
SOLUTIONS TO MECHANICAL BEHAVIOR 2nd d 7- 9 

Chapter 7 

 

1. During a tension test the rate of straining was suddenly doubled.  This caused the load 

(force) to rise by 1.2%.  Assuming that the strain-rate dependence can be described by  = C` 



Ý m, what is the value of m? 

Solution: m = ln(2/1)/ ln(



Ý 2/



Ý 1) = ln(1.012)/ln2 = 0.0017 
 

2.     Two tension tests were made on the same alloy, but at different strain 

rates.  Both curves were fitted to a power-law strain hardening expression of 

the form,  = Kn.  The results are summarized below.  Assuming that the flow 

stress at constant strain can be approximated by  = C



Ý m, determine the value 

of m. 
 Test A Test B 

strain rate (s-1) 2x10-3 10-1 

strain-hardening exponent, n 0.22 0.22 

constant,  K  (MPa) 402 412  

Solution: m = (K2/K1)/ln(



Ý 2/



Ý 1) = ln(412/402)/ln(10-1/2x10-3) = .0063 

 

3.    To achieve a weight saving in an automobile, replacement of a low-carbon steel with an 

HSLA steel is being considered.  In laboratory tension tests at a strain rate of 10-3/s, the yield 

strengths of the HSLA steel and the low carbon steel were measured to be 400 MPa and 220 

MPa respectively.  The strain-rate exponents are m  = 0.005 for the HSLA steel and m = 0.015 

for the low carbon steel.  What percent weight saving could be achieved if the substitution 

was made so that the forces were the same at the strain rates of 10+3, typical of crash 

conditions? 

Solution: (HSLA/LC)@high speed = 400x(106)0.005/ 220x(106) 0.015 =  

(400/220)(106)(0.005-0.015) = 1.58 

 
 

4.     The thickness of a cold-rolled sheet varies from 0.0322 to 0.0318 depending on where 

the measurement is made, so strip tensile specimens cut from the sheet show similar variation 

in cross section.   

   A.   For a material with n = 0.20 and m = 0, what will be the thickness of the thicker regions 

when the thinner region necks? 

   B.  Find the strains in the thicker region if m = 0.50 and n = 0 when the strain in the thinner 

region reaches  

   i.  0.5,               ii. ∞ 
Solution: A. f = 0.318/0.322 = 0.9876.  

a.2exp(-a)  = fnnexp(-n).2exp,   results in a  = .1361 

B. exp(-a/m)  = 1+ f1/m [exp(-b/m) –1] = 1+ 1/.5[exp(-b/.5) –1] 

i. for b = .5, exp(-a/.5)  = 1+ [exp(-.5/.5) –1] = 385,  a  = -.5ln(.385) =  0.477.  

ii.   for b = ∞, exp(-a/.5)  = 1+ [exp(-∞/.5) –1] = 1-  = 0.0278,  





5.    Estimate the total elongation of a superplastic material if 

   A. n = 0, m = 0.5 and f = 0.98,         B. n = 0,  f = 0.75 and m = 0.8. 

Solution:  Assuming b = ∞,  exp(-a/m)  = 1+ f 1/m[ –1] = 1- f 1/m  

A. For m = 0.5 and f = 0.98, exp(-a/m)  = 1- (.98)2 = .0396, a  = - .5ln(.0396) = 1.61 

ea  =  exp(1.61) – 1 = 4 or 400% elongation. 

B. For f  = 0.75 and m = 0.8, exp(-a/m)  = 1- (.75)1.25 = 0.302, a  = - .8ln(.302) = 0.958 

      ea  =  exp(0.958) – 1 = 1.606 or 60.6 % elongation 

 

6.     In superplastic forming, it is often necessary to control the strain rate.  Consider the 

forming of a hemispherical dome by clamping a sheet over a circular hole and bulging it with 

gas pressure.   

  A.     Compare the levels of gas pressure needed to form a 2.0 in. dome with that to form a 20 

in. dome if both are formed from sheets of the same thickness and at the same strain rate. 

B. Describe (qualitatively) how the gas pressure should be varied during the forming to 

maintain a constant strain rate. 

