

( ) ( ) 2 ( ) ( ) 0,i i
i

y B j A j B j A j

 

   
 

   (A24) 

Thus, (A24) shows either yi = 0 or  
 

              
1

( ) ( ) 2 ( ) ( ) 0.i
i

B j A j B j A j


       (A25) 

 
Multiply (A25) by i , to obtain 
 

    2 ( ) 2 ( ) ( ) ( ) 0.i iA j B j A j B j         (A26) 

 
The quadratic equation of (A26) in i, has two non-zero solutions given by 
 

2 22 ( ) ( ) 4 ( ) ( ) 4 ( ) ( )
.

2 ( )i

B j A j B j A j B j A j

A j
  
    (A27) 

 
The rest of the (M -2) number of yi = 0 .  Denote the indices of the two non-zero yi by a and b.   Then the maximization of 

( ) ( )A i B i  in (A7)) reduces to the maximization of 

 

       

 

 

2 2

2 2

2

= 

= 2 .

a b
a a b b

a b

a b
a a b b a b

b a

a b
a b a b

b a

a b
a b a b

b a

y y
y y

y y y y y y

y y y y

y y y y

 
 

 
 

 
 

 
 

 
  

 

   

 
   

 
 

    
 

    (A28) 

 
By denoting yb = 1 – ya in (A28), we obtain 
   

             

 

1 2 (1 )

( , , ).

a b
a a b b

a b

a b
a a

b a

a a b

y y
y y

y y

H y

 
 

 
 

 

 
  

 
 

     
 



    (A29) 
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Thus, the maximization in (A7)) reduces to the maximization of ( , , )a a bH y    in (A29).  We note ( , , )a a bH y    is a 

quadratic function of ya.  Taking the partial derivative of ( , , )a a bH y    wrt to ya yields 

 

       

( , , )
2

          2 (1 ) 0,

a a b a b
a

a b a

a b
a

b a

H y
y

y

y

   
 

 
 

 
      

 
     
 

 

or 
 

      2 2 2 ,a b a b
a

b a b a

y
   
   

   
       

   
 

 
or 
 

            1 / 2,a by y                  (A30) 

 
since 
 

    2 0,  a b

b a

 
 

 
   

 
 

 

with .a b  The second partial derivative of ( , , )a a bH y   shows 

 

           

2

2

2

( , , )
2 2

( )
2 0,

a a b a b

a b a

a b

a b

H y

y

   
 

 
 

 
      

 
   

 

 

 

since 0 and 0.a b    Thus, the local maximum solution of 1 / 2a by y  in (A30) is a global maximum 

solution of ( , , )a a bH y   . By using 1 / 2a by y  and denoting / 1,a b    with the assumption of 

0,a b   then ( , , )a a bH y    of (A29) can be expressed as 

 

        
2

( ) 1 (1 / 4)( 2 1 / )

( 1)( 1)
1 (1 / 4) 0.

H   
 



   

     
 

    (A31) 

 

This shows ( )H   is a positive monotonically increasing function of .  Since /a b   and 0,a b   the 

maximum of ( )H   is attained by using max 1 / M   .  This means 

    1ˆ ˆ ˆ1 / 2, 0, 2,..., 1.M iy y y i M                 (A32) 
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Thus, the solution given by (A32) is the only solution that satisfies the KKT Condition 1 of (A15) that provides the local 
minimum of  
 

1 1

ˆ( ) /
M M

i i i i
i i

f y y 
 

     
  
 y  or the local maximum of 

1 1

/
M M

i i i i
i i

y y 
 

  
  
  
  .  But ( , , )a a bH y    of (A29) is 

a quadratic function, thus the solution given by (A32) yields the global maximum of (A3) or the upper bound of (A2) and 
(A1).  � 
 
(KY wants to thank discussions with Prof. L. Vandenberghe and various students in a class project of EE230A for various 
inputs in the solution of this problem.) 



