
Figures from

Digital Signal Compression:

Principles and Practice

William A. Pearlman and Amir Said



c©2007, 2010 by William A. Pearlman and Amir Said.
All rights reserved.

1



List of Figures

1.1 Basic data encoding and decoding model. . . . . . . . . . . . . . 10
1.2 Example of some forms in which the source and compressed data

symbols can be organized for compression. . . . . . . . . . . . . . 10

2.1 Source letter quantization followed by binary coding. . . . . . . . 12
2.2 Lossless predictive coding system: top is encoder; bottom is de-

coder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Transform coding system: encoder on top; decoder at bottom. . . 13
2.4 Example of how lowpass (LPF) and highpass (HPF) filters can be

used for computing the subband transform. . . . . . . . . . . . . 13
2.5 Example of a type of frequency response produced by filters used

in the subband transform. . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Example logical division of subbands (top-left) and types of fre-

quency response produced by some of the filters used in the two-
dimensional subband transform. . . . . . . . . . . . . . . . . . . . 14

2.7 Example of how a set of image pixels is sequentially subdivided
for more efficient compression using set partition coding. . . . . . 15

2.8 Transform coefficients in spatial frequency wavelet subbands (left)
are organized to form spatial orientation trees (SOTs, right). . . 16

2.9 Distributed source coding: independent encoding and joint de-
coding of correlated sources. . . . . . . . . . . . . . . . . . . . . . 16

3.1 The binary entropy function. . . . . . . . . . . . . . . . . . . . . 18
3.2 The entropy function for source alphabets with three symbols. . 18
3.3 Upper and lower bounds on the entropy function. Solid line cor-

responds to Eq. (3.10) for K = 16 and dashed line to Eq. (3.11). 18
3.4 A binary tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 The code tree for binary code in Table 3.1. . . . . . . . . . . . . 19
3.6 Binary code construction for lengths `1 = 1, `2 = 2, `3 = 3, `4 = 3

by association to binary fractions. . . . . . . . . . . . . . . . . . 20

4.1 The code tree for binary code in Table 4.1. . . . . . . . . . . . . 22
4.2 The Huffman coding procedure. . . . . . . . . . . . . . . . . . . . 23
4.3 CDF graph for K = 5 letters. . . . . . . . . . . . . . . . . . . . . 24
4.4 Mapping sequences to intervals in arithmetic coding. . . . . . . . 24

2



4.5 Illustration of number representation for Golomb coding. . . . . . 25
4.6 Buffer and pointer definitions in LZ77 coding. . . . . . . . . . . . 25
4.7 Example of first three stages of LZ77 coding. . . . . . . . . . . . 26
4.8 Example of first three stages of LZ77 decoding. . . . . . . . . . . 27

5.1 Model of scalar quantization. . . . . . . . . . . . . . . . . . . . . 29
5.2 Threshold and reproduction points and intervals. . . . . . . . . . 29
5.3 Graphical form of quantizer function. . . . . . . . . . . . . . . . . 29
5.4 Mid-rise (left) and mid-tread (right) quantizer functions. . . . . . 30
5.5 Depiction of overload and granular regions with respect to a prob-

ability density function. . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Mid-rise uniform quantizer characteric for K = 8 quantization

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Mid-tread quantizer characteric for K = 7 quantization levels. . . 31
5.8 Mean squared error versus step size for uniform quantization of

a Normal(0,1) source with K = 9 quantization levels. . . . . . . . 32
5.9 Distortion of midpoint versus centroid reproduction points for

quantization of a Normal(0,1) source with K = 9 quantization
levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.10 Uniform and non-uniform quantization of a unit variance Gaus-
sian probability density. . . . . . . . . . . . . . . . . . . . . . . . 33

5.11 A companding quantization system. . . . . . . . . . . . . . . . . 34
5.12 A companding quantization system. . . . . . . . . . . . . . . . . 34
5.13 Quantization of a sequence from the source. . . . . . . . . . . . . 34
5.14 Comparison of uncoded and entropy-coded quantization for non-

uniform and uniform quantizer levels. The source is the unit
variance Gaussian and the distortion is squared error. . . . . . . 35

