Part | Solutions

1. (8) Unit step input, X = 1/s

_;zﬁ ) X3 0(*3
Y_s(s+2)(52+9) s+s+2 s+3j+s—3j
with
x,= 2 __2 _1
Y (s42)(s49))se (2(9) 9
o= —2 __ 2 -1
2 g(s*+9)|., (-2)(13) 13
o= 2 - 2 _-1 1 _—(2+3])
® s(s+2)(s=3])|s=—3j (=3])(2-3)(-6]) 9 (2-3]) (9)(13)
Hence
y<t):%_l_lge_2t_(9)(%3){(2+3j)e_sjt+(2—31)63“}
=%—1—2672I—W113)[(2+3j)(0033t—jsin3t)+(2—3j)(cos3t+jsin3t)]
211 a2 _
=5 13¢ ‘ (9)(13)[20033t+3sn3t]
2101 o 213

Sn(3t+¢) | ¢=tan_l(§)

9 13° (913

With animpulseinput, X = 1,

2 Xy X3 x*,
= =——+—"_4—=
v (s+2)(s+9) s+2 s+3] s3]
__2 | _2
! (52+9) s=-2 13
2 2 1 2+3) —342]j

o3 (2-3])(-6]) 3(2-3j)2+3] (3)(13)

%27 (s12)(s-3])
And

2 ot 1

V(t)=ge M gy -3+ 20)e e (=3-2))e"

2 e’2t+i[(—3+2j)(cosst— jsn3t)+(—3—2])(cos3t+ jsin3t)]

13 39
_2 2, 2 c
=3¢ +39[ 3cogt 3t+2sin 3t
2 ot 2 . _1,—-3
=—e "+ In(3t+¢p), p=tan (—
13 Wik (3t+¢), ¢ ( > )



Part | Solutions

(b) Itisnot obviousfromy(t) that all the terms cancel out at t = 0, but initial value theorem can be used to
show that y(0) = 0. Asfor y(t— o), the pure sinusoidal term will not go away. Thereisno onefina value
and thefinal value theorem does not apply.
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y'+y'+y=snwt
After Laplace transform,

1 w

Y:
P+s+1 4w

Therootof s?+s+1=0 ae —1/2+j3/4.

We expect y(t) to have aterm of theform exp(— 1/2t)sin(v3/4 t+¢) , which isan oscillation that decays
away intime. Eventually, we are left with a pure sinusoidal term associated with w/(s*+w?) . Thereisno
final constant value and the final value theorem does not apply.
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y''+4y' +5y="1(t)
After Laplace transform,
Y 1 _ 1/5

F s2+4s+5 (1/5)s%+(4/5)s+1

Therootsof s°+4s+5=0 are S:W:—Zij

We expect the time dependent function exp(—2t)sin(t+¢) , an oscillation that decaysin time.

_1 _ _ _2
Indeed, =T 2¢T=4/5, ¢=(1/2)(4/5)V5 NG

0.89 , only very dightly underdamped.

If we use aunit step input and Eq. (3-24), we can find the overshoot to be only 0.2%.

o \_--E-\..'q..-.,l els Tﬁ'ﬁ'— o el T

|||F|.|:.\_|‘ /‘L”‘J \/-—
value.
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4.
10 a b c
@ (s+12(s13) 5+ (5417 (s+3)
_ 10 _10_,
(S+3)S:*1 2
10 | _10_s
(S+1)2s:—3 4 2
10 : 2
(S+3)—a(s+1)+b+{c—terms with (s+1)~}

Differentiate once,

—10
(s+3)

Sets=—1,a=-10/4=-5/2,

>=a+ {c-terms with (s +1)}

y(t)z—%e_'-l-Ste_t—i-%e_3t
-1 5 -3t
=5e7(—=+1)+=
e /( : ) Se
s+3
b V="
®) s +2s+5
For
$242545=0 , s=#=—112j

Or we can see that
(24 25+5)=(s*+2s+1)+4=(s+1)*+22
But for now, we do the long, slow way,

_ s+3 _ a " a*
$+2s+5 s—(=1+2j)  s—(=1-2j)

_ s+3 =1+ 2i+3 1+ 1=
s—(—1-2))| oy (C142)+142) 2 2

p0)=5 (1= 2 (1 et

=5¢ (1= j)(cos 2t+ jsin 2t) +(1+ j)(cos2t— jsin2t)]

:%e_t 2(cos2t+sin 2t)

=\2e 'sin(2t+¢), Pp=tan” (1)=m/4
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B 6745 B 6745
() Y= 2 = 2
s(2s°4+3s+2) 2s(s"+3/2s+1)
The roots of s>+3/25+1=0 are Sz—%i% %—4:—%11'?
Or we can make use of
2, 3 3.9, 9 43 :
(s+2s+1) (s*+= s+16) 16+1 =(s+ ) 16

For now, we do it the long way. Consider first, without the time delay,

1 _a, b + b*
2,3 s —3_ 7 -3 7
+2s+1 (TN (DN
sle™+5s+l) 7 s=(EHir) s )
:71 =
s243/ 25+ 1=
olso (37, S (=3 AT\ 24T] (3G
4 T |s=5d 4T, 4
8 74337 _8(=7+,3V7)
T3V 74 j3v7 49+(9)(7)
_8 . 1. .37
112( 7+ j337) R,
— —
y(t)=l[1+e 4 (—1+j3—ﬁ)(cosﬂt+jsinﬂt)+...their conjugate terms
2| 2 14 4 4
-3
VT N7 T
—21+e (— cos4t 3 s1n4t)

We finally put the time delay back in,

-3
1 e V7 V7.7
(¢ 4)—2 1+e cos (t—4)-3 --sin—, (t—4)|ju(t—4)
(d) This is like part (c). Consider first
1 _a, b " b*
s(s*4+9) s 3+3) 33
a= 1 :l
SZ+9S:0
S(S_3j)s:73j (_3j)(_6j) 18
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Without dead time,

11 35, 3
f=——— . .
yi=dL(eie

=é (1—cos 3t)
Now with dead time,

y(t—z)z[l (1—cos3(1=2)||u(r=2)

9
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5.

__st1 _a,b c
s?(10s+1) S s 10s+1
_s+l _9/10

S 110 1/100
__s+l _

10s+1|_q
s+1

. _ : 2
105+1_as+b+{c terms with s°}

Differentiate once,

1 _10 s+1
10s+1 " (10s+1)?

Sets=0,a=1-10=-9

-9 1. @
=—+=+
s & 10s+1

=a+{ c-termswith s}

G

Canadsofind
1,
g(t)=—9+t+9e
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6. Thetwo sin the original equation cancel out. So,
Y _ 3(st+2)(s—2)

X (55°+65°+25+3)
With X = 1s,

g [ 3(st2)(s-2) 1]_(3)2)(-2)_
y{t=e) IS|£r(1) S5+ 6524 25+3 S 3 4

Thisresultisonly valid if al threerootsof 5s*+6s+2s+3=0 have negative real parts. We check with
MATLAB using
roots([5 6 2 3])

and found —1.26, +0.03+0.69. So the fina value theorem does not apply and the value—4 obtained aboveis
meaningless.



Part | Solutions

7. Therootsof s?—2s—5=0 are s=1i%\/4—20=112j .
For

s+1
(s+2)(s*—2s+5)

i:
X

we expect y(t) to have time dependence e ' and e'sn(2t+¢) . The e 2! term decays away when
approximately T = 5 (%) [time units]. The e'sin(2t+¢) termwill grow exponentially with an oscillation.

With time delay dueto e /2%, it just meansthat any response tox(t) will be shifted by ¥ time units. Whether
X(s) = L or Us, we still expect something like:
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8. Therootsof s?+2s+2=0 are s=—1i%\/4—8=—1+j .
For

Y _ 10s(s+1)

X (s+2)(s*+2s5+2)

we have zeros at 0 and —1, and poles at —2 and —1 4. The response has time dependent functions e 2! and
_t .
e 'dn(t+¢) .

For
Y 10

X (s+2)(s*+2s5+2)

we expect y(t) to have the same time depdent functions as the first transfer function.
With X = s,

y(t—oo)=lim|s 120 1.5
s-0| (s+2)(s°+2s+2)s| 2

This5/2 isthe steady state gain of the transfer function. The responsey(t) will reach afina vaue of 5/2in an
oscillatory manner.

L= ||1,. '-r s :’Iﬂ‘\"h_-"’_"'_" = —
v""'-..-“:l I- _lr"-
)

r_':'. _l;_ ur

=

If wewrite 52+28+2:2(%52+s+1) , and equate

%+s+1=7252+22grs+1,
s
wefind

1 1 1
= = =— 2:—
T r2,and2§T l,or C Zv -

10
(s+2)(s*+2)

Y
X
thepolesare—2 and + j /2 . We expect y(t) to have the functional dependence e 2 and sin(+/2t) . When

X =1/s,the e ' termwill decay away andy(t) will eventually become a pure sinewave that oscill ates about
the mean of 5/2 and with afrequency of 2. Thereisno final value.
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9. The Laplacetransform of F(t) = 3 u(t) isF(s) = 3/s, s0

___ 18 3
°+3s+9'S
@ y(t—mo):lim[sY}:(lB)(g):G
s—0
Y2
(b) X 1gp.1
9s +33+1
So
_1 _1 _11, 1
T—3, 2§T—3 , and C—323—2
For { = ¥, the overshoot is 0.16.
10-MK,
If X = M/s, the overshoot means W=O.16 , or MKp = 8.62
p
From the transfer function, Kp =2, so M = 8.62/2 = 4.31.
Y_ 5/9
© Flelsig
9
_1 _1 _11, 1
T=3, 2Cr=g, and £=553=¢<1
.'ﬁl = ] £y=
Hhp g — T \5 =
L_ _II'JI . 'n.-'JF.!'.'-‘il_ﬂ B "'4:3.3_,,.._:_-_.

=) II. k"\..,'ll b=

With both step and impulse response, we can calculate the period to beT = 2.12 [time units], and settling time
to be approximately 4(t/) = (4)(1/3)(6) = 8 [time units].

For unit step input and { = 1/6, we can find that overshoot = 0.589, and decay ratio = 0.347. (The decay ratio
appliesto an impulse response too.)
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10. The Laplace transform of

dc, dc,
Tigr G G ¢,(0)=0,and 1, at G c,(0)=0
would give
Cyls) 1 . Cs)_ 1
Co(s) 7,541’ Ci(s) T,5+1
Cz(s) Cz(s) Cl(s)_ 1 1

Co(S) Ci(S)Cy(8) (r,5+1) (1,5+1)

(8 Now, Co(s) =6,

6

C2(3)2<Tzs+1)(Tls+1)

So, C,(t—)=0 We can confirm thiswith the final value theorem. And with the numerical values

20s, T, i:150 s

T :—4 = =
17002 0.02

we can either do partial factions or simpletable look up to find,

_ 6 [ —t/200_ _~t/150
c (t)—so(e g V/1%0)

2

which indeed approaches zero astimeincreases.

(b)t=4/2=2min
Cl(S): 1 Cz(s)_ 1 Cs(s): 1
Co(s) (ts+1) ' Cyls) (rs+1)2 7" Culs) (rs+1)°

The plotting isan exercisein usngMATLAB.

(c) If the polesare digtinct, we identify the dominant pole (the largest time constant,t) and choose the time of
simulation to be at least 5t (say 61), since 1—e °~0.99 .

If there are multiple poles, asin part (b), we have o(t“'e*“T) and it will take much longer than 5 or 61 to
have the term decays away (i.e., reaching the new steady state). (To find thetimet where t4e "=¢ , with
e<1,well need atrial and error calculation for achosene.)
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11. The poles of atransfer function are not dependent on the input, so they stay at—4.5+2.5) whether itisa
step input or arectangular pulse input.

12. The processislikely nonlinear.
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13. The steady state gain is the sum of theindividual steady state gains, i.e.,K1 + K2. Or you can use the fina
valuetheoremand X = 1/s.

Ky K,
T,5+1 T,5+1

1

lim[sY|=|s <

s—0

=K,+K,

K (t,5+1)+K,(1;5+1) (K;7,+K,7)s+H(K +K),)

(t,5+1)(t,5+1) (t,5+1)(1,5+1)

Y
X

Sothepolesareat —1/7;,and —1/7,,andthezeroisat —(K,;+K,)/(K 1,+K,T1,).
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1
14. =
s(s?+2s+3)
Therootsof s?+2s+3=0 are 3:@:_11@@
y=2 2bs+c
S s°+2s+3

1 _

1
a=—- ==
242543l 3

1( 2+ 2s+3)+bs?+cs=1

3
1 2 B
(§+b)32+(§+c)s+1—1
Sowehaveb=-1/3,and c = -2/3
(sP+25+3)=(+25+1)+2=(s+1)?+(2)?

12 Lisio——Liss141)

g f__ - 3

3 3 3
s+1 1 2
2 -5 2
(s+12+2 V2(s+1)°+2

s 3

y_ U3 1

After inverse transform,

|

1 1~ 1y
(t)=3-3¢€ cosﬁt+\f25|n\/§t
_1 1—e’ti(\/§cosf2t+s'n@t)
3 V2
1, /3. 1
=3|1-e Esm(\fZH(p) , p=tan"1\2
FY1. We could have gone the slower route too:
S SV TR S -
s(s2+2s+3) S s—(—1+V2j) s—(-1-v2j)
1 1 1

1nz) (CLHV2]) (12 +14V2]) 2V2)(-1+V2])

_ -1 V2—j _ —(V2—j) _—V2+j
2V2j(N2+j) V2—j 2V2(2+1) 6v2

T s(st1v2))

Back in time domain:
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-3 {1—% Mz—j>e\"§“+<f2+j>e“"§“}]

:% {1_2‘3_(;[(&_ j)(cosv2+j sinV2t)+(v2+ j)(cosv2— jsn2t)]
:% 1—26—\/122(@005\/§t+sin\f2t)]

% 1-e g(s'nfzwqb) . p=tan"1(V2)
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15 Y 3
: F

s(P+25+4)

Therootsof s?+2s+4=0 ae s= =—1+j+3

—2+/4-16
2

3/4
s(1/4s°+1/2s+1)

i:
F

Indeed, C/T=1.