Chapter 5
M-ary Detection

Odd Numbered Homework Solutions

1. The M-ary MAP decision rule state that we decide for hypothesis Hj , if

p(Hj |x) > p(Hi|x),∞ < x <∞, all j ̸= i, 1 ≤ i, j ≤M.

From Bayes rule, p(Hi/x) = p(x|Hi)πi/p(x), 1 ≤ i ≤M, and p(x) =
∑M
k=1 p(x|Hk)πk > 0. Thus,we decide

for hypothesis Hj , if
p(x|Hj)πj > p(x|Hi)πi, all j ̸= i, 1 ≤ i, j ≤M.

3. List of some M-ary orthogonal transmission system using a carrier frequency includes:

a. M-ary PSK (including conventional QPSK; offset QPSKl π − /4 QPSK; etc.);

b. M-FSK.

List of some M-ary orthogonal baseband signals modulating a carrier frequency includes:

a. Time-multiplexed PPM signals;

b. Time-multiplexed PWM signals;

c. Time-multiplexed PAM signals;

d. Time-multiplexed PCM signals.

List of some M-ary non-orthogonal transmission system using a carrier frequency includes:

a. M-QAM;

b. M-CPM (including MSK, etc.).

List of some M-ary non-orthogonal baseband signals modulating a carrier frequency includes:

a. Non-time-multiplexed PPM signals;

b. Non-time-multiplexed PWM signals;

c. Non-time-multiplexed PAM signals;

d. Non-time-multiplexed PCM signals.

5. In a M -ary PAM system where the signal set is given by {±A, ±3A , . . . , (M/2)A}. We assume M is an
even integer, and denote sm = (2m − 1)A, m = 1, . . . , M/2 and s−m = −(2m − 1)A, m = 1, . . . , M/2.
The transmited signal is disturbed by an AWGN noise of zero-mean and variance σ2 = N0/2. Then under
the minimum-distance decision rule, the decision regions Rm, for the received value x is given by

Rm =


{x : 2(m− 1)A 6 x < 2mA} , for m = 1, 2, . . . , (M/2) − 1 , (1a)

{x : (m− 2)A 6 x < ∞} , for m = M/2 , (1b)
{x : 2mA < x 6 2(m+ 1)A} , for m = −1, −2, . . . , −(M/2) + 1 , (1c)

{x : −∞ < x 6 (m+ 2)A} , for m = −M/2 . (1d)

(5.1)

For the two extreme symbols in (1b) and (1d), their two error probabilities are given by 2Q(A/σ), while
the other (M−2) error probabilities due to (1a) and (1c) are given by (M−2)2Q(A/σ). Thus, the average
symbol error proability is given by

P se = (1/M)[2Q(A/σ) + (M − 2)2Q(A/σ)] = (2(M − 1)/M)Q(A/σ). (5.2)

The average energy Eav = (1/M)
∑M/2
m=−M/2 s

2
m = (M2 − 1)A2/3 or A/σ =

√
3Eav/(σ2(M2 − 1). The

energy per bit is given by Eb = Eav/log2M. Thus, the average symbol error proability can be expressed
as

P se = (2(M − 1)/M)Q(
√

(6(Eb/N0)log2M)/(M2 − 1)). (5.3)

1



7. Let Pb(ψ) be the probability of bit error given a phase error of ψ, where ψ is the realization of a random
variable Ψ with pdf equal to

pΨ(ψ) =
1√
2πσ2

Ψ

exp

(
−ψ2

2σ2
Ψ

)
,

defined over ψ ∈ (−π/2, π/2] (Note that we assume that Q(π/(2σΨ)) ≈ 0). Then,

Pb(ψ) = Q

(√
2E

N0
cos(ψ)

)
.

The average BER is equal to

Pb =

∫ π/2

−π/2
Pb(ψ)pΨ(ψ) dψ.

