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Chapter 16 

 

1.  Consider a visco-elastic material whose behavior is adequately described by the 

combined series-parallel model.  Let it be subjected to the force vs. time history shown in 

Figure 16.21.  There is a period of tension followed by compression and tension again.  

After that, the stress is 0.  Let the time interval, t = Kv/Ke2 = te, and assume Ke1 = Ke2.  

Sketch as carefully as possible the corresponding variation of strain with time. 

                                                     
Solution:  

                                                      
 

2.  Consider a visco-elastic material whose behavior is adequately described by the 

combined series-parallel model.  Let it be subjected to the strain vs. time history shown in 

Figure 15.22.  There is a period of tension followed by compression and tension again.  

After that, the stress is returns to zero.  Let the time interval, t = Kv/Ke2 = e, and assume 

Ke1 = Ke2.  Sketch in the space provided as carefully as possible the corresponding 

variation of force with time. 

                                                                         
 

Solution:  

Figure 16.21.  Loading 

of a viscoelastic 

material. 

 

Figure 15.22.  Strain 

cycles imposed on a  

viscoelastic material. 
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3. An elastomer was suddenly stretched in tension and the elongation was held 

constant.  After 10 minutes, the tensile stress in the polymer dropped by 12%.  After an 

extremely long time the stress dropped to 48% of its original value.  

A. Find the relaxation time,  for stress relaxation. 

B.  How long will it take the stress to drop to 75% of its initial value? 

Solution: Substituting  F∞/Fo = 0.48 into equation 15.8, F = Fo0.48 - 0.52Foexp(-t/);  

Substituting F  = 0.88Fo and t = 10 min, (0.88 - 0.48)/0.52 = .exp(-/)  

/  = -ln(.40/.52);  = -10/ln(.40/.452) = 38 min. 

B. Substituting F  = 0.75Fo,  0.75Fo  = Fo0.48 + 0.52Foexp(-t/38);  

t/38 = -ln[(.75-.48)/.52)], t = 25min. 

 

4. A certain bronze bell is tuned to middle C (256 Hz).  It is noted that the intensity of 

the sound drops by one decibel (i.e. 20.56%) every 5 seconds.  What is the phase angle  
in degrees? 

Solution: From equation 15.16,  = (U/U)/(2π) = 0.2056/(2π) = 0.0327 radians = 1.9° 

 

5. A piece of aluminum is subjected to a cyclic stress of ±120 MPa.  After 5000 cycles, 

it is noted that the temperature of the aluminum has risen by 1.8oC.  Calculate  and the 

phase angle, , assuming that there has been no transfer of heat to the surroundings and all 

the energy loss/cycle is converted to heat. 

Misc. data for aluminum: 

crystal structure fcc. lattice parameter 0.4050 nm 

density: 2.70 Mg/m3 Young's modulus 62. GPa 

heat capacity    900. J/kg.K melting point 660. oC 

[Hint:  U can be found from the temperature rise, and U can be found from the applied 

stress and Young's modulus.] 

Solution: U = TC/5000 = 1.8°C(900J/kg-°C)(2700kg/m3/5000 =  875J/ m3.  

U  = (1/2)2/E = (120x10
6
)2/62 x10

9 
= 116 x10

3
 J/m3  

U/U= 7.53 x10
-3

,
  
 = (U/U)/(2π) = 1.2x10

-3
radians = 0.068°π =  3.8 x10

-3
.  
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6. Measurements of the amplitude of vibration of a freely vibrating beam are: 

               cycle             amplitude 

  0 250 

 25 206  

 50 170 

 100 115 

 200 53 

A. Calculate the log decrement, . 

B. Is  dependent on the amplitude for this material in the amplitude range studied?  

(Justify your answer.) 

C. What is the phase angle ? 

[Hint: Assume  is constant so en/en+1 = en+1/en+2 = etc.  Then en/en+m = [en/en+1]m]. 

Solution: = (1/25)ln(250/206) = 0.0077, = (1/25)ln(207/170) = 0.0079,  

= (1/50)ln(170/115) = 0.0078, = (1/100)ln(115/53) = 0.0077,  

B. There is no significant variation of  with amplitude. 

C.  = /π = 0.0078/π = 0.00248 radians or  0.142° 

 

7A. A high strength steel can be loaded up to 100,000 psi in tension before any plastic 

deformation occurs.  What is the largest amount of thermo-elastic cooling that can be 

observed in this steel at 20°C? 

B. Find the ratio of adiabatic Young's modulus to isothermal Young's modulus for this 

steel at 20°C. 

C. A piece of this steel is adiabatically strained elastically to 10-3 and then allowed to 

reach thermal equilibrium with the surroundings (20°C) at constant stress.  It is then 

unloaded adiabatically, and again allowed to reach thermal equilibrium with its 

surroundings.  What fraction of the initial mechanical energy is lost in this cycle? [Hint: 

Sketch the  path.] 

For iron,  = 11.76x10-6/°C, E = 29x106 psi, Cv = 0.46 J/g°C, and  = 7.1 g/cm3.  