Solution:  A. Since the stress is proportional to the pressure, and the needed pressure is 

proportional to 1/R, the pressure to form a 20 inch dome should be 1/10 the pressure to form a 

2 inch dome.  

B. Since  decreases during forming, the pressure should increase to keep a constant stress 

(and therefore strain rate). 
 

7. During a constant-load creep experiment on a polymer, the temperature was suddenly 

increased from 100 to 105oC.  It was found that this increase of temperature caused the strain 

rate to increase by a factor of 1.8.  What is the apparent activation energy for creep of the 

plastic?  

Solution: ln(



Ý 2/



Ý 1) =(-Q/R)(1/T2-1/T1), Q = -R ln(



Ý 2/



Ý 1)/(1/T2-1/T1) = -8.314ln(1.8)/(1/373-

1/378) = 138 kJ/mole. 

 

8.     Figure 7.26 gives some data for the effect of stress and temperature on the strain rate of a 

nickel-base super-alloy single crystal. The strain rate is independent of strain in the region of this 

data.  Determine as accurately as possible:  

A. The activation energy, Q, in the temperature range 700 to 810°C. 

B. The exponent, m, for 780°C. 



                                                       

Solution: A. Q = -Rln(



Ý 2/



Ý 1)/(1/T2-1/T1) = -8.314ln(10)/(1/1273 – 1/1198) = 389 kJ/mole 

B. m = ln(2/1)/ln(



Ý 2/



Ý 1) = ln(350/100)/ln(2x10-6/2x10-10) = 0.136. 
 

9.     It has been suggested that  



Ý  = Aexp[-(Q-v)/RT] - Aexp[-(Q+v)/RT] is a better 

representation of the dependence of strain rate on temperature and stress than the Holloman-

Zener approach.  Using this equation, derive an expression for the dependence of stress on 

strain-rate at constant temperature if v >> RT. 

solution: if v >> RT,   



Ý  = Aexp[-(Q+v)/RT], v = RT[ln(



Ý /A)+Q],  = RT[ln(



Ý /A)+Q]/v or 

at a constant temperature  = m’ln(



Ý )+ C where m’= -RT[ln(A)/v and C =  RTQ/v. Note that 

this is equation 7.14. 
 

10.    The stress-strain curve of a steel is represented by  =(1600MPa)0.1.  It is deformed to a 

strain of  = 0.1 under adiabatic conditions. Estimate the temperature rise in the sample.  

For iron,  = 7.87 kg/m2, C = 0.46 J/g.°C, E = 205 GPa. 

Solution: The mechanical energy expended per  volume is  u = ∫d= 

Kn/(n+1).



[1 12](11 0)[011 ]  

T = u//( C) = (1/n)Kn +1/( C) = 10(1600MPa)1.1/[(7.87 kg/m2)(460kJ/g.°C)] = 0.35° 

 

11. Evaluate m for copper at room temperature from Figure 7.13. 

Solution: m = ln(2/1)/ ln(



Ý 2/



Ý 1). Taking values at = 1, ln(550/400)/ln(9500/.00014) = 

0.0176 

 

12. The stress-strain curves for silver at several temperatures and strain rates are shown in 

Figure 7.27. Determine the strain-rate exponent, m for silver at 25°C 

Solution: Taking values at  = 0.25, m = ln(222/192)/ln(2800/0.001) = 0.0098 or 0.01.          

Figure 7.26.  The effects 

of stress and temperature 

on the strain rate of a 

nickel- base super-alloy 

single crystal.  

 



 
 
 
 
 

Solution: m = ln(2/1)/ ln(/



Ý 2//



Ý 1) = ln(225/192)/ln(2800/0.001) = 0.011

Figure 7.27.  Stress-strain curves for silver (fcc). Note that at 25° the 

difference, s, between the stress-strain curves at different rates is 

proportional to the stress level. From G. T. Gray in ASM Metals Handbook, 

v. 8, 2000, p.472. 

 

 



Chapter 8 
 

1. If a single crystal of aluminum were stressed in uniaxial tension, with the tension 

applied along the 



[02 1]direction, which slip system (or systems) would be most highly 

stressed? 

