
Introduction
One thing is certain about this book: by the time you read it, parts of it will be out
of date. The study of exoplanets, planets orbiting around stars other than the Sun,
is a new and fast-moving field. Important new discoveries are announced on a
weekly basis. This is arguably the most exciting and fastest-growing field in
astrophysics. Teams of astronomers are competing to be the first to find habitable
planets like our own Earth, and are constantly discovering a host of unexpected
and amazingly detailed characteristics of the new worlds. Since 1995, when the
first exoplanet was discovered orbiting a Sun-like star, over 400 of them have been
identified. A comprehensive review of the field of exoplanets is beyond the scope
of this book, so we have chosen to focus on the subset of exoplanets that are
observed to transit their host star (Figure 1).

Figure 1 An artist’s impression of the transit of HD 209458 b across its star.

These transiting planets are of paramount importance to our understanding of the
formation and evolution of planets. During a transit, the apparent brightness of the
host star drops by a fraction that is proportional to the area of the planet: thus we
can measure the sizes of transiting planets, even though we cannot see the planets
themselves. Indeed, the transiting exoplanets are the only planets outside our own
Solar System with known sizes. Knowing a planet’s size allows its density to be
deduced and its bulk composition to be inferred. Furthermore, by performing
precise spectroscopic measurements during and out of transit, the atmospheric
composition of the planet can be detected. Spectroscopic measurements during
transit also reveal information about the orientation of the planet’s orbit with
respect to the stellar spin. In some cases, light from the transiting planet itself can
be detected; since the size of the planet is known, this can be interpreted in terms
of an empirical effective temperature for the planet. That we can learn so much
about planets that we can’t directly see is a triumph of twenty-first century
science.
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Introduction

This book is divided into eight chapters, the first of which sets the scene by
examining our own solar neighbourhood, and discusses the various methods by
which exoplanets are detected using the Solar System planets as test cases.
Chapter 2 describes how transiting exoplanets are discovered, and develops the
related mathematics. In Chapter 3 we see how the transit light curve is used
to derive precise values for the radius of the transiting planet and its orbital
inclination. Chapter 4 examines the known exoplanet population in the context
of the selection effects inherent in the detection methods used to find them.
Chapter 5 discusses the information on the planetary atmosphere and on the stellar
spin that can be deduced from spectroscopic studies of exoplanet transits. In
Chapter 6 the light from the planet itself is discussed, while in Chapter 7 the
dynamics of transiting exoplanets are analyzed. Finally, in Chapter 8 we briefly
discuss the prospects for further research in this area, including the prospects for
discovering habitable worlds.

The book is designed to be worked through in sequence; some aspects of later
chapters build on the knowledge gained in earlier chapters. So, while you could
dip in at any point, you will find if you do so that you are often referred back to
concepts developed elsewhere in the book. If the book is studied sequentially it
provides a self-contained, self-study course in the astrophysics of transiting
exoplanets.

A special comment should be made about the exercises in this book. You may be
tempted to regard them as optional extras to help you to revise. Do not fall into
this trap! The exercises are not part of the revision, they are part of the learning.
Several important concepts are developed through the exercises and nowhere
else. Therefore you should attempt each of them when you come to it. You
will find full solutions for all exercises at the end of this book, but do try to
complete an exercise yourself first before looking at the answer. An Appendix
containing physical constants is included at the end of the book; use these values
as appropriate in your calculations.

For most calculations presented here, use of a scientific calculator is essential. In
some cases, you will be able to work out order of magnitude estimates without the
use of a calculator, and such estimates are invariably useful to check whether an
expression is correct. In some calculations you may find that use of a computer
spreadsheet, or graphing calculator, provides a convenient means of visualizing a
particular function. If you have access to such tools, please feel free to use them.
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Chapter 1 Our Solar System from afar

Introduction
In 1972 a NASA spacecraft called Pioneer 10 was launched. It is the
fastest-moving human artefact to have left the Earth: 11 hours after launch it was
further away than the Moon. In late 1973 it passed Jupiter, taking the first
close-up images of the largest planet in our Solar System. For 25 years Pioneer 10
transmitted observations of the far reaches of our Solar System back to Earth,
passing Pluto in 1983 (Figure 1.1).

Figure 1.1 The trajectories of
Pioneer 10 and other space
probes. The heliopause is
the boundary between the
heliosphere, which is dominated
by the solar wind, and
interstellar space. The solar
wind is initially supersonic
and becomes subsonic at the
termination shock. Note: all
objects are much smaller than
they have been drawn!

At final radio contact, it was 82 AU (or equivalently 1.2 × 1013 m) from the Sun.
It continues to coast silently towards the red star Aldebaran in the constellation
Taurus. It is 68 light-years to Aldebaran, and it will take Pioneer 10 two million
years to cover this distance. During this time, of course, Aldebaran will have
moved. Any single star may have

several different names. This is
especially true of bright stars,
e.g. Aldebaran is also known as
α Tau. We have generally
tried to adopt the names most
frequently used in the exoplanet
literature.

Figures 1.2 and 1.3 show the Sun’s place in our Galaxy. The 10-light-year
scale-bar in Figure 1.2a is 2000 times the radius of Neptune’s orbit: Neptune is
the furthest planet from the Sun shown in Figure 1.1. The structure of our own
Solar System shown in Figure 1.1 is invisibly tiny on the scale of Figure 1.2a. To
render them visible, all the stars in Figure 1.2a are shown larger than they really
are. Interstellar space is sparsely populated by stars. The successive parts of
Figures 1.2 and 1.3 zoom out from the view of our immediate neighbourhood. In
Figure 1.2b we see a more or less random pattern of stars, which includes
the Hyades cluster and the bright stars in Ursa Major. All the stars shown in
Figure 1.2b belong to our local spiral arm, which is called the Orion Arm.
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Chapter 1 Our Solar System from afar

(a)

(b)

Figure 1.2 (a) The stars within 12.5 light-years of the Sun. (b) The solar
neighbourhood within 250 light-years.
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(a)

(b)

Figure 1.3 (a) Our part of the
Orion Arm and the neighbouring
arms. (b) Our Milky Way
Galaxy.

Figure 1.3a shows our sector of the Galaxy: a view centred on the Sun, which
is a nondescript star lost in the host of stars comprising the Orion Arm. The
bright stars of Orion, familiar to many people from the naked-eye night sky,
are prominent in this view: they give our local spiral arm its name. Finally,
Figure 1.3b shows our entire Galaxy.
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Chapter 1 Our Solar System from afar

Exercise 1.1 Pioneer 10 is coasting through interstellar space at a speed
of approximately 12 km s−1. Confirm the time that it will take to cover the
68 light-years to Aldebaran’s present position. Hint: The Appendix gives
conversion factors between units. ■

Confusingly, the standard
symbol for astronomical
parallax is π, which is more
frequently used as the symbol
for the constant relating the
diameter and circumference of a
circle. Usually it is easy to work
out which meaning is intended.

The nearest stars and planets

Planets have been detected around 6 of the 100 nearest stars (October 2009),
including the Sun. Throughout this book, where new results are frequent, we
indicate in parentheses the date at which a statement was made, as we did in
the previous sentence. Table 1.1 lists the seven known planetary systems
within 8 pc.

Table 1.1 Stars within 8 pc with known planets. (In accordance with the
IAU we list 8 planets in the Solar System; we will not comment further on the
status of Pluto and similar dwarf planets.)

Name Parallax, Spectral V MV Mass Known
(alias) π/arcsec type (M%) planets

Sun — G2V −26.72 4.85 1.00 8

ε Eri 0.309 99 K2V 3.73 6.19 0.85 1
(GJ 144) ±0.00079

GJ 674 0.220 25 M3.0V 9.38 11.09 0.36 1
±0.00159

GJ 876 0.212 59 M3.5V 10.17 11.81 0.27 3
(IL Aqr) ±0.00196

GJ 832 0.202 52 M1.5V 8.66 10.19 0.45 1
(HD 204961) ±0.00196

GJ 581 0.159 29 M2.5V 10.56 11.57 0.30 3
(HO Lib) ±0.00210

Fomalhaut 0.130 08 A3V 1.16 1.73 2.1 1
(αPsA/GJ881) ±0.00092

These data were taken from the information on the 100 nearest stars on the
Research Consortium on Nearby Stars (RECONS) website, which is updated
annually. Fomalhaut, which is nearby, but not one of the 100 nearest stars,
was added because the planet Fomalhaut b was recently discovered, as we
will see in Subsection 1.1.1. Table 1.1 gives the values of the parallax, π, the
spectral type, the apparent V band magnitude, V, and the absolute V band
magnitude, MV, as well as the stellar mass and the number of known
planets. It is very noticeable that over half of these nearby planet host
stars are M dwarfs, the lowest-mass, dimmest and slowest-evolving main
sequence stars. By the time you read this, more nearby planets will probably
have been discovered.

The nearest stars have distances directly determined by geometry using
trigonometric parallax, and the RECONS sample (Figure 1.4) includes 249
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Introduction

systems within 10 pc, or equivalently 32.6 light-years, all with distances
known to 10% or better. 72% of the stars are M dwarfs. M dwarfs are the
faintest main sequence stars, so although they predominate in the solar
neighbourhood, they are more difficult to detect than other more luminous
stars, particularly at large distances.
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Figure 1.4 Known objects within 10 parsecs (RECONS 2008). The
leftmost column shows white dwarfs, columns 2–8 show stars subdivided by
spectral type, columns 9 and 10 show L and T class brown dwarfs, and the
last column shows known planets, including eight in our own Solar System.
The stars in the census are overwhelmingly M dwarf stars, i.e. low-mass
main sequence stars.

The census illustrated in Figure 1.4 is likely to be more representative of
stellar demographics than a sample limited by apparent brightness would be.
The numbers in this census include the Sun and its eight planets. The 362
objects represented in Figure 1.4 are comprised of 170 systems containing a
single object, 58 double systems (either binary stars or star plus single planet
systems), and 21 multiple systems, including our own Solar System. New
objects are being discovered continually, and this census grew by 20%
between January 2000 and January 2008.