5.15 Mean squared error versus entropy for different numbers of levels
in uniform quantization. . . . . . . . . . . . . . . . . . . . . . . . 36

5.16 Double and normal null zone widths in 5-level uniform quantiza-
tion of a Laplacian probability density with zero mean and unit
variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.17 Mean squared error versus entropy for 5 and 9 quantization levels
with normal (ratio = 1) and double (ratio = 2) null zone. The
probability density function is Laplacian with zero mean and unit
variance. The reproduction points are the mid-points of the uni-
form width decision intervals (quantizer bins). . . . . . . . . . . 37

5.18 A test channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Depiction of subtraction and addition of same quantity before
and after quantization (Q), whereby reconstruction error equals
quantization error. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 DPCM encoder and decoder. . . . . . . . . . . . . . . . . . . . . 39
6.3 A block or vector coding system model. . . . . . . . . . . . . . . 40
6.4 A test channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3



6.5 Continuous spectral density and parameter level θ dictating the
optimal rate assignment versus frequency. . . . . . . . . . . . . . 41

6.6 Decision regions and their reproduction points marked by ‘X’ for
a hypothetical two-dimensional vector quantizer. . . . . . . . . . 41

6.7 Codevectors and decision regions in range −2 ≤ x1, x2 ≤ 2 for
two-dimensional Gaussian, ρ = 0.9, quantizer in example. . . . . 42

6.8 (a) Binary splitting of covectors. (b) Convergence to two best
codevectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.9 Depiction of the objective minimum of an entropy-constrained
vector quantizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.10 MSE versus entropy for two-dimensional Gaussian, ρ = 0.9, 3-
level quantizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.11 Quantization points, decision intervals, and binary tree for uni-
form quantization in the interval [0,1). . . . . . . . . . . . . . . . 44

6.12 Tree-structured VQ design. Bottom nodes contain M = 2r code-
vectors of the codebook. . . . . . . . . . . . . . . . . . . . . . . . 45

6.13 Example of unbalanced tree in TSVQ. The numbers in parenthe-
ses at the terminal nodes are the probabilities of the codevectors
(or codewords) associated with these nodes. . . . . . . . . . . . . 46

6.14 Example of first pruning of TSVQ tree and selection of smallest
λ in distortion-rate curve. . . . . . . . . . . . . . . . . . . . . . . 46

6.15 Four initial stages of a rate R = 1 bit/source letter code tree. . . 47
6.16 Finite-state machine realization of a four-state rate R = 1 bit per

source letter code in state 10 . . . . . . . . . . . . . . . . . . . . 47
6.17 One stage trellis depicting state transitions and outputs of finite-

state machine code in Fig. 6.16. . . . . . . . . . . . . . . . . . . . 48
6.18 Trellis of a four-state rate R = 1 bit per source letter code. . . . 48
6.19 Finite-state machine realization of a rate R = 2/3 bits per source

letter code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.20 Partition of 8-level uniform quantizer levels into four cosets. . . . 49
6.21 Trellis and cosets in TCQ. . . . . . . . . . . . . . . . . . . . . . . 49
6.22 M shift registers of length L, each holding a path map symbol

sequence. Symbol at time j shifted into every register from the
right and left shift of each symbol in every register ejects symbol
at time j − L from its left end. . . . . . . . . . . . . . . . . . . . 50

6.23 Paths through a trellis node. . . . . . . . . . . . . . . . . . . . . 50
6.24 Distortions on paths converging to state s2 at stage r in Viterbi

Algorithm searching 4-state trellis of Fig. 6.17. Note that path
symbol ur must be 0 on both paths to converge to state s2. . . . 51

7.1 A transform coding system. . . . . . . . . . . . . . . . . . . . . . 53
7.2 Forward N -point block transforms via a bank of N filters. . . . . 53
7.3 Inverse N -point block transforms via a bank of N filters. . . . . . 53
7.4 Subband filter transfer functions. . . . . . . . . . . . . . . . . . . 54
7.5 M -channel filter bank analysis of source into subbands. . . . . . 55
7.6 M -channel filter bank synthesis of source from subbands. . . . . 55

