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NHCTMC: An introduction

NHCTMC models satisfy the Markov property but do not satisfy the
homogeneity property.

As a consequence, the infinitesimal generator matrix will have one or
more rates that are time dependent.

The time dependence will be on the global time, that is, time origin will
be the beginning of system operation at t = t0 (usually t0 = 0).

Transition rates must all have the same global clock.
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Non-Homogeneous CTMC - NHCTMC

The transient behavior of a NHCTMC is defined by the system of
Kolmogorov Ordinary Differential Equations (ODE):

dπππ(t)
dt = πππ(t)QQQ(t) (1)

with the initial probability vector πππ(t0) at the beginning of NHCTMC
operation at time t0, subject to the normalization condition (for an
n-state NHCTMC):

n∑
i=1

πi(t) = 1

The above equation is very similar to the one for a homogeneous CTMC
with one difference: generator matrix entries are now assumed to be time
dependent.
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Non-Homogeneous CTMC - NHCTMC

If QQQ(t) is integrable, solution to the above equation exists and it is of the
form

πππ(t) = πππ(t0)PPP(t0, t)

where entries PPP(t0, t) = [pij(t0, t)] are the probabilities that the Markov
chain is in state j at time t given that it started in state i at time t0.

In analogy with the general solution of an HCTMC, we may be tempted
to write the solution as

P(t0, t) = e
∫ t

t0
QQQ(τ)dτ

But this does not hold in general unless QQQ(t) and its time integral∫ t
t0 QQQ(τ)dτ commute for ∀t.

Certainly this occurs for time-independent generator matrix of a
homogeneous CTMC.
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Non-Homogeneous CTMC - NHCTMC

A special case of NHCTMC in which the matrix QQQ(t) can be factored so
that

QQQ(t) = g(t)WWW

In this case the solution to the NHCTMC can be written down as:

π(t) = π(t0)e
(
∫ t

t0
g(τ)dτ) WWW

= π(t0)eWWW g∗t

Where g∗ = (
∫ t

t0 g(τ)dτ)/t and WWWg∗ is the generator matrix of an
HCTMC.

Thus by solving an equivalent HCTMC, we can obtain the solution of the
original NHCTMC in this special case. We refer to this method of
solution of an NHCTMC as the equivalent-HCTMC method.
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Non-Homogeneous CTMC - NHCTMC

For the special case of acyclic CTMC, convolution integration approach
can be recommended:

pij(t0, t) = δije
−
∫ t

t0
qii (τ)dτ

+
∫ t

t0

∑
k

pik(t0, x)qkj(x) e−
∫ t

x
qjj (τ)dτdx ,

where δij is the Kronecker delta function defined by δij = 1 if i = j and 0
otherwise.
Corresponding equation for unconditional state probabilities, we have:

πi(t) = πi(t0) e
−
∫ t

t0
qii (τ)dτ

+
∫ t

t0

∑
k 6=i

πk(t0, x)qki(x) e−
∫ t

x
qii (τ)dτdx ,
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Example - Duplex processor in critical application - 1

Duplex processors are often used in control systems for safety critical
applications.

Time to failure is not restricted to be exponential and is allowed to be
general.

Upon one failure, system is able to cope with it with the coverage
probability c2. With the complementary probability the failure is not
covered leading to an unsafe system State UF .

From State 1, a failure can lead to a safe shut down SF (with probability
c1) or lead to the unsafe state UF (with probability (1− c1) ).

Both the SF and UF are absorbing states.
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Duplex processor in critical application - 2

2 1

SF

UF

2λ(t)c2

λ(t)c1

λ(t)(1−c1)

2λ(t)(1−c2)

With the assumption that two components are in hot standby mode, age
of the both the components is measured from the beginning of system
operation, i.e., with the global clock.

Hence the model is a NHCTMC.

