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Figure 1.1: Basic data encoding and decoding model.
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Figure 1.2: Example of some forms in which the source and compressed data
symbols can be organized for compression.
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Figure 2.1: Source letter quantization followed by binary coding.
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Figure 2.4: Example of how lowpass (LPF) and highpass (HPF) filters can be
used for computing the subband transform.
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Figure 2.5: Example of a type of frequency response produced by filters used in
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subband transform.
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Figure 2.8: Transform coefficients in spatial frequency wavelet subbands (left)
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Figure 3.1: The binary entropy function.
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Figure 3.3: Upper and lower bounds on the entropy function. Solid line corre-
sponds to Eq. (3.10) for K = 16 and dashed line to Eq. (3.11).
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Figure 3.4: A binary tree.
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Figure 3.5: The code tree for binary code in Table 3.1.
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Figure 3.6: Binary code construction for lengths ¢ = 1,05 = 2,03 = 3,{, = 3
by association to binary fractions.
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Figure 4.1: The code tree for binary code in Table 4.1.
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Figure 4.2: The Huffman coding procedure.
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Figure 4.3: CDF graph for K =5 letters.
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Figure 4.4: Mapping sequences to intervals in arithmetic coding.
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i=2m+R

Figure 4.5: Illustration of number representation for Golomb coding.
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Figure 4.6: Buffer and pointer definitions in LZ77 coding.
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Figure 4.7: Example of first three stages of LZ77 coding.

26



y

initial
buffer lcabbcabbac

- 7

(7,4,C(a))*’cabbcabbac bcaba

- 4 —>

™~ 5

(5,3,C(c))>’cabbcabbacbcaba bcac

- 3 >

<34

(360) = | cabbcabbacbcababljcac |[cac|cac

-  _ —

6
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Figure 5.3: Graphical form of quantizer function.
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Figure 5.4: Mid-rise (left) and mid-tread (right) quantizer functions.
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Figure 5.5: Depiction of overload and granular regions with respect to a prob-
ability density function.
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Figure 5.6: Mid-rise uniform quantizer characteric for K = 8 quantization levels.
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Figure 5.7: Mid-tread quantizer characteric for K = 7 quantization levels.
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Normal(0,1), 9 levels
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Figure 5.8: Mean squared error versus step size for uniform quantization of a
Normal(0,1) source with K = 9 quantization levels.

Effect of Reproduction Points in Uniform Quantization
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Figure 5.9: Distortion of midpoint versus centroid reproduction points for quan-
tization of a Normal(0,1) source with K = 9 quantization levels.
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Figure 5.10: Uniform and non-uniform quantization of a unit variance Gaussian
probability density.
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Figure 5.11: A companding quantization system.
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Figure 5.12: A companding quantization system.
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Figure 5.13: Quantization of a sequence from the source.
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Figure 5.14: Comparison of uncoded and entropy-coded quantization for non-
uniform and uniform quantizer levels. The source is the unit variance Gaussian
and the distortion is squared error.
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Figure 5.15: Mean squared error versus entropy for different numbers of levels
in uniform quantization.
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Figure 5.16: Double and normal null zone widths in 5-level uniform quantization
of a Laplacian probability density with zero mean and unit variance.
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Figure 5.17: Mean squared error versus entropy for 5 and 9 quantization lev-
els with normal (ratio = 1) and double (ratio = 2) null zone. The probability
density function is Laplacian with zero mean and unit variance. The reproduc-
tion points are the mid-points of the uniform width decision intervals (quantizer
bins).
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Figure 5.18: A test channel.
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n n

Figure 6.1: Depiction of subtraction and addition of same quantity before and
after quantization (Q), whereby reconstruction error equals quantization error.
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(b) DPCM Decoder

Figure 6.2: DPCM encoder and decoder.
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Figure 6.3: A block or vector coding system model.
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Figure 6.4: A test channel.
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Figure 6.5: Continuous spectral density and parameter level 6 dictating the
optimal rate assignment versus frequency.

Figure 6.6: Decision regions and their reproduction points marked by ‘X’ for a
hypothetical two-dimensional vector quantizer.
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2-D Gaussian Codevectors and Decision Regions

151 ¥

0.5r

X2
o

-0.5¢ 4
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Figure 6.7: Codevectors and decision regions in range —2 < z1,x2 < 2 for
two-dimensional Gaussian, p = 0.9, quantizer in example.
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LBG algorithm

Figure 6.8: (a) Binary splitting of covectors. (b) Convergence to two best
codevectors.
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Figure 6.9: Depiction of the objective minimum of an entropy-constrained vector
quantizer.
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Figure 6.10: MSE versus entropy for two-dimensional Gaussian, p = 0.9, 3-level
quantizer.
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Figure 6.11: Quantization points, decision intervals, and binary tree for uniform
quantization in the interval [0,1).
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Figure 6.12: Tree-structured VQ design. Bottom nodes contain M = 2" code-
vectors of the codebook.
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Figure 6.13: Example of unbalanced tree in TSVQ. The numbers in parentheses
at the terminal nodes are the probabilities of the codevectors (or codewords)
associated with these nodes.
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Figure 6.14: Example of first pruning of TSV(Q tree and selection of smallest A
in distortion-rate curve. .
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Figure 6.15: Four initial stages of a rate R = 1 bit/source letter code tree.

