
12

Competition and Diversity

12.1 Phage Worlds

12.1.1 Consider a restriction- modification system in an E.coli where the
restriction enzyme cut a certain sequence with efficiency 1/min, whereas the
counteracting methylation happens 0.5/min. Consider a foreign phage that
infect the bacteria, and which have 4 sites that can be cut/methylated. What
is the probability δ that the phage DNA survive intact to be methylated at all
4 sites.

Answer Rate to be cut is double that of being methylated, thus the prob-
ability for each site to be cut first is C = 2/3 and to be methylated first
is 1 − C = 1/3. To survive, all four sites have to be methylated first. This
occurs with probability δ = (1− C)4 = (1/3)4 = 1/81 = 0.012.

12.1.2 Repeat the above calculation if the invading phage express a protein
that within 1 minute can prevent the restriction enzyme to work.

Answer Let rm = 0.5m−1 be the methylation rate and rc = 1m−1 be
cutting rate. The chance that a site survives unmodified until time t is the
probability that none of the reactions occur during [0, t]:

P (t) = (1− (rc + rm)dt)
t/dt = exp(−(rm + rc) · t)

The probability to be either cut or modified within time t is thus:

(1− P (t)) = 1− exp(−(rm + rc) · t)
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Of this the fraction rc/(rc + rm) will be cut before being methylated. Thus
the probability for a given site to be cut becomes:

C = (1− P (t))
rc

rc + rm
= (1− e−(rm+rc)·t) · rc

rc + rm
= (1− e−1.5) · 2

3
= 0.52

for t = 1 min. The probability of all four sites surviving is the probability
that none of the four site is cut within the 1 minute time interval:

(1− C)4 = 0.484 = 0.054

Thus the protective protein gives a factor of∼ 4.5 better infection probability.

12.1.3 Repeat question 6.3.1 and 6.3.2 if the invading phage has 8 DNA sites
that can be cut / methylated.

Answer Without any protection, the survival becomes (1/3)8 = 0.00015.
With protective protein, the survival becomes (1 − C)8 = 0.003 Thus the
protective protein gives a factor of ∼ 20 better infection probability.

12.1.4 Consider the idealized equations for two bacteria species a and b
with each their restriction modification system. The bacteria compete while
exposed to one phage that acquire methylation from only the last bacteria it
has successfully infected:

da

dt
= a · (1− a− b)− a · (pa + ωa · pb)

dpa
dt

= a · (pa + pb · ωa) · β − pa · (a+ b+ 1/τ)

db

dt
= b · (1− a− b)− b · (pb + ωb · pa)

dpb
dt

= b · (pb + pa · ωb) · β − pb · (a+ b+ 1/τ)

where pa and pb is the phage population of phages that have been methylated in
a, respectively b last, β is the number of phage particles released per infection
and τ is the life time of phages in the environment. Simulate the system for
τ = 10, β = 100 and relative deficiency of restriction modification systems
ωa = 1 and ωb = 0.1 respectively. Discuss the result in terms of bacteria that
use phages to compete with each other. Hint: Start with a = 0.1, pa = 1 and
fixed b = pb = 0 and simulate until steady state using time-steps dt = 0.001.
Then introduce b = 0.000001 and simulate again until steady state.
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Answer First let us discuss the various terms, all expressed in time units
of the bacterial growth rate:

da/dt = a is normal exponential growth in non-saturated conditions.
The factor (1− a− b) takes into account that there are limits on how many
bacteria are sustainable, given external conditions like, for example, food
supply or space.
The term a · pa describes predation of a phage with modification compatible
with restriction system of bacteria a, on bacterial population a.
The term ωa ·a · pb describes predation of a phage without methylation mod-
ification that would make it possible to bypass restriction system of a, on
the population of a. Thus ωa < 1 describes the efficiency of the restriction-
modification system on new phages.
β is (proportional to) the phage burst size.
1
τ
describes the death rate of phages due to external causes.

