
1 Chapter 1 Solution Set

Problems

1.1 Determine the relationship between the two Cauchy conditions for the one-

dimensional wave equation such that (a) only a wave field propagating in the

+z direction is present and (b) only a wave propagating in the −z direction

is present. Are there any non-trivial Cauchy conditions that result in a zero

field?

From Example 1.1 we require that the function g(z) vanish for part (a) and

f(z) for part (b). From that problem we have that

g̃(K) =
1

2
[ũ0(K) − i

cK
ũ′0(K)],

where

u(z, t)|t=0 = u0(z)
∂

∂t
u(z, t)|t=0 = u′0(z).

The vanishing of g(z) then requires that

ũ′0(K) = −icKũ0(K).

On Fourier inversion of the above equation we find that

1

2π

∫ ∞

−∞
dK ũ′0(K)eiKz =

1

2π

∫ ∞

−∞
dK − icKũ0(K)eiKz,

which yields

∂

∂t
u(z, t)|t=0 = −c ∂

∂z
u(z, t)|t=0.

Part b is done in a completely parallel manner yielding

∂

∂t
u(z, t)|t=0 = +c

∂

∂z
u(z, t)|t=0.

There are no non-trivial Cauchy conditions that generate a zero field since

such a field would require that both f(z) as well as g(z) vanish which can

only happen if both the field and its first time derivative both vanish.

1.2 a Compute the temporal Fourier transform of the “Rect” function

Rect(t) =

{
1 −T0 ≤ t ≤ +T0

0 else.

1
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We have that

R̃ect(ω) =

∫ T0

−T0

dt eiωt =
eiωt

iω
|T0

−T0
= 2

sinωT0

ω
.

We can also express the result in terms of the “Sinc” function as

R̃ect(ω) = 2T0Sinc(
ωT0

π
)

where

Sinc(x) =
sinπx

πx
.

b Use the Cauchy Riemann equations to prove that the transform that you

computed is an entire analytic function of the frequency variable ω.

Put

R̃ect(ω) = u(x, y) + iv(x, y)

where ω = x+ iy with u, v, x, y all real. We have that

u(x, y) =
sinωT0

ω
+

sinω∗T0

ω∗ , v(x, y) = −i[ sinωT0

ω
− sinω∗T0

ω∗ ].

∂

∂x
u(x, y) = [

∂

∂ω

sinωT0

ω
]
∂ω

∂x
+ [

∂

∂ω∗
sinω∗T0

ω∗ ]
∂ω∗

∂x

=
∂

∂ω

sinωT0

ω
+

∂

∂ω∗
sinω∗T0

ω∗

∂

∂y
v(x, y) = −i{[ ∂

∂ω

sinωT0

ω
]
∂ω

∂y
− [

∂

∂ω∗
sinω∗T0

ω∗ ]
∂ω∗

∂y
}

= −i[i ∂
∂ω

sinωT0

ω
+ i

∂

∂ω∗
sinω∗T0

ω∗ ]

=
∂

∂ω

sinωT0

ω
+

∂

∂ω∗
sinω∗T0

ω∗ .

We thus find that
∂

∂x
u(x, y) =

∂

∂y
v(x, y).

In an entirely parallel manner we find that

∂

∂y
u(x, y) = − ∂

∂x
v(x, y)

thus establishing that R̃ect(ω) satisfies the Cauchy-Riemann equa-

tions.

1.3 Perform the steps leading from the Fourier integral representation of the causal

Green function in Eq.(1.18) to its final form given in Eq.(1.20a).

We have already shown under Eq.(1.19) that

g+(R, τ ) = − c

(2π)2R

∫ ∞

−∞
dK sin cKτ sinKR, τ > 0.
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If we now make use of the Euler identity we can reduce the above equation to

the form

g+(R, τ ) =
c

16π2R

∫ ∞

−∞
dK [eiK(cτ+R) + e−iK(cτ+R) − eiK(cτ−R) − e−iK(cτ−R)]

=
c

4πR
[δ(cτ + R)− δ(cτ −R)] = − 1

4πR
δ(τ − R/c)

where the last equality follows from the fact that cτ + R > 0 for τ > 0 and

that δ(ax) = δ(x)/|a|.
1.4 Prove using Cauchy’s integral theorem that the difference between the causal

(retarded) and a causal (advanced) Green functions satisfies the homogeneous

wave equation and, hence, is not a Green function.