If F=1/s,

3 _a. bs+c

 R(SP+2s+4) &£ SP+2s+4

3 3

a=—-—- =
SP+2s+4l, 4 | /

So y(t) will oscillatesinitially, but eventualy it becomes a pure ramp function with || Fav,
dope 3/4. !g

IfF=1 Y= , the responseis oscillatory but will reach afinal steady state of ¥,

3
S(S?+2s+4)
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16.
@
dc,
TFZCO_Cl_kTCl y
dc,
TF=C1—C2—kTC2

with T=V/Q=4 min, andk= 1L.5min". Takethefirst CSTR equation and rewrite as

dc,
TF'F(].'FKT)C]_:CO
This becomes
dc, T 1
Togr TGTK G Wi Tm s ad B e

Thisisalinear equation, so it takes the same form even in deviation variables, and after Laplace transform, we
should get

Cis) K
C.(s) TpS+1

And similarly for the second CSTR equation, we should get

Cys)_ K
Cl(s) TpS+1

sincek and T are constants. So

C,(s)

K 2

TpS+l

C,(s)

The steady state gainis K2 . Responseis critically damped. The timet, may appear asif it were the time
constant becauseit is associated with ¢ V/7» , but the actual time dependent termisreally ¢ V", whichis

much slower (See Part b.)

(b) The 63% responseis only applicableto afirst order function, not in this problem.
Now withk=0, K =1, and 1, =T, and the input, Co(s) = 1/s,

1 1 a b c
2g g + 2
(ts+1)°S S (ts+1) (rs+1)

1
a= 5| =1
(TS+1) s=0
1
C=— =—T
Sls=—1/7

é:{ a-temswith (1s+1)2} +b(ts+1)+c
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Differentiate once,

1 ={a-termswith (ts+1)} +tb

2
Sets=-1h
2
b:—TZ—T
T
Cz(t)=1—'rl tiT Lz StT_q_gtit_L gt
T T T
t, —t/r
C,y(t)=1-(1+—)e
T
Att =T,

c,(t)=1-2e '=0.264, or 26.4%

This responseis much slower than the first order 63.2% (1—e ') .
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17.
Y Kp . 0.4
== , with F=—
F T,s+1 52
oK
Yzing_i_g_i_ c

o K
= P =xK
Tps+1 s=0 p
aK
C=—2p =aK 12
p
S S=7l/'rp
oK

P__as+b+{c-termswith s?]

Tps+1

Differentiate once,

oaK T )
—ﬁ=a+{c-termswnh S|
T,.S+

p

So settings= 0 gives
a=—akK pTp
And the time domain responseis

It

—t
y(t)=aK o~ TptttTpe  °
The large time asmptote has slope o K, and intercept T

y(too)~aK (t—1,)
I-'l:;:,Jt“:l

&
\ .-III__.-- s 1..:5.,-{_1_ I-Jl!:u“&"_ '-J:\-';-l"'llmlr!rﬂ-l"_i'

Lf’;,/ = Yo = Hop =Ty )
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18.
@

x X

y(x)zl-i-((x—l)x

Thefirst order approximationis

(b)
A

PiS: PC@(p Al_TZA\?’

Thefirst order approximationis

A
s _ PpS 2 _ 2 _
P(T)=P3(T)+P, (T+A3)2exp(Al T A, TS(T T
PS(T )t =2 pS(T[T  with T'=T T
i s (TS+A3)2 i s ’ s
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19.
dx
gt = Dx+uls)x, (19.1)
ds o 1
G =P(Sn—S)—uls)x, (19.2)
where u(s)= K _+s

Linearization of the nonlinear terms:
D x~ szs+ DSx' +xSD'
D S’|n~ DsS|n,s+ DsS'in—i_Sln,sDl

Ds~Dsss+ Dss' +ssD'

where the deviation variables are:

X'=x—X;, D'=D-Dg, s'=s-s_, and s'in:s,m—sin‘S
and also,
leS Hm umss
u(s)x~u(s)x + (X=X )+X - (s—s.)
S S Km+SS s s Km+SS (Km+ss)2 °
HnK
=p(S)X (s )X +|x '
S S S S(Km+ss)2
Further define
umeXS
(5=
S (K s
Eqg. (19.1) can be written as
dx' D X' D’ ' '
F__( X' +x,D')+u(s)x' +ugs)s
dx' D v D' '
dt—+( S—u(ss))x =—x D' +pug(sy)s
And in terms of time constant and gains,
Tlgti +x'=—K,D' +K,s' (19.3)
where
1 XS IJS( S)
Tl: ) - ’ and K,=
Ds_“(ss) ! DS_U( s) 2 DS_N(SS)

and we have purposely chosen to have the negative sign to associate with theD' term because we know
increasein D will lead to a decreasein x.
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After Laplace transform,

K,y K,
= 194
T,5+1 T,5+1 (194)
Repeating the same exercise with Eqg. (19.2), we have
ds' . . . N ' '
T =—(Dgs'},+5,sD') —(Dgs'+s,D )—V{u(ss)x +ug(sy)s ]
ds' 1 . . 1 .
T + Ds+7“s(ss) s'=Dgs' (s, s—Ss) D _VU(Ss)X
And interms of time constant and gains,
ds' . . ' .
TZF +S ZKSSin+K4D —K5X (195)
where
_ 1
27 Tu(s)IY K3=7,D5, K,=7,(5,s=S)) , and Kg=T,u(s)/Y
S sS'TSs
K K -
S— 3 . 4 5 (19.6)
T,5+1 T,5+1 T,5+1
Now substitute Eg. (19.6) in (19.5):
™ Kz Ks : K4 _K5 X]»
T,5+1 T,5+1}||| T,5+1 n T,5+1 T,5+1 J

(1,5+1)(1,5+1) X=—K, (1,5+1)D+K,K S, +K,K,D—K,K; X

n
Finaly,
K,K,—K,(T,5+1)
(tys+1)(1,5+1)+K, K,

K,K,
_|_
(tys+1)(1,5+1)+K, K,

in
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20. Thenonlinear termis

kC,Cpg
"(Ca Col=Tik C 7KC
A~A B~B
kC kK ,C,C
r(C,, Co)~r(CS, C3)+ B - AZATB c,—CS
(Ca Cg)=r(Cp, Cp) 1+K,Cp+KgCpq  (1+K ,C,+K ,Cp)? S_S( a=CA
N kC, _ kKgC,Cq c.—c3)
I+K,CutKgCq (14K 4,Co+K5Cp)% |ss ° B
_r(cs, Yt kCB(1+KACA+KBCB)—kr2<ACACB .
(1+K ,C,+K5Cyp) ss.
KC,(1+K ,C,+KzCg)—kK,C,Cy .
(1+K ,C ,+K 5Cp)? .
KC.(1+K.C kC,(1+K ,C
=r(CS, C3)+ o1+ K sCo) > ot ALK ACH) 5
(1+K ,Co+KgCp) |ss (1+K ,Co+KgCp) |ss
Define shorthand
kCy(1+K4Cp) KC,(1+K ,C,)

SS. SS.

(14K ,Cp+KzCp) (1+K ,Co+KzCp)

So for the nonlinear equation,

dC, 1
dt =—(CAO—CA)—I'(CA, CB)
T

1
Atsteady state, 0="(C3,~C3)=r(C},, C)

And after substituting for the nonlinear term and using deviation variables,

dC'y 1, ., , . |
dat ==(C'p= C'p)=xC' ,=BC'g
-
dC'y 1 c 1A, .
ai +(;+o<)C A:;c 2~ BC'g

where C'a and C's are the deviation variables.
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21.
First in closing the small internal 1oop,
S T L ——
e B - = e —
| = “_'—Lt .III'—' A —TH-EJ_%‘-:T:II——'-II' I-'I_;II|I—1I_
)h- = .II_".E_._.‘-_ i,
ST N —
Kis __ K
1+K K/s s+K K
K
C s+K,K K
R . K @+KK,stK
s+K, K
c____ 1
R 1
K SHK, s+l

If K=Y, t=1/VK =%, and
2CT=KV , (=07,
Kv=2(0.7) (1/2) = 0.7
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22.
daT,, dT;

CpMygr=h AfTi=T,) . ad CpMy=h, Ay(T,=T))
can be written as

dT dT.

Tldt—mZ(Ti—Tm), and Tzdt—l=(To—Ti)
where

C .M C .M
__—~pl1 ___p2 "2
T 7hlA1 , and T, h, A,

After putting the equation in deviation variables, the linear equations will retain the same form. Further with
Laplace transform,

T 1 T, 1
—= , and —=

T, 7,;5+1 Ty T,8+1
Tw 1 1

T, (1,5+1) (1,5+1)

Theresponseis 2 order overdamped with time constantst1 and T2. The steady state gainis 1 and hence Tm
will eventually be identical to To.
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23. Thekey isthat the dominant polein (b) is complex and oscillations die out more slowly thanin (a). In (c),
thepoleat s=0will lead to a constant from an impulseinput and a ramp from a step input.

Tim E-uhﬁ;'- CLSYIon L ]

Le)
ICL,‘\—"‘-—-

N

Rk -L;La-f ¢ [l L

'|
a— A i

oy

* Alittle “bump” will appear if the oscillations die out quickly.
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24,
fi=y—ayy,
fi~yi—alyiys+ya Yy +yiy',l, with yy=y,—y7,and y',=y,~y;
fo==Y,+BY:Y,
fo~ =Yt BlY Yot Y5 Y 1t VI Y )l

At steady state,

0=yj—ay; Y5
0=—y5+BYiY;

Thelinearized equations are:

dy';, | . .

TR —XYo Y Yy,

dy'

dt2=—y'2+By§y'1+Byiy'2
In matrix form,

d|yy|_|1may;  —ayp |y

dtly,| | By —1+BYy5[|Y"

The characteristic polynomia is
(s—1+ay;)(s+1-By;)+aB Y] y5=0
After expansion and cancellation of terms,

S+ ys—B Yy s+ y5+B y;—1)=0
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25. There are three poles. The transfer function is third order.

@ [s=(=2+j)] [s—(=2= DI=l(s+2)= j1 [(s+2)+ j]=(s+2)*+1

_ (s+1)x _ (s+1)
(s+4)(s’+4s+5) 20 (%s+1)(%32+§s+1)

The steady state gain is given as 2, so 2 = a/20 or o, = 40. Hence,

Gls)=— 2(1S+21)4
(Zs+1)(§s +§s+1)

(b) The term (s + 4) givesrise to e ™', and (s?+4s+5) gives e 2'sin(t+¢) in the time domain. The
time constants are Y4 and Y.

We can double check with (1/5s°+4/55+1) ,
=15, 2¢t=4/5, T=(1/2)(4/5)(V5)=2/45
So, T/C¢=(1/\5) (\5/2)=1/2.

(c) With §=2/\/§=0,89 , the response will only be very slightly underdamped.

2 |- = Ar—

A reasonable settling time can be either 3t/C (for within 5%) or 4</C (within 2%), meaning 3/2 or 4/2.
Note: in the rough hand sketch, we casually labeled “~5/2” only because the drawing is close to being
at the steady state, and so we denoted that as roughly 5t/C.

(d) Now
Y 40(s+1)
x 67 z
s(s+4)(s“+4s+5)

With the additional pole at s = 0, a step input will lead to a ramp response.
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26.
The poles and their time domain functional formsare;

+2] - €n2t



Part | Solutions

27.

1
5, andtheinput Q,(s)=1

Qz(s):m

/

So ,(t) should havetheform (a,+a,t)e™" ", witht=6,and 0,(t—)=0,

If Q2(5)=S( 1 , then Q,(t—o0)=1.

6s+1)
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28.
1 _a_ b ,_C
s(t;s+1)(t,s+1) S T;5+1 T,s5+1
with
:; =
(ty5+1)(1,5+1)|s=0
2
-1 S L
s(t,8+1) s=—1/r, (t,/1,=1) (7,—1,)
2 2
_ 1 __ T T2 7T
s(t,s+1) s=—1/, (ty/1,-1) (7,7, (7,7,
2 2
T “t/r T “t/r
yit)=1+—2 Letm__T2 1gUm
T,=T, Ty T,~T, T,
=1+ 1 [Tle_“Tl—Tze_t/Tz
T,~T,
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29.

And

e=R-Hb
C=a+b=Fe+Ge, b=Ge

b=Ge=G(R—Hb)

_ GR
1+GH

. HG ] o 1

e=R|1 1+GH}_R1+GH
[ F+G

_1+GH]R
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30.

2K
C_ s(st1) 2K
R

2K s(s+1)+2K

1+ s(s+1)
1

c
R

1 1
(W) 2+(W)S+1

Thetransfer function has unity gain, so thereis no steady state error.
If the overshoot is 0.1, then{ = 0.59,

1 1 1 12
[ — [ p— _— 2 =, =
TR 28Tk fTak) 4\/;

K=0.35
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31
@

f(t)=2t—2(t—2)u(t—2)

The second term on the right really isthe function g(t—2)=g(t—2)uft

—2) ,where g(t)=—2t.You
cannot write -2t + 4.

Here,

2 2 - 2
Flo)=5-Se =5

e
£ s s

N o L iy A LTSy

1 | (L
N ﬁ = | é
- e
L =t '
.'E\,rlbl,_-nq‘} = (E-ayuli-a"y

f(t)=t—2(t—2)u(t—2)+(t—4)u(t—4)

1 2 —2S 1 —4s

F(s)==—-5€e “°+5e
2 & s?
—L (126246
s

(c) Theanswer to thispart isbased on parts (a) and (b), and we need to superimpose four functions:

f(t)=2t—2(t—2)u(t—2)—2(t—6)u(t—6)+2(t—8)u(t—8)

1 =
|I /_ F\r
F (s):%(l—e’zs—e’65+ g 8| -

S L e B



Part | Solutions

32. The algebraic relations based on Fig. P1.32:
E,=E,~G M
And skipping one step, we can still see from the diagram that
E,=R-C+e¢ C, , with C,=G"M
After substituting for Ez in the E2 equation:
E,=(R-C)+e **G"M-G"M
E,=(R-C)-G M , after defining G=G"(1—e ")

From these reduced block diagram (see sketch on the right), R Eiy M\
the location where we usually have the controller function is: F = o |

= G = G \‘ }:: 4
1+GG 1+GG (1-e™%) —

c

So finally,
C_ GG, _ GG,
ROIHG6G, 14667 (1-¢ *)+GG,

Alternate route: use Mason's gain formula.