4



7.7 Two-channel analysis and synthesis filter banks. h0 and g0 denote
impulse responses of the lowpass filters; h1 and g1 those of the
highpass filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.8 Two stages of two-channel analysis for four equal-size subbands. 57
7.9 Two stages of two-channel synthesis to reconstruct signal from

four subbands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.10 Three-level multiresolution anaysis. . . . . . . . . . . . . . . . . . 58
7.11 Three-level multiresolution synthesis. . . . . . . . . . . . . . . . . 58
7.12 Alias-cancelling filters. . . . . . . . . . . . . . . . . . . . . . . . . 59
7.13 Two-channel analysis and synthesis biorthogonal filter banks. h̃0

and g0 denote impulse responses of the lowpass filters; h̃1 and g1
those of the highpass filters. . . . . . . . . . . . . . . . . . . . . . 59

7.14 Analysis and synthesis stages of the lifting scheme. . . . . . . . . 60
7.15 Analysis stage of the lifting scheme using the lazy wavelet trans-

form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.1 A transform coding system. . . . . . . . . . . . . . . . . . . . . . 62
8.2 Weighted variance and distortion spectrum. . . . . . . . . . . . . 63
8.3 Illustration of initial points in bi-section procedure. . . . . . . . . 64
8.4 Illustration of equal slope condition on quantizers of different

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5 Seeking the desired slope by successive slope calculations starting

from a high rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.6 A subband analysis, coding, and synthesis system. . . . . . . . . 65

9.1 A 128 × 128 image divided into 32 × 32 blocks (left) and and a
rendition of its blockwise DCT (right). For display purposes of
the latter, the range of the transform was scaled and translated
to the [0,255] interval with a middle gray value of 128. . . . . . . 66

9.2 Zigzag scan of an image transform block. . . . . . . . . . . . . . 67
9.3 Order of coding of 4× 4 transform subblocks of a macroblock. . . 67

10.1 Lena image: dimension 512× 512 pixels, 8 bits per sample. . . . 69
10.2 Distribution of pixel values for the Lena image. . . . . . . . . . . 69
10.3 Distribution of magnitudes of integer transform coefficients of the

Lena image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.4 Set of thresholds marking ranges of values in dataset. . . . . . . 70
10.5 Separation of values in dataset before coding. . . . . . . . . . . . 71
10.6 Distribution of magnitudes of integer-wavelet-transform coeffi-

cients. Logarithmic scale, darker pixels representing larger val-
ues. (Pn notation explained in Section 10.1.1.) . . . . . . . . . . 71

10.7 Partitioning of an array of pixels S into four equal-sized subsets.
Gray values are used for representing pixel values. . . . . . . . . 72

10.8 Three levels of quadrisection of 8x8 block and associated quadtree
and code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.9 Bisection codes of significance patterns: (a) 0100 and (b) 0001. . 73

5



10.10Bisection of signal– left, splitting pattern 10011001; right, corre-
sponding binary tree (bintree) with bisection code 100100 labelled
on branches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.11A spatial orientation tree (SOT) of a discrete wavelet transform.
O denotes offspring set and L denotes grand-descendant set. The
full descendant set D = O ∪ L. . . . . . . . . . . . . . . . . . . . 74

10.12Rearranging a spatial orientation tree into a tree-block placed in
the position of the image region it represents. . . . . . . . . . . . 75

10.13Progressive bit plane coding in the LIS for successive power of 2
thresholds. S above the most significant bit (msb) stands for the
bit indicating the algebraic sign. . . . . . . . . . . . . . . . . . . 75

10.14Progressive bit plane coding in the LIS for general thresholds. S
above the most significant bit (msb) stands for the bit indicating
the algebraic sign. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10.15Scanning order of subbands in a 3-level wavelet decomposition.
Subbands formed are named for horizontal and vertical low- or
high-passband and level of decomposition, e.g., LH2 is horizontal
low passband and vertical high passband at second recursion level. 76

10.16Partitioning of image X into sets S and I. . . . . . . . . . . . . . 77
10.17Partitioning of set I. . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.18Example of coefficients in an 8 × 8 transform used by example.