Solution: By inspection, 



[11 0](11 1)  and 



[1 1 0](11 1) . For both m =  (5/6)/√6 = 0.340. 
 

2.  A single crystal of copper is loaded under a stress state such that 2= -1, 3 =  

23 = 31 = 12 = 0.  Here 1 = [100], 2 = [010] and 3 = [001] 

A. When the stress 1= 6 kPa, what is the shear stress,  on the  

     i. 



(111)[101 ]slip system?   ii.   



(111)[11 0] slip system?   iii.   



(111)[11 0]slip system? 

B.   On which of these systems would you expect slip to first occur as the applied stresses 

increased? 

C. Assuming slip on that system, determine the ratios of the strains, 2/1 and 3/1. 

Solution: A. i. 1/√ 6 + 0(2) = 6/√6 + 0 = 2.45 kPa;  ii.   = 1/√ 6 - 2/√6  = 2 1/√ 6 

=12//√ 6 = 4.9 kPa. .iii.  =  0(1) + 2/√6  = - 6/√6 = -2.45 kPa 

B.  ii 

C. 2/1 = -1, 3/1= 0. 

 

3.  A single crystal of aluminum was grown in the shape of a tensile bar with the 



[321 ] 

direction aligned with the tensile axis. 

A.   Sketch a standard cubic projection with [100] at the center and [001] at the North Pole. 

Locate the 



[321 ] direction on this projection. 

B.   Which of the {111}<110> slip system(s) would be most highly stressed when tension is 

applied along 



[321 ]?  Show the slip plane normal(s) and the slip direction(s) of the system(s) 

on your plot. 

C.   What will be the ratio of the shear stress on the slip system to the tensile stress applied 

along 



[321 ]? 

Solution: A. 

                            
B. 



(111)[101 ] 

C. / = [3(1) + 2(1) –1(1)][3(1) + 0 –1(-1)]/[(32+ 22 + 12)√6] = 4x4/(14√6) = 0.466.   
 



4. An aluminum single crystal is subjected to a tensile stress of x = 250 kPa parallel to x 

= [100] and a compressive stress, y = - 50 kPa parallel to y = [010] with z = yx = zx = 

xy = 0. What is the shear stress on the (111) plane in the 



[11 0] direction? 

Solution: = 250(1/√6) – 50(-1/√6) = 122 kPa 

 

5.  Consider an aluminum single crystal that has been stretched in tension applied parallel 

to x  =  [100] (x = +250kPa) and compressed parallel to y = [010] (y = -50 kPa) with z = 0 

where z = [001]. Assume that slip occurred on the (111) in the 



[11 0] direction and only on 

that slip system.  Also assume that the strains are small.  

A.  Calculate the ratios of resulting strain, y/x and z/x. 

B.   If the crystal were strained until x = 0.0100, what will the angle be between the tensile 

axis and [100]? 

 

Solution: A. y/x = -1, z/x = 0 

B.  o = 45°, sin = (1+e)sino = 1.01/√2 = 45.58°,  -o = 0.58° 
 

6. NaCl crystals slip on {110}



11 0 slip systems.  There are six systems of this type.  

Consider a crystal subjected to uniaxial compression parallel to z = [110]. 

A. On which of the {110}



11 0 slip systems would the shear stress be the highest?  i.e.,  

on which of the systems would slip be expected? 

B.      Let the lateral directions be x = 



[11 0] and y = [001].  Determine the shape change that 

occurs as the crystal deforms on one of these systems by finding the ratios, y/z and x/z.  

Describe the shape change in words. [Hint:  Analyze one of the slip systems in your answer to 

(A).  Be careful about signs.] 

 

Solution:  A. 



(01 1)[11 0], 



[01 1](11 0) , 



[1 01](101)  and 



(1 01)[101] . 

B. Assuming 



(01 1)[011], x = 



[11 0][01 1][11 0][011] = (1/2)(-1/2) = -1/4  

y =  



[001][01 1][001][011]= (1/√2)(1/√2) = 1/2,  

     z = 



[110][01 1][110][011]= (-1/√2)(1/√2)=  -1/4;  

     Conclusiony/z = -2, x/z = 1. As the crystal is compressed, in the z direction, it 

contracts in the x direction and expands in the y direction. 
 