0.000 000 1

0.000 001

0.0001

 0.0001

 0.001

 0.01

 0.1

 1

500 1000

P
op

ul
at

io
ns

Time (1/max. growth rate)

Figure 12.1 Simulation results where the “red” strain with ω = 0.1, is intro-
duced at time t = 250 to a “blue” strain with ωb = 1. The orange and cyan
trajectories follow the corresponding phage populations. The simulation is
done with burst size β = 100 and basal phage survival set by τ = 1. The
damped oscillations are not a robust feature of the model: oscillations disap-
pear with low carrying capacity (here set to 1). With unlimited growth the
system oscillates in analogy with the Lotka–Volterra equations. Notice that
the blue strain persistently declines, a decline that is halted for any ωb < 1.
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The resulting trajectories are seen in Fig. 12.1. One can see that even the
relatively weak RMsystem with ω ∼ 0.1 allows the invading bacteria to dis-
place the other bacteria, effectively using the phage as a weapon. Noticeably,
if both bacteria have an RM system, they can co-exist.

12.2 Phage-bacteria ecology

12.2.1 A more complete set of equations for a bacteria–phage ecosystem,
where bacteria and phages are also removed by external sources, is:

db

dt
= ΛB · b

1 + b/bmax

− η′ · b · p− δ′b · b

dp

dt
= β · η′ · b · p− δ′ · p

Use a saturation concentration of bacteria bmax ∼ 108 ml−1, and a maximum
growth rate ΛB ∼ 0.0004 s−1. Estimate η′ from diffusion-limited localization
of a phage with D ∼ 4μm2 s−1 to a bacterium with radius ∼ 1μm. Reduce
the number of parameters by rescaling t → t · ΛB etc.

Answer λ ∼ 0.0004 s−1 corresponds to an exponential growth rate of a
factor of 2 every 1700 s, i.e. the generation time tgen = ln(2)/λ = 1700 s.
A phage locating any surface point on a bacterium with radius ε = 1μm
would use:

τ =
(1/B)

4πDε
=

Bmax

B
· 10000μm3

12 · 1μm · 4μm2 s−1
=

Bmax

B
· 200 s

using a unit of density Bmax = 1011 l−1 = 10−4 μm3, which corresponds to
one unit per 10 000μm3. Thus one phage per Bmax will give an infection rate
of 0.0012 s−1, thus η = 0.0012 s−1/Bmax = η′/Bmax.

Measuring both bacteria b = B/Bmax and phage density p = P/Bmax and
using η′ = 0.0012 s−1 one obtains:

db

dt
= λ · b

1 + b
− η′ · b · p− δB · b

dp

dt
= β · η′ · b · p− δ · p
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Lotka–Volterra equation with different start conditions for predator phage
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Figure 12.2 Lotka–Volterra equation with different starting conditions.

an equation where the two timescales 1/η′ = 200 s and 1/λ = 1700 s are
comparable. Finally rescaling the time with maximum growth rate t′ = λt:

db

dt
=

b

1 + b
− η′

λ
· b · p− δB

λ
· b

dp

dt
= β · η

′

λ
· b · p− δ

λ
· p

an equation with three parameters, the burst size, the infection rate and the
overall dilution rate (that in fact could be absorbed in the overall growth
as is done in text). The rate constant η′

λ
∼ 8. The dilution rate δB is in

chemostats typically, 0.2 h−1 = 1/(18000 s) ∼ 0.00005 s−1 in the chemostat
by Levin (1977), corresponding to δB/λ ∼ 0.1.

12.2.2 Simulate the Lotka–Volterra equations: db/dt = b− b · p and dp/dt =
β · b · p− p, starting with different initial conditions, p = 3, b = 1 respectively
p = 2, b = 1.

Answer Use simple direct integration with time steps dt = 0.001 and iterate
from t = 0 to t = 25 to obtain the results shown in Fig. 12.2.

12.2.3 Compare the standard Lotka–Volterra equation with two versions
that include saturation terms on the prey population: (1) db/dt = b/(1+ b)−
b ·p, dp/dt = β · b ·p−p and (2) db/dt = b · (1− b)− b ·p, dp/dt = β · b ·p−p.
In all cases start the simulation with p = 3, b = 1.
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Effect of saturation terms on predator-prey oscillations:

db
dt

db b
dt 1 + b
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Figure 12.3 Effect of saturation on bacterial density.