If we expand Pb(ψ) into a power series up to the second-order term, we have

Pb(ψ) ≈ Pb(0) +
dPb(ψ)

dψ

∣∣∣∣
ψ=0

ψ +
1

2

d2Pb(ψ)

dψ2

∣∣∣∣
ψ=0

ψ2,

where

Pb(0) = Q

(√
2E

N0

)
,

dPb(ψ)

dψ

∣∣∣∣
ψ=0

=

√
E

πN0
exp

(
− E

N0
(cos(ψ))2

)
sin(ψ)

∣∣∣∣∣
ψ=0

= 0,

d2Pb(ψ)

dψ2

∣∣∣∣
ψ=0

=

√
E

πN0
exp

(
− E

N0
(cos(ψ))2

)[
2E

N0
cos(ψ)(sin(ψ))2 + cos(ψ)

]∣∣∣∣∣
ψ=0

=

√
E

πN0
exp

(
− E

N0

)
.

With this approximation, we obtain for Pb

Pb ≈ Q

(√
2E

N0

)
+

1

2

√
E

πN0
exp

(
− E

N0

)
σ2
Ψ.

9. Consider an uncorrelated random sequence {Bn,−∞ < n < ∞}, with E{Bn} = µ, E{BnBn+m} = µ2,
and its variance denoted by σ2

Bn
.

a. In s(t) =
∑N
n=−N Bng(t − nT ), −∞ < t < ∞, first assume Bn’s are deterministic and then take its

Fourier transform to yield

C(f) = G(f)
N∑

n=−N
Bne

−in2πfT ,−∞ < f < ∞. (9.1)

After taking the time and statistical averages of |C(f)|2, we obtain

SS(f) = |G(f))|2 lim
N→∞

1

(2N + 1)T
E


∣∣∣∣∣

N∑
n=−N

Bne
−in2πfT

∣∣∣∣∣
2


=
|G(f))|2

T
lim
N→∞

1

(2N + 1)

N∑
n=−N

−N∑
m=−N

R(m)e−i(m−n)2πfT

=
|G(f))|2

T

∞∑
m=−∞

R(m)e−im2πfT .

(9.2)

b. Since

R(m) = E{Bn+mBn} =

{
µ2, m ̸= 0 ,

σ2
Bn

+ µ2 , m = 0 ,
(9.3)

upon substituting (9.3) into (9.2), we obtain

SS(f) =
|G(f))|2

T

(
σ2
Bn

+ µ2
∞∑

m=−∞
e−im2πfT

)
. (9.4)
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By using the Poisson formula
∞∑

m=−∞
e−im2πfT = 1

T

∞∑
m=−∞

δ(f −m/T ) , (9.5)

in (9.4), we obtain

SS(f) =
|G(f))|2

T

(
σ2
Bn

+
µ2

T

∞∑
m=−∞

δ(f − m

T
)

)

=
|G(f))|2σ2

Bn

T
+
(µ
T

)2 ∞∑
m=−∞

|G(m
T
))|2δ(f − m

T
) .

(9.6)

11. % input data

X=[[-.225 0.93]’,[-1 2]’,[-2.5 .5]’,[-3 -1]’];

Y=[[-0.75 0.75]’,[1 .8]’,[2 -1]’,[2.5 1.5]’,[3 1]’];

N=4; M =5;

% Solution via CVX

cvx_begin

variables a(2,1) b u(4,1) v(5,1)

X’*a - b >= 1 - u ;

Y’*a - b <= -(1-v);

%a’*X(:,i) - b >= 1 - u(i), i = 1,2,3,4;

%a’*Y(:,j) - b <= -(1 - v(j)); j = 1,2,3,4,5;

u >= 0;

v >= 0;

minimize ([ 1 1 1 1]*u + [1 1 1 1 1]*v)

cvx_end

b

a

% Displaying results

linewidth = 0.5; % for the squares and circles

t_min = min([X(1,:),Y(1,:)]);

t_max = max([X(1,:),Y(1,:)]);

tt = linspace(t_min-1,t_max+1,100);

p = -a(1)*tt/a(2) + b/a(2);

p1 = -a(1)*tt/a(2) + (b+1)/a(2);

p2 = -a(1)*tt/a(2) + (b-1)/a(2);