7.  Predict the R-value for a sheet of a hcp metal with (0001) parallel to the rolling plane and 



[101 0] parallel to the rolling direction. 

Solution:  For tension applied perpendicular to the c-axis, all deformation by slip should 

produce no thinning. Therefore the R value ought to be infinite. Of course it isn’t in real 

sheets because of misalignment from the ideal texture.  

 

8.  Determine the number of independent slip systems for crystals with each of the 

combinations of slip systems listed below.  [The simplest way to do this is to determine how 

many of the strains 1, 2, 23, 31 and 12 can be independently imposed on the crystal.] 

A. Cubic crystal that deforms by {100}<011> slip. 

B. Cubic crystal that deforms by slip on {100}<011> and {100}<001> systems. 

C. Cubic crystal that deforms by 



{110}  1 10  slip. 



D.  Hcp crystal that deforms by slip on 



(0001) 112 0  and 



{101 0} 112 0 systems. 

Solution: A. 1 = 2 = 3 = 0 because either  or  are 90° for all of the slip systems. Slip can 

accommodate 23, 31 and 12. Therefore 3 independent slip systems. 

B. Same conclusion as A  (3 independent slip systems.) 

C. 1and 2 can be independently imposed on the crystal, but 23, 31 = 12= 0 for all of the 

slip systems, so there are only 2 independent slip systems. 

D3 = 0. All other strain components can be satisfied so there are 4 independent slip        

systems.  

 

9.   A tetragonal crystal slips on {011}<111> systems. How many of the strains, x, y, z, 

yz, zx, xy, can be accommodated?  [Note that in a tetragonal crystal the {011} family does 

not include (110) or (



1 10).]    

   
Solution:  Shear on the (110) plane can be geometrically simulated by simultaneous slip on 

(011) and 



(011 )and shear on th



(1 10) plane can be geometrically simulated by simultaneous 

slip on



(1 01) and 



(011 ) so there are 5 independent slip systems. All of the strains can be 

accommodated. 
    

10. A. Consider an fcc single crystal extended in uniaxial tension parallel to [321]. Will the 

Schmid factor, m = coscos for the most highly stressed slip system increase, decrease or 

remain constant as the crystal is extended? 

B.      Consider an hcp single crystal that slips easily only on 



(0001) 112 0  slip systems. If 

an hcp crystal is extended in uniaxial tension in a direction oriented 45° from the c-axis and 

45° from the most favored <



112 0> slip direction, will the Schmid factor, m = coscos for 

the most highly stressed slip system increase, decrease or remain constant? 

Solution:  A. Reference to Figures 8.6 and 8.11 shows that it will decrease. 

B.The Schmid factor, m = coscos  = cossin, decreases as decreases. 
 

11. Consider a sheet of an fcc metal that has a {110}<001> texture.  That is, a {110} 

plane is parallel to the plane of the sheet and a <001> direction is parallel to the prior rolling 

direction.   

A.     Predict the value of Ro (the strain ratio measured in a rolling direction tension test).  

Figure 8.17.  A tetragonal crystal 

with {011}<111> slip systems. 



Hint:  Let x, y, and z be the rolling, transverse and sheet normal directions.  Assign specific 

indices [hkı] to the rolling and sheet normal directions.  Find the specific indices of the 

transverse direction, y.  Then sketch a standard cubic projection showing these directions.  (It 

is convenient to choose x, y and z so that they lie in the hemisphere of the projection.)  For 

uniaxial tension along x, determine which slip systems will be active, and assume an equal 

shear strain, i, on each.  For each system, calculate the resulting strains, x, y, and z in 

terms of i and sum these over all slip systems.  Assume equal amounts of slip on all the 

equally favored slip systems.  Now predict the strain ratio Ro. 

B. Predict R90. 

Solution:  A. Let [110] be the sheet normal and 



[11 0] be the width direction.  For tension 

along [001], the slip on the 



(11 1 ) and



(111 ) planes causes no strain in the [110] direction 

(thickness) and slip on the (111) and 



(11 1 ) planes causes no strain in the 



[11 0] direction 

(width direction). With equal slip on all systems, R = 1. 