It follows from the definition of the causal and a causal Green functions

and Eq.(1.17) that

g+(R, τ )− g−(R, τ ) =
1

(2π)4

∫

C0

dω

∫
d3K

ei(K·R−ωτ)

−K2 + k2

where C0 is a closed contour that extends from −∞ + iε to +∞ + iε in the

u.h.p. and then from +∞− iε to −∞− iε in the l.h.p. with ε > 0. If we now

apply the D’Alembertion operator we find that

[∇2 − 1

c2
∂2

∂τ2
][g+(R, τ )− g−(R, τ )] =

1

(2π)4

∫

C0

dω

∫
d3K ei(K·R−ωτ) = 0

using Cauchy’s integral formula.

1.5 Compute the frequency domain outgoing and incoming wave Green functions

G+(R, ω) and G−(R, ω) by performing spatial Fourier inversions of G̃(K, ω).

We showed in Section 1.2 that

G̃(K, ω) =
1

k2 −K2
,

which, on taking an inverse transform, yields

G(R, ω) =
1

(2π)3

∫
d3K

eiK·R

k2 −K2
.

Since the transform G̃(K, ω) depends only on K = |K| it is convenient to

transform the integral to spherical polar coordinates. Making this change of

variables yields

G(R;ω) =
1

(2π)3

∫ ∞

0

dK
K2

k2 −K2

∫

4π

dΩ eiKs·R,

where s is the unit radial vector in K space and dΩ the differential solid angle

in K space. By aligning the polar axis along the direction of R we have that

s ·R = R cos θ where θ is the polar angle in K space. The angular integral is

then easily performed and we obtain after some minor algebra

G(R, ω) =
i

(2π)2R

∫ ∞

−∞
KdK

eiKR

K2 − k2
. (1.1)
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The Fourier integral representation given in Eq.(1.1) is not uniquely defined

until we define the contour of integration taken by the integration variable K.

The outgoing wave Green function is obtained by selecting the contour to lie

above the pole at K = −k and below the pole at K = +k while the incoming

wave Green function results by selecting the contour to lie below the pole at

K = −k and above the pole at K = +k. Since either contour can be closed

in the u.h.p. we then find using residue calculus that

G±(R, ω) = − 1

4π

e±ikR

R
,

with all other Green functions being linear combinations of G±. It is clear

that G+ satisfies the outgoing wave radiation condition and G− the incoming

wave radiation condition.

1.6 Compute the one-dimensional incoming wave Green function G−(z, ω) from

Eq.(1.26) of example 1.3.

The incoming wave Green function results from taking =k < 0 and is ob-

tained via contour integration as employed in obtaining the outgoing wave

Green function in the example. We then find that

G−(z, ω) = +
i

2k
e−ik|z|,

a result that can also be obtained by taking the complex conjugate ofG+(z, ω)

when the wavenumber k is real valued and via an analytic continuation of this

result in the complex k plane for the general case of complex k.

1.7 Directly verify by differentiation that the one-dimensional causal Green func-

tion given in Eq.(1.29) of example 1.4 satisfies the defining equation Eq.(1.24)

of example 1.3.

The Green function is given in Eq.(1.29) of Example 1.4:

g+(z, τ ) = − c
2
Θ(cτ − |z|)

where Θ is the step function. We then find that

∂

∂z
g+(z, τ ) = − c

2
[δ(cτ − |z|) ∂

∂z
(cτ − |z|)] =

c

2
δ(cτ − |z|)sgn(z)

where sgn(z) = 2Θ(z) − 1 is the sign function. The second derivative is then

∂2

∂z2
g+(z, τ ) =

c

2
[δ′(cτ−|z|)(−sgn2(z))+2δ(cτ−|z|)δ(z)] =

c

2
[−δ′(cτ−|z|)+2δ(cτ )δ(z)].