Answer Use simple direct integration with time steps dt = 0.001 and iterate
from t = 0 to t = 25 to obtain the results shown in Fig. 12.3.

12.2.4 The time delay due to latency can, in principle, be implemented as a
third state in Eqs. 12.17, which in rescaled units then translates to

dB

dt
=

B

1 +B
− 1

2
B − η · B · P

dI

dt
= η ·B · P − I

dP

dt
= β · I − δ · P − η · I · P

where we implicitly parameterize the latency time with an I state with life-
time τ = 1. Simulate these equations with η = 0.1, β = 100 and death rate
δ = 1. Start the simulation with B = 10−6 and P = 0 at time t = 0, and
introduce phage P = 10−6 at time t = 30.

Answer Simulation is shown in Fig. 12.4. In panel B we examine the
equations:

dB

dt′
=

B

1 +B
− 1

2
B − η ·B · P

dI

dt
= η ·B · P − I/(1 +B)

dP

dt
= β · I/(1 +B)− δ · P − η · I · P
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Figure 12.4 Effect of including delay associated with infected bacteria, which
produce phages after (an exponentially distributed) delay τ .

thus implementing a latency that is further delayed as the bacterial popula-
tion approaches 1. In both cases one obtains damped oscillations.

12.2.5 Bacterial species may limit their own growth more than others,
because they will partly depend on different food resources. Such inhibition
may be modeled through:

dB

dt
=

B

0.5 +B
· (1−B −R)− 0.8 · B

dR

dt
=

0.2 ·R
0.5 +R

· (1−B −R)− 0.1 ·R

Solve these equations numerically by starting both populations at size
0.000 001 and follow them until time t = 200. Notice that stable co-existence
is indeed possible, and notice that the slow grower in the end dominates the
population.

Answer Simulate the equations using timesteps dt = 0.001. Results are
shown in Fig. 12.5
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Figure 12.5 The dominance of the slow grower, provided: (1) that it is an
even slower “dier” and (2) that the fast grower inhibits its own growth.

12.3 Phage games and optimal choice of

lysogeny

12.3.1 Compare the two phage, two host scenario explored in Eq. (12.21) for
the case where there are three phages, each in their host. Plot the optimal
strategy as a function of plysis and plysogeny when these two vary between 0.02
and 0.98. Comment on the limitation of the used life/death approximation
from the perspective of the prediction that the probability of choosing lysis
decreases with increasing phage number.

Answer The equation now reads

1− P = q3 · (1− plysis)

+ 3q2(1− q) · (1− plysis) · (1− plysogeny)

+ 3q(1− q)2 · (1− plysis) · (1− plysogeny)
2

+ (1− q)3 · (1− plysogeny)
3

For each value of plysis and plysogeny, the value of 1 − P is calculated for
all q = 0.01, 0.02, 0..3...0.99, 1.00. The minimum value of 1 − P is selected
and its associate q value is plotted as a function of plysis and plysogeny in
Fig. 12.6. One can see that lysis is, in general, disfavored more when there
are more phages. This reflects the increased weight on selecting more and
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Figure 12.6 N = 2 and N = 3 phage calculation of optimal strategy for lysis
frequency as a function of survival for each of the alternatives.

more independent future fates, as options for these increases. However, this
repression of lytic growth would in reality be counteracted by exponential
growth of a successful lytic strategy, which is not included in our present
binary life/death approximation.

12.3.2 Estimate the phage decay rate, given that a burst of β = 100 phages
on average allows just one phage to find a host when the density of hosts
is 7000ml−1 [696]. Assume a diffusion rate of phages of 4μm2 s−1 [676] and
assume that a phage needs to come within 1μm of the center of a bacterium
to infect it.