While not quite close enough to be included in Table 1.1, or in the census
illustrated in Figure 1.4, HD 160691 at a distance of 15.3 pc deserves a
mention: it has 4 known planets. The recently discovered planet GJ 832 b is
a giant planet with an orbital period between 9 and 10 years: i.e. it has
pronounced similarities to the giant planets in our own Solar System.
GJ 832 b has mass MP = 0.64 ± 0.06 MJ, where MJ is the mass of Jupiter,
i.e. 1898.13 ± 0.19 × 1024 kg. The properties of its host star, GJ 832, are
given in Table 1.1.

17



Chapter 1 Our Solar System from afar

● With reference to Table 1.1, what is the distance to the nearest known
exoplanetary system?

❍ ε Eri (GJ 144) has the largest parallax of all known exoplanetary systems,
with π = 0.309 99 ± 0.000 79 arcsec. The distance, d, in parsecs is given by

d

pc
=

1

π/arcsec
,

so the distance to ε Eri is 0.309 99−1 pc, or 3.226 pc. The uncertainty on the
parallax measurement is 0.25%, so the uncertainty in the distance
determination is approximately 0.25% of 3.226 pc. Hence, to four significant
figures, the distance to the nearest known exoplanetary system is
3.226 ± 0.008 pc. Converting this to SI units, 1 pc is 3.086 × 1016 m, so the
distance to GJ 144 is (9.96 ± 0.02) × 1016 m.

As you can see in Figure 1.2b, Aldebaran is actually an extremely nearby star
when we consider our place in the Milky Way Galaxy, so the example of
Pioneer 10’s journey shows just how distant the stars are, compared to the
interplanetary distances in our own Solar System. Until 1995, we knew of no
planets orbiting around other stars similar to our own Sun. Given the distances
involved, and the extreme dimness of planets compared to main sequence stars,
this is hardly surprising.

Stars, planets and brown dwarfs

This book will primarily discuss giant planets and their host stars. Objects
with masses too small to ignite hydrogen burning in their cores, yet massive
enough to have fused deuterium, are known as brown dwarfs. This implies
that brown dwarfs have masses less than about 80 MJ. While there is no
universally agreed definition, giant planets are often defined as objects that
are less massive than brown dwarfs and have failed to ignite deuterium
burning. Adopting this definition, planets have masses less than about 13 MJ.
Stars, brown dwarfs and giant planets form a sequence of declining mass.

Figure 1.5a compares two examples of main sequence stars with two brown
dwarfs, one old and one young, and giant planets with masses of 1 MJ and
10 MJ. It is clear that the brown dwarfs and giant planets are all roughly the
same size, while the Sun and the MV star Gliese 229A differ radically in size
and effective temperature, despite having masses of the same order of
magnitude. These most basic characteristics arise because of the physics
operating to support these various objects against self-gravity, some of which
we will explore in Chapter 4 of this book. When discussing exoplanets,
astronomers use the mass of Jupiter, MJ, or the mass of the Earth, M⊕, as a
convenient mass unit, just as the mass of the Sun is used as a convenient unit
in discussing stars. The values of these units are given in the Appendix.
(Table 4.1 in Chapter 4 gives conversion factors between the units.)

Figure 1.5b shows part of the Sun and the Solar System planets, immediately
revealing the huge difference in size between the giant planets and the
terrestrial planets. It is because giant planets are so much bigger than
terrestrial planets that almost all the transiting exoplanets discovered so far
(Dec.2009) are giant planets. As we will see in Chapter 4, giant planets are
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(b) (c)

(a)

Figure 1.5 Comparisons of stars, brown dwarfs and planets. (a) Two main sequence stars, two brown
dwarfs, and two objects of planetary mass, arranged in a sequence of declining mass. Neither the radius nor
the surface temperature follows the mass sequence exactly. (b) The Sun and its planets. The giant planets are
much larger than the terrestrial planets. (c) The Solar System’s terrestrial planets in order of distance from the
Sun: Mercury, Venus, Earth and Mars, from top to bottom.

formed predominantly of gas or ice, i.e. low-density material. The terrestrial
planets, as we know from our intimate experience of the Earth, have solid
surfaces composed of rock, and are denser than giant planets by about a factor
of three. Jupiter is over 300 times more massive than the Earth, and has a radius
about 10 times bigger, i.e. a volume 1000 times bigger. Generally, terrestrial
planets are thought to have lower mass than giant planets: this is certainly
true in the Solar System. There may, however, be mini-Neptune ice giant
exoplanets with lower masses than super-Earth terrestrial exoplanets. Since
few transiting exoplanets with masses below 10 M⊕ are yet known (Dec. 2009),
this remains an open question, though one that we will explore later.
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Chapter 1 Our Solar System from afar

Could extraterrestrial astronomers detect the Solar System planets?

So far, in this Introduction and in the boxes entitled ‘The nearest stars and planets’
and ‘Stars, planets and brown dwarfs’, we have set our own Solar System in
the context of its place in our Milky Way Galaxy, and briefly compared main
sequence stars with brown dwarfs and planets. The subject of the book is
transiting exoplanets, but to interpret our findings about exoplanets, we need first
to understand the various methods that have been or could be used to find them.
To this end, in the remainder of this chapter we will use the familiar Solar System
planets to illustrate the various exoplanet detection methods. We will examine the
question: If the Galaxy harbours intelligent life outside our own Solar System,
could these hypothetical extraterrestrials detect the Solar System planets? Each
of the exoplanet detection methods will be applied to the Solar System, and
through this the limitations for each method will be explored.

1.1 Direct imaging
The Solar System planets were all, of course, detected from Earth using direct
imaging (Figure 1.6). Obviously, direct imaging works best for nearby objects,
and becomes more difficult as the distance, d, to an object increases, as Figure 1.7
demonstrates.

(a) (b) (c)

Figure 1.6 NASA images of Saturn and Jupiter. (a) The back-lit rings of
Saturn observed by Cassini. (b) Saturn’s moon Tethys and a close-up of the rings.
(c) Jupiter, the largest planet in the Solar System.

This is particularly true if the object to be imaged is close to a brighter object.
Since the optical light from the Solar System’s planets is overwhelmingly
reflected sunlight, this is clearly the case for them. The biggest and most luminous
planet in the Solar System, Jupiter, reflects about 70% of the sunlight that it
intercepts, and consequently has a luminosity of ∼10−9 L%.

● Compare the position of Voyager 1 when the images in Figure 1.7 were taken,
with the distance to the nearest known exoplanetary system. How many times
further away is the nearest known exoplanet?

❍ Voyager 1 was 6.4 × 1012 m from the Earth, while the distance to the nearest
known exoplanetary system, ε Eri, is 9.96 ± 0.02 × 1016 m. The ratio of these
two distances is 15 560: the nearest known exoplanetary system is over 15 000
times further away.
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1.1 Direct imaging

JupiterVenus Earth

Saturn Uranus Neptune

Figure 1.7 These images show six of the Solar System’s planets. They were
taken by Voyager 1 from a position similar to where it is shown in Figure 1.1,
more than 6.4× 1012 m from Earth and about 32 degrees above the ecliptic plane.
Mercury was too close to the Sun to be seen; Mars was not detectable by the
Voyager cameras due to scattered sunlight in the optics. Top row, left to right, are
Venus, Earth and Jupiter; the bottom row shows Saturn, Uranus and Neptune. The
background features in the images are artefacts resulting from the magnification.
Jupiter and Saturn were resolved by the camera, but Uranus and Neptune appear
larger than they should because of spacecraft motion during the 15 s exposure.
Earth appears in the centre of the scattered light rays resulting from the Sun. Earth
was a crescent only 0.12 pixels in size. Venus was 0.11 pixels in diameter.

Jupiter is a prominent object in our own night sky, but viewed from ε Eri it is
very close to the Sun, which outshines it by a factor of 109. Jupiter’s orbital
semi-major axis, aJ, is 7.784 × 1011 m. Using the small angle formula, the
angular separation between the Sun and Jupiter as viewed at the distance of ε Eri
is

θ =
aJ

dε Eri
radians

=
7.784 × 1011 m
9.96 × 1016 m

rad

= 7.815 × 10−6 rad

= 7.815 × 10−6 × 360 × 60 × 60

2π
arcsec

= 1.61 arcsec.
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Chapter 1 Our Solar System from afar

● Does the angular separation of Jupiter and the Sun at the distance of ε Eri
depend on the direction from which the Solar System is viewed?

❍ Yes. The angular separation calculated above is the maximum value, which
would be attained only if the system were viewed from above so that the plane
of Jupiter’s orbit coincides with the plane of the sky. Even for edge-on
systems, though, the full separation can be observed at two positions on the
orbit.

Thus detecting Jupiter from the distance of ε Eri by direct imaging would be
extremely challenging, as there is an object ∼109 times brighter within 2 arcsec.
If Jupiter were brighter and the Sun were fainter this would help, and one way to
achieve this is to observe in the infrared. At these wavelengths Jupiter’s thermal
emission peaks but the Sun’s emission peaks at much shorter wavelengths, so the
contrast ratio between the Sun and Jupiter is less extreme. Figure 1.8 shows the
spectral energy distributions of the Sun and four of the Solar System planets as
they would be observed at a distance of 10 pc. This figure shows that the contrast
ratio between the Sun and the planets becomes generally more favourable at
longer wavelengths.
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Figure 1.8 The spectral energy distributions of the Sun, Jupiter, Mars, Earth
and Venus. The curve for the Earth is far more detailed than the curves for the
other objects because empirical data have been included. For each of the planets,
the spectral energy distribution is composed of two broad components: peaking at
around 0.5µm is the reflected solar spectrum, while the thermal emission of the
planet itself peaks at 9–20µm.
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1.1 Direct imaging

● Jupiter is the biggest planet in the Solar System, yet at wavelengths around
10µm the Earth emits more light. Why is this?