The numbers outside the box are vertical and horizontal coordi-
nates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10.19Examples of parent-offspring dependencies in the spatial-orientation
trees. Coefficients in the LL band marked “*” have no descendants. 78

11.1 Display of image subbands of a 3-level, dyadic wavelet transform.
Middle grey level of 128 corresponds to 0 value of a coefficient in
all subbands, excluding the lowest frequency one in the top left
corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2 Subbands of a 3-level, dyadic wavelet transform. . . . . . . . . . 80
11.3 Two-level recursive lowpass filter analysis of image I. . . . . . . . 81
11.4 Two-level recursive lowpass filter synthesis of image Î. . . . . . . 81
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Figure 1.1: Basic data encoding and decoding model.
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(a) Fixed-to-fixed coding.
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(b) Variable-to-fixed coding.
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(c) Fixed-to-variable coding.

Figure 1.2: Example of some forms in which the source and compressed data
symbols can be organized for compression.
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Figure 2.1: Source letter quantization followed by binary coding.
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Figure 2.2: Lossless predictive coding system: top is encoder; bottom is decoder.
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Figure 2.3: Transform coding system: encoder on top; decoder at bottom.
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used for computing the subband transform.
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Figure 2.5: Example of a type of frequency response produced by filters used in
the subband transform.
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Figure 2.6: Example logical division of subbands (top-left) and types of fre-
quency response produced by some of the filters used in the two-dimensional
subband transform.
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Figure 2.7: Example of how a set of image pixels is sequentially subdivided for
more efficient compression using set partition coding.
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Figure 4.2: The Huffman coding procedure.
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Figure 5.10: Uniform and non-uniform quantization of a unit variance Gaussian
probability density.

33



G ( x ) U n i f o r m
Q u a n t i z e r

I n d e x
M a p

I n v e r s e
I n d e x
M a p

G   ( x )- 1 Q u a n t i z a t i o n

x

y k

k

k

E N C O D E R

D E C O D E R

Figure 5.11: A companding quantization system.

x m a x

x m a x

m a x

m a x- x

- x

|

_

_

|

G ( x )

x

D

D
| |

k

Figure 5.12: A companding quantization system.

2
Memoryless
Source

X, q(X)

(x  ,x  ,...,x   )
1 2

Q

(q  ,q  ,...,q   )
NN 1

Figure 5.13: Quantization of a sequence from the source.

34



Figure 5.14: Comparison of uncoded and entropy-coded quantization for non-
uniform and uniform quantizer levels. The source is the unit variance Gaussian
and the distortion is squared error.
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Chapter 9

Transform Coding Systems

Figure 9.1: A 128 × 128 image divided into 32 × 32 blocks (left) and and a
rendition of its blockwise DCT (right). For display purposes of the latter, the
range of the transform was scaled and translated to the [0,255] interval with a
middle gray value of 128.
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Figure 9.2: Zigzag scan of an image transform block.
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Figure 9.3: Order of coding of 4× 4 transform subblocks of a macroblock.
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Figure 10.1: Lena image: dimension 512× 512 pixels, 8 bits per sample.
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Figure 10.2: Distribution of pixel values for the Lena image.
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Figure 10.3: Distribution of magnitudes of integer transform coefficients of the
Lena image.
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Figure 10.4: Set of thresholds marking ranges of values in dataset.

70



data
source sample selection

binary codingbinary
data

P, S

P0, S0 P1, S1 PN , SN· · ·

{v−1, v0, v1, . . . , vN}

Figure 10.5: Separation of values in dataset before coding.
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Figure 10.6: Distribution of magnitudes of integer-wavelet-transform coeffi-
cients. Logarithmic scale, darker pixels representing larger values. (Pn notation
explained in Section 10.1.1.)
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S

Figure 10.7: Partitioning of an array of pixels S into four equal-sized subsets.
Gray values are used for representing pixel values.
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Figure 10.8: Three levels of quadrisection of 8x8 block and associated quadtree
and code.
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Figure 10.9: Bisection codes of significance patterns: (a) 0100 and (b) 0001.
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Figure 10.10: Bisection of signal– left, splitting pattern 10011001; right, corre-
sponding binary tree (bintree) with bisection code 100100 labelled on branches.
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root

L set

O set

O set
L set

Figure 10.11: A spatial orientation tree (SOT) of a discrete wavelet transform.
O denotes offspring set and L denotes grand-descendant set. The full descendant
set D = O ∪ L.
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tree tree-block

Figure 10.12: Rearranging a spatial orientation tree into a tree-block placed in
the position of the image region it represents.