The τ derivatives are easily found to be

∂

∂τ
g+(z, τ ) = −c

2

2
δ(cτ − |z|), ∂2

∂τ2
g+(z, τ ) = −c

3

2
δ′(cτ − |z|).

Using the above results we then find that

[
∂2

∂z2
− 1

c2
∂2

∂τ2
]g+(z, τ ) =

c

2
[−δ′(cτ−|z|)+2δ(cτ )δ(z)]+

c

2
δ′(cτ−|z|) = δ(τ )δ(z),

as required.
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1.8 Verify by differentiation that the difference between the causal and acausal 1D

Green function to the wave equation satisfies the homogeneous wave equation.

We have already verified in the preceding problem that the causal Green

function to the 1D wave equation satisfies the defining Eq.(1.24) of Exam-

ple 1.3. By following almost identical steps as employed in that problem it is

easy to show that the acausal Green function also satisfies this equation. The

difference between these two Green functions thus satisfies the homogeneous

1D wave equation.

1.9 Verify that the interior field representations given in Eqs.(1.37) remain valid

with g− replaced by g+; i.e., show that the two new equations are also correct.

This follows immediately from the fact that these equations are derived

only on the requirement that χ2 vanish and this only depends on the field u+

being causal and not on any requirement of the Green function.

1.10 Derive Eqs.(1.34a) and (1.34b) in Example 1.6.

Considered as a function of time t the function δ(φ − vφt) is periodic with

period T = 2π/vφ and hence can be expanded into the Fourier series

δ(φ− vφt) =

∞∑

n=−∞
Cn(φ)e−i

2π
T
nt =

∞∑

n=−∞
Cn(φ)e−invφt

with the expansion coefficients given by

Cn(φ) =
1

T

∫ T

0

dt δ(φ− vφt)einvφt =
1

2π

∫ T

0

dt δ(t− φ

vφ
)einvφt =

einφ

2π

which then yields the expansion

δ(φ− vφt) =
1

2π

∞∑

n=−∞
einφe−invφt.

which leads to the expansion Eq.(1.34a) for the source.

The derivation of Eq.(1.34b) follows directly from Fourier transformation

of the source term given in Eq.(1.34a) we obtain

Q(r, ω) =

∫ ∞

−∞
dt [

δ(ρ− a)
2πa

δ(z)

∞∑

n=−∞
einφe−invφt]eiωt

=
δ(ρ− a)

a
δ(z)

∞∑

n=−∞
einφδ(ω − nvφ).

1.11 Derive the expression for the radiated field given in Eq.(1.35a) of Example 1.6.

We use the primary field solution of the radiated field in the form

u+(r, t) =
−1

4π

∫

τ0

d3r′
q(r′, t− R

c )

R
, (1.2)

with R = |r− r′|. On making use of the expansion Eq.(1.34a) for the source
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we find that

q(r′, t− R

c
) =

δ(ρ′ − a)
2πa

δ(z′)
∞∑

n=−∞
einφ

′

e−invφ(t−R
c

)

which, when substituted into Eq.(1.2), yields

u+(r, t) =
−1

4π

∫

τ0

d3r′
δ(ρ′−a)

2πa δ(z′)
∑∞

n=−∞ einφ
′

e−invφ(t−R
c

)

R

=
−1

8π2

∫ 2π

0

dφ′
∑∞

n=−∞ einφ
′

e−invφ(t−R
c
)

R

=
1

2π

∞∑

n=−∞
{−1

4π

∫ 2π

0

dφ′ einφ
′ ei

nvφ
c
R

R
}e−invφt

where nowR =
√

(x− a cos φ′)2 + (y − a sinφ′) + z2. This reduces to Eq.(1.35a)

on setting ωn = nvφ and kn = ωn/c.

1.12 Determine the Cauchy conditions satisfied by the free field propagator gf(R, τ )

at τ = 0 directly from its definition as the difference between the retarded

and advanced Green functions to the wave equation.

From its defintion we have that

gf(R, τ ) = g+(R, τ )− g−(R, τ ) = −δ(τ − R/c)
4πR

+
δ(τ +R/c)

4πR
. (1.3)

Setting τ = 0 then yields

gf(R, τ )|τ=0 = −δ(−R/c)
4πR

+
δ(R/c)

4πR
= 0,

since the delta function is an even function of its argument.