❍ The Earth is closer to the Sun, and consequently it receives more insolation,
i.e. more sunlight falls per unit surface area. Thus the Earth is heated to a
higher temperature than Jupiter, and the Earth’s thermal emission peaks at
around 10µm. The amount of light emitted is the surface area multiplied by
the flux per unit area. The latter depends strongly on temperature, thus the
Earth is brighter at 10µm despite having approximately 100 times less
emitting area.

Planets can have internal sources of energy in addition to the insolation that they
receive; for example, radioactive decay of unstable elements generates energy
within the Earth. Radioactive decay is generally thought to be insignificant in
giant planets as their composition is predominantly H and He. More important for
the planets that we will discuss in this book is internal heating generated by
gravitational contraction, which is known as Kelvin–Helmholtz contraction.
Jupiter emits almost twice as much heat as it absorbs from the Sun, and all
four giant planets in the Solar System radiate some power generated by
Kelvin–Helmholtz contraction.

Exercise 1.2 Figure 1.8 shows the spectral energy distributions for the Sun
and four of our Solar System’s planets. Consider the following with reference to
this figure.

(a) State what wavelength gives the most favourable contrast ratio with the Sun
for the detection of Jupiter. What is the approximate value of this most favourable
contrast ratio?

(b) At what wavelength does the spectral energy distribution of Jupiter peak? Is
this the same wavelength as you stated in part (a)? Explain your answer.

(c) What advantages are there to using a wavelength of around 20µm for direct
imaging observations of Jupiter from interstellar distances? ■

In fact, infrared imaging has detected an exoplanet directly. A giant exoplanet
was discovered at an angular distance of 0.78 arcsec from the brown dwarf
2MASSWJ 1207334-393254 by infrared imaging, as shown in Figure 1.9. Direct
imaging is most effective for bright planets in distant orbits around nearby faint
stars. These requirements mean that direct imaging has limited applicability in the
search for exoplanets. Returning to our hypothetical extraterrestrial astronomers,
even if they were located on one of the nearest known exoplanets, they would face
problems in detecting even the most favourable of the Solar System’s planets by
direct imaging. The angular separation of Jupiter from the Sun is less than
2 arcsec, and the Sun is one of the brighter stars in the solar neighbourhood, with
the contrast ratio between the Sun and Jupiter being over 104 even at the most
favourable wavelength. Thus it seems unlikely that hypothetical extraterrestrials
would first detect the Solar System planets through direct imaging.

Despite the difficulties, astronomers are designing instruments specifically to
detect exoplanets by direct imaging. These instruments employ sophisticated
techniques to overcome the overwhelming light from the planets’ host stars. The
Gemini Planet Imager (GPI) is designed to detect planets with contrast ratios as
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Chapter 1 Our Solar System from afar

Figure 1.9 False-colour
image of the brown dwarf
2MASSWJ 1207334-393254
using H, K and L band
infrared filters. Blue indicates
pixels brightest in H, while
red indicates pixels brightest
in L. The companion
exoplanet is relatively bright
in the L band and thus
appears red. The exoplanet
has an effective temperature
of 1250 ± 200 K.

extreme as 108 using a device called a coronagraph. A spectacular recent result
using this method is summarized in Subsection 1.1.1 below. As Figure 1.8 shows,
this technology could in principle render the Earth detectable. In practice, to
detect the Earth, the extraterrestrials’ telescope would need to be implausibly
close to the Solar System.

● If the contrast ratio of the Earth and the Sun is less than the threshold for
planet detection with the GPI, what limits the detectability of the Earth with
such an instrument at large distances?

❍ There are two limiting factors. First, the angular separation of the Earth and
the Sun decreases with distance; at large distances the two objects are not
spatially resolved. The angular separation diminishes as 1/d. Second, the
telescope needs to have sufficient Earthlight falling on it to permit detection of
the Earth. The number of photons reaching the telescope diminishes as 1/d2.

The SPHERE instrument is scheduled to be deployed on the Very Large Telescope
(VLT) in 2010, and aims to detect some nearby young giant exoplanets at large
separations from their host star. Giant planets are brightest early in their life,
when they are contracting relatively quickly. The Kelvin–Helmholtz powered
luminosity diminishes as a giant planet contracts and cools with age, as we will
see in Subsection 4.4.3.

1.1.1 Coronagraphy

As the name implies, coronagraphs were invented to study the solar corona by
blocking the light from the disc (i.e. the photosphere) of the Sun. An occulting
element is included within the instrument, and is used to block the bright object,
allowing fainter features to be detected. If an exoplanetary system is close enough
for the star and exoplanet to be resolved, then a coronagraph may permit detection
of an exoplanet where without it the detector would be flooded with light from the
central star.

Fomalhaut (α PsA) is one of the 20 brightest stars in the sky; some of its
characteristics were listed in Table 1.1. It is surrounded by a dust disc that appears
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1.1 Direct imaging

elliptical and has a sharp inner edge. This led to speculation that there might be a
planet orbiting Fomalhaut just inside the dust ring, and creating the sharp inner
edge of the ring rather as the moons of Saturn shepherd its rings (cf. Figure 1.6).
Figure 1.10 was created using the Hubble Space Telescope’s coronagraph,
combining two images taken in 2004 and 2006. In this figure the orbital motion of
the planet Fomalhaut b is clearly revealed. Fomalhaut b is ∼109 times fainter than
Fomalhaut, and is ∼100 AU from the central star.

Figure 1.10 False-colour image showing the region surrounding Fomalhaut. The black shape protruding
downwards from 11 o’clock is the coronagraph mask, which has been used to block the light from the star located
as indicated at the centre of the image. The square box is the region surrounding the planet, which has been blown
up and inset. The motion of the planet, called Fomalhaut b, along its elliptical orbit between 2004 and 2006 is
clearly seen. At the distance of Fomalhaut 13′′ corresponds to 100 AU.

There are designs (though not necessarily the funding) for a space telescope with
a coronagraph optimized to detect terrestrial exoplanets: Fomalhaut b may be the
first of a significant number of exoplanets detected in this way. Our hypothetical
extraterrestrial astronomers could possibly detect the Solar System’s planets using
coronagraphy, provided that they are close enough to the Sun to be able to block
its light without also obscuring the locations of the Sun’s planets.

1.1.2 Angular difference imaging

Another spectacular recent result, shown in Figure 1.11, uses some other clever
techniques to overcome the adverse planet to star contrast ratio. Figure 1.11
reveals three giant planets around the A5V star HR 8799. The technique employed
is called angular difference imaging, an optimal way of combining many short
exposures to reveal faint features. HR 8799’s age is between 30 Myr and 160 Myr, Myr indicates 106 yr, or a

megayear.i.e. it is a young star. Because this planetary system is young, the giant planets are
relatively bright, making their detection by direct imaging possible. The three
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Chapter 1 Our Solar System from afar

planets have angular separations of 0.63, 0.95 and 1.73 arcsec from the central
star, corresponding to projected separations of 24, 38 and 68 AU. The orbital
motion, counter-clockwise in Figure 1.11, was detected by comparing images
taken in 2004, 2007 and 2008. The masses of these three bodies are estimated to
be between 5 MJ and 13 MJ.

Figure 1.11 The three planets
around HR 8799. The central
star is overwhelmingly bright
and has been digitally removed
from the images, causing the
featureless or mottled round
central region in each panel. The
three planets, whose names are
HR 8799 b, c and d, are labelled
b, c and d. At the distance of
HR 8799, 0.5′′ corresponds to
20 AU.

1.2 Astrometry
Astrometry is the science of accurately measuring the positions of stars. The
Hipparcos satellite measured the positions of over 100 000 stars to a precision ofHipparcos was an ESA satellite

that operated between 1989 and
1993.

1 milliarcsec, and the Gaia satellite, due for launch by the European Space Agency
(ESA) in spring 2012, will measure positions to a precision of 10 microarcsec
(µarcsec). Astrometry offers a way to indirectly detect the presence of planets.
Though we often casually refer to planets orbiting around stars, in fact planets
and stars both possess mass, and consequently all the bodies in a planetary
system orbit around the barycentre, or common centre of mass of the system.
Figure 1.12 illustrates this.
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Figure 1.12 (a) The elliptical orbits of a planet and its host star about the barycentre (or centre of mass) of the
system. (b) In astrocentric coordinates, i.e. coordinates centred on the star, the planet executes an elliptical orbit
with the star at one focus. The semi-major axis of this astrocentric orbit, a, is the sum of the semi-major axes of the
star’s orbit and the planet’s orbit in the barycentric coordinates shown here.

In general, orbits under the inverse square force law are conic sections, the
loci obtained by intersecting a cone with a plane. For planets, the orbits must There is no physical significance

to the cone or the plane; it
simply happens that there is a
mathematical coincidence.

be closed, i.e. they are either circular or, more generally, elliptical, with the
eccentricity of the ellipse increasing as the misalignment of the normal to the
plane with the axis of the cone increases. Of course, a circle is simply an ellipse
with an eccentricity, e, of 0.

The orbital period, P , the semi-major axis, a, and the star and planet masses are
related by (the generalization of) Kepler’s third law:

a3

P 2
=

G(M∗ + MP)

4π2
, (1.1)

where a = a∗ + aP as indicated in Figure 1.12.

The Sun constitutes over 99.8% of the Solar System’s mass, so the barycentre of
the Solar System is close to, but not exactly at, the Sun’s own centre of mass. As
the planets orbit around the barycentre, the Sun executes a smaller reflex orbit,
keeping the centre of mass of the system fixed at the barycentre.

In general, the motion of a star in a reflex orbit has a semi-major axis, a∗, that can,
in principle, be detected as an angular displacement, β, when the star is viewed
from distance d. This angle of the astrometric wobble, β, is proportional to the
semi-major axis of the star’s reflex orbit:

β =
a∗
d

.