graph = plot(X(1,:),X(2,:), ’o’, Y(1,:), Y(2,:), ’o’,-4:.01:4,zeros(1,801),’k’,zeros(1,601),(-3:.01:3),’k’);

graph = plot(X(1,:),X(2,:), ’o’, Y(1,:), Y(2,:), ’o’,-4:.01:4,zeros(1,801),’k’,zeros(1,601),(-3:.01:3),’k’);

set(graph(1),’LineWidth’,linewidth);

set(graph(2),’LineWidth’,linewidth);

set(graph(1),’MarkerFaceColor’,[0 0.5 0]);

hold on;

plot(tt,p, ’-r’, tt,p1, ’--r’, tt,p2, ’--r’);

axis([-4 4 -3 3])

xlabel(’x(1)’)

ylabel(’x(2)’)
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Homework #6 Answers

1. Since X and Y are two independent Gaussian r.v.’s, then

pX,Y (x, y) =

(
e−x

2/(2σ2)

√
2πσ2

) (
e−y

2/(2σ2)

√
2πσ2

)
=
e−(x2+y2)/(2σ2)

2πσ2
.

Let x = r cos(θ) and y = sin(θ). Upon converting from the rectangular coordinate to the polar coordinate,
r2 = x2 + y2 and rdrdθ = dxdy. Then

pR,Θ(r, θ) |dr dθ| = pX,Y (x, y) |dx dy| =

[
e−(x2+y2)/(2σ2)

2πσ2
r |dr dθ|

]
| x = r cos(θ)
y = r sin(θ)

=
r e−r

2/(2σ2)

2πσ2
|dr dθ| .

pR(r) dr =

2π∫
0

pR,Θ(r, θ) dθ =
r dre−r

2/(2σ2)

2πσ2

2π∫
0

dθ =
r e−r

2/(2σ2)

σ2
dr , 0 ≤ r < ∞ .

Thus, R =
√
X2 + Y 2 is a Rayleigh r.v. with a pdf given by pR(r) = (r/σ2) e−r

2/(2σ2) , 0 ≤ r < ∞ .

3.

Fig. 1. Plots of Rician pdf’s for five values of µ and σ.

5. a. Using the Matlab function mean, we obtained the estimated mean µ̃R = mean(r) = 1.2619.

b. Using the Matlab function var, we obtained the estimated variance σ̃2
R = var(r) = 0.43366.

c. Using σ̃1 = µ̃R ×
√
2/π, then we obtained σ̃1 = 1.0069.

d. Using σ̃2 =
√
σ̃2
R/(2− π), we obtained σ̃2 = 1.0052.

e. Thus, both σ̃1 and σ̃2 are very close to the original σ = 1 of the Gaussian r.v.

1
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f. Fig. 3 shows the the empirical cdf and the Rayleigh cdf match each other well.
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Fig. 3. Plots of empirical cdf and Rayleigh cdf FR(r) vs. r.

7. In Fig. 8, the Rician pdf is represented by the solid curve. The Gaussian pdf with mean of µ = 2 and
σ = 0.5 is represented by the dashed curve. We see this Gaussian approximation pdf appears to have an
offset to the left of the Rician pdf. However, the Gaussian approximation pdf with a modified mean of√
µ2 + σ2 and σ = 0.5 is represented by the dotted curve and provide a much better approximation to

the desired Rician pdf.
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Fig. 8 Plots of Rician pdf, Gaussian pdf, and Gaussian pdf with a modified mean.
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9. Fig. 9 compares the Rician pdf with different parameters of the Nakagame pdf’s.
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Rician K=10,s=2
Nakagami m=5.76
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Fig. 9. Plots of Rician pdf and Nakagami-m pdf. (a). Rician (K=10, s=2), Nakagami (m = 5.76). (b). Rician
(K=2, s=1), Nakagami (m = 1.80).
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Homework #7 Answers

1. a.