Assuming that the TTF is Weibull distributed with the shape parameter
β and the scale parameter η, we solve for the probabilities using the
convolution integration approach.
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Duplex processor in critical application - 3

π2(t) = e−2
∫ t

0
λ(x)dx = e−2

∫ t

0
ηβ(ηx)β−1dx

= e−2(ηt)β

π1(t) =
∫ t

0
π2(x)2λ(x)c2e−

∫ t

x
λ(y)dydx

=
∫ t

0
e−2(ηx)β

2ηβ(ηx)β−1c2e−(ηt)β+(ηx)β

dx

= 2ηβc2e−(ηt)β

∫ t

0
e−(ηx)β

(ηx)β−1dx

= 2c2e−(ηt)β

∫ t

0
e−(ηx)β

d((ηx)β)

= 2c2e−(ηt)β 1
η

(1− e−(ηt)β

) = 2c2(e−(ηt)β

− e−2(ηt)β

)
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Duplex processor in critical application - 4

The probability of the fail safe state SF at time t is given by:

πSF (t) =
∫ t

0
π1(x)λ(x)c1dx

=
∫ t

0
2ηβc2(e−(ηx)β

− e−2(ηx)β

)(βx)β−1c1dx

= 2c1c2
∫ t

0
(e−(ηx)β

− e−2(ηx)β

)d((ηx)β)

= c1c2(1− 2e−(ηt)β

+ e−2(ηt)β

)
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Duplex processor in critical application - 5

Finally, the system unsafety at time t is given by:

πUF (t) =
∫ t

0
π1(x)λ(x)(1− c1)dx +

∫ t

0
π2(x)2λ(x)(1− c2)dx

=
∫ t

0
2c2(e−(ηx)β

− e−2(ηx)β

)(ηβ)(ηx)β−1(1− c1)dx

+
∫ t

0
e−2(ηt)β

2ηβ(ηx)β−1(1− c2)dx

= c2(1− c1)(1− 2e−(ηt)β

+ e−2(ηt)β

) + (1− c2)(1− e−2(ηt)β

)

From the above, we get the eventual absorption probability to the unsafe
state as

πUF (∞) = c2(1− c1) + (1− c2) = 1− c1c2
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Reliability of a duplex processor - 1

2 1 0
2λ(t)c λ(t)

2λ(t)(1−c)

To compute the duplex processor re-
liability we merge the two states SF
and UF into a single state labelled 0.

The infinitesimal generator matrix in this case, is

QQQ(t) =

 −2λ(t) 2λ(t)c 2λ(t)(1− c)
0 −λ(t) λ(t)
0 0 0

 ,
Since the solution equation can be factored into QQQ(t) = λ(t)WWW where
WWW is an HCTMC matrix, we can use the equivalent-HCTMC solution
method.

QQQ(t) = λ(t)

 −2 2c 2(1− c)
0 −1 1
0 0 0

 = λ(t)WWW
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Reliability of a duplex processor - 2

The solution to the NHCTMC can be written down as:

π(t) = π(t0)e
(
∫ t

t0
λ(τ)dτ)WWW

= π(t0)eWWWλ∗t

Where λ∗ = (
∫ t

t0 λ(τ)dτ)/t and WWWλ∗ is the generator matrix of an
HCTMC.

The final solution consists in solving a HCTMC with infinitesimal
generator:

QQQ∗ = WWWλ∗

To go on we need to define the functional expression for λ(t).
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Reliability of a multivoltage high speed train - 1

The RDB of a single
module is in Figure. T

C1

C2

F I M

The RDB of a single module can be modeled as a 3-state reward model.

Although in the original paper constant failure rates are assumed, we
generalize to time dependent failure rates.

λ(t) is the sum of the failure rates
of the Transformer, the Filters, the
Inverter and the Motors.
γ(t) is the failure rate of an indi-
vidual Four Quadrant Converter.

2

r2

1

r1

0
2γ(t) γ(t) + λ(t)

λ(t)
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Reliability of a multivoltage high speed train - 2

We first derive the state probability expressions for the three states using
the the convolution integration approach.

π2(t) = e−
∫ t

0

(
λ(x)+2γ(x)

)
dx

= e−
∫ t

0
λ(x)dx · e−

∫ t

0
2γ(x)dx = e−

(
Λ(t)+2Γ(t)

)
where: Λ(t) =

∫ t
0 λ(x)dx , Γ(t) =

∫ t
0 γ(x)dx

π1(t) =
∫ t

0
π2(x) · 2γ(x) · e−

∫ t

x

(
λ(y)+γ(y)

)
dy dx

=
∫ t

0
e−
(

Λ(t)+2Γ(t)
)

· 2γ(x) · e−
∫ t

x

(
λ(y)+γ(y)

)
dy dx

= 2
∫ t

0
e−
∫ t

0

(
λ(y)+γ(y)

)
dy · γ(x) · e−Γ(x)dx

= 2e−
(

Λ(t)+Γ(t)
)