On taking the τ derivative of Eq.(1.3) we have that

∂

∂τ
gf(R, τ ) = − ∂

∂τ

δ(τ − R/c)
4πR

+
∂

∂τ

δ(τ +R/c)

4πR

= −δ
′(τ − R/c)

4πR
+
δ′(τ + R/c)

4πR
→ −δ

′(−R/c)
4πR

+
δ′(R/c)

4πR

as τ → 0 and where δ′(x) denotes the derivative of the delta function. The

derivative of the delta function is an odd function of its argument so we finally

obtain

∂

∂τ
gf (R, τ )|τ=0 =

δ′(R/c)

2πR

which can also be expressed in the form

∂

∂τ
gf(R, τ )|τ=0 = c2

δ′(R)

2πR
.

1.13 Verify that the solution to the initial value problem given in Eq.(1.41) for the

free field propagator reduces to the Cauchy conditions at t = 0.
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On setting the field u(r, t) in Eq.(1.41) equal to the free field propagator

we find that

g(r, t) =
1

c2

∫
d3r′ [gf(r

′, t0)|t0=0
∂

∂t0
gf(r − r′, t)− gf(r− r′, t)

∂

∂t0
gf (r

′, t0)|t0=0]

= − 1

c2

∫
d3r′ gf(r− r′, t)

∂

∂t0
gf (r

′, t0)|t0=0 = −
∫
d3r′ gf (r− r′, t)

δ′(r′)

2πr′

(1.4)

where we have used the Cauchy conditions for gf(r, t) found in the previous

problem.

We now note that

δ(r′) =
1

(2π)3

∫
d3K eiK·r′ =

1

(2π)2

∫ ∞

0

K2dK

∫ π

−π
dθ sin θeiKr

′ cos θ

= − i

(2π)2r′

∫ ∞

−∞
dK KeiKr

′

= −δ
′(r′)

2πr′

which when used in Eq.(1.5) yields

g(r, t) = −
∫
d3r′ gf(r− r′, t)

δ′(r′)

2πr′
=

∫
d3r′ gf(r− r′, t)δ(r′) = gf (r, t).

1.14 Derive the time-domain Porter-Bojarski integral equation from the interior

field solution Eq.(1.37a):

∫ T0

0

dt′
∫

τ0

d3r′ gf(r− r′, t− t′)q(r′, t′) = φ(r, t), r ∈ τ,

where

gf(R, τ ) = g+(R, τ )− g−(R, τ )

is the free field propagator and

φ(r, t) =

∫ ∞

−∞
dt′

∫

∂τ

dS′ [u+
∂

∂n′ g− − g−
∂

∂n′u+].

The Porter-Bojarski integral equation results from substituting the primary

field solution Eq.(1.33) into the l.h.s. of Eq.(1.37a) and re-arranging the re-

sulting equation.

1.15 Compute the frequency domain solution and radiation pattern for the one-

dimensional wave equation from the time-domain solution found in Exam-

ple 1.5.

The frequency domain field can be obtained directly the time domain field

found in Example 1.5 by expressing q(z′, t′) in a Fourier integral and simpli-
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fying the resulting expression for u+(z, t):

u+(z, t) = − c
2

∫ a0

−a0

dz′
∫ t− |z−z′|

c

0

dt′

q(z′,t′)︷ ︸︸ ︷
1

2π

∫ ∞

−∞
dωQ(z′, ω)e−iωt

′

=
1

2π

∫ ∞

−∞
dω {− c

2

∫ a0

−a0

dz′Q(z′, ω)

∫ t− |z−z′|
c

0

dt′ e−iωt
′}

=
1

2π

∫ ∞

−∞
dω {− c

2

∫ a0

−a0

dz′Q(z′, ω)
e−iω(t− |z−z′|

c
) − 1

−iω }

1

2π

∫ ∞

−∞
dω {− c

2

∫ a0

−a0

dz′Q(z′, ω)
eiω

|z−z′|
c

−iω }e−iωt.