ϵ2 = E{(s(t+ τ)− as(t))2} = R(0) + a2R(0)− 2aR(τ)

∂ϵ2

∂a
= 2âR(0)− 2R(τ) = 0 =⇒ â =

R(τ)

R(0)

ϵ2Min = E{(s(t+ τ)− âs(t))s(t+ τ)} = R(0)− âR(τ) = R(0)− R2(τ)

R(0)

=
R2(0)−R2(τ)

R(0)

b. For R(t) = δ(t), −∞ < t <∞, denote

RC(τ) =

{
1/c , (−c/2) < τ < (c/2) ,

0 , elsewhere ,

then define δ(τ) = limc→0RC(τ) . Thus,

â =

{
limc→0R(τ)/(1/c) = 0, τ ̸= 0
limc→0(1/c)/(1/c) = 1, τ = 0

, ϵ2Min =

{
0, τ = 0
∞, τ ̸= 0.

c. Consider

E{(s(t+ τ)− âs(t))s(u)} = R(t+ τ − u)− âR(t− u)

= e−α|t+τ−u| − e−α|τ |e−α|t−u|

= e−α(t+τ−u) − e−ατe−α(t−u)

= e−α(t+τ−u) − e−α(t+τ−u)

= 0, τ > 0, t ≥ u.

This means

ϵ21 = E
{
(s(t+ τ)− âs(t)−

N∑
i=1

bis(ui))
2
}

= E{(s(t+ τ − âs(t))2}+ E
{( N∑

i=1

bis(ui)
)2}

≥ E{(s(t+ τ)− âs(t))2} = ϵ2Min.

Thus, the minimum m.s. error is attained with all bi = 0. That is, the optimal linear estimate is
âs(t), where â = R(τ)/R(0), for τ > 0 , and t > ui , for all i.

3. a. From Orthogonal Principle, we obtain E{[S(n) − (
∞∑

k=−∞
h(k)X(n− k))]X(n− j) } = 0 , −∞ < j <

∞ , or RSX(j) =
∞∑

k=−∞
h(k)X(j − k) , −∞ < j < ∞ . Without additional information, it is not

possible to solve for the h(k) directly.

b. By taking the Fourier transform of the last expression of part (a), we obtain SSX(f) = H(f)SX(f) ,−1/2 ≤
f < 1/2 . Thus, H(f) = SSX(f)/SX(f) ,−1/2 ≤ f < 1/2 .

c.

RSX(n) = E{S(m)X(n+m)} = E{S(m)(S(n+m) + V (n+m))}
= RS(n) = a|n|σ2

S , −∞ < n < ∞ ,
RX(n) = E{X(m)X(n+m)} = E{(S(m) + V (m))(S(n+m) + V (n+m))}
=RS(n) + δ(n) , −∞ < n < ∞ ,

SSX(f) = SS(f) = σ2
S

∞∑
k=−∞

a|k|exp(−i2πkf) =
σ2
S(1−|a|2)

1−2a cos(2πf)+ |a|2 , −
1
2 ≤ f < 1

2 ,

SX(f) = RS(n) + 1 =
σ2
S(1−|a|2)

1−2a cos(2πf)+ |a|2 + 1 =
1+|a|2 −2a cos(2πf)+σ2

S(1−|a|2)
1−2a cos(2πf)+ |a|2 , −1

2 ≤ f < 1
2 ,

H(f) = SSX(f)
SX(f) =

σ2
S(1−|a|2)

1+|a|2 −2a cos(2πf)+σ2
S
(1−|a|2) , −

1
2 ≤ f < 1

2 .

1



d. From Orthogonal Principle, we have

ε2Min = E{(S(n) − Ŝ(n))2} = E{(S(n) − Ŝ(n))(S(n) − Ŝ(n))} = E{(S(n) − Ŝ(n))S(n) }

=E{

(
S(n) −

(
∞∑

k=−∞
h(k)X(n− k)

))
S(n) } = RS(0) −

∞∑
k=−∞

h(k)RS(−k) .

But we also have

RS(0) =

1/2∫
−1/2

SS(f) df ,RS(−k) =

1/2∫
−1/2

exp(i2πf(−k))SS(f) df , H(f) =
∞∑

k=−∞

h(k) exp(−i2πfk) .