· (1 − e−Γ(t)) = 2e−
(

Λ(t)+Γ(t)
)

− 2e−
(

Λ(t)+2Γ(t)
)
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Reliability of a multivoltage high speed train - 3

π0(t) = 1− π2(t)− π1(t)

From the state probability expressions, we can write down the expected
power available at time t as an example of expected reward rate at time
t: The expected power E [X (t)] available at time t is:

E [X (t)] =
2∑

i=0
ri πi(t) = r2 π2(t) + r1 π1(t)

and the expected accumulated energy delivered in the interval (0, t] as an
example of expected accumulated reward as:

E [Y (t)] =
2∑

i=0

∫ ∞
0

ri πi(t) dt = r2
∫ ∞
0

π2(t) dt + r1
∫ ∞
0

π1(t) dt
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Piecewise Constant Approximation - Example

Piecewise Constant Approximation (PCA) is based on approximating a
continuous time-variant function by a stair-case function whose value
remains constant in certain intervals.

Given an interval (0, t] over which the original continuous function should
be evaluated, we divide the interval into n > 1 smaller intervals, usually
of equal length, such that the function can be considered approximately
constant over any of the n small intervals.

In this way, computing the value of the original function in the midpoint
of each small interval, we can generate the approximating stair-case
function.

The approximation improves as n increases and the length of each small
interval decreases.
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Duplex processor with repair - 1

In the 3-state model, consider adding a repair transition from State 1
back to State 2 with a time-independent rate µ.

2 1 0
2λ(t)c λ(t)

2λ(t)(1−c)

µ

With no repair the model was an NHCTMC.
When repair is introduced, we need two assumptions for the model to
remain an NHCTMC:

repair time is negligible compared to the time to failure;
repair is minimal, i.e., the repaired processor is in a state (age) equal
to the one just before its failure (as bad as old).
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Duplex processor with repair - 2

The infinitesimal generator matrix of this approximate NHCTMC is:

QQQ(t) =

 −2λ(t) 2λ(t)c 2λ(t)(1− c)
µ −(λ(t) + µ) λ(t)
0 0 0



The failure rate λ(t) is assumed to be the
hazard rate of a two-parameter Weibull
distribution with an increasing failure
rate:

λ(t) = ηβ(tβ)β−1

The table shows the values of the param-
eters.

Table: Parameter values

Parameter Value
β 2.1
1/η 1.02
µ 120
c 0.9
t0 0
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Duplex processor with repair - 3

Such a model requires only a global clock to describe all time dependent
transition rates, since in every state, each component is as old as the
system.

The model can be studied as an approximate NHCTMC.

Matrix QQQ(t) cannot be factored and the convolution integration approach
will not be easy to use since the transition graph is not acyclic.

To compute the reliability of this model, Piecewise Constant
Approximation (PCA) can be used.

PCA consists in approximating the time continuous transition rate
functions with a piecewise staircase function.
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Duplex processor with repair - 4

The PCA method is based on the construction of a piecewise constant
approximation of the time continuous failure rate λ(t). The overall time
interval (t0 = 0, t1] is divided into n + 1 shorter intervals of length δ:

t ∈ (0, t1]→ t ∈ (iδ, (i + 1)δ], i = 0, 1, . . . , n

wherein the function is assumed to have the constant value λ(iδ):

λ(t) =



λ( δ2 ) 0 < t ≤ δ
λ( δ2 + δ) δ < t ≤ 2δ
...

... ; i = 0, 1, . . . , n
λ( δ2 + iδ) iδ < t ≤ (i + 1)δ
...

...
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Duplex processor with repair - 5

The infinitesimal generator matrix QQQ(t) also makes changes at discrete
epochs:

QQQ(t) =



QQQ( δ2 ) 0 ≤ t < δ
QQQ( δ2 + δ) δ < t ≤ 2δ
...

... ; i = 0, 1, . . . , n
QQQ( δ2 + iδ) iδ < t ≤ (i + 1)δ
...

...
The transient state probabilities are computed successively in each
sub-interval

π(δ) = π(0)eQQQ( δ
2 )(δ−0)

π(2δ) = π(δ)eQQQ( δ
2 +δ)(2δ−δ)

· · ·

π(iδ) = π((i − 1)δ)eQQQ( δ
2 (i−1)+δ)δ
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Duplex processor with repair - 6
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M/M/m queue for dynamic memory allocation - 1

Consider a variation of the M/M/m queue where an arriving job will
request a certain amount of memory dynamically.