X

=

v

letter

Figure 6.16: Finite-state machine realization of a four-state rate R = 1 bit per
source letter code in state .
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Figure 6.17: One stage trellis depicting state transitions and outputs of finite-
state machine code in Fig. 6.16.

Figure 6.18: Trellis of a four-state rate R = 1 bit per source letter code.
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Figure 6.19: Finite-state machine realization of a rate R = 2/3 bits per source
letter code.
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Figure 6.20: Partition of 8-level uniform quantizer levels into four cosets.
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Figure 6.21: Trellis and cosets in TCQ.
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Figure 6.22: M shift registers of length L, each holding a path map symbol
sequence. Symbol at time j shifted into every register from the right and left

shift of each symbol in every register ejects symbol at time 7 — L from its left
end.

Figure 6.23: Paths through a trellis node.
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Figure 6.24: Distortions on paths converging to state s, at stage r in Viterbi
Algorithm searching 4-state trellis of Fig. 6.17. Note that path symbol w, must
be 0 on both paths to converge to state so.
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Figure 7.1: A transform coding system.
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Figure 7.2: Forward N-point block transforms via a bank of N filters.
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Figure 7.3: Inverse N-point block transforms via a bank of N filters.
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Figure 7.4: Subband filter transfer functions.
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Figure 7.5: M-channel filter bank analysis of source into subbands.
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Figure 7.6: M-channel filter bank synthesis of source from subbands.
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Figure 7.7: Two-channel analysis and synthesis filter banks. hg and gy denote
impulse responses of the lowpass filters; h; and g; those of the highpass filters.
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Figure 7.8: Two stages of two-channel analysis for four equal-size subbands.
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Figure 7.9: Two stages of two-channel synthesis to reconstruct signal from four
subbands.
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Figure 7.10: Three-level multiresolution anaysis.
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Figure 7.11: Three-level multiresolution synthesis.
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[ Ho(w)] | Hy(w)]

Figure 7.12: Alias-cancelling filters.
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Figure 7.13: Two-channel analysis and synthesis biorthogonal filter banks. ho
and gg denote impulse responses of the lowpass filters; h; and g; those of the
highpass filters.
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Figure 7.14: Analysis and synthesis stages of the lifting scheme.
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Figure 7.15: Analysis stage of the lifting scheme using the lazy wavelet trans-
form.
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Figure 8.1: A transform coding system.
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Figure 8.2: Weighted variance and distortion spectrum.
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Figure 8.3: Illustration of initial points in bi-section procedure.

tangent normal

distortion

rate

Figure 8.4: Illustration of equal slope condition on quantizers of different com-

ponents.
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Figure 8.5: Seeking the desired slope by successive slope calculations starting
from a high rate.
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Figure 8.6: A subband analysis, coding, and synthesis system.
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Chapter 9

Transform Coding Systems

Figure 9.1: A 128 x 128 image divided into 32 x 32 blocks (left) and and a
rendition of its blockwise DCT (right). For display purposes of the latter, the
range of the transform was scaled and translated to the [0,255] interval with a
middle gray value of 128.
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Figure 9.2: Zigzag scan of an image transform block.
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Figure 9.3: Order of coding of 4 x 4 transform subblocks of a macroblock.
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Figure 10.1: Lena image: dimension 512 x 512 pixels, 8 bits per sample.
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Figure 10.2: Distribution of pixel values for the Lena image.
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Figure 10.3: Distribution of magnitudes of integer transform coefficients of the

Lena image.
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Figure 10.4: Set of thresholds marking ranges of values in dataset.
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Figure 10.5: Separation of values in dataset before coding.

Figure 10.6: Distribution of magnitudes of integer-wavelet-transform coeffi-
cients. Logarithmic scale, darker pixels representing larger values. (P,, notation

explained in Section 10.1.1.)
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Figure 10.7: Partitioning of an array of pixels S into four equal-sized subsets.
Gray values are used for representing pixel values.
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Figure 10.8: Three levels of quadrisection of 8x8 block and associated quadtree
and code.
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(a) Code 010 (b) Code 00

Figure 10.9: Bisection codes of significance patterns: (a) 0100 and (b) 0001.