Solution: A.  T = -T/(C) =  

-(105 psi)(6.9x103 Pa/psi)(11.76x10-6/K)(293K)/(0.46J/kg°Cx7.1x106 g/m3) = -0.73°C 

B. E/E = ET2/(C) (205x109Pa)293(11.76x10-6/°C)2/(0.46J/kg°Cx7.1x106 g/m3) = 

0.0025, Ea/Ei = 1.0023. 

       

U = T = [T/(C)], U = (1/2) = (1/2)2/E.;   

U/U = 22ET/(C) = (2(11.76x10-6)2(205x109)(293)/(0.46x7.1x106) = 0.5x10-3  
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8. For iron the adiabatic Young's modulus is (1 + 2.3x10-3) times the isothermal 

modulus at room temperature.  If the anelastic behavior of iron is modeled by a series-

parallel model, what is the ratio of K1 to K2? 

Solution: F0/F∞ = (1 + 2.3x10-3) = (K1 + K2)/K2 = 1 + K1/K2: K1/K2 = 2.3x10-3 

 

9. Damping experiments on iron were made using a torsion pendulum with a natural 

frequency of 0.65 cycles/sec.  The experiments were run at various temperatures and the 

maximum log decrement was found at 35oC.  The activation energy for diffusion of 

carbon in -iron is 78.5 kJ/mole. At what temperature would you expect the damping peak 

to occur if the pendulum were redesigned so that it had a natural frequency of 10 Hertz? 

Solution: f1/f2 = exp[(-Q/R)(1/T1-1/T2)]; 1/T1-1/T2 = -(R/Q)ln(f1/f2) 

= (-8.314/78,500)ln(10/0.65) = -2.89 x10-4;  

1/T1 = -2.89 x10-4 +1/(273 + 35). T1 = 338K = 65°C. 

 

10. A polymer is subjected to a cyclic stress of 5 MPa at a frequency of 1 Hz for 1 

minute. The phase angle is 0.05°. Calculate the temperature rise assuming no loss to the 

surroundings. E = 2GPa,  C =  1.0 J/kg.K and  = 1.0 Mg/m3. 

Solution: U/U = 2πsin = 2πsin(0.05°) = 5.48x10-3.  

U = (1/2)2/E = (1/2)(5x106)2/(2 x109) = 6250. 

U = (5.48 x10-3)(6250) = 34.2 J/cycle 

T = (34.2 J/cycle}/[(1 J/kg.K)(1000 kg/m3)] = 0.034°C/cycle. 

In 1 minute the temperature rise would be 2.06°C  
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Chapter 17 

 

1. Stress vs. rupture life data for a super alloy are listed below.  The stresses are given in MPa 

and rupture life is given in hours.  

A. Make a plot of stress (log scale) vs. PLM where PLM = (T)(C + log10t). T is the temperature 

in Kelvin, t is in hours and C = 20. 

B. Predict from that plot what stress would cause rupture in 100,000 hrs at 450oC. 

Stress                        rupture time (hrs) 

MPa        500°C      600°C 700°C 800°C 

_____________________________________________________________ 

 600         2.8   0.018 0.0005             --- 

 500         250. 0.72 0.004               --- 

 400    --             12.1 0.082              0.00205 

 300    --             180 0.87                 0.011 

 200   --            2412 11.     0.198 

 100            --               -- 98.0 1.10 
Solution. Finding the values of PLM for each point, and plotting: 

Stress                            PLM 

MPa             500°C     600°C              700°C         800°C 

_____________________________________________________________ 

 600         15,805     15,937        16,248              --- 

 500         17,313     17,335               17,127             --- 

 400    --           18,405        18,403         18,575 

 300    --           19,428        19,401         19,358 

 200    --          20,412        20,473          20,705 

100            --               --       21,397          21,504 

                           

B. For 100,000 hrs at 450°C (723K), PLM  = 18,080. Reading off of the plot, s = 423 MPa 

2.A.      Using the data in problem 1, plot the Sherby-Dorn parameter, PSD = log where  
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 = texp(-Q/RT) and Q = 340 kJ/mole. 

    B.  Using this plot, predict from that plot what stress would cause rupture in 100,000 hrs at 

450oC. 

Solution:  Calulating  = texp(-Q/RT) and PSD = log for each point and plotting  

         MPa/T°C 500         600             700             800 
 

 600        -18.97      -18.53      -18.00                --- 

 500         -17.02.    -16.90       -17.09               --- 

  400      --             -15.71      -15.78          -15.68 

              300      --             -14.53      -14.73           -14.95 

              200      --             -13.41      -13.66           -13.70 

              100        --                      --      -12.70           -12.95       

 

                B. For t =  100,000 hrs and T = 450°C (723K), and PSD = -16.01. Reading the plot,  = 423 

MPa. 

 

3. For many materials, the constant C in the Larson-Miller parameter, P = (T + 460)(C + log10t) 

(where T is in Fahrenheit, and t in hours) is equal to 20.  However, the Larson-Miller parameter can 

also be expressed as P' = T(C' + lnt) with t in seconds and T in Kelvin, using the natural logarithm of 

time.  In these cases, what is the value of C'? 