However, since

a∗ =
MP

M∗
aP,

we have

β =
MPaP

M∗d
, (1.2)

and we see from Equation 1.2 that the astrometric wobble method is most
effective for finding high-mass planets in wide orbits around nearby relatively
low-mass stars.
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Worked Example 1.1
(a) Calculate the orbital semi-major axis, a%, of the Sun’s reflex orbit
in response to Jupiter’s orbital motion. The mass of Jupiter, MJ, is
1.90 × 1027 kg, the mass of the Sun is 1.99 × 1030 kg, and Jupiter’s orbital
semi-major axis, aJ, is 7.784 × 1011 m. Jupiter constitutes about 70% of the
mass in the Solar System apart from the Sun, so you may ignore the other
lesser bodies in the system.

(b) Hence calculate the distance, dGaia, at which the astrometric wobble
angle, β, due to the Sun’s reflex orbit is greater than βGaia = 10µarcsec.

(c) State whether a Gaia satellite positioned anywhere within the sphere of
radius dGaia would be able to detect the astrometric wobble due to the Sun’s
reflex orbit, explaining your reasoning.

(d) Comment on the fraction of the Galaxy’s volume over which a
hypothetical extraterrestrial Gaia could detect Jupiter’s presence by the
astrometry method.

Solution
(a) The barycentre of the Sun–Jupiter system is such that

MJaJ = a%M%, (1.3)

so

a% =
MJ

M%
aJ =

1.90 × 1027

1.99 × 1030
× 7.784 × 1011 m

= 7.432 × 108 m.

The semi-major axis of the Sun’s reflex orbit is 7.43 × 108 m.

(b) The distance dGaia is given by the small angle formula. To use this
formula we must first convert the angle βGaia to radians:

1 × 10−5 arcsec = 1 × 10−5 × 2 × π

360 × 60 × 60
rad

= 4.85 × 10−11 rad.

Here we have multiplied by the 2π radians in a full circle and divided by the
360 × 60 × 60 arcseconds in a full circle, thus converting our angular units.
Here π is not the parallax.

So βGaia = 10µarcsec = 4.85 × 10−11 rad. The astrometric wobble angle of
the Sun’s reflex orbit is given by

β =
a%
d

, (1.4)

so dGaia is given by

dGaia =
a%

βGaia
. (1.5)

Substituting values,

dGaia =
a%

4.85 × 10−11
=

7.43 × 108

4.85 × 10−11
m = 1.532 × 1019 m.
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1.2 Astrometry

Clearly the SI unit of metres is not a good choice for expressing interstellar
distances, so we will express this distance in parsecs:

dGaia =
1.532 × 1019 m

3.086 × 1016 m pc−1
= 4.96 × 102 pc = 496 pc.

Hence the limiting distance is around 500 pc, to the one significant figure of
the stated angular precision (10µarcsec).

(c) If the extraterrestrials’ Gaia satellite is ideally positioned so that
Jupiter’s orbit is viewed face on, then the satellite will see the true elliptical
shape of the Sun’s reflex orbit. At any other orientation, the satellite will see
a foreshortened shape; but even in the least favourable orientation, with
orbital inclination i = 90◦, as in Figure 1.13a, the satellite will see the Sun
move back and forth along a line whose length is given by the size of the
orbit. Only in the extremely unlucky case of a highly eccentric orbit, viewed
from the least favourable inclination and azimuth, will the angular deviation The azimuth is the angle around

the orbit: for a highly eccentric
orbit, the projection on the sky
will vary with azimuth, being
smallest when the orbit is
viewed from an extension of the
semi-major axis.

be substantially less than that corresponding to the semi-major axis. Since
Jupiter has a low orbital eccentricity, the extraterrestrial Gaia could detect
the Sun’s reflex wobble from anywhere within the sphere of radius dGaia.

(a)

(b)

(c)

normal

normal

normal

star

star’s orbit

centre of mass

i = 0◦

i = 90◦

i

Figure 1.13 The shape of the orbit that the Gaia satellite sees is a
function of the orbital inclination, i. In panel (a), i = 90◦ and the orbit
appears as a line traced on the sky. Panel (b) shows an intermediate value
of i, and the orbit appears elliptical, with the true orbital shape being
foreshortened. Panel (c) shows the situation where i = 0◦; only in this case
does the observer see the true shape of the orbit.
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(d) The distance dGaia is about 500 pc, i.e. about 1500 ly. Comparing this
with Figure 1.3a, we can see that this length scale is comparable to the width
of the spiral arm structure in the Galaxy. The astrometric wobble of the Sun
due to Jupiter’s pull could be detected by advanced, spacecraft-building
extraterrestrial civilizations in the same region of the Orion Arm as the Sun.
The astrometric wobble would be too small to be detected by a Gaia-like
satellite built by more remote extraterrestrials.

● How does the semi-major axis of the Sun’s reflex orbit in response to Jupiter,
a%, compare with the solar radius, R%? What does this imply for the position
of the barycentre of the Solar System?

❍ The value of R% is 6.96 × 108 m, which is only just smaller than the value
that we calculated for a%, namely 7.43 × 108 m. This means that the
barycentre of the Solar System is just outside the surface of the Sun.

● Will the barycentre of the Solar System remain at the same distance from the
centre of the Sun as the eight planets in the Solar System all orbit around the
barycentre? Explain your answer.

❍ No, the eight planets all have different orbital periods, so sometimes they will
all be located on the same side of the Sun. When this happens, the barycentre
will be pulled further from the centre of the Sun than the value that we
calculated using Jupiter alone. At some other times most of the seven lesser
planets will be on the opposite side of the Sun from Jupiter, in which case
they will pull the barycentre closer to the centre of the Sun than implied by
our calculations using Jupiter alone.

● For astrometric discovery prospects, is there any disadvantage inherent in a
planet having a wide orbit?

❍ While the size of the astrometric wobble increases as the planet’s semi-major
axis increases, so too does the orbital period (i.e. the planet’s ‘year’). Kepler’s
third law tells us that P ∝ a3/2, so as the orbital size increases, the length of
time required to measure a whole orbit increases even faster.

Our calculations show that our hypothetical extraterrestrial astronomers would be
able to detect Jupiter’s presence so long as they were within about 500 pc of the
Sun and were able to construct an instrument with Gaia’s capabilities. We do not
yet know how common planetary systems like our own are, but once Gaia is
launched we will begin to find out!

1.3 Radial velocity measurements
Like the astrometric method, the radial velocity method of planet detection relies
on detecting the host star’s reflex orbit. In this case, rather than detecting the
change in position of the host star as it progresses around its orbit, we detect the
change in velocity of the host star. The radial velocity, i.e. the velocity of an
object directly towards or away from the observer, can be sensitively measured
using the Doppler shift of the emitted light. This has been a powerful technique
in many areas of astrophysics and was adopted in the 1980s by astronomers
searching for Jupiter-like planets around nearby Sun-like stars.
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1.3 Radial velocity measurements

1.3.1 The stellar reflex orbit with a single planet

The motion of a planet is most simply analyzed in the rest frame of the host star,
i.e. the astrocentric frame. In this frame the planet executes an orbit with
semi-major axis a, period P and eccentricity e, as shown in Figures 1.12b
and 1.14.
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Figure 1.14 The astrocentric
orbit of a planet. The observer is
positioned in the direction of the
bottom of the page, and is viewing
the system along the direction of
the z-axis. The x-axis is in the
plane of the sky and is oriented so
that it intersects the planet’s orbit
at the point where the z-component
of the planet’s velocity is towards
the observer. Finally, the y-axis
is the third direction making
up a right-handed Cartesian
coordinate system. The planet is
closest to the star at the pericentre,
whose position is defined by the
angle ωOP.

The point at which the planet is closest to the star is called the pericentre, and the
star is positioned at one focus of the elliptical orbit. We will adopt a Cartesian
coordinate system, centred on the host star, oriented as shown in Figure 1.14.
The angle between the plane of the sky and the plane of the orbit is the orbital
inclination, i. The x-axis is defined by the intersection of the orbit with the plane
of the sky as seen by the observer. Positive x is on the side of the orbit where the
planet moves towards the observer. The point labelled γ is the intersection of the
orbit with the positive x-axis. The angle θ is the true anomaly, which measures
how far around the orbit from the pericentre the planet has travelled. This angle is
measured at the position of the host star. The angle ωOP measures the orientation
of the pericentre with respect to γ. The velocity, v, has components in the x-, y-
and z-directions that are given by

vx = − 2πa

P
√

1 − e2
(sin(θ + ωOP) + e sin ωOP) ,

vy = − 2πa cos i

P
√

1 − e2
(cos(θ + ωOP) + e cosωOP) , (1.6)

vz = − 2πa sin i

P
√

1 − e2
(cos(θ + ωOP) + e cosωOP) .

What astronomers can actually observe is the star, not the planet, so we need the
analogous equations for the reflex orbit of the star. So far we’ve considered the
orbit of the planet around the star, i.e. in an ‘astrocentric’ frame. The star is
actually moving too, executing its reflex orbit around the barycentre, as illustrated
in Figure 1.12a.
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The velocity, v, of the planet in the astrocentric frame (Figure 1.12b) is given by
simple vector subtraction:

v = vP,bary − v∗, (1.7)

where v is the astrocentric velocity given in Equation 1.6, and v∗ is the velocity
of the star in the barycentric frame, i.e. the velocity of the star as it performs its
reflex orbit about the barycentre as shown in Figure 1.12a. Equation 1.3 gave us
the ratio of the semi-major axes of the orbit of a planet and the reflex orbit of its
star. The relationship is much more general than our use of it in Section 1.2: for
any planetary system, the barycentre remains fixed in its own inertial frame, so at
all times the distances of the star and the planet from the barycentre will vary
proportionately:

M∗r∗ = −MPrP. (1.8)

Here we have used vector notation, and since the planet and the star are in
opposite directions from the barycentre, this equation introduces a minus sign into
Equation 1.3, which used the (scalar) distance rather than the vector displacement.
Differentiating with respect to time, we then obtain the general relationship, in the
barycentric frame, between the velocities of the planet and the star’s reflex orbit:

M∗v∗ = −MP vP,bary. (1.9)

● What do Equations 1.8 and 1.9 imply for the shapes of the two ellipses in
Figure 1.12a?