° 5oy

\
1 0

Figure 10.10: Bisection of signal- left, splitting pattern 10011001; right, corre-
sponding binary tree (bintree) with bisection code 100100 labelled on branches.
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Figure 10.11: A spatial orientation tree (SOT) of a discrete wavelet transform.
O denotes offspring set and £ denotes grand-descendant set. The full descendant

=0UL.

set D
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tree tree-block
n|

Figure 10.12: Rearranging a spatial orientation tree into a tree-block placed in
the position of the image region it represents.
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Figure 10.13: Progressive bit plane coding in the LIS for successive power of 2
thresholds. S above the most significant bit (msb) stands for the bit indicating
the algebraic sign.
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Figure 10.14: Progressive bit plane coding in the LIS for general thresholds. S
above the most significant bit (msb) stands for the bit indicating the algebraic
sign.
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Figure 10.15: Scanning order of subbands in a 3-level wavelet decomposition.
Subbands formed are named for horizontal and vertical low- or high-passband
and level of decomposition, e.g., LH, is horizontal low passband and vertical
high passband at second recursion level.
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Figure 10.16: Partitioning of image X into sets & and Z.

S

S1
So | S

Sa S3

Figure 10.17: Partitioning of set Z.
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Figure 10.18: Example of coefficients in an 8 x 8 transform used by example.
The numbers outside the box are vertical and horizontal coordinates.

Figure 10.19: Examples of parent-offspring dependencies in the spatial-
orientation trees. Coefficients in the LL band marked “*” have no descendants.
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Figure 11.1: Display of image subbands of a 3-level, dyadic wavelet transform.
Middle grey level of 128 corresponds to 0 value of a coefficient in all subbands,
excluding the lowest frequency one in the top left corner.
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Figure 11.2: Subbands of a 3-level, dyadic wavelet transform.
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Figure 11.3: Two-level recursive lowpass filter analysis of image I.
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Figure 11.4: Two-level recursive lowpass filter synthesis of image I.
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Figure 11.5: Subband regions in the wavelet transform corresponding to an
image region. The inner rectangles correspond to the exact corresponding frac-
tional area of the image region of interest (ROI). The areas between the inner
and outer rectangles contain coefficients needed to reconstruct ROI exactly.
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Figure 11.6: Encoder and decoder of subband /wavelet transform coding system.
The boxes with dashed lines denote optional actions.
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Figure 11.7: Input-output characteristic of a 7 level, uniform null-zone quan-
tizer.
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Figure 11.8: Scanning order of subbands in a 3-level wavelet decomposition.
Subbands formed are named for horizontal and vertical low- or high-passband
and level of decomposition, e.g., LH5 is horizontal low passband and vertical
high passband at second recursion level.

84



Figure 11.9: Original 512 x 512, 8 bits/pixel Goldhill image.
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Figure 11.10: Reconstructions from codestream of Goldhill coded to rate 1.329
bpp, quantizer step size = 1/0.31 at full, 1/2, and 1/4 resolutions.
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Figure 11.11: Coding order for a progressive value codestream.

MSE [1 | |1 | |1
1 1
1 1 1 1
1 1
L5E

Progressive Bitplane Scan

Figure 11.12: Coding order for a bit embedded codestream.
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Figure 11.13: Reconstructions of Goldhill from same codestream by a quality
scalable coding method.

(a) 2.00 bpp, 42.02 dB | (b) 1.00 bpp, 36.55 dB
(c) 0.50 bpp, 33.13 dB | (d) 0.25 bpp, 30.56 dB
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S

Figure 11.14: Partitioning of image X into sets S and Z, and subsequent parti-

tioning of set 7.
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Figure 11.15: Uncoded (left) and coded (right) reconstructions of 512 x 512 lena
image with identical quantizer step sizes. Both have PSNR=37.07 dB; rate of

uncoded (left) = 0.531 bpp and rate of coded (right) is 0.500 bpp.
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3-Level Wavelet Transform Encode

Figure 11.16: Division of wavelet subbands into subblocks. Note subbands of
coarsest level are too small to be divided.
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Figure 11.17: Eight pixel neighborhood of pixel y for context formation.