Combining the above two sets of equations, we obtain

ε2Min =

1/2∫
−1/2

[SS(f) −H(f)SS(f)]df =

1/2∫
−1/2

[SS(f) − (SS(f))
2

SS(f) + SV (f)
]df =

1/2∫
−1/2

SS(f)SV (f)

SS(f) + SV (f)
df.

5. From Orthogonal Principle, we obtain

E


S(t+ a) −

∞∫
0

h(τ)X(t−τ) dτ

 X(t− s)

 = 0 , −∞ < t < ∞ , 0 ≤ s < ∞ ,

or

RS(s+ a) =

∞∫
0

h(τ)RX(s−τ) dτ , 0 ≤ s < ∞ ,

where
RX(τ) = RS(τ) + RV (τ) , −∞ < τ < ∞ .

7. By comparing the given autocorrelation function RS(k) = 4 × 2−|k| , −∞ < k < ∞ , to the autocorre-
lation function RS(k) of (2.3.2-6), we obtain

σ2
W a−|k}

1− a2
= 4 (1/2)−|k| , −∞ < k < ∞ ,

or

ln

{
σ2
W

1− a2

}
− |k| ln {a} = ln {4} − |k| ln

{
1

2

}
,

which shows that a = 1/2 and 4σ2
W /3 = 4, or σ2

W = 3. Thus, this random sequence S(k) is a first-order
autoregressive sequence modeled by (2.3.2 - 1). Then the recursive Kalman filtering algorithm of Sec.
(2.3.2) is valid and the steady state version of the Kalman gain p of (2.3.2 -15) reduces to a p2+b p+c = 0
where a = 1 b = 3 + SNR , c = 4SNR , and SNR = 3/σ2

V . A plot of p versus SNR is given here.

9. The density of X is given by pX(u;A) = pW (u − A). Since d
dA ln pX(u;A) = ( d

dApX(u;A))/pX(u;A) =

−( d
dApW (u−A))/pN (u−A), we have that[

E

{(
d

dA
pX(u;A)

)2
}]−1

=

[∫ ∞

−∞

(
d

dA
pW (u−A)

)2
du

pW (u−A)

]−1

=

[∫ ∞

−∞

(
d

du
pW (u)

)2
du

pW (u)

]−1

.

For the Laplacian pdf we have

dpW (u)

du
=

{
(−1/σ2)e−

√
2u/σ , u ≥ 0 ,

(1/σ2)e
√
2u/σ , u < 0 .

( ddupW (u))2/pW (u) =
√
2σ
σ4 e

−
√
2|u|/σ = 2

σ2 pW (u). The CRLB is therefore equal to σ2/2. For the Gaussian
pdf, the CRLB is equal to σ2.
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11.

p(x; a) =
1√

(2π)N det(C)
e−

1
2 (x−a1)

TC−1(x−a1),

where 1 = [1, . . . , 1]T. Let C−1 = (C̄)ij and, by symmetry, C̄ij = C̄ji.

d

da
ln p(x; a) = −1

2

d

da

N∑
i=1

N∑
j=1

C̄ij(xi − a)(xj − a) =
1

2

N∑
i=1

N∑
j=1

[
C̄ij(xj − a) + C̄ij(xj − a)

]
=

N∑
i=1

N∑
j=1

C̄ijxi − a
N∑
i=1

N∑
j=1

C̄ij =

(∑N
i=1

∑N
j=1 C̄ijxi∑N

i=1

∑N
j=1 C̄ij

− a

)
N∑
i=1

N∑
j=1

C̄ij .

CRLB =

[
−E

{
d2

da2
p(X; a)

}]−1

=
1∑N

i=1

∑N
j=1 C̄ij

.

The estimator â =
∑N
i=1

∑N
j=1 C̄ijxi/

∑N
i=1

∑N
j=1 C̄ij is unbiased (E{Xi} = a, E{Â} = a). Therefore, it

is efficient, with variance equal to
(∑N

i=1

∑N
j=1 C̄ij

)−1

.