Solution:  20 + log10[t(hrs)] =  x + ln[t(s)]. For 1 hr = 3600 s,  

x = 20 + log10[1(hrs)] - ln(3600s) = 11.81. 

 

4.  Stress rupture data is sometimes correlated with the Dorn parameter,  = texp[-Q/(RT)], 

where t is the rupture time,  T is absolute temperature and q  is assumed to depend only on stress.  If 

this parameter correctly describes a set of data, then a plot of log(t) vs.1/T for data at a single level of 

stress would be a straight line.  If the Larson-Miller parameter correctly correlates data, a plot of data 

at constant stress (therefore constant P) of log(t) vs.1/T also would be a straight line.  

A.         If both parameters predict straight lines on log(t) vs. 1/T plots,  are  they really the same 

thing?    
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B.          If not, how do they differ?  How could you tell from a plot of log(t) vs. (1/T) which 

parameter better correlates a set of stress rupture data? 

 

Solution: A. No.  

B. According to the Larson-Miller parameter, a plot of log(t) vs. (1/T) for different stresses would 

intercept (1/T) = 0 at the same value (-C).  

 According to the Sherby-Dorn parameter, a plot of log(t) vs. (1/T) for different stresses would have 

the same slopes but intercept (1/T)  = 0 at different values  (PSD).  

 

5. Sketch how the boundaries in Figure 16.7 for the creep mechanisms in nickel would change if 

the grain size were 1 mm instead of 32 m. 

Solution: Both Coble and N-H creep would decrease. Boundary between N-H and coble would move 

to left. 

                    
6. Data for the steady-state creep of a carbon steel are plotted in Figure 16.19.   

A. Using the linear portions of the plot, determine the exponent m in 



Ý sc = Bm at 538°C and 

649°C.  

                                                  
B.  Determine the activation energy, Q, in the equation 



Ý  = f()exp[-Q/(RT)].   

Solution:A.  m = ln(



Ý 2/



Ý 1)/ln(2 1).  At 538°C, m = ln(10-1/10-4)/ln(200/70) = 6.58 

At 649°C, m = ln(1/10-4)/ln(105/20) = 5.55. (Note that m decreases with increasing temperature.) 

Figure 16.19.  Creep 

data for a carbon steel. 

Data from P. N. Randall, 

Proc, ASTM, v. 57 

(1957). 
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B.  Comparing data at the same stress ((100 MPa  



Ý 2 = 0.9 @ T = 649 + 273 = 922K and 



Ý 1= 0.001 @ T = 538 + 273 = 811K. Q = -Rln(



Ý 2/



Ý 1)/(1/T1 – 1/T2) = 

 -8.314ln(.9/.001)/(1/922-1/811) = 381 kJ/mole. 
    

7. The following data were obtained in a series of stress rupture tests on a material being 

considered for high temperature service. 
 

at 650°C stress (ksi) 80 65 60 40 

 rupture life (hrs) 0.08 8.5 28 483 

at 730°C stress (ksi) 60 50 30 25 

 rupture life (hrs) 0.20 1.8 127 1023 

at 815°C stress (ksi 50 30 20 

 rupture life (hrs)  0.30 3.1 332 

at 925°C  stress (ksi) 30 20 15 10 

 rupture life (hrs)  0.08 1.3 71 123  

at 1040°C  stress (ksi) 20 10 5  

 rupture life (hrs) 0.03 1.0 28 211 

A.   Make a Larson-Miller plot of the data.  

B.  Predict the life for an applied stress of 30 ksi at 600°C. 

Solution: A.Taking C =  20 

                         

B. For 30 ksi, P  = 40,000. For 600°C T°F = 490 = 1571. so 40,000 = 1571[20 + logt],   

log(t) = (40,000/1571) – 20 = 5.46, t = 290,000 hr = 33 years 

 

8. Figure 16.15 shows how service temperature affects the usable stress levels for various 

metals.  

A. Tungsten has a melting point of 3400°C.  Why is it not considered for use in jet engines? 

B. What advantages do aluminum alloys have over more refractory materials at operating 

temperatures of 400°F?  

Solution: Light weight and oxidation resistance. 

 

9. Consider the creep rate vs. stress curves for an aluminum alloy plotted in Figure 16.20. 

Calculate the stress exponent, m at 755 K. 
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Chapter 18 

1. For steels, the endurance limit is approximately 1/2 of the tensile strength, and the fatigue 

strength at 103 cycles is approximately 90% of the tensile strength.  The S-N curves can be 

approximated by a straight lines between 103  and 106 cycles when plotted as log(S) vs. log(N). 

Beyond 106 cycles the curves are horizontal. 

A.  Write a mathematical expression for S as a function of N for the sloping part of the S-N 

curve, evaluating the constants in terms of the approximations above. 

B. A steel part fails in 12,000 cycles.  Use the above expression to find what % decrease of 

applied (cyclic) stress would be necessary to increase in the life of the part by a factor of 2.5 (to 

30,000 cycles). 

C.  Alternatively, what % increase in tensile strength would achieve the same increase in life 

without decreasing the stress?  