There is only one forward path with the path gain:
F1=GG,

There are three negative feedback loops: the big one plus two smaller ones within. The system
determinant is

A:1+GGP+GG*—GG*e_05
or
A=1+ GGp+GG*(1—e"’S)

Note that the last term is negative because as we go through this loop, we encounter two minus signs.
Dividing these two quantities gives us the transfer function above.
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33.
1/2
g=C.R 1 AP(h) Ap(h):(P°+pgh)_Pl
Y Ps g
To linearize the nonlinear term:
—~ S S @ ' @ ' v S " S
a~q(l ’h)+a| SSI +6hssh , 1'=1-1°, h'=h-h
o |12
29 _¢ [API)) 1 RR™1=q (1%, b InR=C,
Ol |ss Ps
—-1/2
29 =C RIS*llﬂ L(hs) =C
ohlss Y chps Ps 2

where we have defined C1 and Cz as* shorthand” notations. The differential equation becomes:

dh' \ .
AW:q O_Cll —Czh

dh' .
AW +C2h =q O_Cll

Adh ., 1 C,
c, dt ""=¢,90¢g,

dh' . A 1 G
Tdt +h K.a', K.l T—CZ, Kl—Cz, K,= )

After Laplace transform:
H (5)=| —2-Qu(s)-|—2- |L(
Ts+1]|°° Ts+1




Part | Solutions

34.
The mass balance of A is:
dC ) _
Td—tA:cAi_cAJrTrA , with (—r,)=2k & “FCi (34-1)

which follows the chemical kinetics convention of (v,r) . And the energy balance:

dT (—AH)T _UA

— =T, -T+—(—r C(T-T -
T T W e T (34-2)
Here, the linearized reaction rate is
—E/RT, —E/RT, E —E/RT,
(—r,)~2k e Ci Fak,e CA,S<CA_CA,S)+—RT2 2k e Ch (T-Ty
S
Define
—E/RT, —E/RT
(—rp=2ke  *Ci, . k(T)=ke °,
C'A=CA—CA’S, T‘=T—TS
and the linearized rate in a more compact form:
. E .
(_rA)N(_rA,s)+4k(Ts)CA,sC AT 2(_rA,S)T (34-3)
RTS
After linearization, the reactant A mass balance becomes
dC'A . ' E .
T—dt =-C',\—7 4k(TS)CA‘SC A+_RT2(_rA’S)T
S
dacC' E
T th +[1+4Tk(TS)cA’S]cA=—T—RTZ(—rAS) '
S
dcC',
T2 4 C =K, T’ (34-4)
dt
where
E
T T 2(_rA s)
- RT '
A lark(TC, M K
1+4-rk(TS)CA’S
After Laplace transform,
C “a T G,(9)T
=— S)=—G,(s)T(s 34-5
Al TAS+1() A(S)T(s) (34-5)
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The linearized energy balance becomes

' — UA
Td—T=T'i—T'+7( AH)T 4k(T,)C, SC'A+—E2(—rAs)T' —k(T'=T')  g=—2C
dt pC, ’ RT, rC,Q
daT’ (—AH)T| E . - |(=AH)T , ,
TW 1+K—p7cp R—Tz (—rA’S) T :T i+ p—Cp4k(TS)CA'S CA+KTC
Define " shorthand” notations,
(-AH)T| E (—AH)T
w K pcp RTi ( A,S) ] B pcp 4k<TS)CA,S ’
then we can write
Tdd—-l; +wT'=T +kT +BC',
and finally,
aT' , . . ,
Trgp T =K Ky T+ Ky C'y (34-6)
where
T 1 K B
=, K==, Ky=—, K==~
Tva T ol Lo h .
After Laplace transform,
K K K
T(s)=|——— [T,(5)+| —= )+ —2—|C,(s)
T,5+1 T;5+1 T.5+1 (34-7)
=GT1(S)Ti(S)+GTZ(S)TC(S)+GT3(S)CA(S)
Sub Eq. (34-7) in (34-5):
CA(S)=—GA(S){GT (9)Ti(8)+ Gy (8)To(s)+ Gy () CA(S)]
c —GA(S)GTl(s) —GA(S)GTZ(S) .
S)=|———|T.(8)+| ——————— s -
A1 15G,96, 9| | Tre, 96, (9| ¥ (34-8)

The same procedure applies to the energy balance equation.
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1.(a
T,S+1 K
G=K,———, G=—"2>"
xTpS+1l TpS+l
With simple unity feedback,
c GG, K K (Tps+1)

R 146G, (atps+1)(t,s+1) +K K (T 5+1)

C KCKp(TDS—i-l)
R O(TDTpSZ+(D(TD+Tp+KCK p'rD)S—i-(l—i- K.K p)
Rewriting it as
c___K
R t?g®+2¢7s+1
where we have the closed-loop steady state gain and natural time period defined as

1/2

_ KKy d = 207p
TR K, T TR TR K
cp c''p
To find the damping ratio,
1 oot HK K Ty (14K K|
2 1+KcKp o(TD'rp

1 TD(oH-KCKp) +T
aTDTp(l—i-KCK p)

(b) From the natural time period equation, if a decreases, so doesT.

(c) Load change problem. Weexpect G, =K ,/( pST 1) , i.e., same processtime constant Tp, and

c__G
L 1+G.G,
Ky .
Offset dueto load change= 0 TR K where the zero represents no changeinR.
c' *d

(d)
"""""-"‘L"“ Wil el eal T T shill s, 'Leml Ao,

o [ e

St Loty sl T
—— Ty
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(e) Wecan figure out with asimple root locus sketch, without doing much work, that the system with areal
PID will not have complex closed-loop poles (or underdamped behavior).

e e 1
I S - B s = f
5 - = Al "'3.? Ty |
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1 (partial, without Part €).

@
T,S+1 K
G=K,———, G=—22"
xTpS+1 TpS+l
With simple unity feedback,
C_ GG, K K,(Tps+1)

R 1+GG ((XTDS+1)(TpS+l)+KCKp(TpS+1)

c KK y(tps+1)
R O(TDTpSZ+(O(TD+Tp+KCKpTD)S-‘r(l-‘rKcKp)
Rewriting it as

C K

R ??+2C Ts+1
where we have the closed-loop steady state gain and natural time period defined as

o KeKp [ arpr, |
1+K K, 1+K K
To find the damping ratio,
1 et KK Ty [1HK K |2
2 1+K K ATy,

1 TD(oH-KcKp) +T
2 JarpTy(1+K K )

(b) From the natural time period equation, if o decreases, so doesT.

(c) Load change problem. We expect GL=Kd/(TpS+1) , i.e., same process time constant tp, and
c__ G
L 1+G.G,

Offset dueto load change= 0 — , where the zero represents no change inR.

__nd
1K Ky

C

(d)
i "-"‘L"“ Wil el eal T T shill s, 'Lep,_,l%

ok | /"__—_ B Yo s,

T B Lt aal, T
—
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2. The characteristic equation is

—s+1
c(s+1)(s+2)

(@) (s+1)(s+2)+K (—s+1)=0
s*+(3—K )s+2+K =0
For a stable system, we need
3—K.>0  and 2+K_>0
So
—-2<K_<3

(b) The term (s + 1)/(s + 1) is the first order Padé approximation of ¢ ~2* . The presence of the open-loop
positive zero (s = 1) makes the system unstable when K. > K, the ultimate gain. Otherwise, both
“systems” with the respective characteristic equations,

1 1

R 6+ (542)

=0

=0 ,and 1+ Kc

are always stable.

FYI To find the K., rigorously, we need to use

e—25
1+K —=0
“(s+2)

and Bode plots as explained in Chapter 8 and MATLAB Session 7. We should find Kc, = 2.38.

(c) To explain stability using frequency response, we write

1 1

G =(—s+1)

Before we do the Bode plot, we need to take a look at G(s) = (—s + 1) and its Nyquist plot. For this
function,

G(jm)=1—jo.
So its Nyquist plot is a vertical line that begins at +1 when ® = 0, and goes downward to negative infinity.
The format expressions for the magnitude and phase angle are

|G(i@)| =V(1 +®?),and ZG(jo)=tan"!(—w).

So the log-log magnitude plot of this function is like a first-order lead, with a slope of +1 past the break
frequency, but its phase angle plot is like that of a first order lag.
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The G* magnitude plot is identical to that of 1/(s +2). The (—s + 1) and (s + 1) contributions cancel each
other. In the phase angle plot, all three “terms” contribute a —-90° lag each.

Note: Since we wrote the solution, MATLAB made some changes to their computational algorithm and
the Bode plot of G(s) =(—s + 1) begins at 360° instead of 0°, but its calculation of gain margin (or really
critical gain) is still correct.



Part |1 Solutions

3. (&) The characteristic equationis
s(s+2)(s*+1)+ K 2(s+1)=0

Expanding,
s'+28%+8°+2(1+K )s+2K =0

So the necessary conditionsfor stability is
2(1+K >0, K, >-1 and 2K_>0

That is, we need K¢ > O for positive proportional gains.

Now with the Routh array
1 1 2K,
2 2(1+K,) ©
b, 2K,
o 0
2K,
where
2—-2(1+K
b1=%>0, meaning —K >0, or K <0

This requirement contradictsKc > 0 from the coefficient test.
We cannot find a proportiona controller if Kc > 0.

(b) WithaPI controller,

s+1
Lk (T,s+1)  2(s+1) 0

¢ 15 s(s+2)(s*+1)

we now add one more open-loop poleat s= 0. It isunlikely to work.

With aPD controller,

2(s+1)
1+K (tps+1) 7s(s+2)(sz+1) 0

By adding just one more open-loop zero, —1/7 , this appearsto be the more sensible thing to try.

(c) Use rlocus( ) inMATLAB,

|
e
P " PD ﬂ_-;;f'r
ik, Gﬂi‘—t_j 2 _qL

A system with PD control isstableif tp islarge enough.
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4. The closed-loop characteristic equationis

K
1+K,———=0
°s(7p3+1)

The closed-loop transfer functionis
E: Gpo _ K K _ 1
R 1+G.G, s(r s+1)+K K

o

K K

2

s+ s+1

1
K.K

C

(8) Thesystem has unity steady state gain; there is no offset. We do not need integral control. We can use P or
PD control.

(b)

I:.I-. "'I;
(©
T 1
P 2 22
S+ S+1=71°s"+2Cts+1
K_K K_K TSHeLT
1/2 1/2
Ty =l 1 KKV 1
T= , 6=5 =5 T
K.K 2KCK T 2 KCKTp
Now

=12 ,K=06,1p=3,

1 1
KCZE WZOZS

The closed-loop polesare —¢/7+ jy1—¢?/t . WithKe=0.28, and T = 4.24, the poles are at —0.167+ 0.167].

(d) Thetimeconstantis T/¢ = 4.24/0.707 = 6. Can double check with
1/2

2(K KT "?=27 =6

K.K

(e) T/T=27, isindependent of {. Resultsin parts(c) to () are consistent with the root locus plot.

p
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4 (partia, without part b).
The closed-loop characteristic equationis

K
1+K,———=0
CS(TpS+1)

The closed-loop transfer functionis
E: Gpo _ K K _ 1
R 1+G.G, s(r s+1)+K K

o

K K

2

s+ s+1

1
K.K

C

(8) Thesystem has unity steady state gain; there is no offset. We do not need integral control. We can use P or
PD control.

(c)
T 1
p |2 2.2
+ +1= +2 +1
KCK S KCK S TS cts
1/2 1/2
Ty L 1 KeKY7" 1
T= y =— _ =
K.K 2 KCK T 2 KCKTp
Now

C=1/N2 ,K=06,1p=3,

_1_ 1
Ke=3 (3)(0.6)_0'28

The closed-loop polesare —¢/7+ j\1—g?/t . WithKe=0.28, and T = 4.24, the poles are at —0.167+ 0.167].

(d) Thetimeconstantis T/¢ = 4.24/0.707 = 6. Can double check with

T
T_ p 1/2_ _
E_ —KCK 2(K.K Tp) =27,=6

(e T/C:2Tp isindependent of {. Resultsin parts(c) to (e) are consistent with the root locus plot.
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5. Wefirst need to close the inner loop:

o e _—
- VY& 5 : T o
'-_—_';E_?‘} i = M Ten = Floxi

| S

e -

We aso want to take note that the feedback function 1/(s + 10) has a steady state gain of 1/10. To havea
system with consistent units, we need to add this 1/10 asKm asin Fig. 5.5 (text), but which isomitted in
this problem statement. Y ou'd also find that you need thisKm if you need to show that the system, with a
Pl controller (Fig. Pll. 5b) has no offset.

(@) ForFig. PlIl. 5A,

c K (tpst+1)/(s+3) K (tps+1)(s+10)
R L Kelrpstl) (s+3)(s+10)+K (T s+1)
(s+3)(s+10)
TakeR=1/s,
imlsC 10K,
C(tﬁw)—gm[s ]_30+Kc
nd e e, ey B P, S
10K, TR VR

offset= 1—c(t =1- P
( —)CX:)) 30+KC E  — -IH-‘T-I.N:_:.E\_"—_.!J

We now repeat by adding K, (Fig. 5.5 text) back, then
1 10K, K K 30

C

c(t==)=15 30+K, 30+K, vand offset = =577 T301K,
For Fig. PIl 5b,
C K (T, s+1)(s+10)

R 7,5(s+3)(s+10)+K (T, s+1)

WithR=1/s, c(t—w)=10 . Indeed we need to introduce Km= 1/10 so that c(t —)=(1/10)10=1.
Now, there isno offset.

(b) The closed-loop characteristic equation is

1 1
(s+3) (s+10)

1+K (tps+1)

$°+(13+K 1) s+30+K =0
So we need
30+K_ >0, and 13+K_ 1,>0

The system is always stablewithK. >0 and 1o > 0.
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(c) Threegenerd possibilities:
7w | \ "
o
1
|
L

i ; |
= T % Fe ——
= 13 =5 =% =% ¥

)

‘—‘1_5:5":- =4} WO Y, T R, AP
& I A 1 e
T R R i Ty Y

(d) We have underdamped behavior only whentp < 1/10. To find an expression for the damping ratio, we
need the closed-loop characteristic equation in part (b) written as

1 , |B+K Ty
s+ s+1=0
30+K, 30+K,
SO
12 1 [1B8+K,T 1 1B+K.T
= Jand T== | ——S P J(304+K V2= — ¢ D
30+K, 2| 30+K, © 2(30+K )2

(But actual computation is much easier with root locus and using the £=cos0 lineto find Kc.) The other
two ranges of 1o have no oscillations, but they are also d ower—the closed-loop dominant poles are closer
to the origin. So we prefer 1p < /10 asthe basis of the controller.