Figure 10.13: Progressive bit plane coding in the LIS for successive power of 2
thresholds. S above the most significant bit (msb) stands for the bit indicating
the algebraic sign.
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Figure 10.14: Progressive bit plane coding in the LIS for general thresholds. S
above the most significant bit (msb) stands for the bit indicating the algebraic
sign.

Figure 10.15: Scanning order of subbands in a 3-level wavelet decomposition.
Subbands formed are named for horizontal and vertical low- or high-passband
and level of decomposition, e.g., LH2 is horizontal low passband and vertical
high passband at second recursion level.
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Figure 10.16: Partitioning of image X into sets S and I.
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Figure 10.17: Partitioning of set I.
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Figure 10.18: Example of coefficients in an 8 × 8 transform used by example.
The numbers outside the box are vertical and horizontal coordinates.
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Figure 10.19: Examples of parent-offspring dependencies in the spatial-
orientation trees. Coefficients in the LL band marked “*” have no descendants.

78



Chapter 11

Subband/Wavelet Coding
Systems

79



Figure 11.1: Display of image subbands of a 3-level, dyadic wavelet transform.
Middle grey level of 128 corresponds to 0 value of a coefficient in all subbands,
excluding the lowest frequency one in the top left corner.
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Figure 11.2: Subbands of a 3-level, dyadic wavelet transform.
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Figure 11.3: Two-level recursive lowpass filter analysis of image I.

Figure 11.4: Two-level recursive lowpass filter synthesis of image Î.
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Figure 11.5: Subband regions in the wavelet transform corresponding to an
image region. The inner rectangles correspond to the exact corresponding frac-
tional area of the image region of interest (ROI). The areas between the inner
and outer rectangles contain coefficients needed to reconstruct ROI exactly.
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Figure 11.6: Encoder and decoder of subband/wavelet transform coding system.
The boxes with dashed lines denote optional actions.
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Figure 11.7: Input-output characteristic of a 7 level, uniform null-zone quan-
tizer.

Figure 11.8: Scanning order of subbands in a 3-level wavelet decomposition.
Subbands formed are named for horizontal and vertical low- or high-passband
and level of decomposition, e.g., LH2 is horizontal low passband and vertical
high passband at second recursion level.
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Figure 11.9: Original 512× 512, 8 bits/pixel Goldhill image.
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Figure 11.10: Reconstructions from codestream of Goldhill coded to rate 1.329
bpp, quantizer step size = 1/0.31 at full, 1/2, and 1/4 resolutions.
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Figure 11.11: Coding order for a progressive value codestream.

Figure 11.12: Coding order for a bit embedded codestream.
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Figure 11.13: Reconstructions of Goldhill from same codestream by a quality
scalable coding method.

(a) 2.00 bpp, 42.02 dB (b) 1.00 bpp, 36.55 dB
(c) 0.50 bpp, 33.13 dB (d) 0.25 bpp, 30.56 dB
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S1

S2 S3
S1

S2 S3

Figure 11.14: Partitioning of image X into sets S and I, and subsequent parti-
tioning of set I.

Figure 11.15: Uncoded (left) and coded (right) reconstructions of 512×512 lena
image with identical quantizer step sizes. Both have PSNR=37.07 dB; rate of
uncoded (left) = 0.531 bpp and rate of coded (right) is 0.500 bpp.
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Figure 11.16: Division of wavelet subbands into subblocks. Note subbands of
coarsest level are too small to be divided.
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y

Figure 11.17: Eight pixel neighborhood of pixel y for context formation.