B.     For tension in the 



[11 0] direction, the favored slip systems



(11 1 )[01 1], 



(11 1)[01 1], 



(11 1 )[101] and 



(11 1)[101 ].  None of these cause any strain in the [110] thickness direction 

so the R-value is 0. 

12. For a unit elongation along a <110> direction in a bcc metal, determine the ratio of the 

amount of slip required for axially symmetric flow to that required plane strain.  

Solution:  For axially symmetric flow, the amount of slip in the two slip directions normal to 

the tensile axis must be one half of the slip in the two directions causing the elongation. 

Therefore the total amount of slip must be 3/2 as much as for plane strain.  

13. Predict the ratio of the flow stress for a copper wire with a <111> texture to that of one 

with a <100> texture at the same tensile strain. Assume power-law hardening with n = 0.30. 

Solution:  Assume  = Cn. Then   = ()n = (m2/m1)
n. Since  =m,   = mm, so  

 = (m2/m1)
n+1 Substituting (m2/m1) = 3/2 and n = 0.3.  = (3/2)1.3 = 



Chapter 9 

 

1.A crystal of aluminum contains 1012 meters of dislocation per m3. 

A.  Calculate the total amount of energy associated with dislocations per m3. Assume that half 

of the dislocations are edges and half are screws.  

B. If all of this energy could be released as heat, what would be the temperature rise? 

Data for aluminum: atomic diameter = 0.286 nm, crystal structure = fcc, density = 2.70     

Mg/m3, atomic mass = 27 g/mole, C = 0.215 cal/g.°C, G = 70 GPa,  = 0.3 

Solution: A. EL = Gb2/4)ln(r1/ro). 

  Taking r1= (1/2)10-6 m and ro = (1/4)(.286x10-9)m, 

ln(r1/ro) = 7.47 is about 2π so EL = Gb2/2 

Ev = 0.5x1012(Gb2/2) +0.5x1012(Gb2/2)/(1-u) =  

0.5x1012(Gb2/2)[1+1/(1-u)]  = 13.9 x103J/m3. 

B. T = Ev/(C) = 13.9x103J/m3/[(2.7x106 g/m3)(0.215)(4.18J/g°C)] =  

5.7 x10-3°C 
 

2. Calculate the average spacing between dislocations in a 1/2° tilt boundary in 

aluminum.  See Figure 9.15 and look up any required data. 

Solution: (radians) = b/d so d = b/ = 0.246x10-9m/(.5π/180) = 32.8 x10-6m = 32.8m. 

 

3. On which {110} planes of bcc iron can a dislocation with a Burgers vector 

(a/2)



[111 ]move? 

Solution: (101), (011) and 



(11 0). These three planes contain the 



[111 ]direction.   
 

4. A single crystal of aluminum was stretched in tension.  Early in the test the specimen 

was removed from the testing machine and examined at high magnification (Figure 9.27).  The 

distance between slip lines was found to be 100 m and the average offset at each slip line was 

approximately 500 nm.  Assume for simplicity that both the slip direction and the slip plane 

normal are oriented at 45o to the tensile axis. 

A. On the average, how many dislocations must have emerged from the crystal at each 

observable slip line?   

B. Find the shear strain on the slip system, calculated over the whole crystal. 

C.  Find the tensile strain (measured along the tensile axis) must have occurred?  (i.e., 

Figure 9.27.  Profile of a crystal surface 

showing offsets caused by slip. 



What was the % elongation when the test was stopped?) 

Solution: A. For aluminum, b = 0.286nm, so number of dislocations = 500nm/0.286nm = 

1750 dislocations. 

B.  = 500nm/100x103 nm = 0.005 

C.  = (1/2) = .0025 

 

5.       Consider the reactions between parallel dislocations given below. In each case write the 

Burgers vector of the product dislocation and determine whether the reaction is energetically 

favorable. 