Lk (t,s+1) o
© e s+ a)(sr10)

Possihilities of the range of T;:

W~ e~ —jllf'— e F—H—
=i =% ( -1 ~T i =g =T |
= L | i i
L1?"% T__u':-':".l'_"-'\'.-"} T

(f) Needtouse MATLAB and root locus plots. When T, = 0.3, cannot have { = 0.2. For { = 0.9, K¢ ~ 29.

(9) T =213 will lead to pole-zero cancellation. The root locus plot is that of a second order system with open-
loop polesat 0 and -10.

—-:——a-;——lpi

-l L
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5 (partial, Part aonly).
Wefirst need to close the inner loop:

7, S v T
J,:— 1—?—'-“—": ! = — = 'a—r = | .:_.-IL._—Q -
W ey B R LT xS

We aso want to take note that the feedback function 1/(s + 10) has a steady state gain of 1/10. To havea
system with consistent units, we need to add this 1/10 asKm asin Fig. 5.5 (text), but which isomitted in
this problem statement. Y ou'd also find that you need thisKm if you need to show that the system, with a
Pl controller (Fig. Pll. 5b) has no offset.

(@) ForFig. PlIl. 5A,
c K (tpst+1)/(s+3) K (tps+1)(s+10)

R K.(tps+1) (s+3)(s+10)+K (tps+1)
T (s+3)(s+10)

TakeR=1/s,

imec 10K,
C(tﬁw)—gm[s ]_30+Kc

and
10K, T2l A
30+K, : —am

offset= 1—c(t—ow)=1—

We now repeat by adding K, (Fig. 5.5 text) back, then
1 10K, K K 30

C

c(t==)=15 30+K, 30+K, vand offset = =577 T301K,
For Fig. PIl 5b,
C K (T, s+1)(s+10)

R 7,5(s+3)(s+10)+K (T, s+1)

WithR=1/s, c(t—w)=10 . Indeed we need to introduce Km= 1/10 so that c(t —)=(1/10)10=1.
Now, there isno offset.
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6. Thecharacteristic equationis

‘ \

1+— = |
(s+2)(s+4) .
e
s°+65+8+K =0 ~a tF -1
|
1
The closed-loop polesare s:—Si%\/36—4(8+K) . 41) L

When the system is critically damped, 36—4(8+K)=0 or K = 1. Thusthe systemis overdamped
when K < 1 and underdamped whenK > 1.

1\, [ 6 B
81K S+ 81K s+1=0
T2 +2C T5+1=0

1 1 6 3 3|2
- ==_—_8+K= 8+K ==
T \/84‘7}(' C 2 81K m ,andthus (g)

When ¢ = 0.707, K = 10.

The steady state gain should beK/(8 + K). So when K = 10, the steady state error is1 —K/(8 + K) = 0.44, quite
large.

Thetime constantis T/¢=(1/V8+K )(¥8+ K /3)=1/3, which is obvious from the closed-loop poles. So
95% settling time would be roughly 37/Z=1 [time units], and if we choose 98% settling time, thetmie
congtant would beroughly 4t/C=4/3.

If the overshoot is 0.1, then from 0.1=exp(—m¢/V1-¢?), £=059, and
8+K=(3/C)?,orK=17.7

Theload function should also have (s + 2) (s+ 4) in its denominator.
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6 (partial, Part b only).
The characteristic equation is

K
M i 2)(s1a)

2+65+8+K =0
The closed-loop polesare s=—3i%\/36—4(8+ K).

When the system iscritically damped, 36—4(8+K)=0 or K = 1. (Thusthe system is overdamped
when K < 1 and underdamped whenK > 1.)
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—0.35s
K.e

51s+1)(12571) O

1+(

(a) Define (time constants are in minutes)

—0.35s
K.e

(51s+1)(1.2s+1)

G(s)=

WithK. = 7.5, w= 0.8 rad/min,

1 1
V14512082 V1+1.220.82

IG(jw)|=75 1.29
+G(jw)=tan"}(~5.1x0.8)+tan }(—1.2x0.8)—(0.35)(0.8)(180/1r)
=—76.2°—43.8°—16°=—136°

(b) Thispart follows Example 7.4A. UseMATLAB. First enter

conv([5.1 1], [1.2 1]);

tf(1,p);
dead = 0. 35;

p
g
t

Then follow the example, and after usingmar gi n() , should find K, = 19.1

When thereis no dead time, it is asimple second order system and thisis always stable.

(c) UseK.=19./1.7=11.2
(WecandoaMATLAB nar gi n() caculationto confirmthat.)

(d) Thisfollows Example 6.3D. After generating the resultsin part (b), put together

tmp = [freq; nag; phase]’

Should find where the frequency is approximately 1.02, that magnitude ~ 0.12, and phase angle ~ 150°.

SoweuseK. = 1/0.12 = 8.3. (Again, we can do aMATLAB calculation to confirm that K. = 8.3 will have

aPM ~ 30°)
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8. Thecharacteristic equationis

T, s+1 2

25+1 0

TS

(a) Expected shape of the root locus plots:

R Ty = =

Tz |

Only when 1, = 1 will we have complex closed-loop poles. (Note that T, = 2 leads to pole-zero

cancellation, what direct synthesistriesto do.)

(b) UseMATLAB and = %

G =tf(2, [2,1]);

taui = 1;

G =tf([taui 1], [taui 0]);
rl ocus(Gec* &)

sgrid(3/4, 1)
rlocfind(Gec*Q3)

Should find K. ~ 0.26 at the closed-loop poles—0.38+ 0.34;,

and K. ~ 1.01 at the closed-loop poles—0.76+ 0.66j.
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9. The characterigtic equationis

2(1+B5s)
s(s+2)

If B isapositive number, the roots will always have a negative real part and the system isaways stable.
(1/2)$*+(1+B)s+1=0
1=1/N2, 2Ct=(1+B),andthus £=(1/2)v2(1+B)=(1+p)/2

To be underdamped, we want

_1t8

C N <1, leadto 1+B8<V2 and B<0.41



Part |1 Solutions

10. The characteristic equationis

14_K(1+bs):0
s(ts+1)

175°+(1+K b)s+K =0
Now, K =1,andT =1,

s*+(1+b)s+1=0, leadingto 2¢ T=(1+b) or §=%(1+b)

If{=0.7,b=(2)(0.7)-1=0.4.
If b increases, { increases and the system is less underdamped. It would beoverdamped when b > 1.
If b =0, the system would only have proportional control (asburied inthisbigK in this problem.)

For

c,(s
A )=1+bs,or cl(t)=c+bd—C
c(s)

dt
the feedback information includes the rate of change of controlled variablec.
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11.

Case (a): the characteristic equationis

K.K p(1+TDS)
Tp5+1

1+

Case (b): the characteristic equation is

K.K p(1—i—1‘DS)
Tp5+1

1+

They areidentical. Their root locus plots are also identical. Can take on either one of the two possibilities

L e — = i) !I
o R 0 | L i 1
e’ i -:’I"\" 5] I|
But the two cases have different closed-loop functions.
Case (a):
C KCKp(1+TDS) KcKp(1+TDS)
5 =

(TpS+1)+ K.K p(1+TDS) (Tp+KCK pTD)S+(1+ K.K p)
c Ki(1+1p9)

K.K T +K K T
s with Ky=———F— and 7 =—2 =P 0D
R™ 1,541 U1K K, TTIRKK,
Cae (b):
c K K, K,
R

(T,5+1)+K K (1+Tps) T,5+1

They have the same steady state gainsK; and time constant 1., but case () has the response of alead-lag
element, while case (b) isjust first order.

Both cases have offset = 1 —K; = 1/(1 + KcK).
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12. The characteristic equationis

T, s+1 1

(s+1)(s+2)

C

T|S

Gp = tf(1, conv([1 1], [2 1]));

taui = 2.5 %r 1.5, 0.5
G = tf([taui 1], [taui 0]);
rl ocus(Gec* &)

sgrid(0.7,1)

rlocfind(Ge*Gp)

(8) Fromthe MATLAB resultsfor (=0.7,

T
=25
|
x—é-:—ah
=15
\
WO '
lr'-' \
=05
| A
"

The MATLAB statements are similar to those in Example 7.5A:

Gain and closed-loop poles

Ke~ 1.16,
polesat —0.33 and —0.58+0.59

Kc~0.57,
polesat —0.33+0.34j and —0.83

Kc - Ol,
polesat —0.21+0.22) and —1.07
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(b) Thecasewitht, =0.5istheleast desirable. The system can become unstable with low K. and for { = 0.7,
the dominant polesat 2.1+ 0.22) are the dowest of all three cases. (Recall that the real part of the
complex poleis-(/t.)

For t, = 1.5 and 2.5, the dominant poles are -0.33+0.34j and —0.33, respectively. So in terms of “ speed”
and settling time, they behave the same. The differenceisthat witht, = 2.5, the complex poleis“faster”
and so oscillationswill be damped out quicker than when we uset, = 1.5, in which case the complex poles
arethe slower ones (c.f. real pole at —0.83.).



Part |1 Solutions

13. The closed-loop characteristic equationis

(tps+1)
14+K, =
(12s+1)(s+1)
The possibilities (can be from doing MATLAB) are:
| i
(N T | e | (73 < o < V2 EY ravriv . Ta™ b
Ly el , O & - -,
L IRt
2t <
| |
I' s H—ﬂ—ll ——¥ K3
X I. - e |I B i f—L I'l_

Only case (1) can have an underdamped system. In all cases, we have a second order system with no positive
zero; the systemis stable for al K. > 0.

With aPI controller, we have
(t,s+1)

1+K =0
¢ 1,8(12s+1)(s+1)

The possibilities (can be from doing MATLAB) are:
= Ly e Tpe VL LE\} Tr 7\V2

Uy Trel o

All choices of 1, lead to an underdamped system. It can become unstable whent, < 1.

Now given T, = 0.5, the closed-loop characteristic equation is
(% s+1)
1+K =0

¢ %5(125+1)(s+1)

%s(1252+13s+1)+ KC(%S—i-l):O

125°+13s*+(1+K ) s+2K =0

So simply based on the coefficients, we must have
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1+K.>0,0r K;>—1 (Orsimply K> Ofor positive proportional gains)

Now the Routh array:
12 1+K,
13 2K,
b1
2K,
with

_(13)(1+K )-24K, o

1 13
13(1+K ) >24K  or 118>K,

Soweneed (for positive proportiona gains)
0<K_ <118
Repeat with s= jo subgtitution:
~12w?j-13w*+(1+K Jw j+2K =0
Thereal parts:
2K —13w*=0, K_=(13/2) v
Theimaginary parts:
w(—12w’+1+K )=0
Substituting for Ke:

—1201)2+1+1—é3 w?=0

will lead to
w?=018, K,=118

Finaly, with Pl control, thereis no offset.
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14.
(8) The closed-loop characteristic equationis

3e°

LK gsri™

0

Using afirst-order Padé approximation, it becomes

3(-1/2s+1)
WKezsrnwzs+n) °

(%s+1)(4s+1)+3KC(—%S+1)=O

252+g(3—Kc)s+(1+3Kc):0

Stability requires
3-K.>0, 0or K <3
1+3K >0, or K ,>-1/3

Together, for positive values of proportional gain,
0<K, <3

(b) Substitutings=jwintheorigina characteristic equation,

4w j+1+3K (cosw—jsnw)=0

Thered parts:
1+3K cosw=0

Theimaginary parts:
4w—3K_ snw=0

Subsgtituting for Ke:
4w+tan w=0

Solving with MATLAB, should find w,=1.72 and K ,=—1/(3cosw)=2.3 .

(c) Needto add the dead timeto theMATLAB bode() phaseangle asin Example 8.6. We can also use our
M-file“ezbo. ni which contains most of the statements that we need.

Note: the default frequency vector chosen by MATLAB in this problem istoo low. Make sure you define
your own asin

freq = | ogpsace(-2, 1, 100);
[ mag, phase] = bode(G freq);

From our ezbo. m wefound K, = 2.31 and g = 1.71, which are consistent with the resultsin part (b).
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15.
(@ With G p=K /s, there are two polesat the origin. A step input (16) will give 1/s%, and the time response
isto the order of t2.

(b) With G, = K,

€_ ALY hichis of theform w @
==————— ,whichi
R $+KK, s+ w?

The closed-loop step responseis asinusoidal function with frequency v K K, so if we have picked K.,
we can compute K.

(c) WithaPI controller, there will be three open-loop poles at the origin, which isunlikely to have stable

system.
Anided PD controller should provide a stable system:

(You cantry both Pl and PD controllerswith MATLAB.)
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15 (partial, without Part c).
(@ With G p=K /s, there are two polesat the origin. A step input (16) will give 1/s%, and the time response
isto the order of t2.

(b) With G =K.,

€_ ALY hichis of theform w @
==————— ,whichi
R $+KK, S+ w?

The closed-loop step responseis asinusoidal function with frequency v K K, so if we have picked K.,
we can compute K.
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16.
(8 First, follow thetext andset C/R=e "%/(t_s+1) , whichleadsto

TpS+1 e*@S

Cc —t.s —0s
Kpe * (t;s+l)—e
=TpS+l 1

¢ Ky (r,st1)-€®

if we chooseto have 0=t

Now substitute e_95=(—% S+ 1)/(% s+1),

(Tps+1)(gs+1)

1
G-t

K _
p (Tcs+1)<gs+1)—<79s+1)

(rps+1)(55+1)

K

T.0/2

C
T 10

s+1

P (1,+0)s

0

—s+1 . T.0/2

2 , where 7 =
+0

T s+1 Te

11

K (Tc+9) T S

So we have

K;m,and T,=T, (they arethe sameas direct synthesis)

Also TDI% ,

Yo_c .
402 T 40 P

and for the real derivativepart, T =

Theratio T./(T,+0) islessthan 1 but not that small. Thisisalso the answer to part c.

(b) G =G_,G__, wherenow
P~ Tp+p

G “s 0
S5 . ,ad G, ,=—(2s+1
T (rys+1)(Ss+) ps= (ST
Now
0
o 1 1 2 (Tps+1)(§s+1) 1
© G, |T.st1] K, (1 5+1)2
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0
(Tps+1)(5s+1) 1
G: G:; _ Kp (TCS+1)2
c * X
1766, 1 (O
(t,s+1) 2

After simplification,

(T,5+1)(35+1)

G =

11
¢ Kps

p
(T(Z:S+2TC+9/2)

This can be rearranged to a PID controller,

0 2
-s+1 . T
G __ "o g L2707 with o=
¢ Kp(ZTC+9/2) T, S T s+1 27,4012
And we can identify
T
K=——P T,=T,, ad Tp,=0/2

© K, (21,+0/2)

Thevaue of K. isdlightly smaller than that of using direct synthes's, but the choice of 1, isthe same.
Typicaly, 1,> 8, sowehaveT, > T, too. And for the (approximate) real derivative action, «xt,= T,
which is not that small avalue.
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17.