❍ The ellipses are the same shape, and differ only in size.

Consequently, using Equation 1.9 to substitute for vP,bary in Equation 1.7, and
making the barycentric velocity of the star the subject of the resulting equation,
we obtainThe fraction multiplying v is

known as the reduced mass of
the planet, and is analogous to
that quantity in simple two-body
problems in other areas of
physics.

v∗ = − MP

MP + M∗
v, (1.10)

where v is the astrocentric orbital velocity of the planet, as given in Equations 1.6.
Finally, we should note that in general the barycentre of the planetary system
being observed will have a non-zero velocity, V 0, with respect to the observer.
V 0 changes on the timescale of the star’s orbit around the centre of the Galaxy,
i.e. hundreds of Myr. Thus we can regard it as a constant as this timescale is much
longer than the timescale for the orbits of planets around stars. From the point of
view of an observer in an inertial frame, therefore, the reflex velocity of the star is
V = v∗ + V 0. So we now have a completely general expression, in the frame of
an inertial observer, for the reflex velocity of a star in response to the motion of a
planet around it:

Vx = V0,x +
2πaMP

(MP + M∗)P
√

1 − e2
(sin(θ + ωOP) + e sin ωOP) ,

Vy = V0,y +
2πaMP cos i

(MP + M∗)P
√

1 − e2
(cos(θ + ωOP) + e cosωOP) , (1.11)

Vz = V0,z +
2πaMP sin i

(MP + M∗)P
√

1 − e2
(cos(θ + ωOP) + e cosωOP) .
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● How do the three components of V contribute to the observed stellar radial
velocity?

❍ The radial velocity is the motion directly towards or away from the observer.
The coordinate system that we adopted has the z-axis directed away from the
observer, while the x- and y-axes are in the plane of the sky. The radial
velocity is given by Vz . The other two components do not contribute to the
radial velocity.

● Which of the terms in the expression for the stellar radial velocity are
time-dependent? Describe in simple physical terms how the time-dependence
arises.

❍ The only time-dependent term in the expression for Vz is the true anomaly,
i.e. the angle θ(t), which changes continuously as the planet and star proceed
along their orbits around the barycentre.

Exercise 1.3 Use Kepler’s third law to estimate the time for the Sun to orbit
around the Galaxy. You may assume the mass of the Galaxy is 1012 M% and may
be approximated as a point mass at the centre of the Galaxy, and that the distance
of the Sun from the centre of the Galaxy (known as the Galactocentric distance)
is 8 kpc. ■

The radial velocity, which we will henceforth simply call V , of a star executing a
reflex motion as a result of a single planet in an elliptical orbit is given by

V (t) = V0,z +
2πaMP sin i

(MP + M∗)P
√

1 − e2
(cos(θ(t) + ωOP) + e cosωOP) . (1.12)

θ(t) completes a full cycle of 360◦ (or 2π radians) each orbit. Unless the orbit is
circular, θ does not change linearly with time; instead, it obeys Kepler’s second
law, or equivalently the law of conservation of angular momentum.

Exercise 1.4 Use Equation 1.12 for the radial velocity to answer the following.

(a) What is the dependence of the observed radial velocity variation on the orbital
inclination, i? State this dependence as a proportionality, and draw diagrams
illustrating the values of i for the maximum, the minimum and an intermediate
value of the observed radial velocity. You may assume that all the characteristics
of the observed planetary system, except for its orientation, remain constant.

(b) For fixed values of all parameters except the orbital eccentricity, e, how does
the amplitude of the observed radial velocity variation change as the eccentricity
varies? (By definition, the eccentricity of an ellipse lies in the range 0 ≤ e ≤ 1.)
Explain your answer fully, with reference to the behaviour of the relevant terms in
Equation 1.12.

(c) Adopting the approximation that Jupiter is the only planet in the Solar
System, calculate the observed radial velocity amplitude, ARV, for the Sun’s reflex
orbit. Express your answer as a function of the unknown orbital inclination, i.
Use the following (approximate) values of constants to evaluate your answer:
MJ = 2 × 1027 kg, M% = 2 × 1030 kg, aJ = 8 × 1011 m; Jupiter’s orbital period is
PJ = 12 years, and its orbital eccentricity is eJ = 0.05. ■
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An important result from Exercise 1.4 is that the amplitude of the reflex radial
velocity variations predicted by Equation 1.12 is

ARV =
2πaMP sin i

(MP + M∗)P
√

1 − e2
. (1.13)

Applying this to the Sun’s reflex orbit due to Jupiter, we find a radial velocity
amplitude of ARV ≤ 13 m s−1.

Astronomers measure radial velocities using the Doppler shift of the features in
the stellar spectrum. The wavelength change, Δλ, due to the Doppler shift is
given by

Δλ

λ
=

V

c
, (1.14)

so to detect the reflex orbit of the Sun due to Jupiter’s presence, our hypothetical
extraterrestrial astronomers would need to measure the wavelength shifts of
features in the solar spectrum to a precision of

Δλ

λ
=

13 m s−1

3.0 × 108 m s−1
= 4.2 × 10−8,

where we have substituted the value for the speed of light, c, in SI units. This
sounds challenging, but it is possible with current technology; terrestrial
astronomers have aspired to this since the 1980s. For bright stars with prominent
spectral features it is now possible to measure radial velocities to precisions of
better than 1 m s−1, i.e. motions slower than walking speed can be detected!
Figure 1.15 shows the radial velocity measurements used to infer the presence of
the planet around GJ 832 (also known as HD 204691); this planet has a lowerGJ 832 is one of the 100 nearest

known stars listed Table 1.1. mass than Jupiter and has P = 9.4 years. GJ 832’s reflex radial velocity amplitude
slightly exceeds that of Jupiter because, as we saw in Table 1.1, the star has
mass less than half that of the Sun, and the planet has a shorter orbital period
than Jupiter. Our Sun happens to have a spectral type (G2V) that makes it
particularly suitable for radial velocity measurements: it has a host of sharp,
well-defined photospheric absorption lines. By measuring the shifts in the
observed wavelengths of these lines, our hypothetical extraterrestrial astronomers
would be able to detect the presence of Jupiter unless they happen to be unlucky
and view the Sun–Jupiter system from an orbital inclination, i, close to 0◦. The
other limiting factor, assuming that they have technology comparable to ours, is
their distance from the Sun. To make radial velocity measurements of the required
precision, astronomers need to collect a lot of light, and as noted previously the
flux of photons from the Sun drops off as 1/d2.

Exoplanet naming convention

The planet discovered around the star GJ 832 is called GJ 832 b. This is the
general convention: the first exoplanet discovered around any star is given
its host star’s name with ‘b’ appended. The second planet discovered in the
system is labelled ‘c’, and so on. This distinguishes planets from stellar
companions, which have capital letters appended: for example, the stars
α Cen A and α Cen B. The planets in a multiple planet system are always
labelled b, c, d, . . . in the order of discovery; the distances of these planets
from the host star can consequently be in any order.
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1.3 Radial velocity measurements

● If a planet were discovered orbiting around the star α Cen A, what would it be
called?

❍ Assuming that it was the first planet discovered orbiting around the star, it
would have the star’s name with ‘b’ appended: α Cen A b.
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Figure 1.15 Upper panel: radial velocity measurements revealing the presence
of the planet around GJ 832, with the best-fitting solution of the form of
Equation 1.12 overplotted as a dashed line. The parameters corresponding to this
fit for the planet GJ 832 b are indicated. This planet’s orbit has similarities to that
of Jupiter. Lower panel: the deviations of the measured data points from the
best-fitting solution.

Figure 1.15 shows radial velocity measurements as a function of time.
The best-fitting model solution, which is overplotted, was generated using
Equation 1.12. If we examine Equation 1.12, we see that it predicts the same
value for V (t) every time θ(t) completes a full cycle, i.e. every time the star
returns to the same position on its orbit. In the case of GJ 832 b, the orbital period
is long, and it is easy to make observations sampling each part of the orbit. For

The timetable giving orbital
phase for any value of time, t, is
known as an ephemeris.

shorter orbital periods, sometimes only a single measurement is made during a
particular orbit; to make a graph like Figure 1.15, many orbits would need to be
plotted on the horizontal axis, and the plotted points would be very thinly spread
out. A more efficient way of presenting such data is to phase-fold, so that instead
of plotting time on the horizontal axis, one plots orbital phase, φ:

φ =
t − T0

P
− Norb, (1.15)

where t is time; T0 is a fiducial time, for example, T0 could be fixed at the first
observed time at which the star is farthest from the observer; P is the orbital
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period; and Norb is an integer such that 0 ≤ φ ≤ 1. As the star proceeds around a
full orbit, t increases by an amount equal to the orbital period, P , and φ covers the
full range of values 0 ≤ φ ≤ 1. Once per orbit, when the star crosses the fiducial
point corresponding to T0, the integer Norb increments its count: Norb is known as
the orbit number.

At first glance the curve shown in Figure 1.15 looks very much like the familiar
sinusoidal curve that one expects to see whenever there is motion in a circle.
If you look carefully, however, you should see that the curve does not have
the perfect symmetries of a sine curve: it corresponds to an orbit with finite
eccentricity, e = 0.12. For more extreme values of the eccentricity, the deviations
from a sine curve become more pronounced, as shown in Figure 1.16. The
eccentricities of the solutions shown in Figure 1.16 range from e = 0.17 for
HD 6434 to e = 0.41 for HD 65216.