Solution: A. logs = A’ + blogN or lonS = A + blnN.  Sf = ANf
b, (Sf1/ Sf2) = (N1/ N2)b ; b = ln(Sf1/ 

Sf2))/ln(N1/ N2) = ln(.9/.5)/ln(10-3) = -0.085, A =  Sf /Nf
b = 0.9TS/(103)b = 1.62TS, Sf = 

1.62TS(N)-.085  

B     Sf3/Sf1= (N3/ N1)b  = (2.5)-.085 = 0.925. The stress would have to be lowered by 7.25% 

C.  1/0.925 = 1.081, an 8% increase of TS. 
 

2.A. Derive an expression relating the stress ratio, R, to the ratio of cyclic stress amplitude, a, to 

the mean stress, m.  

B.  For a = 100 MPa, plot R as a function of m over the range 0 ≤  m ≤ 100 MPa. 

  Solution: A. R = min/max = (m - a)/(m + a) = (1- a/m)/(1+ a/m) 

  R =  (m - 100)/(m + 100).  
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3.      A steel has the following properties: 

   Tensile Strength 460 MPa 

   Yield Strength 300 MPa 

   Endurance limit 230 MPa 

 

A.     Plot a modified Goodman diagram for this steel showing the lines for yielding as well as 

fatigue failure.  
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B. For each of the cyclic loading given below determine whether yielding, infinite fatigue 

life, or finite fatigue life is expected.  

  i.   max = 250 MPa, min = 0             ii. max = 280 MPa, min =  -200 MPa 

  iii.  mean = 280 MPa, a = 70 MPa    iv. mean =  -70 MPa, a = 140 MPa   

Solution:  

 
i.  (a = 125, m  = 125)  infinite life, no yielding,  ii. (a = 240, m = 40finite life, no yielding,  

iii. infinite life, yielding,                 iv. infinite life, no yielding0 

4. The notch sensitivity factor, q, gray cast iron is very low.  Offer an explanation in terms of 

the microstructure. 

Solution:  The graphite flakes act as notches much more severe than machined notches, so 

machined notches have little effect. 
 

5. A 1040 steel has been heat-treated to a yield strength of 900 MPa and a tensile yield 

strength of 1330 MPa.  The endurance limit (at 106 cycles for cyclical loading about a zero mean 

stress) is quoted as 620 MPa. Your company is considering using this steel, with the same heat 

treatment for an application in which fatigue may occur during cycling with R = 0.  Your boss is 

considering shot peening the steel to induce residual compressive stresses in the surface.  Can the 

endurance limit be raised this way?  If so, by how much?  Discuss this problem with reference to 

the Goodman diagram using any relevant calculation(s). 

Solution: Yes.  

The largest increase in fatigue strength corresponds to a negative mean stress, m, which would 

cause yielding in compression. a = 900 + m.  

For fatigue failure, a = 620(1 - m/1330). Solving these simultaneously,  

900 + m = 620 – 0.466m.   –1.466m = 280, m = -191. a = 900 –0191 = 709 MPa 

The endurance limit can be raised to 709 MPa if a residual compressive  stress of –191 MPa can be 

induced. 
 

6.  Low cycle fatigue was the cause of the Comet failures.  Estimate how many 

pressurization-depressurization cycles the planes may have experienced in the two years of 

operations.  An exact answer is not possible, but by making a reasonable guess of the number of 

landings per day and the number of days of service a rough estimate is possible. 

Solution: If the aircraft landed and took off 5 times per day for 320 days per year, the number of 

cycles would be 2x320x5 = 3200.  
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7. Frequently the S-N curves for steel can be approximated by a straight line between N = 

102 and N = 106 cycles when the data are plotted on a log-log scale as shown in the figure for SAE 

4140 steel.  This implies S = ANb, where A and b are constants. 

A. Find b for the 4140 steel for a certain part made from 4140 steel (Figure 17.26).   

B. Fatigue failures occur after 5 years. By what factor would the cyclic stress amplitude have 

to be reduced to increase the life to 10 years? Assume the number of cycles of importance is 

proportional to time of service. 

                                              
 

Solution: A.  b = ln(S2/S1)/ln(N2/N1) = ln(375/650)/ln(106/103) = -.0796 

B. (S3/S1) = (N2/N1)–0.796 = (2)–0.0796 = 0.946. 

 

8. Figure 17.27 shows the crack growth rate in aluminum alloy 7075-T6 as a function of DK 

for R = 0. Find the values of the constants C and m, in equation 17.19, that describes the straight-

line portion of the data. Give units. 

                                                                            

Solution: da/dN = C(KI)
m,  m = ln[(da/dN)1/[(da/dN)2]/ln[(KI)1/(KI)2] =  

Figure 17.26.  S-N  curve 

for a SAE 4140 steel. 

Figure 17.27.  Crack growth rate of  

7075-T6 aluminum for K = 0.  

Data from C. M. Hudson, 

NASA TN D-5300, 1969. 
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ln[(10-1)/(10-5)]ln[(70)/(5)] = 3.5 

C  = (da/dN)/(KI)
m = 10-1/70 3.5 = 3.5x10-8. The units  of C are (mm/cycle)(MPa√m)3.5 

 

9. Find the number of cycles required for a crack to grow from 1 mm to 1 cm in 7075-T6 

(problem 8.) if f = 1 and  = 10 MPa.  Remember that K = f√(πa).  