G,= 20511 has open-loop pole at —1/20 or —0.05

0.5
G = - —
S has open-loop pole at —1

(The problem statement has an open-loop pole at —5, but the original solution used —10. So here's the answer
to the -5 in the text.)

(a) Now with two additional open-loop poles at 0 and —5, and zeros at —0.1 and —0.5, the system must have a
real PID controller.

Typically, t; > Tp, so we should have 7, =10 (1/0.1), and tp =2 (1/0.5).
And-1/0t , =-5, meaning &t = 0.1.

G =K T,5+1 Tps+1

c c

_KL(IOSH)( 25+1 )

T,S xTps+1 B 10 s 0.1s+1

(b) The order of the system with G,, G,, and the real PID controller is 4.

(c) You can tell what is on the real axis easily, but you need MATLAB to get the shape of the root locus plot.

1
= il
"[ 7R

| |1 i

| L
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18. The closed-loop characteristic equation is, after cancellation of (s + 5),

10
I+ K ———==0
s(s+20)

$24+205+10K=0

The poles are at

S:—ZOi\/ 400—40 K
2

(a) The system is overdamped when 400 —40K > 0 or K < 10;
critically damped when K = 10, with the two repeated closed-loop poles at —10;
and underdamped when 400 — 40K <0 or K > 10;
(b)
| |

PSR, S
~20 ""T I

& d
|

(c) With integration in G, the system has no offset. We can confirm that by finding the closed-loop steady

state gain.
c_ 66, _ 10K
R 1+G,G, s(s+20)+10K
c_ !
R . . .
s2+£s+1 , which has unity gain
10K K

To find K such that the system has a damping ratio of 0.7, match

1L Vo 2 = 22
(IOK K +Ks+1—‘r s°+2CTs+1
o 112 e [10

If{=0.7, K=10/0.49=20.4
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19.
Parts (@) and (b):
Fig. P11.19(a) can first be modified to

b

ey W 7%

L "

G.G,
1GG

G,G,+G,
1+G,G,

To dimintae the effect of disturbanceL, wewant G,G(+G =0, 0or G;=-G /G, .

Fig. PI1.19(b) can be rearranged to

‘L—I"-E'L_L"E_’ : s u_:z
So
GG, C.G,G+G,
T|1+G, G 1+G.G,

To diminatethe effect of L, wewant G,G,G+G, =0, 0or G;=-G /GG, .

Part (c):
Fig. PI119(a) is better because we can compute Gt without having to worry about G.. In Fig. PI1.19(b),
not only does Gr depends on G, but the function Gr can easily end up to have a higher order nominator
polynomial.

Part (d): Fig. PI1.19(c) is

_{E{—Tjﬂ ﬂT

Using the (dummy) variableb,
C=K.G,b

b=(1+—)(R—C)—7SC =(1+—) R—(1+——+7,5)C

T|S T|S T|S

Substitute for b,
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B 1
1 +Kc(l+$+TDS)Gp

With Fig. PI1.19(d),

T N -"‘Ia
= ||_"|:1‘=-5' - E
et
againwith C=K G b
b=—1(R-C)—(1+7,5)C =—— R—(1+—1-+7,5)C
7,8 TS TS
1
K.—G
C'rIS P

C_
R 1
1 +KC(1+¥+TDS)GP

Part (e): System with anideal PID

o { =
R —E\Ei:c (= %{#E&}%

1
KC(1+¥+TD S)Gp

c
R

B 1
1+Kc(1+;+TDS)Gp

So the systemsin parts () to (€) al have the same closed-loop characteristic polynomial.
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20. With asmple unity feedback system, the characteristic equationis

T,5+1\( 05 0
°\ 15 [\s-2]
Now 1, = 1,
s+1}|/ 05
1+K | —||[—=|=
¢ s—2 0

s°—2s+K(05)(s+1)=0
$°+(05K —2)s+05K =0

For stability, we need
05K_.—2>0,and 05K >0

meaning,
K.>4

So the ultimate gain isKq, = 4, and we can confirm that with direct substitution.
—w’—2w j+05K ,w j+05K =0

Imaginary parts;. —2w+05K _w=0,0r K =4

. 2_ _
Red parts: w’=05K, or w, ,=V2
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21.
(a) With PD control, the closed-loop characteristic equation 1 + GG, =0 is

K
1+KC(1+TD S)on

(s—2)+K K (1+7,s)=0

2-K_K
S=———
1+K KT

For stability, we need
1+K K71,>0,and 2-K K <0

Thefirst inequality smply meansthat all the gains and time constant should be positive, and the second
leadsto

K> 2/K
Compared with proportional control, the characteristic equation and stability criterion are
(s—2)+K_K=0
s=2—K_K<0
Thusrequiring K> 2/K
In this problem, the stability criteriawith P and PD controllers are the same.
(b) Now with aPI controller, the characteristic equation is

T,s+1

1+K,

K
s—2

TS
T,58(s-2)+K K (1,s+1)=0
7, 8%+7, (K K—2)s+K_K=0

For stability, weneed 1, > 0, K> 0, K. > 0, and

KcK=2>0, orK;>2/K.

The criterion stays the same.

(©
V- counal o i
- — - G- =
z b
T
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(d) Theultimategaininal these cases is2/K.
For P and PD control, the root locus sketch indicates that the ultimate frequency (on the real axis) is zero.

For PI control, we need to do adirect substitution, s = jw. The characteristic equation becomes
-7, w2+T|(KCK—2)wj+KCK=O
Re K K—1,w’=0
Im: wt, (K .K=2)=0, meaning Ke, = 2/K

Substitute K, in the real part equation

2 2 _ |2
K (?)_Tl wu:0 , or wu_\/_l_:I

The smaller theT, the larger isw.
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22. Theload functionisnot in the closed-loop characteristic equation and has no effect on the stability.

(@ 1+ GG,=0leadsto

2 _
Cs—4

(s—4)+2K =0

1+K 0
s=4-2K,
For stability, weneed 4 —2K. < 0, or K. > 2.

(b)

M

¥
q'.

(c) TheultimategainisKeq = 2 (whens= 0). At thisposition, the system is stable with an impulseinput but
not a step input (the system response will be aramp).

1 1
ith G.=—=— —
(d) With S¢ Gp TS

G:

s—4 1 4
= - 1__
c 2 ( S

1
T.S 2'rC

)

The controller function has integrating action, but it could be done only if we could build adevice with a
positive zero.
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23.

@

(b)

(©

The characteristic equationis

l.2e*O.7S B
WK ozst s+ 0

This problem follows Example 7.4A in Chapter 8. So withMATLAB, we can find
Keu = 6.86 with oy = 1.91 rad/min
(Thetime unit stayswith that of the time constantsin the transfer function.)

Using the Ziegler-Nicholstuning relations and (Kc, ,0w) from Part (a), we can calculate, for example,
Kc = 4, T = 164, Tp = 04
for a¥xdecay response.

The closed-loop characteristic equation is

1 12 %75
1+Ke (1+T| s+TDS) (O.2$+1)(4s+1)_0

Again using MATLAB and Bode plot, we can find GM = 1.9 for the Z-N ¥xdecay settings.

The basis of the calculation isthe function

1 1.2e707s
1+—+ —
( 7,8 ™0 (02s+1)(4571)

=0, with values of 1, and 1, from Part (b).
Again, usingMATLAB, wefindKq =7.7
WithGM =1.7, K. =7.7/27=45

Repesting the calculation with K. = 4.5, we find PM = 38°.



Part |1 Solutions

24. The system with a secondary loop is equivalent to

R_ T v def e+
=== \

where
*= K(:2Gv
v 1+KC2GV
Now
Kc2
. K 1+K
G, + ,and G = c2 - c
Ss+1 v (5s+1)+K, 5 laiqg
1+K,

To speed up the valve, we make the time constant of G*, to be 1/10 of that with G,. So

5 _ _ 09
1+Kc2_(0'1)(5)’ and K2=9, G,=ge o7

The closed-loop characteristic equation is

09
1+ K =
e (oBsrI0dst 1) (s+D) ©

0.055%+0.655°+1.65+1+09K =0
From the last constant coefficient, we need 1+ 0.9K. >0, or K. >—1/0.9

With the Routh array:

005 16
065 1+09K,

bl
where we need
(0.65)(1.6)—(0.05)(1+0.9K )

= >0

1 0.65
1.04>0.05+0.045K

K.< 22

Hence, the ultimate gain isKq, = 22.
If wewant GM = 2, thenweneed K. = 22/2 = 11.

The system equation without cascade control is

1 _
WK Berno1st)(s1) 0
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On aBode plot, the corner frequency of the valve function is 1/5. With cascade control, this corner
frequency becomes 2 (time constant = 0.5), so the phaselag that it bringsinisat amuch higher frequency
than when we have no cascade control. The consequence is that the cascade system has awider
bandwidth. Nonetheless, it still can become unstable as a third order system (containing 3 first-order lags).



Part |1 Solutions

25.
Lios+1)
_18(2s+1) 2
213s+9)(s+4) (12,1 1
(s"+3s+9)(s+4) (952+3s+1)(4s+1)

(a) Thispart followsthe properties of different functionsin Example 8.2 to 8.4, and 8.9.

High frequency asymptote

Corner frequencies Type Magnitude slope Phaselag
12 1 order lead +1 +90°
1/3 2nd order lag —2 -180°
4 1% order lag -1 -90°

So on the magnitude plot, the slope of |G(jw)| is—2 at high frequencies. At low frequency, the slopeis, of
course, zero and the value is %5, the steady state gain of G(S).

On the phase angle plot, the total phaselag at high frequenciesis—180°. It is of course 0° at very low
frequencies. By first bringing in the first-order lead at lower frequencies, the total phaselag of <G ( j w)
never crosses over —180°.

(b) Iog|G(jw)|:log(%)+log\/1+4w2—log\/(1—w2/9)2+w2/9—log\/1+w2/16

—0I3 (L)

<G (jw)=tan }(2w)+tan?
(o) =tan (200 +tan (=25 ;

(c) The steady state gain of G(s) is%2
For the term
1.1

§S +§S+l =T252+2CTS+1

=13, gzé % 3=% and %

V1-¢®_V1-V4_3
T Us 2

2
3

So from the characteristic polynomial, the two time-domain functions are

2' (33 de®. And ot d h dower than &%t . W ider th
e sn(7t+¢)),an e . n e 2 ecaysmUC ower than e . € Ccan consder the

complex poles —gij 37@ to be dominant.

(d) Asnotedin Part (), the system isaways stable. GM is not defined.
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26.
@

(b)

(©

For the system 1 + GG, = 0, we have
open-loop polesat —0.5, —3+j13, —64j\/5, -9
open-loop zero at -0.5

A good possibility isthat we have a PD controller and more specifically, areal PD controller that also
contributes the large open-loop pole at —9. Whether it isideal or real PD, we probably have chosentp, = 2
to cancel the open-loop pole from G,.

(s+3—V3j)(s+3+V3j)=(s+3)°+3=5°+65+12

(s+6—5])(s+6+V5])=(s+6)*+5=5°+12s+41

K
GCp="3 2
(s°+6s+12)(s"+12s+41)(s+1/2)

The steady state gainis 2, so

K
ZZW ,and K =492

After pole-zero cancellation, the system characteristic equation is

1 2
1+K, =0
1o (Lol 1o 12
(gs+1) (125 +23+1)(4ls +4ls+1)

Next, we need aroot-locus plot to find K. such that the decay ratio is 0.25 (¢ = 0.344 with Eq. 5.19).
Using MATLAB, K. ~ 0.4. The key is to use the more dominant poles (loci) that come off the —3+3
open-loop poles.

Simply repeat with DR=0.1 (¢ = 0.215). K. = 0.64.

(d) We should have donethisfirst before we get the answersto Parts (b) and (¢)! (Sketch fromMATLAB:)

C)

e

N

The system characteristic equation stays the same. So we certainly can design a controller to handle
disturbance.
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27.

@

(b)

We have to choose between Q. and Q; as the manipulated variable. Thereis no clear cut answer here; Q;
has alarger steady state gain but amuch larger time constant. We shall select the cooling jacket flow Q;

anyway on the basis that we may compensate for itslack of speed by a proper system design (for
example, with the use of cascade contral).

Next, we need to make several assumptionsto evauate theQ; regulating valve gain. Normal half-open

operation provides 20 (gpm, flow units), so full rangeis 2 x 20. The valve may be driven by a0-10 mV
signal. We are guessing this on the basis of the sensor-transmitter output. The valve gain must be negative
because the process gain is negative (and presuming K. of the controller is positive). And without info on

dynamics, wetake G, = K,, and

« —(2(20)__, gm

v 10 mv
_10-0 ., mv
For the sensor, the measurement gainis K .= 200-100 =01 "C
Thesystemis
i i — 17~
2 — Wi o =5
B e e -rf“n—ﬁ__'-—“\“_aﬁi ==
\ R ——
m,‘,\.n-s.*.—l. b =
The closed-loop equationis
(01)(4)(5 _
K os+)(12s+1)
120 *+225+1+2K ;=0
120 | 2 2
+ +1=
(TS Mgk )st1=0
So
(10 2 |2 |1 12K Y2 11 1
1+2K,) "2 l1+2K 2| 120 | V120 (142K,

Now ¢ = 0.707, substitute in  expression; can findK; = 0.51.

The key isthat we cannot use those empirical tuning relations based on first-order with dead time
functions. Here, we may apply Example 6.2 (or Example 6.4 for a Pl controller).

Say we choose 1. = 3 [time unit] to be sufficiently faster than 10 and 12. Then with Example 6.2, we can
calculate
10+12 _(10)(12)

= =37, 7,=10+12=22, 7 = —54
<23 » 0T 0412 s
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28. The closed-loop equationis

1+i+gs
1+K 3s 3 -0
¢ (10s+1)(20s+1)(055+1)

and 2s*+3s+1=(2s+1)(s+1)

So we have
open-loop zerosat —1/2, -1
open-loop polesat 0, -1/10, —1/20, -2

From MATLAB:
—0
- =}
1 e—10.55
(b) Gpre=

(105+1)(205+1)(055+1)  20s+1

(c) Only P control:

1 _
Ko (10s+1)(205+1)(055+1) °

100s*+2155*+30.55+1+K =0

Routh array:

100 305
215 1+K,

bl
So we need

(215)(30.5)—-100(1+K ) )
b,= 5 >0, leading to K. < 64.5

Wenow havea*“simple” third-order system and only oneK, = 64.5.