Exercise 1.5 In Exercise 1.4 we found that the amplitude of the stellar reflex
orbit’s radial velocity is

ARV =
2πaMP sin i

(MP + M∗)P
√

1 − e2
. (Eqn 1.13)

(a) This equation has the orbital semi-major axis in the numerator, so at first
glance it appears that the radial velocity amplitude increases as the planet’s
orbital semi-major axis increases. Does ARV in fact increase as a planet’s orbital
semi-major axis increases? Explain your reasoning.

(b) State, with reasoning, how the radial velocity amplitude depends on planet
mass, star mass, semi-major axis and eccentricity. ■

1.3.2 Reflex radial velocity for many non-interacting
planets

So far we have only considered a single planet. For more than one planet, so long
as the planets do not significantly perturb each other’s elliptical orbits, we can
simply combine all of the elliptical reflex orbits about the barycentre. The
observed radial velocity will be

V = V0,z +
n∑

k=1

Ak (cos(θk + ωOP,k) + ek cosωOP,k) , (1.16)

where there are n planets, each with their own mass, Mk, and instantaneous
orbital parameters ak, ek, θk and ωOP,k, and their own instantaneous value of Ak

given by

Ak =
2πakMk sin i

MtotalPk

√
1 − e2

k

, (1.17)

where Mtotal is the sum of the masses of the n planets and the star. Generally,
Equation 1.16 is an approximation. The instantaneous orbital parameters will
evolve over several cycles of the longest planet’s period because of the
gravitational interactions between the planets.
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Figure 1.16 Radial velocity measurements and best-fitting solutions of the form of Equation 1.12. Upper
panels: radial velocity measurements and solutions folded and plotted as a function of orbital phase. Lower panels:
the deviations of the measured data points from the best-fitting solution, plotted as a function of time. Data are
shown for six different stars, illustrating some of the many diverse curves that are described by Equation 1.12.
‘(O − C)’ denotes ‘observed’ minus ‘calculated’ and indicates how well the model fits the measurements.
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● What conditions are required for Equation 1.16 to be valid?

❍ The planets’ mutual gravitational attraction at all times must be negligible
compared to the gravitational force exerted by the central star on each planet.
This requires the planets to all be of small mass compared to the star, and to
have large orbital separations. If this is not the case, the simple two-body
solution for the astrocentric orbit of the planet will not be valid.

Figure 1.17 shows two examples of two-planet fits using Equation 1.16. In
the case of HD 82943, the planet inducing the larger-amplitude reflex motion
has approximately twice the orbital period of the second planet, so a pattern
of alternating extreme and less extreme negative radial velocity variations is
produced. In the case of HD 169830, the shorter-period planet completes about
seven orbits for one orbit of the longer-period planet. This figure demonstrates
how continued monitoring of the radial velocities of known planet hosts can
reveal the existence of additional planets.
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Figure 1.17 Radial velocity measurements and best-fitting solutions of the form of Equation 1.16 for two
planets overplotted. Upper panels: radial velocity measurements and solutions plotted as a function of time. Lower
panels: the deviations of the measured data points from the best-fitting solution, plotted as a function of time. Data
are shown for two different stars, illustrating two of the many diverse curves that are described by Equation 1.16.

The radial velocity technique has been extremely successful in detecting planets
around nearby stars. The majority of known exoplanets (October 2009) were
detected using it. The technique is limited in its applicability in two significant
ways: it can measure the radial velocity precisely only if the stellar spectrum
contains suitable features, and only if the star appears bright enough. Even for the
brightest of planet host stars, current telescopes can only make precise enough
velocity measurements for stars within ∼2000 pc (or ∼6000 light-years). Finally,
the results from radial velocity measurements all carry the unknown factor sin i,
unless the orbital inclination, i, can be determined using some other method.
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1.4 Transits
The transit technique is second only to direct imaging in its simplicity. Figure 1.18
shows transits of Venus and Mercury: when a planet passes in front of the disc of
a star, it blocks some of the light that the observer would normally receive.

(a) (b)

Figure 1.18 Photographs of transits of (a) Venus and (b) Mercury as observed
from Earth on partially cloudy days.

Thus the presence of an opaque object orbiting around a star may be inferred if
the star is seen to dip in brightness periodically. The size of the dip in brightness
expected during the transit can be estimated simply from the fraction of the stellar
disc covered by the planet:

ΔF

F
=

R2
P

R2∗
. (1.18)

Here F is the flux measured from the star, and ΔF is the observed change in this
flux during the transit. The right-hand side is simply the ratio of the areas of the
planet’s and star’s discs. Equation 1.18 gives us a straightforward and joyous
result: if a planet transits its host star, we immediately have an estimate of the size
of the planet, in terms of the size of its host star. Equation 1.18 applies when the
host star is viewed from an interstellar distance. The geometry for transits of Solar
System planets viewed from Earth is slightly more complicated.

● Generally, the fraction of a background object obscured by a smaller
foreground object depends on the relative distances of the two objects from
the observer; for example, it is easy to obscure the Moon with your fist. Why
does Equation 1.18 not need to account for the relative distances of the star
and planet from the observer?

❍ As we noted in the Introduction, the distances between stars are very much
larger than the typical sizes of planetary orbits. Thus the distance between any
observer and an exoplanet is identical to high precision to the distance
between the same observer and the host star. Expressed geometrically, the
rays of light reaching the observer from the exoplanet host star are parallel, so
Equation 1.18 holds.
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1.4.1 Transit depth for terrestrial and giant planets

Equation 1.18 allows us to calculate the depth of the transit light curve that would
be observed by our hypothetical extraterrestrial astronomers for any of the Solar
System planets. For example, the Earth transiting the Sun would cause a dip

ΔFE

F
=

R2⊕
R2%

=

(
6.4 × 103 km
7.0 × 105 km

)2

= 8 × 10−5,

where we have substituted in the values of the radius of the Earth, R⊕, and the
radius of the Sun, R%, to two significant figures, and reported the result to one
significant figure. Similarly, a transit by Jupiter would cause a dip of

ΔFJ

F
=

R2
J

R2%
=

(
7.0 × 104 km
7.0 × 105 km

)2

= 1 × 10−2.

As a ‘rule of thumb’, a giant planet transit will cause a dip of ∼1% in the light
curve of the host star, while a terrestrial planet transit will cause a dip of ∼10−2%.
The first of these figures is easily within the precision of ground-based
photometric instruments. In fact, in the 1950s Otto Struve predicted that transits
of Jupiter-like exoplanets could be detected if such planets were orbiting at
favourable orbital inclinations. The transit depth for a terrestrial planet is 100
times smaller, and requires a photometric precision of better than 10−4. This
is impossible to obtain reliably from Earth-bound telescopes because of the
constantly changing transparency of the Earth’s atmosphere. For this reason,
while there are scores of known transiting giant exoplanets, we know of only one
transiting terrestrial planet, CoRoT-7 b, though we believe that the discovery of
another is about to be announced (December 2009). Further discoveries are
anticipated imminently as the French/ESA satellite CoRoT continues its mission,
the NASA Kepler satellite begins announcing results, and the first transit surveys
optimized for M dwarf stars produce results. Further space missions are being
designed specifically to find terrestrial planets; we will discuss them in Chapter 8.

● If an astronomer detects a regular 1% dip in the light from a star, can they
immediately conclude that they have detected a transiting Jupiter-sized planet
orbiting around that star?

❍ No. The conclusion can only be that there is a Jupiter-sized opaque body
orbiting the star. To prove that this body is a planet, rather than, for example,
a brown dwarf star, the mass of the transiting body needs to be ascertained.

● How can the astronomer ascertain the mass of the object that is transiting the
star?

❍ By using the radial velocity technique described in Section 1.3.

● Why are M dwarf stars particularly promising for the discovery of terrestrial
planet transits?

❍ M dwarfs are the smallest stars, so a small planet produces a relatively large
transit signal in an M dwarf, as Equation 1.18 shows.
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1.4 Transits

The transit technique is extremely powerful; however, radial velocity confirmation
of planet status is vital for transit candidates. The transiting extrasolar planets are
the only planets outside our own Solar System with directly measured sizes.
Fortunately, the transit technique and the radial velocity technique are beautifully
complementary: radial velocity measurements allow the mass of the transiting
body to be deduced, while the presence of transits immediately constrains the
value of the orbital inclination, i, thus removing the major uncertainty in the
interpretation of radial velocity measurements. For the transiting extrasolar
planets, therefore, it is possible to deduce accurate and precise masses, radii and a
whole host of other quantities. This wealth of empirical information makes the
transiting planets invaluable, and underpins our choice of subjects for this book.

1.4.2 Geometric probability of a transit

How likely are our hypothetical extraterrestrial astronomers to discover transits of
the Solar System planets? A transit will be seen if the orbital plane is sufficiently
close to the observer’s line of sight. Figure 1.19 illustrates the geometry of this
situation; for the purpose of this discussion we will assume a circular orbit.

(a)

(b) a

a

i

i

a cos i

R∗

d(t)

Figure 1.19 (a) The geometry of a transit as viewed from the side. The distant
observer (not seen) views the system with orbital inclination i. (b) The geometry
of the system from the observer’s viewing direction. Note that the observer does
not ‘see’ this geometry: the star is an unresolved point source.

For a transit to be seen, the disc of the planet must pass across the disc of the star.
Referring to Figure 1.19b, the closest approach of the centre of the planet’s disc to
the centre of the star’s disc occurs at inferior conjunction, when the planet is
closest to the observer. At this orbital phase, by convention referred to as phase
φ = 0.0, the distance between the centres of the two discs is Note: the right-hand side

of Equation 1.19 is not the
arccosine function (which is
sometimes typeset as acos).

d(φ = 0.0) = a cos i. (1.19)

Note that here and throughout this book, a is the semi-major axis of the orbit;
in this case we are assuming a circular orbit, so a is simply the radius of the
transiting planet’s orbit.
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For the planet’s disc to occult the star’s disc, therefore, the orbital inclination, i,
must satisfy

a cos i ≤ R∗ + RP. (1.20)

● What happens if R∗ − RP < a cos i ≤ R∗ + RP? Would the transit depth be
given by Equation 1.18 in this case?