Most jobs will release the acquired resource once they finished using it
but occasionally this may not occur and the memory is “lost" or depleted
as far as the Operating System (OS) is concerned.

This phenomena of resource leak/depletion is ubiquitous in most all
computer operating systems and has been called software aging.

We aim to study the time to resource exhaustion due to such leaks.

Y. Bao, X. Sun, and K. S. Trivedi, "A workload-based analysis of software aging, and
rejuvenation", IEEE Transactions on Reliability, vol. 54, no. 3, pp. 541-548, 2005.
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M/M/m queue for dynamic memory allocation - 2

Each incoming request can cause the system to transit to the sink state if
the amount of requested resource is more than the current available
amount of the resource in the system.

We define first the variables necessary for modeling depletion caused by
resource leakage.

total amount of memory initially available: M
resource requests arrival rate: λ
amount of resource requested at each arrival: X with density g(x)
number of processes in the system: k
resource release rate: µk

accumulated resource leak at time t: `(t)
conditional probability of the system failure or crash in state k upon
the arrival of a new request: ζ[k, `(t)]
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M/M/m queue for dynamic memory allocation - 3

The degradation model

0 1 2 k

sink

λ(1−ζ[0, `(t)])

µ1

λ(1−ζ[1, `(t)])

µ2

λ(1−ζ[2, `(t)])

µ3

λ(1−ζ[k, `(t)])

µk+1

λ(ζ[0, `(t)]) λ(ζ[1, `(t)]) λ(ζ[2, `(t)]) λ(ζ[k, `(t)])

K. Trivedi & A. Bobbio Chapter 13 - Non-Homogeneous CTMC Jan 2017 30 / 49



Introduction Illustrative Example Piecewise Approximation Queueing Examples Reliability growth Numerical Solution

M/M/m queue for dynamic memory allocation - 4

All the requests are i.i.d. r.v. X
with density function g(x). The
total amount of resource requests
after k requests is

Sk =
k∑

i=0
X

0 1 2 k

sink

λ(1−ζ[0, `(t)])

µ1

λ(1−ζ[1, `(t)])

µ2

λ(1−ζ[2, `(t)])

µ3

λ(1−ζ[k, `(t)])

µk+1

λ(ζ[0, `(t)]) λ(ζ[1, `(t)]) λ(ζ[2, `(t)]) λ(ζ[k, `(t)])

The density of Sk and its cdf are, respectively:

g [k](x) and G [k](x) =
∫ t

0
g [k](u) d u

where g [k](x) is the k-fold convolution of g(x).
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M/M/m queue for dynamic memory allocation - 5

Given that `(t) is accumulated resource leak at time t, the resource
available is (M−`(t)) (where `(t) will likely be an increasing function of
the time).

The conditional probability of the system failure or crash in state k upon
the arrival of a new request is:

ζ[k, `(t)] = P{Sk+1 > (M−`(t))|Sk ≤ (M−`(t))}

= G [k](M−`(t))−G [k+1](M−`(t))
G [k](M−`(t))

= 1− G [k+1](M−`(t))
G [k](M−`(t))

In the leak-free case (`(t) = 0), the model is a homogeneous CTMC
since all transition rates are independent of the global time variable t.
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M/M/m queue for dynamic memory allocation - 6

In the leak present case, the CTMC is non-homogeneous because
ζ[k, `(t)] is a function of the global time variable t.

t time since the last reboot, and after failure the system is rebooted.

For the non-homogeneous CTMC model, with generator matrix QQQ(t), we
solve the equation:

d πππ(t)
dt = πππ(t)QQQ(t) , with intial condition π0 = 1

and πsink(t) = 1−
∑

k
πk(t)
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M/M/m queue for dynamic memory allocation - 7

Given T is the time to absorption, its cdf is πsink(t) and its hazard rate
(the system failure rate):

h(t) =

d πsink(t) dt
dt

1− πsink(t) =
∑

k λζ[k, `(t)]πk(t)∑
k πk(t)

In the homogeneous case h(t) increases up to an asymptotic value;
in the non-homogeneous case h(t) increases monotonically as the
leaked resource accumulates.

This can be said to be an analytic demonstration of the phenomena of
software aging.
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Effect of aging in program execution

We modify the behavior of an M/M/1/K queue so as to add two
deleterious effects of (software) aging: performance degradation and
crash/hang failures.

t is the global time since the last reboot.