where we have made use of the fact that
∫ ∞

−∞
dω {− c

2

∫ a0

−a0

dz′Q(z′, ω)
−1

−iω } = 0

due to the requirement that q(z′, t) vanishes for negative time so that Q(z′, ω)

goes to zero exponentially fast in the u.h.p. The ω integral lies above the real

axis and can then be closed in the u.h.p. where there are no poles thus yielding

zero. It then follows from the above final expression for u(z, t) that

U(z, ω) = − i

2k

∫ a0

−a0

dz′Q(z′, ω)eik|z−z
′|

where k = ω/c.

The radiation pattern is found by taking z outside the source strip [−a0, a0]:

U(z, ω) ∼ {− i

2k

∫ a0

−a0

dz′Q(z′, ω)e∓ikz
′}e±ikz

yielding

f± = − i

2k

∫ a0

−a0

dz′Q(z′, ω)e∓ikz
′

= − i

2k
Q̃(±k, ω)

where f± is the radiation pattern in the right (+) and left (-) half-lines and

Q̃(K, ω) is the spatial Fourier transform of Q(z, ω).

1.16 Compute the frequency-domain radiation pattern for the time periodic source

considered in Example 1.6.

We have from that example that

u(r, t) =
1

2π

∞∑

n=−∞
Un(r, ωn)e

−iωnt,

from which we conclude that

U(r, ω) =

∞∑

n=−∞
Un(r, ωn)δ(ω − ωn)
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where

Un(r, ωn) = − 1

4π

∫ 2π

0

dφ′ einφ
′ eiknR

R

where R =
√

(x− a cosφ′)2 + (y − a sinφ′) + z2 and kn = ωn/c with c being

the velocity of the background medium and ωn = nvφ with vφ the radial

velocity of the point source on the plane z = 0. We then find that

Un(rs, ωn) ∼ {−
1

4π

∫ 2π

0

dφ′ einφ
′

e−ikns·r′}e
iknr

r

leading to the following expression for the radiation pattern

f(s, ω) =

∞∑

n=−∞
fn(s, ωn)δ(ω − ωn)

where

fn(s, ωn) = − 1

4π

∫ 2π

0

dφ′ einφ
′

e−ikns·r′ . (1.5)

To proceed we represent the unit vector s = r/r in spherical polar coordi-

nates with direction cosines sinα cos β, sinα sinβ, cosα so that

s · r′ = a sinα cos β cos φ′ + a sinα sinβ sinφ′

since z′ = 0. Eq.(1.5) then becomes

fn(s, ωn) = − 1

4π

∫ 2π

0

dφ′ einφ
′

e−ikna sin α(cosβ cosφ′+sin β sinφ′)

= − 1

4π

∫ 2π

0

dφ′ einφ
′

e−ikna sinα cos(φ′−β)

= − 1

4π
einβ

∫ 2π

0

dφ′ einφ
′

e−ikna sinα cosφ′

= −(−i)n
4π

einβJn(kna sinα)

where Jn(·) is the Bessel function of the first kind of order n. The radiation

pattern then becomes

f(s, ω) = f(α, β, ω) = − 1

4π

∞∑

n=−∞
(−i)neinβJn(kna sinα)δ(ω − ωn).

1.17 Transform the SRC as defined in Eq.(1.48) into the time-domain and interpret

the result.

Under inverse Fourier transform we have that

∂U+(r, ω)

∂r
→ ∂u+(r, t)

∂r
, −ikU+(r, ω)→ 1

c

∂

∂t
u+(r, t)

so that the SRC becomes

lim
r→∞

r[
∂u+(r, t)

∂r
+

1

c

∂

∂t
u+(r, t)]→ 0.
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We can interpret the above “time-domain SRC” as stating that at large dis-

tances from the source, the rates of change of the field amplitude w.r.t. time

and distance r balance each other so that a positive increase (decrease) in one

is balanced by a negative increase (decrease) in the other.

1.18 Prove that the far field approximation given in Eq.(1.49) is causal.

We have from Eq.(1.49)

F (s, t− r

c
) = − 1

4π

∫

τ0

d3r′ q(r′, t+
s · r′
c
− r

c
).