Solution: Using equation 17.22, N = [a(1-m/2) - ao
(1-m/2)]/[Cfm(π)m/2] = 

[10-2(1-3.5/2) -10-1(1-3.5/2)]/[3.5x10-8(π10)3.5/2] = 1.78x106 cycles 
 

10.     For a certain steel, it was found that the fatigue life at ± 70 MPa was 10
4
 cycles and it was 

10
5
 cycles at ± 50 MPa.  A part made from this steel was given 104 cycles at ±61 MPa. If the 

part were then cycled at ±54 MPa what would be its expected life? 

Solution: .  b = ln(S2/S1)/ln(N2/N1) = ln(70/50)/ln(.1) = -.1461 

The life @ S3 = ±61 MPa, N3 = N1(S3/S1)
1/b

104(61/70)
1/-.146

 = 2.57x104. 

The life @ ±54 MPa, N = 104(54/70)
1/-.146

 = 5.91x104. 

n1/N1 + n2/N2 + … = 1, 104/2.57x104 + n/5.91x104  = 1; 

n = 5.91 x104 (1 - 104/2.57x104) = 3.61x104 

 

11. For a certain steel, the fatigue limits are 10,000 cycles at 100 ksi, 50,000 cycles at 75 ksi 

and 200,000 cycles at 62 ksi. If  a component of this steel had been subjected to 5000 cycles at 

100 ksi and 10,000 cycles at 75 ksi, how many additional cycles  at 62 ksi would cause failure? 

Solution: n62/N62 = 1 – n100/N100 - n75/N75 = 1 - .5 - .25 = .25; n62 = .25x200,000 = 50,000 

cycles  
 

12. In fatigue tests on a certain steel, the endurance limit was found to be 1000 MPa for R = 0 

(tensile-release) (a = m = 500 MPa) and 1000 MPa for R = -1 (fully reversed cycling). 

Calculate whether a bar of this steel would fail by fatigue if it were subjected to a steady stress of 

600 MPa and a cyclic stress of 500 MPa. 

   Solution: .Drawing a Goodman diagram, it is concluded that the part will fail. 
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Chapter 18 

 

                                                                

Solution: m = ln(



Ý 1/



Ý 2)/ln(1/2) = ln(0.6/.02)/ln2/1) = 4.9 or 

m = ln(20/.004)/ln4/0.8) = 5.3    Hence m ≈5. 

 

 

 

Figure 16.20.  Steady state 

creep rate of an aluminum 

alloy at several temperatures. 

Data from  

O. D. Sherby and P. M . 

Burke, in Prog.. Mater. Sci.   

v. 13, 1968. 
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Chapter 17 

 

1. For steels, the endurance limit is approximately 1/2 of the tensile strength, and the fatigue 

strength at 103 cycles is approximately 90% of the tensile strength.  The S-N curves can be 

approximated by a straight lines between 103  and 106 cycles when plotted as log(S) vs. log(N). 

Beyond 106 cycles the curves are horizontal. 

A.  Write a mathematical expression for S as a function of N for the sloping part of the S-N 

curve, evaluating the constants in terms of the approximations above. 

B. A steel part fails in 12,000 cycles.  Use the above expression to find what % decrease of 

applied (cyclic) stress would be necessary to increase in the life of the part by a factor of 2.5 (to 

30,000 cycles). 

C.  Alternatively, what % increase in tensile strength would achieve the same increase in life 

without decreasing the stress?  

Solution: A. logs = A’ + blogN or lonS = A + blnN.  Sf = ANf
b, (Sf1/ Sf2) = (N1/ N2)b ; b = ln(Sf1/ 

Sf2))/ln(N1/ N2) = ln(.9/.5)/ln(10-3) = -0.085, A =  Sf /Nf
b = 0.9TS/(103)b = 1.62TS, Sf = 

1.62TS(N)-.085  

B     Sf3/Sf1= (N3/ N1)b  = (2.5)-.085 = 0.925. The stress would have to be lowered by 7.25% 

C     1/0.925 = 1.081, an 8% increase of TS. 
 

2.A. Derive an expression relating the stress ratio, R, to the ratio of cyclic stress amplitude, a, to 

the mean stress, m.  

B.  For a = 100 MPa, plot R as a function of m over the range 0 ≤  m ≤ 100 MPa. 

  Solution: A. R = min/max = (m - a)/(m + a) = (1- a/m)/(1+ a/m) 

R =  (m - 100)/(m + 100).  
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3.      A steel has the following properties: 

   Tensile Strength 460 MPa 

   Yield Strength 300 MPa 

   Endurance limit 230 MPa 
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A.     Plot a modified Goodman diagram for this steel showing the lines for yielding as well as 

fatigue failure.  