0 1 2 3 k−1 k

1′ 2′ 3′ k−1′ k′

µ(t)

h(t)

λ

µ(t)

h(t)

λ

µ(t)

h(t) h(t)

λ

µ(t)

h(t)

λ

µ(t)

S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, "Analysis of preventive maintenance
in transactions based software systems," IEEE Trans. Comput., vol. 47, no. 1, pp.
96-107, Jan. 1998.
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Effect of aging in program execution

Model parameters:
Requests for processing arrival rate λ.
Service rate µ(t)

µ(t) = µ is time-independent in the absence of aging,
µ is a decreasing function of time since the last reboot in case of
slow performance degradation due to software aging

h(t) is the crash / hang failure rate and is an increasing function of
time since the last reboot.
h(t) can be the failure rate obtained as an output in the previous
example.

The NHCTMC can be solved using the PCA method.
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Reliability growth models

We consider a generalization of the homogeneous Poisson process to the
case where the failure intensity λ is allowed to be time (age) dependent.

The time-dependence of the failure intensity function λ(t) is measured
using a global clock.

State diagram of this NHPP (non-homogeneous Poisson process) is
shown in Figure

0 1 2 . . . k k+1 . . .

t = 0 t

λ(t) λ(t) λ(t) λ(t) λ(t)
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Reliability growth models

The NHPP models the number of detected failures N(t) in the interval
(0, t].

Its pmf P{N(t) = k} = πk(t) can be derived using the convolution
integration method as :

πk(t) = e−m(t) [m(t)]k
k! k ≥ 0

where the mean value function m(t) = E [N(t)] is the expected number
of failures detected by time t.

The derivative λ(t) = dm(t)
dt is the failure intensity function.

The label on each arc emanating from state k ≥ 0 is λ(t) where t is
measured with the global clock.
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Reliability growth models - Duane model

In this model, the NHPP function is the hazard rate of a Weibull
distribution

λ(t) = ηβ(ηt)β−1 then: m(t) =
∫ t

0
λ(u) du = (ηt)β

This model is also known as the power law model and AMSAA (Army
Materials Systems Analysis Activity) model.

The time to first failure (and occupancy or holding time of state 0) is
Weibull distributed.

The sojourn time of any state k > 0 will not be Weibull distributed.

J.T. Duane, "Learning curve approach to reliability monitoring," IEEE Trans.
Aerospace, Vol. 2, pp. 563-566 (1964)
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Software reliability growth models (SRGM)

Software testing for bugs and following removal of bugs is expected to
enhance the reliability of software systems.

Software reliability growth models are used to quantify and assess the
extent of reliability growth achieved by the testing and debugging.

Assume that the number of failures N(t) occurring during the time
interval (0, t] of testing follows a NHPP.

In finite failure SRGM the mean value function m(t) reaches a limit, say,
a as t →∞.

Then m(t)/a satisfies properties of a distribution function.
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Software reliability growth models (SRGM)

Let F (t) = m(t)/a and let h(t) = dF (t)/dt
1−F (t) be the corresponding hazard

rate function. Since the failure intensity is λ(t) = dm(t)/dt, then

h(t) = λ(t)/a
1−m(t)/a

and λ(t) = h(t)[a −m(t)]

h(t) can be interpreted as the failure occurrence rate per fault;
a −m(t) as the average number of remaining faults at time t
a is the expected number of faults to be found after an infinite
amount of testing.
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Software reliability growth models (SRGM)

Different finite failure NHPP SRGMs can be obtained by specifying
different functions F (t) (or equivalently, h(t)).
These are listed in the Table

Table: Finite Failure NHPP SRGMs

F (t) h(t) m(t) λ(t)
Goel-Okumoto 1 − e−bt b a(1 − e−bt ) abe−bt

Gen Goel-Okumoto 1 − e−btc bctc−1 a(1 − e−btc ) abce−btc tc−1

S-shaped 1−(1+gt)e−gt g2t
1+gt a[1−(1+gt)e−gt ] ag2te−gt

Log-logistic (λt)κ

1+(λt)κ
λκ(λt)κ−1

1+(λt)κ a (λt)κ

1+(λt)κ a λκ(λt)κ−1

[1+(λt)κ]2
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Software reliability growth models (SRGM)

A. Goel and K. Okumoto, "Time-dependent error-detection rate model for software
reliability and other performance measures", IEEE Transactions on Reliability, vol. 28,
no. 3, pp. 206-211, 1979.