For any given observation direction s and ∀r′ ∈ τ0 we have that

s · r′ ≤ a0

where a0 is the distance from the origin (assumed inside τ0) to the boundary

∂τ0 along the direction of the unit vector s. It then follows that the first

contribution to F occurs when

t+
s · r′
c
− r

c
≤ t+ a0

c
− r

c
= 0

or at the time

t =
r

c
− a0

c

which is the retarded time for a pulse emitted at t = 0 to reach the field point

at r = rs from the boundary point in the direction of s thus verifying that

the far field approximation is causal.

1.19 Express the energy spectrum EQ(ω) directly in terms of the source Q(r, ω).

We have from Eq.(1.55)

EQ(ω) =
κω2

8π2c

∫

4π

dΩs |Q̃(ks, ω)|2.

On substituting the definition of Q̃ we obtain after some re-arrangement

EQ(ω) =
κω2

8π2c

∫

τ0

d3r

∫

τ0

d3r′Q∗(r, ω)Q(r′, ω)

∫

4π

dΩs e
iks·(r−r

′).

If we now make use of the expansion (cf., Example 3.4 of Chapter 3)

j0(kR) =
1

4π

∫

4π

dΩs e
iks·R

where j0(·) is the zero order spherical Bessel function we obtain the required

result

EQ(ω) =
κω2

2πc

∫

τ0

d3r

∫

τ0

d3r′Q∗(r, ω)Q(r′, ω)j0(k|r− r′|).

1.20 Derive the general expression for a non-radiating source for the one-dimensional

wave equation.
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Following the same analysis as used for the 3D NR source to the wave

equation we conclude that

qnr(z, t) = [
∂2

∂z2
− 1

c2
∂2

∂z2
]π(z, t)

where π(z, t) has continuous first partials in some compact space-time region

S0|z ∈ τ0, t ∈ [0, T0] but is other-wise arbitrary.

1.21 Show that the solution to the one-dimensional radiation problem can be ex-

pressed entirely in terms of q̃(±k, ω) everywhere outside the source region.

Using this solution show that the field everywhere outside the source region is

uniquely determined by the value of the field at any two points z1 < −a0 and

z2 > a0 where [−a0, a0] is the space support for the source. Give an expression

for the field in terms of the field amplitude at these two points.

We have shown in Problem 1.15 that the frequency domain solution to the

one-dimensional radiation problem is given by

U(z, ω) = − i

2k

∫ a0

−a0

dz′Q(z′, ω)eik|z−z
′|.

If z lies outside the source strip [−a0, a0] the above reduces to

U(z, ω) = − i

2k

∫ a0

−a0

dz′Q(z′, ω)e∓ikz
′

e±ikz

= − i

2k
q̃(±k, ω)e±ikz

where the plus (+) sign is used in the r.h.s z > a0 and the minus sign (-) in the

l.h.s. z < −a0. This then establishes that the solution to the one-dimensional

radiation problem can be expressed entirely in terms of q̃(±k, ω) everywhere

outside the source region.

We conclude from the above result that

− i

2k
q̃(±k, ω) = U(z0, ω)e∓ikz0

where |z0| > a0 thus establishing that the field everywhere outside the source

region is uniquely determined by the value of the field at any two points

z1 < −a0 and z2 > a0 lying outside the source strip. On making use of the

above we find that

U(z, ω) = U(z0, ω)e±ik(z−z0)

where the plus sign is used if both z and z0 lie in the r.h.s. and the minus sign

if they both lie in the l.h.s.

1.22 Derive the equation satisfied by a frequency domain NR source Eq.(1.57)

directly from the equation satisfied by the time-domain NR source Eq.(1.56).

This result follows immediately by making use of the transform relationships

∇2π(r, t)→ ∇2Π(r, ω),
∂2

∂t2
π(r, t)→ −ω2Π(r, ω)
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from which it follows that

qnr(r, t) = [∇2 − 1

c2
∂2

∂t2
]π(r, t)→ Qnr(r, ω) = [∇2 +K2]Π(r, ω).