B. For each of the cyclic loading given below determine whether yielding, infinite fatigue 

life, or finite fatigue life is expected.  

  i.   max = 250 MPa, min = 0             ii. max = 280 MPa, min =  -200 MPa 

  iii.  mean = 280 MPa, a = 70 MPa    iv. mean =  -70 MPa, a = 140 MPa   

Solution:  

 
i.  (a = 125, m  = 125)  infinite life, no yielding,  ii. (a = 240, m = 40finite life, no yielding,  

iii. infinite life, yielding,                 iv. infinite life, no yielding0 

5. The notch sensitivity factor, q, gray cast iron is very low.  Offer an explanation in terms of 

the micros: The graphite flakes act as notches much more severe than machined notches, so 

machinedtructure. 

Solution:  notches have little effect. 
 

5. A 1040 steel has been heat-treated to a yield strength of 900 MPa and a tensile yield 

strength of 1330 MPa.  The endurance limit (at 106 cycles for cyclical loading about a zero mean 

stress) is quoted as 620 MPa. Your company is considering using this steel, with the same heat 

treatment for an application in which fatigue may occur during cycling with R = 0.  Your boss is 

considering shot peening the steel to induce residual compressive stresses in the surface.  Can the 

endurance limit be raised this way?  If so, by how much?  Discuss this problem with reference to 

the Goodman diagram using any relevant calculation(s). 

Solution: Yes.  

The largest increase in fatigue strength corresponds to a negative mean stress, m, which would 

cause yielding in compression. a = 900 + m.  

For fatigue failure, a = 620(1 - m/1330). Solving these simultaneously,  

900 + m = 620 – 0.466m.   –1.466m = 280, m = -191. a = 900 –0191 = 709 MPa 

The endurance limit can be raised to 709 MPa if a residual compressive  stress of –191 MPa can 

be induced. 
 

6.  Low cycle fatigue was the cause of the Comet failures.  Estimate how many 

pressurization-depressurization cycles the planes may have experienced in the two years of 

operations.  An exact answer is not possible, but by making a reasonable guess of the number of 

landings per day and the number of days of service a rough estimate is possible. 
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Solution: If the aircraft landed and took off 5 times per day for 320 days per year, the number of 

cycles would be 2x320x5 = 3200.  
 

7. Frequently the S-N curves for steel can be approximated by a straight line between N = 

102 and N = 106 cycles when the data are plotted on a log-log scale as shown in the figure for 

SAE 4140 steel.  This implies S = ANb, where A and b are constants. 

C. Find b for the 4140 steel for a certain part made from 4140 steel (Figure 17.26).   

D. Fatigue failures occur after 5 years. By what factor would the cyclic stress amplitude have 

to be reduced to increase the life to 10 years? Assume the number of cycles of importance is 

proportional to time of service. 

                                              
 

Solution: A.  b = ln(S2/S1)/ln(N2/N1) = ln(375/650)/ln(106/103) = -.0796 

B. (S3/S1) = (N2/N1)–0.796 = (2)–0.0796 = 0.946. 

 

8. Figure 17.27 shows the crack growth rate in aluminum alloy 7075-T6 as a function of DK 

for R = 0. Find the values of the constants C and m, in equation 17.19, that describes the straight-

line portion of the data. Give units. 

Figure 17.26.  S-N  curve 

for a SAE 4140 steel. 
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Solution: da/dN = C(KI)
m,  m = ln[(da/dN)1/[(da/dN)2]/ln[(KI)1/(KI)2] =  

ln[(10-1)/(10-5)]ln[(70)/(5)] = 3.5 

C  = (da/dN)/(KI)
m = 10-1/70 3.5 = 3.5x10-8. The units  of C are (mm/cycle)(MPa√m)3.5 

 

9. Find the number of cycles required for a crack to grow from 1 mm to 1 cm in 7075-T6 

(problem 8.) if f = 1 and  = 10 MPa.  Remember that K = f√(πa).  

Solution: : Using equation 17.22, N = [a(1-m/2) - ao
(1-m/2)]/[Cfm(π)m/2] = 

[10-2(1-3.5/2) -10-1(1-3.5/2)]/[3.5x10-8(π10)3.5/2] = 1.78x106 cycles 
 

10.     For a certain steel, it was found that the fatigue life at ± 70 MPa was 10
4
 cycles and it was 

10
5
 cycles at ± 50 MPa.  A part made from this steel was given 104 cycles at ±61 MPa. If the 

part were then cycled at ±54 MPa what would be its expected life? 

Solution:    b = ln(S2/S1)/ln(N2/N1) = ln(70/50)/ln(.1) = -.1461 

The life @ S3 = ±61 MPa, N3 = N1(S3/S1)
1/b

104(61/70)
1/-.146

 = 2.57x104. 

The life @ ±54 MPa, N = 104(54/70)
1/-.146

 = 5.91x104. 

n1/N1 + n2/N2 + … = 1, 104/2.57x104 + n/5.91x104  = 1; 

n = 5.91 x104 (1 - 104/2.57x104) = 3.61x104 

 

13. For a certain steel, the fatigue limits are 10,000 cycles at 100 ksi, 50,000 cycles at 75 ksi 

and 200,000 cycles at 62 ksi. If  a component of this steel had been subjected to 5000 cycles at 

100 ksi and 10,000 cycles at 75 ksi, how many additional cycles  at 62 ksi would cause failure? 