(d) Apply the Gpre approximation in Part (b) and Table 6.1. A matter of plug-and-chug or using the M-file
“recipe.m.”

(e) With the addition of derivative action, we can use alarger K.
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29. Featuresof the plots:

Phase lag goes from 0° to —250°. It appearsthat the phase lag would eventually reach —270° at very
frequencies

At large frequencies, the magnitude plot has slope approximately —3

At frequency around ~ 4 rad/min, |G| is dlightly larger than the value at very low frequencies

A logica guessisthat

K

G(s)=
(s) (TlS+1)(T282+2T§S+1)

where
K~11

{ must belessthan %2

Vtisin between 4 and 10 rad/min

1/1, isbetween 1 and 10 rad/min; from the fact that the phase lag of G drops quite a bit “very soon” (1/fty
is probably between 1 and 4)

For a closed-loop experiment, the magnitude and phase lag will be that of the closed-loop functionC/R.
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30. Theblock diagramin Fig. PI1.30 isequivalent to

2 “.

\:Hf‘ﬁ 05y HTE

so the closed-loop characteristic equation is

05G,
25+1+05K
(@) For Gy, the model Ad—— should give us G _1i 1 (A =2units)
P at 9o 9 As 2s 7
So we have
05

+ =0

2s(2s+1+05K,)

432+2(1+% K,)s+05=0

85°+2(2+K )s+1=0

11
28

Now = 1 (critically damped), 2 + K, = V8, or K, = 0.82

T=V8, and £=2(2+K,)

(b) C=(1/V8)(2+K v) » o L isproportional to K, and the system isless underdamped if we increaseK..

(c) Do not matter what K, is. System has integrating action from G;. Thereisno offset. Changein h will
always match change in the set point.
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31. Theresponse at large times oscillates about %2 with an amplitude of approximately 0.34 and a phase lag of
roughly 137°.

K Aw a b cs+d
Y(s)= 2. 2 st t2, 2
s(ts+1) s°+w* S TS+1 s+w

Thefirst term on the far right (with coefficienta) contributes toward the constant, while the last term
associates with the sinusoidal response. And the coefficientais

AK w _AKw_ AK

(T S+1)(Sz+w2) s=0 w? w

Given: w=Y2rad/min [=1/2 (1/2m) cycle/s; can confirm thisfrom plot]
Alsofromplot: A=1anda=%;, so
1_(1)(K)

EZ 12 ,orK=1/4

With

K
G(S)ZS(T-HL) , ¥G(jw)=-90"+tan H—T1w)

Now <G (jw)=-137
~137°=-90"—tan }(tw) , leadingtotw= 1/1.07
Withw="Y2radls, 1=1.07/(1/2) =2.14s

Double check:

. K 0.25
IG(jw)|= = =034
woV1+720?  (1/2)V1+(2.142(1/2)? , Same as data

The very key isthat the units of Tw are radians, and calculations are based on w with the units of rad/time.
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32. The characteristic equationis

1
-=s
1+K,G.G,e 2 G,=0

Where Km = 015 V/OC, td = 05 min, G2: Sil OC/V! and 65: 10 i+1

(a) Proportional control, G; = K,

(0.15)(4) 35

PR St S A 2 —
WKe sinaosrn® =0

To find the ultimate gain, we need to follow Example 7.4A in Chapter 8. FromMATLAB, K, = 39.8 (with
W = 1.39 rad/min).

Without transport lag, the system eguationiis

06
WK era0s+n) °

It isasecond order system that is dways stable.
K
b) K=—2-398_199

CGM 2
(Can check thiswith MATLAB; we should find also PM = 29.4°)

(c) Thebasisof calculationis

1
x 0.6 35
G =le D105+ °

From MATLAB, at w~ 0.73 rad/min, |G*| = 0.066, 0G* =-139° =~ -140°
So we need K. = 1/0.066 = 15.2 (Check thiswithMATLAB, the PM is40.9°.)
(d) Plug and chug with Ziegler-Nicholstuning relation using Ko, = 39.8 and .y = 1.39 rad/min

Should find K; = 13.3, T, = 2.3 min, 1o = 1.5 min
(Check with MATLAB using ideal PID and the equation

1
-=s
0.6 e *'=opg

1
W 508 (sr 1) (10841

T|S

1+K,

should find GM = 2.9, PM = 66°.)

(e) Approximate
i _34
06e?  06e?

~

Crre=(s+1)(105+1) " (105+1)

With the Ziegler-Nichols tuning relations, we found
Ke=13.3,1,=3min, 1o = 0.75min
(Check thiswithMATLAB, GM =5, PM =45.5°))
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(f) Needto use MATLAB (or Simulink) for the simulations.

(g) DisturbanceisQ,,

G _GS i
FF™ _1.,where Gy= —5e ? °Clgpm

K,,G,Gse ° (10s+1)(s+1)

1
-=s

__ 5e? (10s+1)(s+1)_ 5

Crr (10s+1)(s+1) _1,7 06
(0.15)(4)e 2

It is a steady-state compensator.

=83 °Cl/gpm

(h) DisturbanceisV,

e 25
FF _1g,where G4=m °CIV
K,G,Gse °

Now 1/exp(— %S) will become atimelead, exp(%s) , and we need to redefine Ger without it.

-G,  —25 (10s+1)(s+1)
K.,G,Gs 10s+1 (0.15)(4)

In practice, we would either add alarge pole asin Eq. (10.8) in text or simply omit the dynamic
compensator and try first Ger = —0.625 °C/V.
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33. Theprocessfunction

_ 05
P 001s°+0.04s+1

has open-loop poles at —2+9.8;.

(8 Witht=0.1,=(0.04)(1/2)(1/0.1)=0.2
Thetime constant ist/¢ = 0.1/0.2 = %, which is consistent with the pole

(b)
System is stable but very
V- cawlriah t underdamped and has offset;
C of system< 0.2

P - condah System can become unstable

R | System s stable but has offset

Not allowing offset, we must use a Pl controller. And we may want to select the largert) = 1/4 s. (From
the perspective of Chapter 8 analysis. T has acorner frequency of 4 rad//s < 10 (1/0.1) of G, and thus
“eiminates’ the integrator phase lag before the second order phase lag setsin.)

(c) ThebestisaPID controller. With1p < 1), we can choose 1p = 1/8 s, with T, = 1/4 s. We do the root-locus
analysis with the system equation

1+L+T S

T|S D

05 _
0.01s°+0.04s+1

1+K,

The dominant poles are the loci that come off the two complex open-loop poles.
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34. The phase angle plot clearly indicatesthat presence of dead time. From the magnitude plot, the slope at
high frequency is—1, so the function must befirst order with dead time:

~ K 08
TS+1

G(s)

From the given corner frequency, 1= 1/25=04s
From the low frequency asymptote, K =5

The phase angle equation is (in degrees)

180

T

1G(jw)=—tan Htw)—(——)0w

Now T = 0.4 and given when w = 1 rad/s, and the phase lag = -33°

) _ 180
—%=—m1%m®47;w,me:ams

and

58_0'195
T 04s+1

G(s)



This is one of several problems similar to Example 4.6. We do not really have to synthesize the
state space model for each system as in the example. MATLAB can do that and much more, and
there are more elegant approaches. However, these examples should help to take some of the
mystery away and make us feel more comfortable in using canned packages or working with block
diagrams.

I1.35. The two equations that we can write are:

X L and 2= L
XFK (R-X) - Ts+1° K.(R-X,) - s

They can be rearranged to appear as
T, X;s=-(1+K.K) X, +K X,+K K R,and 7,X,s=-K X, +KR
The resulting state space model is obvious from here on:

1+K,K, K,

w5 o

dt |x K o | ¢
L'

The system matrix characteristic polynomial is

r, and y=[1 0]["1]
X2

= ﬁ-‘L,?‘

1+K.K K.K
detIsI—AI=(s+ < p)s+ =P

T

p T,

which is identical to what we'll get in Example 5.3.



This is one of several problems similar to Example 4.6. We do not really have to synthesize the
state space model for each system as in the example. MATLAB can do that and much more, and
there are more elegant approaches. However, these examples should help to take some of the
mystery away and make us feel more comfortable in using canned packages or working with block
diagrams.

I1.36. The two equations that we can write are:

—_ K
X, +K, (R-X,) ~s+a-
and
X, _Z-p
K.(R-X,)"s+p~-

They can be rearranged to
sX,=—@+K ,K)X, +KX,+K_KR,and sX,=-K_(z-p) X, -pX,+K_ (z-p)R

The final state space model is

d x| _ -@+K.K) K [[x, K dv="[10 X1
R N R T

You can further show that the system matrix characteristic equation is identical to

(s+p)(s+a)+KK(s+2z)=0



This problem follows the development in the two previous problems in I1.35 and II.36.

I1.37. With a serial PID, the derivative action is in the feedback path. The PI action in the forward
path follows that of Problem II.35. Similarly, the derivative function, introduced in Eq. (5-7), is
rearranged according to the lead-lag element in Problem I1.36. With the locations of the state
variables identified in the block diagram, we can write the four state equations:

X K
=1 = P =_
X, T s+1 or T,;sX, X, +K X,

X,

= —1 or T,8X,=-X,+X,—- =X, +X,)+K_R
’ 2 2 2 3 o 1 4 c
Xs+K [R-gX +Xp] T8+

X3

=L or 15X, = Re(X +X,)+K. R
K[R-&X, +X] ° U AT

and

Xy _Vip-Voz
Y‘::ﬁ#, or SX4=—X1(},1:D+(],‘ED—]/O.,TD)X1

The resulting state space model is:

T Ty 0
X1 _KJ _ L 1 K4 X1 1
4 x|z T, T T, Ty X5 T, )
dt | x, K 0 0 K Xy +K, 10 and y=[1000]x
X4 T T X4 T
1 1 0 0 1 0
TIp  OTp ot |
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38.
(8) The closed-loop characteristic equation is
11K T,s+1 2
+ =
¢\ 7,5 | (4s+1)(5s+1)

7,5(208°+95+1)+2K (7, 5+1)=0

207, 497, 47, (1+2K )+2K =0
First, weneed 2K.> 0, and 1,(1 + 2K;) > 0,
meaning K.>0, and T, > 0.

Next, with the Routh array,
20T, T,(1+2K,)
97, 2K,
bl
2K,
So we heed
. :9T|2(1+2KC)—40T| K.

! 9T,

>0

97, (1+2K ) >40K

40K, 9T, K
,or >
9(1+2K,) 40-187, °©

T|>

9

o 15=04

(b) Whent, =1, weneed K_<

K
Andwhen 1, = 10, we need %> 1+26K , Which is aways satisfied with K > 0; system is always stable.
Cc

(o) Witht, =1, weuse MATLAB to get the root-locus plots:
Tr=1

T =18 .
| alwnans
slelhe
P — e i
- wl 2K n - ok
G "% -5\ 5 "o
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(d) Whent, =1, from Part (b), Ko, = 0.41.

For GM =2, we need K = 0.41/2 = 0.205.
To find PM, we need MATLAB. So from aBode plot, we found PM = 14° (thisisahit low).

(e) Witht, =10, the system isalways stable.
(f) We need to do aroot-locusplot. FromMATLAB, for { = 12, K.~ 0.033.
The dominant poles are the two complex loci branching off from the real axis.

(g) Witht, =10, again we need MATLAB and aroot-locus plot. For a system with “embedded” response
corresponding to Z = 112, K.~ 0.48.

Here, the dominant pole isthe loci on the negative real axis. The oscillations will damp out relatively
quickly.

(h) Weneed MATLAB to do the Bode plots. With T, = 1, the system equation is

s+1 2
WKl s | G Bsr)
Frequency asymptote limits

Corner frequencies Type Log magnitude slope Phaselag

- i ntegrator -1 —90°
15 1, order lag Oto-1 0to—90°
14 1, order lag Oto-1 0to—90°
1 1 order lead Oto+1 0to +90°

The magnitude slope goes from —1 at low frequenciesto —2 at high frequencies. In terms of the phase
angle, thefirst-order lead comesin too late. The phase lag goes below —180° before the first-order lead
brings the phase angle back to —180° at high frequencies.

With 1, = 10, the system equation is

10s+1 2
Kl 0s | st (Bs+1) -
Frequency asymptote limits
Corner frequencies Type Log magnitude slope Phaselag
- i ntegrator -1 —90°
0.1 1, order lead Oto+1 0to +90°
15 1, order lag Oto-1 0to—90°
1A 1 orderlag Oto-1 0to—90°

Now, thefirst-order lead comesin and compensates for the integrator phase lag before the two first-order
lags comein. The phase angle never crosses over —180°.
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30.

(8) From Section 3.4.3 (text), 1. = AiRy, T = AR,
d  _ =1, U, .t R,/7, U
dt = |(R/R)/T, —(1+R,/R))/T, 0

wherenow x =[h; hy]™, and u= Q.
Theoutputis y=[0 1] x.

With numerica valuesA; =5m3, Ao =2m, R =R, = 1 min/m2, 1, = 5min, and T, = 2 min,

(-5 ws _[us
A=l —q)-od B_[ o}
(b) With det JA —Al|=0
1 1
( S A)(=1-2) E_O
2,6,,1 1_
A +5/\+5 0 0

10A%2+12A4+1=0
The transfer function from Section 3.4.3is
H 2(5) 1 1

Q,(s) (5s+1)(2s+2)-1 105+12s+1

Since the characteristic equations are the same, the poleswill too. (A quick quadratic root cal culation will
find them to be—0.90, and —-1.1.)

H
(c) For proportional control, the characteristic equationis 1+K —2-0 , leading to

CQO
108°+12s+1+K =0
10 o, 12 _
1+KCS+1+KCS+1_O
o 0 W 1 1 [WKN s
I+K,| " "T1+K_ 2| 10 V10 V1+K,

With Z = 0.7, K. = 6.35 (with the poles at —0.6£0.612])

(d) Wecan find the state feedback gain easily with the Ackermann'sformula. (Detailsin theMATLAB M-
file)

(e) With PI control, the characteristic equationis

1+
T, S

1

1+K, 27=0
10s°+12s+1
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with T, = 0.5 min, we can use root-locus plot to find that K. ~ 0.022.