❍ For R∗ − RP ≤ a cos i ≤ R∗ + RP, we have a grazing transit: the disc of the
planet only partially falls in front of the disc of the star, so a transit is
observed, but its depth is less than that give by Equation 1.18 because a
smaller area of the stellar disc is occulted.

The projection of the unit vector normal to the orbital plane onto the plane of the
sky is cos i, and is equally likely to take on any random value between 0 and 1. To
simplify notation below, we temporarily replace the variable cos i with x. For the
purposes of our discussion we will assume that our extraterrestrial astronomers
have the necessary technology and are located in a random direction. Thus the
probability of our extraterrestrials detecting a transit of a particular Solar System
planet is the probability that the random inclination satisfies Equation 1.20:

geometric transit probability =
number of orbits transiting

all orbits

=

∫ (R∗+RP)/a
0 dx∫ 1

0 dx
,

so

geometric transit probability =
R∗ + RP

a
≈ R∗

a
. (1.21)

Equation 1.21 shows that transits are most probable for planets with small orbits
and large parent stars.

The probability for transits being observable is small; as Figure 1.20 shows, it is
less than 1% for all of the Solar System’s planets except Mercury. It is rather
unlikely that our hypothetical extraterrestrial astronomers would be fortunate
enough to observe transits for any of the Solar System’s planets.

1.5 Microlensing
Gravitational microlensing exploits the lensing effect of the general relativistic
curvature of spacetime to detect planets. For the effect to occur, a chance
alignment of stars from the point of view of the observer is required. These
alignments do occur from time to time, and are most frequent if one looks at
regions of the Galaxy that are densely populated with stars. Terrestrial
astronomers working on microlensing observe in the directions of regions that are
densely populated with stars. The most obvious and best-studied of these is the
Galactic bulge: the dense region of stars around the centre of our Galaxy. The
bulge of the nearest external spiral galaxy, M31, has also been targeted, as have
the Magellanic Clouds. Over 2000 microlensing events have been observed in the
Galactic bulge studies, and in a handful of these events, planets have been
detected around the foreground, lensing star.
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Figure 1.21 shows our position relative to the Galactic bulge. The planets detected
by microlensing are positioned just on our side of the Galactic bulge. Since the
Sun is positioned towards the edge of the Milky Way Galaxy, as shown in
Figure 1.21, to view it against the dense stellar background of the Galactic bulge,
an observer would need to be situated in the sparsely populated regions at the
edge of the Galaxy.

our Sun 26 000 light-years Milky Way Galaxy 100 000 000 000 stars

Figure 1.21 A side-on view of our Galaxy produced from a composite of 2MASS photometry, our Sun’s
distance from the centre is indicated. The dots schematically indicate the locations of exoplanets discovered by
three primary methods of exoplanet discovery: yellow dots, radial velocity method; red dots, transits; blue dots,
microlensing. The planets discovered by direct imaging are all very close to our Sun.

Since these regions have low abundances of elements heavier than He, and the
density of stars there is low, this part of the Galaxy is a priori not the most likely
to contain technological extraterrestrial civilizations. In addition, the probability
of any given star becoming aligned with a background star and acting as a
microlens is vanishingly small; this is a consequence of the very small size of
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stars compared to interstellar distances. Einstein realized this, and predicted in
1936 that microlensing would occur, though noting that ‘there is no great chance
of observing this phenomenon’. The reason why we have detected microlensing
events is that modern technology permits continuous monitoring of millions of
stars, to outweigh the vanishingly small probability (∼10−6) of any individual
star participating in a microlensing alignment at any particular time. Even
Einstein could not have begun to anticipate the powerful technologies that
have revolutionized astrophysics within the last half century. Putting the two
factors together, i.e. the improbability of the Sun participating in a microlensing
alignment and the expected dearth of technological extraterrestrials on the edges
of the Milky Way, we can conclude that it is highly unlikely that Solar System
planets would be detected by hypothetical extraterrestrial astronomers via the
microlensing method.

Though it has detected only ten planets (December 2009), gravitational
microlensing is important because it is the method that has found the majority of
terrestrial exoplanets; recently, however, terrestrial mass planets have been
discovered by both transit and radial velocity techniques (December 2009).
Notably, gravitational microlensing may also have detected a planet in the
galaxy M31; it is probably the only method that could conceivably detect planets
outside the Milky Way. To offset these advantages, microlensing has the serious
disadvantage that the lensing event is a one-off occurrence: there is no opportunity
for confirming and refining the observations. This means that the parameters are
rather ill-constrained, and can be meaningfully discussed only in a statistical
sense. The statistical analysis of microlensing results implies that no more than a
third of solar-type stars host giant planets. The topic of exoplanet detection by
microlensing could easily fill an entire book; since we are focusing on transiting
exoplanets, we exhort the interested reader to look elsewhere for these details.

Summary of Chapter 1
1. The Sun is one of the more luminous stars in the solar neighbourhood. The

majority of objects within 10 parsecs are isolated M dwarf stars. Six of the
nearest 100 stars (including the Sun) harbour known planets (October 2009).

2. The exoplanets in a multiple planet system are labelled b, c, d, . . . in the
order of discovery.

3. Direct imaging as a method for exoplanet detection is limited to bright
planets in distant orbits around nearby faint stars. It is most effective in the
infrared where the contrast ratio is favourable. A giant exoplanet has been
discovered orbiting a brown dwarf using the direct imaging method.

4. A planet’s light is composed of reflected starlight, which has a spectral
energy distribution close to that of the host star, and a thermal emission
component peaking at longer wavelengths.

5. The thermal emission from giant planets is partially powered by
gravitational (Kelvin–Helmholtz) contraction. This emission is brightest for
young giant planets.

6. A young planet has been detected around Fomalhaut using coronagraphy,
and three young planets have been discovered around HD 8799. Exoplanet
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imaging instruments like SPHERE and GPI should make further discoveries
soon (October 2009).

7. The orbits of planets are elliptical. In astrocentric coordinates, the host star
is at one focus of the ellipse. The orbital period, the semi-major axis, and the
masses are related by Kepler’s third law:

a3

P 2
=

G(M∗ + MP)

4π2
. (Eqn 1.1)

The pericentre is the point on the planet’s orbit that is closest to the star. The
motion of the planet around the elliptical orbit is measured by the true
anomaly, θ(t). The true anomaly is measured at the star, and is zero when
the planet crosses the pericentre.

8. Both the host star and its planet(s) move about the barycentre (the centre of
mass) of the system. For a single-planet system,

M∗r∗ = −MPrP. (Eqn 1.8)

The reflex orbit of the star is, therefore, a scaled-down ellipse of the same
eccentricity as the planet’s orbit.

9. The reflex motion of the stellar orbit can be detected by astrometry. The
Gaia satellite could detect the Sun’s reflex orbital motion from a distance of
about 500 pc, which is roughly the width of a spiral arm. Astrometry is most
effective for massive planets in wide orbits around low-mass stars, but
long-term monitoring is required to detect planets with large semi-major
axes.

10. The orbital positions of the star and planet are uniquely defined by the
orbital phase

φ =
t − T0

P
− Norb, (Eqn 1.15)

where t is time, T0 is a fiducial time, and Norb is the orbit number.

11. For a single planet, the amplitude of the stellar reflex radial velocity
variation is

ARV =
2πaMP sin i

(MP + M∗)P
√

1 − e2
. (Eqn 1.13)

The largest radial velocity amplitudes are exhibited by low-mass host stars
with massive close-in planets in eccentric orbits.

12. The radial velocity, V , of a star is given by

V = V0,z +

n∑
k=1

Ak (cos(θk + ωOP,k) + ek cosωOP,k) , (Eqn 1.16)

where there are n planets, each with their own instantaneous parameters Mk,
ak, ek, θk, ωOP,k, and Ak given by

Ak =
2πakMk sin i

MtotalPk

√
1 − e2

k

, (Eqn 1.17)

where Mtotal is the sum of the masses of the n planets and the star.

45



Chapter 1 Our Solar System from afar

13. Radial velocity measurements using the Doppler shift of features in stellar
spectra can be made to a precision less than 1 m s−1. The majority of known
exoplanets (December 2009) were detected by the radial velocity method.
This is the most likely method by which hypothetical extraterrestrials might
detect the existence of the Sun’s planets.

14. The depth of an exoplanet transit is

ΔF

F
=

R2
P

R2∗
. (Eqn 1.18)

For Jupiter-sized and Earth-sized planets around a solar-type star, this depth
is ∼1% and ∼10−2%, respectively.

15. The geometric transit probability is given by

geometric transit probability ≈ R∗
a

. (Eqn 1.21)

Transits are most likely for large planets in close-in orbits. If the Solar
System were viewed from a random orientation, only Mercury, with
a = 0.4 AU, has a transit probability exceeding 1%.