A. Goel, "Software reliability models: Assumptions, limitations, and applicability",
IEEE Transactions on Software Engineering, vol. 11, no. 12, pp. 1411-1423, 1985.

S. Yamada, M. Ohba, and S. Osaki, "S-shaped reliability growth modeling for software
error detection", IEEE Transactions on Reliability, vol. 32, no. 5, pp. 475-484, 1983.

S. Gokhale, M. Lyu, and K. Trivedi, "Analysis of software fault removal policies using
a non-homogeneous continuous time Markov chain", Software Quality Journal, vol.
12, no. 3, pp. 211-230, 2004.

J. D. Musa and K. Okumoto, "A logarithmic poisson execution time model for
software reliability measurement", in Proceedings of the 7th International Conference
on Software Engineering, ICSE ’84. Piscataway, NJ, USA: IEEE Press, 1984, pp.
230-238.
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ODE Method

Most of the conventional ODE methods perform acceptably for transient
analysis of non-stiff Markov models. One of the commonly used methods
is the 4th order Runge-Kutta which is an explicit single step method.

However, for stiff Markov chains explicit methods have enormous
difficulty to solve the corresponding ODE.

The adaptation of the TR-BDF2 to NHCTMC is as follows. The
trapezoid rule applied to interval (ti , ti + γhi ] is:

πππi+γ (III − γ hi
2 QQQ(ti + γ hi)) = πππi (III + γ hi

2 QQQ(ti))

After computing πππi+γ , we use the 2nd order backward difference formulae
(BDF2) to step from ti + γhi to ti+1; this step requires the solution of
the linear system

πi+1[(2− γ)I − (1− γ) hi QQQ(ti+1)] = γ−1πi+γ − γ−1(1− γ)2πi
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Uniformization Method

The NHCTMC Equation can be solved again by adapting the
uniformization method to the non-homogeneous case.

For NHCTMC with n states and generator matrix QQQ(t) = [qij(t)], assume
that there exists a q <∞ such that, for ∀t <∞, q = maxj |qjj(t)|.

We define the Poisson process {N(t), t ≥ 0} and the embedded DTMC
with one-step transition probability matrix

QQQ∗(t) = III + QQQ(t)
q

in the same way as for the homogeneous CTMC. The only difference is
that now the transition probability matrix of the embedded DTMC QQQ∗(t)
is time dependent.
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Uniformization Method

Given the definitions above, the uniformization series for a NHCTMC for
all 0 ≤ t ≤ ∞ is:

πππ(t) = πππ(0)
∞∑

k=0

(qt)k

k! e−qt ·
∫ t

0

∫ t

0
...

∫ t

0
(t1≤t2≤...≤tk )

QQQ∗(t1)QQQ∗(t2)...QQQ∗(tk) dH(t1, t2, ...tk)

= πππ(0) · Û̂ÛU(t)

where dH(t1, t2, ...tk) is the joint density of the order statistics
t1 ≤ t2 ≤ ... ≤ tk of a k-dimensional uniform distribution at
(0, t]× ...× (0, t] ⊂ Rk , and QQQ∗(t1)QQQ∗(t2)...QQQ∗(tk) is the standard
matrix product of the DTMC transition probability matrices at times
t1 ≤ t2 ≤ ... ≤ tk .
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Uniformization Method

The main complication in computing the non-homogeneous expression is
the fact that a continuum of transition matrices is required.

To overcome this complication, a finite-grid approximation is used in [*].
Let 0 < h < q−1 be the step-size. The discrete-time approximation of
the uniformization series, for arbitrary n and t = nh, is as follows:

UUU(t) = UUU(nh)

=
∞∑

k=0

(qt)k

k! e−qt ·

n−1∑
0

n−1∑
0
...

n−1∑
0

n1≤n2≤...≤nk

QQQ(n1h)QQQ(n2h)...QQQ(nkh)H(n1, n2, ...nk)


where H(n1, n2, ...nk) is the pmf of the order statistics n1 ≤ n2 ≤ ... ≤ nk
of a k-dimensional uniform distribution over {0, 1, ..., n − 1}k .

[*] N. M. van Dijk, “Uniformization for nonhomogeneous markov chains,” Operations
Research Letters, vol. 12, no. 5, pp. 283 – 291, 1992.
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