(f) and (g) —detailsasoinMATLAB M-file.
But there is one important note regarding the time response simulation when we use the state feedback
gain without integration. Here, x. (i.e., h,) isthe output, so we need to defineK: = K; such that Eq. (9.24)
is
u(t)=—K, x;+K,(r—x,)
and Eq. (9.25) becomes. in this problem,

x=(A—BK)x+BK,r
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40.
(a) Based onthe given equation, the pairing isxe-L and Xs-V, and the gain matrix is
_|06 —-05
“=lo3 —0.4}

The corresponding relative gain parameter is

(b)

(©

1
A =———=267>1
ol”(-05)(03] 67>
(0.6)(—04)
If we switch the pairing to xo-V and xs-L, the plant equation becomes
—05e ° 06
Xo|_ (7s+1)? (7s+11)2
-=s
Xg —04 03e 2
(14s+1)(0.4s+1) (16s+1)(055+1)
Now

-05 06

= A =1.67>1
K [ 0.4 0.3} cand v

If both cases, A > 1, and from the values, it probably would not make that big of adifferencein pairing.

Nonetheless, we would choose the case with the slightly small A (1.67) as the basis of the system design.

The Simulink fileis set up accordingly. It aso includesthe decouplers, which can be “turned off” by
setting their gainsto be zero.

Thefirst controller G, will be based on

i
_—05e?
o (7s+1?
Using MATLAB and Bode plots, Ke = 10.7 at txg = 0.298 [rad/time unit]
IfGM =2, K.=10.7/2=5.35

The second controller G, is based on

1
03e ?
(165+1)(055+1)

From aBode plot, Ko, = 126 at txg = 1.76 [rad/time unit]
If GM =2, K. =126/2 =63

From MATLAB, |Gu| = 0.19 when 0Gy; =-135°
SoweneedK. =1/0.19=5.3

For Gcz, |G22| = 00195 when DGH =-135°
Soweneed K. = 1/0.0195=51.,
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(d) Using Ziegler-Nicholstuning relation, and
Ko = 10.7, tdg = 0.298, leadsto K. = 4.9, 1, = 17.6 [time units]
Keu = 126, g = 1.76, leadsto K. =57, 1, = 3 [time units]

(e) TodetunethePl controller, reduceK. and increase ..

(f) For the two decoupling functions,

D, - Ca_ 0.4 (16s+1)(055+1)
27 G, (14s+1)(04s+1) o5 1
.oe

WEeIl need to omit the exp(— Y2 5) term because it will lead to advance in time. The time constants here are
very similar and we may try to omit the dynamic terms. So we may begin with, simply,

0.4
D21Nﬁ21.3
And with
D . Cn__ 06 (7s+1
¥ Gy (7s+1)7 *%S
05e

The (7s+ 1) term of course cancels out, and again we need to omit exp(—¥29), O

06
Dp~5e=12
Those values are used to set up the Simulink file. In this problem, they help abit, and if they are not set
right, the system actually becomes unstable.
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1. First, we need to get the transfer functions from the information given.

CO,(s) K
BPSLY _ ppm e
Qls) P T s+l Ko=023 —min » = 5min

K

— m
T,S+1

Km = 5/400 = 0.0125V/ppm = 12.5 mV/ppm, Tm = 0.1 min

m

K .
_ v K,=02 ml/min
T,5+1 mv

v , Tm=0.02 min

_p MY
Kamp =10 py
We dso have transport lag, ts = 0.75 min in the feedback path.

The closed-loop characteristic equation is

S

1+G K 4nG,G,G e *°=0
With KampKKpKm = 5.75 [mV/mV], we have

—0.75s
14G 5.75¢e -0
¢ (0.02s+1)(5s+1)(0.1s+1)

(@ G:=K.. Wedefine

o o 575 075s 0
(0.025+1)(55+1)(0.1s+1)

From aplot of |G*| versuswand OG* versusw (i.e., Bode plot of G*), the ultimategainisK., = 1.7 at

W = 1.9 rad/min. Hence for system with GM = 1.7,
Kc=Ke/1.7=1

(b) SeetheMATLAB file. Briefly, we use the Ziegler-Nichols ultimate gain tuning relations for a dight
overshoot response. To further tune the controller, we cannot use root locus because of the dead time. And
if we do not use techniques such as closed-loop log modulus, we just haveto do atria and error search to
find { = 0.45 (20% overshoot). But it isnot as bad as it sounds because the Ziegler-Nichols tuning

relations have settings that give ustheK. that would not have overshoot.
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I1.2.

(a) Key features from Fig. PIII.2a:
* High frequency asymptote of the magnitude plot has a slope approximately —2
* Phase lag varies from 0° to —180°
* Low frequency asymptote of the magnitude plot is 10 (= K,
» The magnitude curve rises above 10 before approaching the high frequency asymptote

All these observations are consistent with G, being an underdamped second-order function.

From the magnitude plot, the corner frequency is approximately 0.3 rad/s. So
k=03, ort=33s,andt2= 11

Also given that the function has a 25% overshoot in a unit step response experiment,
0OS =0.25 (or £~ 0.4). So

2tr = (2)(0.4)(3.3) = 2.7

G = . 10
715 427 s+1

(b) The plots now are for |G.G,| and £G.G,.

* The phase angle now varies from 0° to —90° at very high frequencies. No phase change at low
frequency, but G. brings in phase lead at high frequencies; G. must be a PD controller.

* The system is always stable.

» Compare the phase plots in (a) and (b), the corner frequency due to the PD controller (1/tp) is likely
to be higher than 1/t =0.3

* From the magnitude plot at low frequencies, |G.G,| = 20, so K.~ 2

* The slope of the high frequency asymptote in the magnitude plot is approximately —1 (no longer —2).
The PD controller must be ideal, not real.

The key features can be summarized as:

Corner Frequency asymptotes
Function frequencies Log magnitude slope Phase lag
1/(11s2+2.7s + 1) ~0.3 0to-2 0 to —180°
(s + 1) 1/t 0to+1 0 to +90°
Net value at very high frequencies -1 -90°

The high and low frequency asymptotes of G.G, are shown next:
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ol —-—-"'df-;:‘
leeph | 2
L= -
Loy -tho |
= ] ——

(©)

* The phase angle now begins at —-90° at very low frequencies, then goes below —180° before
approaching —180° at very high frequency. So the system can become unstable. We can jump to the
conclusion that G. is a PI controller. (If nothing else, the integrator contributes a constant —90°.)

» From the magnitude plot, the slope is about —1 at low frequencies, suggesting again the presence of
an integrator. The slope at high frequency is about —2, consistent with a PI controller together with a
second-order function.

« Comparing the phase plots in (a) and (c), it is likely that the corner frequency of the (t;s + 1) term,
1/, is higher than 1/t =0.3.

The key features can be summarized as:

Corner Frequency asymptotes
Function frequencies Log magnitude slope Phase lag
1/s - -1 -90°
1/(11s2+2.7s+ 1) ~0.3 0to—2 0 to —180°
(us+1) 1/t 0to+1 0 to +90°
Net value at very high frequencies -2 —180°

Asymptotes of G. and G, that may explain Fig. PIIl.2c are sketched below:

[ R s Bt

W o= S

eyl -
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3.
@

(b)

(©

(d)

The closed-loop equation is 1 + G.G.G,Gn=0
Now, Kn=+1, K; >0, and K, =-0.05 [ppm/gpm], SO
Ka must be negative, or be—1 [gpm/mV], to have a negative feedback system.

b l;;;.{ﬂ ko

Rt
e

e

If [SO,] exceedsthe set point, the controller output will decrease. But with a negativeK.,, the action will
increase the water flow to remove more SO, and bring its concentration back down.

With the characteristic equation
T, 5t1 -005|
1+K, _ (—1) ool

we have a second-order system with no positive open-loop zeros. It isaways stableforK. > 0
(and T, > 0).

Same as Part (b). The system with aPD controller is aways stable withK. > 0, and 1o > 0. (Y ou should
confirm with a coefficient test or aroot locus sketch.)

With PD control, whether it isideal or rea (see Problem 11.1), the system is always overdamped. (It is
first-order if the PD isideal.) To get underdamped behavior, we need a Pl controller witht, < 1,
(e, u<2).

Now T, isgiven as 0.5 minin Part (b), so the closed-loop equation is

05s+1
05s

0.05

1+K =
2s+1

C

To find K¢ such that the system has a damping ratio of 0.7, the quick way isto ussMATLAB to do aroot-
locus plot. With that, we found either

K. = 3.5 with closed-loop polesat —0.3+0.31j, or

K. = 113 with closed-loop polesat —1.67+1.7]

In actua application, we may saturate the system with K = 113. If so, we need to chooseK. = 3.5.

The slow way isto actually solve for K. analytically. A couple of steps and the closed-loop characteristic
equation should become

0.05+0.025K
0.05K

1
0.05K

2 s+1=0

from which we can find
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1 0.05+0.025K
) 12
2 (005K,

12
) ,and T

1
005K,
Substitute ¢ = 0.7, and after a couple of algebraic steps, we should find
(6.25x10 *)KZ—0.073K .+0.25=0
Thetwo solutionsare K = 3.53 and 113.3.
(e) The problem statement implies that we now include

G,=12e%2 M.y =g, M
gpm gpm

-09 mv

and G,= 0.3s+1 gpm

And if we areto use the result from Part (d), we certainly want to use the much more conservative
K. = 3.5 because of the dead time in the system that was not accounted for before.

To do asimulation with R=-10/s, using Simulink iseasy. Touse f eedback() andst ep(), weneed
to approximate the dead time with the Padeé function and multiply the result with—10.
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4,

(a) Both open-loop and closed-loop results point to the presence of an integrator in the processfunction. The
system can be underdamped with only a proportional controller. Hence the process function must also
have at least afirst-order term. The simplest possible function that can explain the result is of the form:

_K
s(ts+1)

So even with just a proportional controller, we have a second-order system that has no offset.

(b) Wewritethe processfunction as Y/X = K/s(ts + 1) to explain the constant term in the sinusoidal response.
With agiven sinusoidd input, X = wA/( +w?), theresponseis

K wA & &y oSty

s(ts+1) +w? S Tstl 4w

The last term on the right leads to sustained oscillations, while the second (the middle) term decaysin
time. The first term givesrise to the constant value

KwA KA
(Ts+1)(S*+w?)|eeg @

(Xl—

Thisisthe mean of the sinusoidal responsein Fig. Pll1.4. Since we know A and w from the input, we can
caculate K.

Also with the function K/g(ts + 1), the integrator contributes a—90° lag and the first-order lag contributes
another —90° at high frequenciesto give a—180° total. The experimental results are consistent with these
features. (The experimental procedures must use an actuator (G,) and a sensor (Gr,). That'swhy the
functional form K/s(ts + 1) isalumped function that hidesthese details.)

(c) With afast (relativeto Gy) actuator and sensor, we take G, = K,, and Gn = K. AlSOT =T,

":.P""‘-"r-.ll. LXa -.F_L
ot o Wl gy i o Sl c.;}\ o
e
Ty, 7
(d) Here,
ZL . _ = ':':::Ill__al_&_‘l_'u__-
G s(rps+1)’ K=KnKaK, el ~"!.

() Fromthe smal Fig. PIlI. 4(b), the phase lag is approximately 153. Based on G = K/g(T,s+ 1),

¥G=-153"= —90"~tan (7 )

The experiment used w = 2(2m) rad/s, so 1, = 0.16 s

(f) With
11

w \/1~I—T%w2 '

IGl=K
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we could have measured the amplitude of the normalized responsein Fig. PIl1.4(b), which is |G|, and with
T, from Part (€), and w chosen in doing the experiment, we can calculateK.

(g) Toanayzethetimeresponse curve, we first need to go back to the closed-loop equation

K .
)=0, with K = KnKaK,

14K, —
S(Tps+1

o

KK

2

s+ s+1=0

1
K_K

Intheform t2s>+2¢ ts+1=0

1/2

g:l 1/2
K 2

1
KCKTp

K.K

From the small Fig. PlI1.4(a), the overshoot isroughly 0.5. So with OS = 0.5, we can find ¢ = 0.215.

With 1, = 0.16 sfrom Part (€) and K¢ = 0.02 from the problem statement,
we can calculate K = 1733~ 1700.

() TakeK = 1733, 7, = 0.16, K. = 0.02,
1/2

0| 0067
K K '

c

4t (4)(0.067)

N S T v = ~1.3
Estimation of settlingtime T § 0.215

T
Andtimetopeak T ,=———=~022
p P12

These valuesare consistent (to one significant figure) with what we can estimate from Fig. PI11.4(a). We
need the overshoot to calculate . So of course, we get the overshoot back if we begin with.
(i) WithaPD controller, the system characteristic equationis

K
1+ K s+1) ————=0
7o ) S(Tps+1)

There are two general possibilities:

To > Ty
— L- = L
Ty T

Now T, = 0.16 sfrom Part (€). This explainswhy the system does not oscillate whents = 0.2 (> 0.16), but
underdamped behavior is observed whentp = 0.1 (< 0.16).
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()) From Parts (d) and (g), we write the closed-loop characteristic function in the form
c__ 1
R T252+2§TS+1

_ 1
R‘_\/(l—Tzwz)z—i-(ZgTw)z

The magnitudeis

Now with T = 0.067, w= 2(2m) rad/s, and = 0.215,
C — ~
‘ R ‘—2. 15~2
Indeed the magnitude can be doubled at certain frequencies.

—2Ctw

2 2
1-tT°w

1

(k) Thephaselagis <C/R=tan"

If we choose w to do an experiment and measure |C/R| and OC/R, we theoretically have 2 equations (also
magnitude equation in Part j) with 2 unknownst and . With two highly nonlinear equations. However,
the exercise of solving them would not be that much fun.

() Wecertainly want to use PD control to improve the system response. If we use direct synthesis,

G :S(TpS+1) 1_ 1 (r-511)
¢ K .5 Kt °

which alsoisaPD controller.

(m) With aPD controller, the system is always stable (see Part (i) root locus) and we do not need to consider
stability criteria. The Bode plot of the system will be based on

K 1
GOL=€ (TDS+1) 7(1_ S-l—l)
p

It has corner frequencies L/tp and 1/1,. And we want Tp < T, such that we have an underdamped system,
1/1p > 1/1,. The sketch of a Bode plot based on the asymptote properties:

2|
* A
ll'_&"llll._ | -
-V e L3
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(n) We have a second-order system and we could find the answer analytically. Here, after so many parts, well
take the easy route and use aroot locus plot. So from MATLAB, we foundK. =~ 0.003 for a
systemwith { = 0.7.