Figure 11.18: Column-wise scan pattern of stripes within a code-block.
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Figure 11.19: Two levels of quadrisection of 8x8 block and associated quadtree,
including virtual nodes.
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L e v e l  d

L e v e l  d + 1

Figure 11.20: Two successive levels of quadtree with nodes located in wavelet
transform and dependency relationships.
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D set

L set

O set

Figure 11.21: Illustration of set types in a tree-block with its three constituent
SOT’s descending from a 2×2 group in the lowest frequency subband in a three
level, 2D wavelet transform. A full descendant D set, an offspring O set, and
a grand-descendant L set are encircled in the diagram. All pixels (coefficients)
in grey, including the upper left corner pixel in the 2 × 2 group, belong to the
tree-block.
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t 9t 1 1t 1 0 t 8t 1 0t 9 t 9

Figure 11.22: Resolution scalable bitstream structure. R0,R1, . . . denote the
segments with different resolutions, and t11, t10, . . . the different thresholds (tn =
2n.) Note that in R2, t11 and t10 are empty.

R 0

t 1 1 t 1 0 t9

R 0R 0R 1 R 1R 1R 2 R 2

Figure 11.23: Quality scalable bitstream structure. R0,R1, . . . denote the seg-
ments of different resolutions, and t11, t10, . . . the different thresholds (tn = 2n).
At higher thresholds, some of the finer resolutions may be empty.
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Figure 11.24: Reconstructions from same codestream of 512 × 512 Goldhill,
quantizer step size = 1/0.31, coded to rate 1.329 bpp, and of 70× 128 region at
coordinates (343,239).
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Figure 12.1: Lossless predictive coding and decoding of image sources.

Figure 12.2: Neighborhood and prediction modes for lossless JPEG.
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 min(a, b), if c ≥ max(a, b)
max(a, b), if c ≤ min(a, b)
a+ b− c, otherwise

Figure 12.3: Causal template and predictor for JPEG-LS.
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Figure 12.4: Coding and decoding system in JPEG-LS.
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Only Y component available at this point

Figure 13.1: Compressed color bitstreams: conventional (top) and embedded
(bottom).
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S
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Figure 13.2: Set partitioning and color plane traversal for CSPECK. Coding
proceeds in order of Y , U , and V at the same significance threshold.
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Figure 13.3: Initial control lists of color SPIHT for the Y , U and V transform
planes in 4:2:0 subsampling format.
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Figure 13.4: Subbands of a wavelet packet transform with three spatial levels
and two axial levels.
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Figure 13.5: Subbands of a dyadic wavelet transform with alternating decom-
position to two levels in the three directions.
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Figure 13.6: Symmetric 3-D tree structure for SPIHT coding.
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Figure 13.7: Asymmetric 3-D tree structure for SPIHT coding.
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Figure 13.8: Splitting a significant block S into its eight offspring blocks O(S).

Figure 13.9: The block tree (right) of a 2 × 2 × 2 root group in the lowest
frequency subband (left, top left corner).
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Figure 13.10: A video sequence (left) and the progressive (middle)) and (inter-
laced) scan formats.
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Figure 13.11: System for motion-compensated predictive coding (MCPC) be-
tween frames of a video sequence.
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refining
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Figure 13.12: Hierarchical motion estimation in three scales.

bin indicesQuantizer DCT Quantizer

IDCT

quantized
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Figure 13.13: Quantizer and Dequantizer equivalences to transform types in
MCPC loop.
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1 8

Figure 13.14: Side view of a motion thread through an 8-frame GOP.

HLL LH

Figure 13.15: Temporal subbands of a two-level wavelet transform of an 8-frame
GOP: LL = low-low; LH = low-high; H = high.

111



Chapter 14

Distributed Source Coding

112



Y

Source
X

Source
Y

Encoder

Encoder

X

Y

Joint
Decoder

R

R

X

Figure 14.1: Distributed source coding: independent encoding and joint decod-
ing of correlated sources.
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Figure 14.2: Rate regions for achieving lossless reconstruction for joint and
independent decoding.
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Figure 14.3: Fans of points in Yn typically linked to points x in Xn.

y
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x
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Figure 14.4: Illustration of correctable regions as clusters of balls and cosets as
like-colored balls. Only the red color of y is known, so is indicated by the red
color of its syndrome sy. Therefore, y is declared to be the red ball closest to x
and is marked as ŷ. (The blank spaces are there just to exaggerate the display
of the clusters and are not to be interpreted as distances.)
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Figure 14.5: Source decoding with side information at the decoder.
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Figure 14.6: Quantization bins and cosets in scalar Wyner-Ziv uniform quanti-
zation (Rs = 3, Rc = 1).
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