16. Terrestrial exoplanets have so far been detected primarily via the
microlensing method, though they are now being discovered by the transit
and radial velocity techniques (December 2009).
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Michtchenko, T. A. in Extrasolar Planets: Formation, Detection and Dynamics,
Dvorak (ed.), Wiley, (2008); Figure 1.15: adapted from Bailey, J. et al. (2009) ‘A
Jupiter-like planet orbiting the nearby M dwarf GJ 832’, The Astrophysical
Journal, 690, 743, The American Astronomical Society; Figures 1.16 & 1.17:
adapted from Mayor, M. et al. (2004) ‘The CORALIE survey for southern-solar
planets’, Astronomy and Astrophysics, 415, 391, EDP Sciences; Figure 1.18:
Photos by David Cortner; Figures 1.19 & 1.20: adapted from Sackett, P. D. (1998)
‘Searching for unseen planets via occultation and microlensing’, Mariotti, J. and
Alloin, D. M. (eds.), ‘Planets outside the solar system: theory and observations’
(NATO Science series C). Springer; Figure 1.21: Atlas Image obtained as part of
the Two Micron All Sky Survey (2MASS), a joint project of the University of
Massachusetts and the Infrared Processing and Analysis Center/CalTech, funded
by the National Aeronautics and Space Administration and the National Science
Foundation, annotations due to K. D. Horne and C. A. Haswell;

Figure 2.1: c© University Corporation for Atmospheric Research; Figure 2.2a:
Observatoire de Haute Provence; Figure 2.2b: Gdgourou, used under a Creative
Commons Attribution-ShareAlike 3.0 Licence; Figure 2.3: adapted from Mazeh,
T. et al. (2000), ‘The Spectroscopic Orbit of the Planetary Companion transiting
HD209458’, The Astrophysical Journal, 532, 55, The American Astronomical
Society; Figure 2.4: adapted from Charbonneau, D., et al. (2000), ‘Detection of
planetary transits across a sun-like star’, The Astrophysical Journal, 529, 45, The
American Astronomical Society; Figure 2.6: c© François du Toit; Figure 2.7
adapted from Charbonneau, D., Brown, T. M., Latham, D. W. and Mayor, M.
(2000) The Astrophysical Journal Letters, 529, L45; Figure 2.9(a): NASA Jet
Propulsion Laboratory (NASA-JPL); Figures 2.10 & 2.11: The SuperWASP
Consortium; Figure 2.12(a) adapted from SuperWASP archive by A. J. Norton;
Figures 2.12b & 2.20: adapted from Pollacco, D. L., et al. (2006), ‘The WASP

324



Acknowledgements

Project and the SuperWASP Cameras’, Publications of the Astronomical Society
of the Pacific, 118, 1407, Astronomical Society of the Pacific; Figure 2.14:
adapted from SuperWASP archive by the author; Figure 2.15 adapted from a
WASP consortium powerpoint; Figure 2.16: adapted from Collier-Cameron,
A., et al. (2007), ‘Efficient identification of exoplanetary transit candidates
from SuperWASP light curves’, Monthly Notices of the Royal Astronomical
Society, 380, 1230, The Royal Astronomical Society; Figure 2.17: produced
using software written by Rob Hynes; Figure 2.18: adapted from Exoplanet
Encyclopedia data by A. J. Norton, A. Dackombe and the author; Figure 2.19:
Parley, N. R., (2008) Serendipitous Asteroid Survey Using SuperWASP, PhD
thesis, The Open University;

Figures 3.1, 3.5 & 3.17: adapted from Brown, T. M. et al. (2001), ‘Hubble Space
Telescope Time-Series Photometry of the Transiting Planet of HD209458’,
The Astrophysical Journal, 552, 699, The American Astronomical Society;
Figure 3.3: adapted from Sackett, P. D. arXiv:astro-ph/9811269; Figure 3.6:
SOHO/ESA/NASA; Figure 3.9a: adapted from Van Hamme, W. (1993), ‘New
Limb-Darkening Coefficients for modelling Binary Star Light Curves’, The
Astronomical Journal, 106, Number 5, 2096, The American Astronomical
Society; Figure 3.9b: adapted from Morrill J. S. and Korendyke C. M., (2008),
‘High-Resolution Center-to-limb variation of the quiet solar spectrum near MgII’,
The Astrophysical Journal, 687, 646, The American Astronomical Society;
Figures 3.10 & 3.11: adapted from Knutson H. A. et al. (2007), ‘Using Stellar
Limb-Darkening to Refine the Properties of HD 209458 b’, The Astrophysical
Journal, 655, 564, The American Astronomical Society; Figures 3.16 & 3.18:
adapted from Charbonneau, D. et al. (2000), ‘Detection of Planetary Transits
across a Sun-like Star’, The Astrophysical Journal, 529, 45, The American
Astronomical Society;

Figures 4.1 & 4.10: adapted from Udry, S. (2008) Extrasolar planets: XVI Canary
Islands Winter School of Astrophysics, CUP; Figure 4.2: CNES; Figures 4.3,
4.4, 4.5, 4.6, 4.7 & 4.9: adapted from Exoplanet Encyclopedia data by A. J.
Norton, A. Dackombe and the author; Figures 4.8b & c: adapted from Johnson,
J. A. (2009), Draft version of submission International Year of Astronomy
Invited Review on Exoplanets, c© John Asher Johnson; Figure 4.11: adapted
from Leger, A. et al. (2009), ‘Transiting exoplanets from the CoRoT space
mission: VIII. CoRoT-7b: the first super-Earth with measured radius’, Astronomy
and Astrophysics, 506, 287, ESO; Figures 4.12, 4.13 & 4.15: adapted from
Guillot, T. (2005) ‘The Interiors of Giant Planets: Models and Outstanding
Questions’, Annual Review of Earth and Planetary Sciences, 33, 493, c© Annual
Reviews; Figures 4.14 & 4.17: adapted from Liu, X., Burrows, A. and Igbui, L.
(2008) ‘Theoretical Radii of Extrasolar Giant Planets: the cases of TrES-4,
XO-3b and HAT-P-1b’, The Astrophysical Journal, 687, 1191, The American
Astronomical Society; Figure 4.16: adapted from Arras, P. and Bildsten, L.,
(2006), ‘Thermal Structure and Radius Evolution of Irradiated Gas Giant Planets’,
The Astrophysical Journal, 650, 394, The American Astronomical Society;
Figure 4.19: adapted from Sasselov, D. (2008) ‘Astronomy: Extrasolar Planets’,
Nature, 451, 29; Figure 4.20: adapted from Charbonneau, D. et al. (2006), ‘When
Extrasolar Planets Transit Their Parent Stars’ review chapter in Protostars and
Planets V (Space Science Series), Jewitt, D. and Reipurth, B. (eds.) University of
Arizona Press; Figure 4.21: adapted from Southworth, J. (2008), ‘Homogeneous

325



Acknowledgements

studies of transiting extrasolar planets - I. Light-curve analyses’, Monthly Notices
of the Royal Astronomical Society, 386, 1644, The Royal Astronomical Society;

Figure 5.1: adapted from a drawing of Frances Bagenal, University of Colorado;
Figure 5.2: adapted from Brown, T. M. (2001) ‘Transmission spectra as
diagnostics of extrasolar giant planet atmospheres’, The Astrophysical Journal,
553, 1006, The American Astronomical Society; Figure 5.4: adapted from
Marley, M. S. (2009) ‘The atmospheres of extrasolar planets’, Physics and
Astrophysics of Planetary Systems, EDP Sciences; Figure 5.5a: c© 2009
Astrobio.net; Figures 5.5b & c and 5.6: adapted from Charbonneau, D. et al.
(2002) ‘Detection of an extrasolar planet atmosphere’, The Astrophysical Journal,
568, 377, The American Astronomical Society; Figure 5.7: adapted from
Vidal-Madjar, A. et al. (2003) ‘An extended upper atmosphere around the
extrasolar planet HD209458b’, Nature, 422, 143, Nature Publishing Group;
Figure 5.8: adapted from Charbonneau, D. (2003) ‘Atmosphere out of that world’,
Nature, 422, 124, Nature Publishing Group; Figures 5.9 & 5.10a: adapted
from Vidal-Madjar, A. et al. (2004) ‘Detection of oxygen and carbon in the
hydrodynamically escaping atmosphere of the extrasolar planet HD 209458 B’,
The Astrophysical Journal, 604, 69, The American Astronomical Society;
Figure 5.10b: NASA/MSSTA; Figure 5.11: adapted from Sing, D. K. et al. (2009)
‘Transit spectrophotometry of the exoplanet HD189733 b. I. Searching for water
but finding haze with HST NICMOS’, Astronomy & Astrophysics, 505, 819,
European Southern Observatory; Figure 5.12: adapted from Désert, J. et al.
(2009) ‘Search for carbon monoxide in the atmosphere of the transiting exoplanet
HD 189733b’, The Astrophysical Journal, 699, 478, The American Astronomical
Society; Figure 5.13: adapted from Redfield, S. et al. (2008) ‘Sodium Absorption
from the exoplanetary atmosphere of HD 189733 B detected in the optical
transmission spectrum’, The Astrophysical Journal, 673, 87, The American
Astronomical Society; Figure 5.14: adapted from Scott Gaudi, B. and Winn, J.
N. (2007) ‘Prospects for the characterization and confirmation of transiting
exoplanets via the Rossiter–McLaughlin effect’, The Astrophysical Journal,
655, 550, American Astronomical Society; Figures 5.15 & 5.16: adapted from
Winn, J. N. (2007) ‘Exoplanets and the Rossiter–McLaughlin Effect’, Transiting
Extrasolar Planets Workshop, ASP Conference Series, 336, 170, Astronomical
Society of the Pacific; Figures 5.19a & b: adapted from Triaud, A. H. M. J. et
al. (2009) ‘The Rossiter–McLaughlin Effect of CoRoT-3b & HD 189733b’,
Astronomy and Astrophysics, 506, 377, European Space Operations Centre ESOC;
Figure 5.19c: adapted from Bouchy, F. et al. (2008) ‘Transiting exoplanets from
the CoRoT space mission III. The spectroscopic transit of CoRoT-Exo-2b’,
Astronomy and Astrophysics, 482, 25, European Space Operations Centre;
Figures 5.19d & e: adapted from Narita, N. et al. (2009) ‘Improved Measurement
of the Rossiter–McLaughlin effect in the Exoplanetary System HD 17156’,
Publications of the Astronomical Society of Japan, 61, 991, Astronomical Society
of Japan; Figure 5.19f: adapted from Hébrard, G. et al. (2009) ‘Misaligned
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