J

Figure 11.18: Column-wise scan pattern of stripes within a code-block.
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Figure 11.19: Two levels of quadrisection of 8x8 block and associated quadtree,

including virtual nodes.
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Figure 11.20: Two successive levels of quadtree with nodes located in wavelet
transform and dependency relationships.
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D set

O st

L set

Figure 11.21: Illustration of set types in a tree-block with its three constituent
SOT’s descending from a 2 x 2 group in the lowest frequency subband in a three
level, 2D wavelet transform. A full descendant D set, an offspring O set, and
a grand-descendant £ set are encircled in the diagram. All pixels (coefficients)
in grey, including the upper left corner pixel in the 2 x 2 group, belong to the
tree-block.
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Figure 11.22: Resolution scalable bitstream structure. Rg,Rq,... denote the
segments with different resolutions, and t11, t10, . . . the different thresholds (¢,, =
2™.) Note that in Ro, t11 and t1o are empty.
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Figure 11.23: Quality scalable bitstream structure. Rg, R1, ... denote the seg-
ments of different resolutions, and ¢11, t19, . . - the different thresholds (¢, = 2™).
At higher thresholds, some of the finer resolutions may be empty.
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Figure 11.24: Reconstructions from same codestream of 512 x 512 Goldhill,
quantizer step size = 1/0.31, coded to rate 1.329 bpp, and of 70 x 128 region at
coordinates (343,239).

96



Chapter 12

Methods for Lossless
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Figure 12.1: Lossless predictive coding and decoding of image sources.
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Figure 12.2: Neighborhood and prediction modes for lossless JPEG.
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Figure 12.3: Causal template and predictor for JPEG-LS.

e Golomb-Rice compression bits
> Encoder T
|
Y |
|
Statistical 4'(? !
|
Processor |
Predictor :
|
|
|
|
|
|
|
|
:
|
+ e Golomb-Rice |
Decoder ~
Y ‘
| Statistical
Predictor Processor

Figure 12.4: Coding and decoding system in JPEG-LS.
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Chapter 13

Color and
Multi-Component Image
and Video Coding
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I— Only Y component available at this point
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I— Y, U, and V components available at this point

Figure 13.1: Compressed color bitstreams: conventional (top) and embedded
(bottom).
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Y (YUV: 4: 2 0 assumed)

Figure 13.2: Set partitioning and color plane traversal for CSPECK. Coding
proceeds in order of Y, U, and V' at the same significance threshold.
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Figure 13.3: Initial control lists of color SPIHT for the Y, U and V transform
planes in 4:2:0 subsampling format.
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Figure 13.4: Subbands of a wavelet packet transform with three spatial levels

and two axial levels.

104



I
1 /
i I
I 1 |
I i ' !
| 1 | '
| 1 ! !
i i ! !
I ‘I'I ---J--:h-----‘l---
i 7 ] P /
I { PP |
. - A |
P i s !
Z T T ': :'
| I
L Lo
X : : I I
| SR PR G Sl PR S
| - :,' /
i O poe— —
- -
y - -

Figure 13.5: Subbands of a dyadic wavelet transform with alternating decom-
position to two levels in the three directions.

105



171 7N
—ly/
7 T

i

Figure 13.6: Symmetric 3-D tree structure for SPIHT coding.
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Figure 13.7: Asymmetric 3-D tree structure for SPIHT coding.
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Figure 13.8: Splitting a significant block S into its eight offspring blocks O(S).

Figure 13.9: The block tree (right) of a 2 x 2 x 2 root group in the lowest
frequency subband (left, top left corner).
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Figure 13.10: A video sequence (left) and the progressive (middle)) and (inter-

laced) scan formats.
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Figure 13.11: System for motion-compensated predictive coding (MCPC) be-

tween frames of a video sequence.
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Figure 13.12: Hierarchical motion estimation in three scales.
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Figure 13.13: Quantizer and Dequantizer equivalences to transform types in
MCPC loop.
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Figure 13.14: Side view of a motion thread through an 8-frame GOP.

LL LH H

Figure 13.15: Temporal subbands of a two-level wavelet transform of an 8-frame
GOP: LL = low-low; LH = low-high; H = high.
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Chapter 14

Distributed Source Coding
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Figure 14.1: Distributed source coding: independent encoding and joint decod-
ing of correlated sources.
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Figure 14.2: Rate regions for achieving lossless reconstruction for joint and
independent decoding.
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Figure 14.3: Fans of points in Y™ typically linked to points x in X'™.

Figure 14.4: Illustration of correctable regions as clusters of balls and cosets as
like-colored balls. Only the red color of y is known, so is indicated by the red
color of its syndrome s,,. Therefore, y is declared to be the red ball closest to x
and is marked as y. (The blank spaces are there just to exaggerate the display
of the clusters and are not to be interpreted as distances.)
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Figure 14.5: Source decoding with side information at the decoder.
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Figure 14.6: Quantization bins and cosets in scalar Wyner-Ziv uniform quanti-

zation (Rs = 3,R. = 1).