Answer The capturing rate for phages with bacteria is given by:

η = 4πDερ = 3 · 10−7 s−1

when using D = 4μm2 s−1, ε = 1μm and ρ = 7000ml−1 = 7 · 106 l−1 = 7 ·
10−9μm2. Thus one phage is on average captured in about 1/η = 3000 000 s
or 800 hours. Assuming a decay rate δ for the phage particle, each phage
particle will either decay or be captured, with respective probabilities:

P (decay) =
δ

δ + η
and P (infect) =

η

δ + η
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If burst size is β = 100, the average number of infections becomes:

n(infect) = β · η

δ + η

which has to be equal to 1 to secure marginal propagation:

β · η = δ + η ⇒ δ = (β − 1) · η ∼ 100 · 3 · 10−9 = 30 000 s

thus we estimate that each free T4 phage particle “survives” 8 hours on av-
erage. If we overestimated the infection rate η by the assumption that all
phages in the vicinity of a bacterium are captured, a reduced η implies a cor-
respondingly longer estimate for the lifetime of the free phage. As mentioned
earlier, phages in oceans “live” about 1-2 days.

12.3.3 Simulate the long-term (500 updates) development of a phage popu-
lation that grows with rate Ω = 2 during good times, but is exposed to events
of size ω = 10−12 with frequency p = 0.1. Use the Kelly optimum value of
x, x = 0.01 and x = 0.9, and compare outcomes. Repeat the simulation for
smaller disasters, with ω = 10−2 and ω = 0.5.

Answer Starting with population 1, at each timestep assign it to be good
with probability 0.9, and otherwise to be bad:

If good, then update the logarithm of the population by adding log(Ω
(1− x) + x).
If bad, then update the logarithm of population by adding log(ω(1−x)+x).
Results are shown in Fig. 12.7.

12.3.4 Consider a temperate phage that follows the Kelly optimal lysogeny
frequency x∗ = pΩ/(Ω − 1) − (1 − p)ω/(1 − ω) with its associated fitness
Λ(x) = (1 − p) · log(Ω · (1 − x) + x) +p · log(ω(1 − x) + x). Show that its
fitness changes by mutating to become virulent is:

ΔΛ = Λ(0)− Λ(x∗) ∼ p · log(ω/p) (12.1)

in the limit where Ω >> 1 >> ω. Interpretation: the fitness loss at relatively
frequent disasters p > ω comes from treating the probability of disasters as if
it was as small as the severity of disasters.

Answer Fitness change is:

ΔΛ = Λ(x = 0)− Λ(x)

= (1− p) · log(Ω) + p · log(ω)
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Figure 12.7 Simulation of phage growth when exposed to disasters of size ω
with frequency p = 0.1.

− ((1− p) · log(Ω · (1− x) + x)− p · log(ω(1− x) + x))

= −((1− p) · log((1− x) + x/Ω)− p · log((1− x) + x/ω))

into which we insert x = pΩ/(Ω− 1)− (1− p)ω/(1− ω) to obtain:

ΔΛ = −(1− p) · log
(
1− pΩ

Ω− 1
+

(1− p)ω

1− ω
+

p

Ω− 1
− (1− p)ω

Ω(1− ω)

)

− p · log
(
1− pΩ

Ω− 1
+

(1− p)ω

1− ω
+

pΩ

ω(Ω− 1)
− (1− p)

(1− ω)

)

= −(1− p) · log
(
(1− p) + (1− p)

ω

1− ω
− (1− p)ω

Ω · (1− ω)

)

− p · log
(
p+

(
− pΩ

Ω− 1

)
+

pΩ

ω(Ω− 1)

)

= −(1− p) · log
(
(1− p) ·

(
1 +

ω

1− ω

(
1− 1

Ω

))
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− p · log
(
p ·

(
1 +

Ω

Ω− 1

(
1

ω
− 1

)))

= −(1− p) · log
(
(1− p) ·

1
ω
− 1

Ω
1
ω
− 1

)
− p · log

(
p ·

1
ω
− 1

Ω

1− 1
Ω

)

which for ω << 1 and Ω >> 1 can be approximated by:

Λ = −(1− p) · log ((1− p) · (1 + ω))− p · log
(
p

ω

(
1 +

1

Ω

))
∼ +p · log(ω/p)

Thus Λ is negative (lose fitness) if p > ω: the phages lose population if
the frequency of disasters is larger than their magnitude. Notice that the
magnitude of a disaster is quantified as the probability that a given lytic
phage survives it, and it thus could indeed be compared to the probability
that such a event occurs.
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