Solution: : n62/N62 = 1 – n100/N100 - n75/N75 = 1 - .5 - .25 = .25; n62 = .25x200,000 = 50,000 

cycles  
 

Figure 17.27.  Crack growth rate of  

7075-T6 aluminum for DK = 0.  

Data from C. M. Hudson, 

NASA TN D-5300, 1969. 
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14. In fatigue tests on a certain steel, the endurance limit was found to be 1000 MPa for R = 0 

(tensile-release) (a = m = 500 MPa) and 1000 MPa for R = -1 (fully reversed cycling). 

Calculate whether a bar of this steel would fail by fatigue if it were subjected to a steady stress of 

600 MPa and a cyclic stress of 500 MPa. 

Solution:  .Drawing a Goodman diagram, it is concluded that the part will fail. 
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Chapter 18 

 

1. Consider a piece of polycrystalline iron that has been plastically deformed in tension under a 

stress of 220 MPa and then unloaded. Because of the orientation dependence of the Taylor factor,  

it is reasonable to assume that the stress before unloading was 20 % higher in grains oriented with 

<111> parallel to the tensile axis than in the average stress.  Young's modulus for polycrystalline 

iron is listed as 208 GPa but for crystals oriented in a <111> direction, it is 283 MPa.  Determine 

the level of residual stress in the <111>-oriented grains. 

solution: The stress under load in the [111] grains was 1.2x220 = 264 GPa. On unloading the 

change of strain was -220MPa/208GPa = -1.06x10
-3

. The change of stress in the [111] grains was  

-283 GPa(1.06x10
-3

) = -267 MPa. The final stress in the [111] grains was 264 – 267 = -3 MPa 
 

2. The residual stresses adjacent to a long butt weld between two deck plates of a ship were 

found by x-rays.  The average values of the lattice parameter, a, were a = 2.8619 parallel to the 

weld bead and  a = 2.86106 perpendicular to the weld bead. For unstrained material, a = 2.8610.  

Find the values of the residual stresses parallel and perpendicular to the weld.  Assume E = 

30x106 psi,  = 0.29 and that the stress normal to the plate is zero. 

solution:   e1 = 0.0009/2.861 = 3.15x10
-4; e2 = 0.00006/2.861 = 2.1x10

-5; 

e2 = (1/E)[2 - 1];  2 = Ee2+ 1. e1 = (1/E)[1 - 2] =  

(1/E)[1 -  Ee2+ 1)]; 1 = E(e1 – ve2)/(1-2) 

 1 = E(e1 – e2)/(1-2) = (30x106 psi)[3.15x10
-4

 – 0.29(2.1x10
-5

)]/(1-.292) = 10,100 psi,  

2 = E(e2 – e1)/(1-2) = -7,700 psi 
 

 3.    The stresses in the walls of a deep drawn stainless steel cup are suddenly released when the 

walls split by stress corrosion cracking as shown in Figure 18.14.  After splitting the segments of 

the wall curved to a radius of curvature of 10 in.  Assume the stresses drop to zero. The wall 

thickness is 0.030 in. and Young's modulus is 30x106 psi. What were the residual stresses in the 

wall before stress corrosion cracking? Note that if a narrow strip is bent elastically, the change of 

stress is given by:  ∆ = E∆ and ∆ = z/ where z is the distance from the neutral axis and is 

the radius of curvature. Therefore ∆ varies linearly through the thickness and is a maximum at the 

surfaces.  

                                                                                                                                   
 
 
 
 

 

solution: On bending,  = Ez/. At the surface where z = t/2,  = Et/(2). 

Figure 18.14.  Stress-corrosion cracks in a drawn cup. From  
W. F. Hosford and R. M. Caddell, Metal Forming: Mechanics 
and Metallurgy, 2nd ed. Prentice Hall, 1993, p. 305. 
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= (30x106)( 0.030)/(20) = 45,000 psi. If the final surface stress is zero, the residual stress before 

unbending must have been 45,000 psi. 
  

 4.      Consider a material composed of equal volumes of having different yield strengths, YA,   

and YB = 1.5YA, but the same elastic moduli (EA = EB).  Assume that during straining both 

regions undergo the same strains  (A = B) and that there is no strain hardening in either region. 

A)     Let the material be subjected to a tensile strain A = B = 2YB/E.  Sketch the individual and 

overall stress strain curves, A, B, and av = (A + B)/2.  What is the overall yield strength of 

the material (i.e., value of av corresponding to the first deviation from linearity)? 

B)  Now consider the behavior on unloading to av = 0.   Add plots of A, B, and av to your 

sketch.  What is the level of residual stress in each region? 