A. (a/2)



[11 0]+ (a/2)[110] 

B. (a/2)[101] + (a/2)



[011 ] 

C. (a/2)



[11 0]+ (a/2)[101] 

Solution: A. (a/2)[



[11 0]+ (a/2)[110] aa2a2a2 energetically neutral 

B. (a/2)[101] + (a/2)



[011 ] (a/2)[110]; a2a2a2 energetically favorable 

C. (a/2)



[11 0]+ (a/2)[101] (a/2)



[21 1]: a2a2a2 energetically unfavorable 

6.       Consider the dislocation dissociation reaction (a/2)[110]  (a/6)



[211 ] + (a/6)[121] in 

an fcc crystal.  Assume that the energy/length of a dislocation is given by EL = Gb2 and 

neglect any dependence of the energy on the edge vs. screw nature of the dislocation.  Assume 

that this reaction occurs and the partial dislocations move very far apart.  Neglect the energy 

associated with the stacking fault between the partial dislocations. 

A) Express the total decrease in energy/length of the original (a/2)[110] dislocation in terms 

of a and G. 

B)   On which {111} must these dislocations lie? 

Solution: A. U =  Ga2G(a2G(a2  

B. 



(11 1) (This has dot products of zero with both 



[211 ] and[121]) 
7.      A dislocation in an fcc crystal with a Burgers vector, b =  (a/2)[011], dissociates on the 



(11 1) plane into two partial dislocations of the (a/6)<211> type.  

A)      Give the specific indices of the two (a/6)<211> partial dislocations. 

B)      Onto what other plane of the {111} family could the b = (a/2)[011] dislocation have 

dissociated? 

C)      Give the specific indices of the two (a/6)<211> partials that would be formed if the 

(a/2)[011] dislocation had dissociated on the plane in B. 

Solution: A. (a/2)[011] (a/6)[121] + (a/6)



[1 12] (Both of these have zero dot products with 

[1



1 1]) 

B. (11



1 ) 

C. (a/2)[011]  (a/6)[112] + (a/6)



[1 12] 

 

8.        Consider a circular dislocation loop of diameter, d, in a crystal under a shear stress, . 
The region inside the circle has slipped relative to the material outside the circle.  The presence 

of this dislocation increases the energy of the crystal by the dislocation energy/length times the 

length of the dislocation.  The slip that occurs because of the formation of the dislocation under 

the stress, , lowers the energy of the system by Ab.  (A is the shear force and b is the 

distance the force works through.)  If the diameter of the loop is small, the energy will be 

reduced if the loop shrinks.   If the loop is large enough, the loop will spontaneously expand. 

Find the diameter of critical size loop in terms of b, G, and . For simplicity take EL = Gb2. 



Solution: The total energy caused by the loop is U = πDGb2 - π(D2/4)tb. The critical size 

corresponds to dU/dD = 0 = πGb2 -   π(D/2)tb.  Solving for D, D = 2Gb/. 

 

9.         Referring to Figure 9.23, find the ratio of the wrong second nearest neighbors across a 

stacking fault to the number across a twin boundary.   If the surface energies are proportional 

to the number of wrong second nearest neighbors, what is SF/TB? 

Solution: Across a stacking fault (ABCBCA)there are two sets of wrong second nearest 

neighbors.   Across a twin boundary (ABCBA) there is one set ofwrong second nearest 

neighbors. Therefore SF/TB 

 

10.      Using the values of SF from Table I and equation 9.21, make an approximate 

calculation of the equilibrium separation, r, of two partial dislocations resulting from 

dissociation of screw dislocation in aluminum and in silver.  Express the separation in terms 

of atom diameters.  The shear modulus of aluminum is 70 GPa and that of silver is 75 GPa. 

The atom diameters of Al and Ag are 0.286 and 0.289 nm  

Solution: Taking r = Ga2/(24π) 

for aluminum  r = (70x109)(0.286 x10-9)2/(24π166x10-3) = 0.476 nm 

for silver, r = (75x109)(0.289 x10-9)2/(24π16x10-3) =  5.2nm 
 

11.      Plot the variation with x of the force, fL, on an edge dislocation caused by another edge 

dislocation at a fixed level of y according to equation 9.19. Let the units of fL be arbitrary. 

Solution: With  y = 1 equation 9.19 becomes fL = Ax[(x2 – 1]/[(x2 + 1]2 , where A is a 

constant. Plotting: 

                          
Note that for x<y the dislocations attract, for x>y the dislocations rep 

 