1.23 Construct a non-radiating source using the classical testing function of dis-

tribution theory

Π(r) =

{
0 r ≥ a0

exp 1
r2−a2

0
r < a0.

Defining

φ(r) = (r2 − a2
0)

−1, r < a0

we have that Π(r) = exp φ(r), r < a0. The NR source is then given by

Qnr(r) = [∇2 + k2
0]e

φ(r) = [
d2

dr2
+

2

r

d

dr
+ k2

0 ]e
φ(r),

since φ is spherically symmetric. On evaluating the above expression we find

that

Qnr(r) = [−6φ2(r) + 8r2φ3(r) + 4r2φ4(r) + k2
0]e

φ(r), r < a0.

1.24 Determine whether the rotating point source considered in Example 1.6 can

ever be NR at one or more temporal frequencies.

To check this possibility we have to compute the radiation pattern and see

if it vanishes at one or more temporal frequencies. We computed the radiation

pattern for this source in Problem 1.16 where it was found to be

f(s, ω) = f(α, β, ω) = − 1

4π

∞∑

n=−∞
(−i)neinβJn(kna sinα)δ(ω − ωn).

where Jn(·) are the Bessel functions of the first kind of order n and kn = ωn/c

with ωn = nvφ and vφ the radial velocity of the point source. For the radiation

pattern to vanish at any frequency then requires that

Jn(kna sinα) = 0,

for all polar angles α ∈ [0, π] which is clearly impossible. This source then

cannot be NR at any single or group of frequencies.

1.25 Determine whether the rotating point source considered in Example 1.6 can

ever be essentially NR at one or more temporal frequencies.

As in the previous problem it is necessary to check to see if the radiation

pattern will be essentially vanishing at any frequencies. The radiation pattern

is given by

f(s, ω) = f(α, β, ω) = − 1

4π

∞∑

n=−∞
(−i)neinβJn(kna sinα)δ(ω − ωn).

where Jn(·) are the Bessel functions of the first kind of order n and kn = ωn/c

with ωn = nvφ and vφ the radial velocity of the point source. For large index
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n >> 1 the Bessel functions Jn(x) decay exponentially fast for x < n so that

the source will be essentially NR at frequencies ωn, n >> 1 such that

kna sinα ≤ kna < n→ vφ <
c

a
.

1.26 Use the second Helmholtz identity to verify that the cloaking field within

the interior τ0 generated from the surface source given in Eq.(1.73) is not

modified when the incident field is replaced by the total field (incident plus

scattered). Discuss why this modification (using total rather than incident

field measurements) requires that both the field and its normal derivative be

separately measured.

It follows from the first Helmholtz identity written for a source located

outside τ0 that the surface source in Eq.(1.73) will cancel the field radiated

into τ0 by the exterior source but will generate zero field outside of τ0. This is

then a cloaking field since any scatterer located with τ0 will experience a zero

incident field and, hence, radiated a null field while the field exterior to τ0 is

not modified. If now we replace the field incident from outside τ0 by the total

field (this field plus an assumed scattered field from a scatterer within τ0)

in the construction of the cloaking field via Eq.(1.73) we find that the total

field thus generated will be equal to the sum of the original cloaking field plus

a contribution from the surface source generated from the interior scattered

field1. However, since this scattered field is outgoing from τ0 it follows from

the second Helmholtz identity that this contribution will be null within τ0
and thus not change the cloaking field within τ0. The net field within τ0 will

thus be null and so no scattered field component will actually be generated.

This second scheme for cloaking requires that both the field as well as its

normal derivative be known (measured) over ∂τ0. The reason is that the total

field contains both incoming (from the incident field outside τ0) as well as

outgoing (from the scattered field generated from a scatterer within τ0) and,

hence, does not satisfy a second Helmholtz identity. The field and its normal

derivative over τ0 are thus not independent and have to be both independently

measured to generate the cloaking surface source.

1 In constructing an actual cloaking field using, for example, sensors and antennas, it is
important to make sure the system is stable and insensitive to measurement errors. Thus, the

cloaking field will never be exactly null within τ0 so that a scattered field component will
always be present and must be accounted for.