C) After loading in tension and unloading, consider the behavior on loading under compression 

until the entire material yields.  Assume that the tensile and compressive yield strength of each 

region is the same. (|YAcomp| = YAtens) and (|YBcomp| = YBtens).  Add the compressive 

behaviors to your plot.  What is the new overall yield strength in compression and how does this 

compare with what the overall yield strength would be if it hadn't been first loaded in tension? 

solution: A.   Averaging at the same strain,  Ycomp = (YA+ YB)/2 =1.25YA  

 
B.  A =  -0.25YA, B =+0.25YA,      

E. YSave = - 0.75YA. If it hadn’t been first deformed in tension theyield strength in 

compression would have been – 1.25YA so the compression is less than it would have been had if 

it never been loaded in tension 
 

5.  A 1 cm diameter steel ball is cooled after austenitization.  At one point during the cooling, a 

0.5 mm thick layer at the surface transforms to martensite while the center is still austenite.  For 

simplicity, assume that the interior is at an average temperature of 200°C and the surface is at 20°C 
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and that there are no stresses in the material at this point. When the center cools to 20°C, it 

transforms to martensite.  For this steel, the austenite to martensite transformation is accompanied 

by a 1.2% volume expansion. Assume this expansion occurs equally in all directions.  For steel, 

the coefficient of linear thermal expansion is  = 6x10-6/°C. and Young's modulus is 30x106 psi 

and  = 0.29.  Assume these apply to both martensite and austenite.  Find the stress state at the 

surface.  

solution: The martensite transformation will cause a linear expansion of 1.2%/3 = .4% = 0.004. 

The thermal contraction will be –180°C(6x10-6/°C) = 0.00108 so the net expansion is e = .004-

0.00108 =0.0029.  The surface is under biaxial tension so e = (1/E)(1-) and  = eE(1-) =  

0.0029(30x106)/(1-.29) = 122,000 psi. 

 

6. If a metal sheet is bent plastically under a bending moment without applied tension, there 

will be springback after the moment is released and there will be residual stresses in the sheet as 

shown in Figure 18.9.   If the surface layers of such a sheet are removed by etching or corrosion, 

how will the bend change?  Will the radius of the bend increase, decrease, or remain unchanged?   

Explain. 

Solution: The outside of the bend is under compression. Removal of this layer will cause 

unbending to preserve a net moment of zero. The inside of the bend is under residual tension. 

Removal of this layer will cause unbending to preserve a net moment of zero. Conclusion – it will 

unbend. 
 

7. A surface layer, 0.001 in. thick was removed from an aluminum sheet, 0.015 in. thick.  On 

removal of the layer, the sheet curled to form a dish with a radius of curvature of 30 in.  What was 

the stress in the surface layer before it was removed.  For aluminum, E = 10x106 psi and = 0.30. 

Solution: According to equation 18.21,  = E(1 +)t2/(6t) =  

(10x106)(1.3)(0.014) 2/[6(30)( 0.001)] = 14,200 psi 
 

8. For polycrystalline magnesium the coefficient of thermal expansion is 25.2x10-6/°C and 

Young's modulus is 68.4 GPa.  Parallel to the c-axis of a single crystal the coefficient of thermal 

expansion is 24.3x10-6/° and Young's modulus is 80.9 GPa.  Estimate the stress parallel to the c-

axes of grains in a randomly oriented polycrystal when the temperature is changed by 100°C. 

Assume that the dimensional change parallel to the c-axis of the grain is the same as that in the 

polycrystal.  For simplicity, assume also that the stress in the polycrystal is negligible. 

Solution:  = (1 – 2)ET = (25.2-24.3)(10-6)(80.9 GPa)(100) = 7.3 MPa 

 

9. A typical residual stress pattern in an extruded bar is shown in the accompanying sketch.  To 

find the residual stresses in an extruded bar of brass, 1.000 in. diameter and 10.000 in. long, the bar 

was put in a lathe and machined to a diameter of 0.900 in. After machining, the length was found 

to be 10.004 in. What was the average residual stress in the layer that was machined away? For the 

brass, E = 110 GPa.  For simplicity, neglect the Poisson effects.    
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Solution: A force balance gives  

π(1)(0.1) = π(.9/2)2(110 GPa)(0.0004/10); 

 = (.9/2)2(110 GPa)(0.0004) = 8.9 MPa  
 

10. During a stress relief anneal, creep converts elastic strains (and therefore stresses) into 

plastic strains.  The decrease in stress should be ∆ = -E, or d/dt = -Ed/dt = -E` Assume 

that the stress relief anneal is done in a temperature range where the basic creep rate is given by 

d/dt = ` = Cm and that the residual stress before annealing was o.  

A) If m = 5, as is typical of creep at the low-temperatures used for stress relieving, o = 5000 

psi and E = 10x106 psi, and C = 6x10-22(psi)-5/hr at the annealing temperature, how long would it 

take for the stress to drop to 2,500 psi? 

B)  For the same temperature, how long would it take the stress to drop to 1000 psi?                               

Solution: d/dt = -Ed/dt ECm, 

-m d = -ECdt, Integrating from   = o to , 

[1-m - o
1-m]/(1-mECt, 

t = [1-m - o
1-m]/[(-EC)(1-m) 

A. t = [2500(1-5) – 5000(1-5)]/[(- 10x106)( 6x10-22)(-4)] = 1.0 hrs 

B. t = [1000(1-5) – 5000(1-5)]/[(- 10x106)( 6x10-22)(-4)] = 42hrs 
 
 

 
 
 

 

 

Figure 18.15.  Residual stress  
pattern in an extruded bar.                                
 

 