13.

p(x;n0) =

n0−1∏
n=0

1√
2πσ2

e−x
2(n)/(2σ2)

n0+M−1∏
n=n0

1√
2πσ2

e−(x(n)−s(n−n0))
2/(2σ2)

N−1∏
n=n0+M

1√
2πσ2

e−x
2(n)/(2σ2)

=
1√

(2πσ2)N
e−

1
2σ2

∑N−1

n=0
x2(n) e

− 1
2σ2

∑n0+M−1

n=n0
[−2x(n)s(n−n0)+s

2(n−m0)]
.

Therefore, the maximum likelihood estimator is found by minimizing

n0+M−1∑
n=n0

[s2(n− n0)− 2x(n)s(n− n0)].

Since
∑n0+M−1
n=n0

s2(n− n0) =
∑M−1
n=0 s2(n) does not depend on n0, the maximum likelihood estimator for

n0 is found by maximizing
∑n0+M−1
n=n0

x(n)s(n− n0).
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Chapter 8  
Odd Numbered Homework Solutions 

 
1.  
 
%% 
rand('state',49); 
u=rand(1,501); 
un=u(1:500); 
un1=u(2:501); 
plot(un,un1,'k*') 
xlabel('u_n') 
ylabel('u_{n+1}') 
%% 
Yields 
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Fig. 1.  Plot of Un+1 vs. Un , n = 1, …, 500, for the rand generator. 
The 500 points in this plot seems to be fairly randomly distributed with no obvious similar 
patters among adjacent values.   
 
%% 
 
3.  
s0=49; 
xx= [ ]; 
m = 2^31 -1; 
  
for n=1:502, 
    s = mod((7^5)*s0, m); 
    x= s/m; 
    xx=[xx,x]; 
    s0=s; 
end 
subplot(1,2,1) 
plot(xx(1:500),xx(2:501),'k*') 
xlabel('x_n') 



ylabel('x_{n+1}') 
axis([0 1 0 1]) 
%% 
subplot(1,2,2) 
plot(xx(1:500),xx(3:502),'k*') 
xlabel('x_n') 
ylabel('x_{n+2}') 
axis([0 1 0 1]) 
yields 
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Fig. 3a. Plot of xn+1 vs. xn , n = 1, …, 500.  Fig. 3b. Plot of xn+2 vs. xn , n = 1, …, 500.   
From these two plots, there does not appear to have any regular patterns.  Thus, from these 
simple visual inspections, there does not appear to be much correlations among elements of this 
sequence.  
 
 
5.  For these two x1 and x2 sequences, the Matlab function kstest(x1, x2) yields 0.  This means we 
can not reject the null hypothesis that these two sequences have the same distribution with a 5 % 
significance statistical level test.  Loosely speaking, while the KS (and some other) statistical 
tests can not confirm these two sequences have the same distribution, it can only state with fairly 
high confidence that one can not conclude the two sequences came from two different 
distributions. 
 
7.    See Table 8.1 of Ex. 8.2 of Chapter 8 on p. 275. 
 
9.    See Table 8.4 of Ex. 8.4 of Chapter 8 on p. 278. 

 
 



 
11.   
randn('state',19); 
r = raylrnd(1,[1,5000]); 
randn('state',47); 
x = r.*v; 
mean(x) = 1.0122; 
xx=0:.01:6; 
hist(x,xx), axis[[0 6 0 60])                             
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The histogram of X appears to have an exponential pdf with a mean of 1.0122.  
Compare the empirical cdf of X with an exponential cdf with a men of 1.0122. 
F = cdfplot(x), axis([0 6 0 1]); 
ecdf=expcdf(xx,1.0122); 
hold on 
G = plot(xx,expcdf(xx,1.0122),'r--'); 
title('Empirical Exponential cdf and Exponential cdf') 
legend([F,G], 'Empirical cdf', 'Exponential cdf','Location','NW') 
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The empirical exponential cdf and the true exponential cdf seem to fit each other very well. 
 
 