(0) To make the system less underdamped, the easiest isto reduceK.. Otherwise,
we need to choose alarger Tp and repeat the calculations.
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@

B T o I = __.?_

s - —— ——

(b)

Controlled variable = measured variable = [NH3] in air outlet stream ( ppm)

Manipulated variable = water inlet flow rate (gpm)
Disturbance possibilitiesare air inlet flow, and NHz inlet concentration

_20-4_ 0 mA

Cn=Km="00 2% om
15-3 psi

KI/P_ 20_4_075 m

K _—500 _ gpm

v 10 ps

(We need K, negative aswelll seethat K;, is negative.) Further, we need afail-open or air-to-close valve
for safety. So

_—0 gom
V Bs+1l ps

(c) From the unitsgiven the dataare for the process function G, only. The NHz concentration isthe actual
measurement, so the deviation is[NHs] — [NH3]ss, where [NHz]ss = 50 ppm.

For the plot (see MATLAB statementsin the M-file), we approximate the processitsalf as afirst-order
with dead time function. The dead timeis approximately 25 s, and the time constant is approximately 55 s.

The steady state gainis (51.77 — 50)/(-50) = —0.0354 (ppm/gpm). So

G _—00354e ®° ppm
P~ B5s+1 gpm

(d) SotheprocessgainK, isnegativeand if the controller gainK. is also positive, then the actuator (valve)
gain K, must be negative, aswe did in Part (b).

(e) One possibility isto use empirical tuning. Here, Gpre = KipKn G, G, SO
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30
_ Ky pKnK Ky e—ZSSN(KI/PKvaKp)e ®
PRC (5s5+1)(55s+1) 55s+1

With thisfirst-order with dead time process reaction curve function, we can easily find the controller
settings (see MATLAB statementsin the M-file).

(f) and (g). See MATLAB Statements.
For example, if we usethe ITAE settings, we have a44% overshoot and we'll have to detune the
controller by, for example, reducing Kc.
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6

(é) Use the cooling jacket, which has a much larger steady state gain. It takes about 10 min to reach steady
state. So the time constant is approximately 2 min, consistent with other information given. So we have

__—5 _C

P 2s+1 gpm

_5-0 .. V. __ 01 Vv
m_120—7o_0'1 ‘C’ G (1/4)s+1 °C
_(2(10)_, gm ~__ 4 gpm
Ky= 5 =4 G"_(1/2)s+1 v

?
= =

TR . wl Topal ——
—E et e
\ rm W A

(b) Wewant afail-open valve to ensure the temperature in the reactor may stay low. If the controller gainK.
is positive, arisein temperature above the set point will lead to lower controller output. So we need an air-
to-close valve to increase coolant flow rate. Hence we really needK, to be negative and G, should be

W

__—4 gmm
V' 05s+1 V

(c) Possibledisturbances are reactant flow, reactant concentration, inlet temperature, and water flow inthe
condenser. Transfer functions are given in Parts (a) and (b) above.

(d) The closed-loop characteristic equation is

-4
0.5s+1

-5
2s+1

0.1
0.25s+1

1+K

C

Expanding,

33+1—2332+1ls+4(1+2Kc)=0

Wemust have (1 + 2K;) >0, or K, > —1/2

Routh array:
1 1
13/2 4(1+2K )
bl
4(1+2K )

So we also must have
(13/2)(11)-4(1+2K )

o (13/2)
(13)(11)

>1+2K_,0orK. <844

So for positive K., the stability criterionis 0<K. < 8.44

1
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(€

(f)

(9)

(h)
0]

0)

(k)

From aroot locus plot using MATLAB, we found K, = 8.5 at +3.3].
Overshoot of 5% means{ = 0.69.
Againfrom aroot locus plot, we found K. = 0.66.

2670'53
Here Gpe=G,G,Gp~"5

With this process reaction curve function, we can use empirical tuning relationsto find the controller
settings.

We can use IMC too because we can apply the method to afirst-order with dead time function (Example
6.5).

With aBode plot of G* = G, G,Gn, we found Ko, = 8.5 at tg = 3.3 rad/min.

Here, we use Ko, and wxg with the Ziegler-Nichols ultimate gain tuning relations.
For dight overshoot, K. = 2.8, T, = 0.95 min, Tp = 0.63 min.
The closed-loop characteristic equation is now

-4
05s+1

-5
2s+1

0.1
0.25s+1

1+L+TDS

1+ K
¢ 7,8

With 1, = 0.95 min, 1o = 0.63 min, the PID controller contributes a+180° lead at low enough frequencies.
The system has a net —90° lag at high frequencies. It isaways stable.

See MATLAB statementsin the M-file for the smulation.



Part 11 Solutions

7.
@
A
T vl W i‘ﬁ ik

(b) With asensor that is sensitive to the fuel-air ratio and its fluctuations (noi se measurement), we should
omit derivative action and use only a Pl controller.

(¢) Inthissystem, the measurement gain K. (dopein Fig. PII1.7b) varies from extremely large about the
steady state value to amost zero away fromiit. So if the fuel-air ratio deviates just abit from steady state,
we “lose” the feedback signal. The system operates almost on an on-off basis.

In this system design, we'll not estimateKy, from Fig. PIl1.7b. Instead, we'll lump K, together with K, on
the presumption that some day, we may learn to design an adaptive controller that can adjust K. according
to the instantaneous value of K. So the closed-loop characteristic equationis

e 02s

1 1 B
Ois+1_0

0.02s+1 s+1

141

1+(K K
(KnKo) 7,8

os

where the sensor transfer function is split into two parts: the gain is lumped withK., separated from the
dynamic part. See MATLAB statementsin the M-filefor details.
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‘\.I'@f‘].l'lﬁ\'. g F-l'll-ﬁ Ehena
Sl . _ Ee)
R A\ & ~ ey i -

“f (?f‘}"g‘j

The odd situation that we face isthat the controller output changeis given only as 5%. We could assume
that itsfull rangeis0-1V asisthe transmitter, such that

=10V s Vo5 ™V
500-300 C c ¢

Another approach issimply to use“ %" asaunit for both the transmitter and the controller. So

™ 500-300°C 2 °C

But we do not really need to use K explicitly; its value is embedded in the PRC data. From Fig. PI11.8,
we can estimate

—t,s
GGG ~Ke ©

G, .=
PRC Ta=p™m - 141

where K = KKK From the figure,

:M—4 e , ts=2min,andT=6 min

KS%_%

(b) and (d).
With the first-order with dead time function, we can cal culate controller settings based on IMC or
empirical tuning relations. (SeeMATLAB statements.)

(c) The closed-loop equationis

4e72%s

1 _
1+—+TDS m =

1+ K
¢ TS

and with T, = 7 min, Tp = 0.86 min chosen with IMC in Part (b), and using Bode plots, we needK. = 1.16
to have PM = 30° (See MATLAB statements).

() See MATLAB statementsin the M-filefor the simulation.
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9.
(@ With T, F, and C, taken as constants, T is the only input to the process equation, and the temperature
dependence is the only nonlinear term. And its linearized approximation is

E

2
(o]

~E/RT _ o E/RT,

—E/RT,
e e

+ (T-T,)

Interms of deviation variable T'=T =T, thelinearized energy balanceis

o —-AH)C _ U
dT_—Fq. [2AH)C, ke & S| A (T'=T",)
dt Vv oC, RT2|"  pCV
dT |F, YA (FAHIC, cerr, E | _ YA
o 2 - c
dt (Ve v pC, RT? pC,V
leading to
daT’ , .
W'F&T =KT c
where
U —-AH)C _ )
acl F o A ) Ay e ERT, E Cad K A
\Y pC,V pC, RT: pC,V

After Laplace transform of the equation in deviation variables,

T(s)_ K _
Tc(s)‘ﬁ‘ep(s)

(b) For the processto be stable, weneeda > 0,
U -AH)C
F.oUA ! J[o

Kk e E/RT E
V. pCV C o® 2
p p p p RTO

which can loosely be interpreted that the heat removal rate must be larger than the heat generation rate by
the chemical reaction.

(c) Withthe datagiven, a=-0.123 < 0. So the chemical reactor is unstable. (Calculation detailsarein the
MATLAB statements.)

(d) With the datagiven, wealso findK = 0.0134. So

00134

Gp= s—0.123

The closed-loop characteristic equation with proportional control is

1+KCL=O ,or s=—(KK:+a)
s+a

For stability, weneed (KK:+a) >0, or K. > a/K
Substitute the numerical values, we need K, > 9.18
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(e) and (f)
We need integral control to diminate offset. Thuswe need a Pl controller (and aPID if we need a bit
more flexibility). See MATLAB statementsfor details.
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10. Wefirst need to linearize the nonlinear terms:

D(S—S)~D%(S°~S%)+(S°*~S°) D'+ D°S' ~D°S’

s K
s .S . n_g
KntS K +S° (K, +S°

So thelinearized equation in deviation variableis

' u C K
ds’ =(8’-s°)D'+D°§'~-D°S' ——— ———§'
dt Y (K,+S%
' u C K
GO S (TSI
+
m
ds' o _ . .
TDW—FS_KPD +KLSi
where
Sis_SS D°® s IJmC Km
=~ = ’ K :_,and a:D =
TpTa Kem g L™ a Y (K, +S%?

Choosing D' as the manipulated variable, and after Laplace transform, the processfunction is

S(s) __ Ky

D(s) ryst1 P

Next, with the data and equations given, we find the steady state values
S$=(1-095S=05¢g/L
DS =un S/(Km + S) = 0.364 h-1
C=Y(Sis-$)=38¢g/L

and findly, K,=9.6 gh/L andt,=1h.

The closed-loop characteristic equation of the systemiis

e 0.15s

0.24s+1

3
0.06s+1

9.6
s+1

1+G,

With dead time in the system, we should use frequency response analysisto findKe, and wx. After that, we
can use Ziegler-Nicholstuning relation to find the PID settings and tune the response with simulation. (See
MATLAB statement for details.)
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11.
(8 Fromthe unitsof Fig. PIl1.11, the plot gives usG.G; (the Kn hasto be factored out). Let's consider
GG SN . here K =K.K
8P 2420 Ts+1’ where B =%

with Gn, = Ky, and a proportional controller, G = K., the closed-loop transfer function is
c_ K. K,K
R 2+2Cts+1+K K K

So the system steady state gainis (K K K)/(1+K K K),
and the offset is 1—{(KCKmK)/(1+KCKmK)} =1/(1+K K _K)

Next, we find the numerical values. From Fig. Pl11.11, we approximate

Overshoot = (2.5-1.5)/1.5=0.67
Oscillation period T~ 0.32 s

From these values, wefind{ = 0.13, and T = 0.05.
And from the fact that offset is 0.4 and when K. =1,

04 leading to KK = 1.5

__ 1

1+K K~
(From Fig. PII1.11, K = K{Kp = (1.5 cm)/(0.2 V) = 7.5 cm/V. Hence, K, = 1.5/7.5= 0.2 V/cm)
In this problem, al we need isKnK = KnKaKp = 1.5, and

15
G.G G =
a7PTM (0.05)%s%4+2(0.13)(0.05)s+1

(b) Thefunctionin Part (a) is only approximate. The system can only become unstableif it isthird order in
this problem. The closed-loop characteristic equationis
1+K, 21'5 =0
(t,s+1)(1°s"+2C ts+1)

When GM = 1, K. = K, and using the magnitude of the “ open-loop” function, we can write
K (15)

= V1t 2a?) V12w’ Pt (20 T )

Substitute Ko, = 1.65, w = tdg = 36.6 rad/s, T = 0.05, { = 0.13, we can find 1, = 0.007 s
(c) Thetime constant of the second-order functionis
T/ =0.38s >>1,=0.007 s

So indeed the influence of the /(t.s + 1) term ismasked in the open-loop response experiment (see
MATLAB statementsfor the plotting).
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(d) Tofindaset of PID controller settings, we cannot use those relations that depend on afirst-order with
dead time process reaction curve function. But we can use the Ziegler-Nichols ultimate gain relations with
Ko and uxg. (See MATLAB statementsfor details.)

Andif weuseanideal PID function, it is possible to have complex open-loop zeros. In fact, such adesign
may allow usto have afaster and less oscillatory system response.
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12.
@

(b)

For the first CSTR,

dC, )
V W :Q(CO—Cl)—V K Cl

We need to linearize the nonlinear termsfirst:
QC,~Q°C;+Q°C,' +C;Q"
QC,~Q°Ci+Q°C,' +C:Q"
Ci~(C3+2C5C,

Subsgtitute these expansions and cancel out the steady state terms:

dc,’
V —=(C3-CHQ +Q°C, —Q°C, ~(2VkCH)Cy’

Definet = VIQs,
Co—Ci
QS

dCll S ' '
T4 +(1+27kC))C," =C '+

dc,’ | , ‘
o1 g TC1 =KuCo +K,Q

where the time constant and steady-state gainsare

T 1 (C;—-CIQ°

T =—— K,=— d K.,,=
P orkes M r2rkes M PaT T n s
After Laplace transform,
K K
Cy(s)=|——|C, ~—1Q(s)
TplS+1 Tp15+1
The equationsfor the other two CSTRs are
dc, )
V i =Q(C=C,)-VKC;
dCS 2
V g =Q(C,=Cy)-VKC3

asV and k (constant temperature) are the samein all CSTRs. Following the derivation in Part (a), and by
induction, we should arrive at

K K
Cyls)=|—= Z_1Q(s)
Tp25+1 Tp23+1
Cy(s)= Kis Ky Q(s)

Tp3$+1 Tp3S+1
where
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T T
T ,=———— T =
P2 1+27kCs’ PP 1+427kCS

K o1 (C3-C3)/Q°
i RPN EEe——
1+27kC3 " "2 1427kCS

1 (C3-CIQ°

B 1r2rkey 37T orkes

The numericd vauesare handled inthe MATLAB statements. From the steady state gain values, theinlet
concentration C, will be a more effective manipulated variable than Q. So the process function can be

written as
G =C3(s) _ Ky K Kis
P C(s) TplS+1 Tp25+l Tp35+1

From the MATLAB statements, it appears numericaly as

0.28

B 04
Cp= (0.553+1

0.8s+1

05
s+1

(c) Sonow C, isthe manipulated variable, Q isthe disturbance, and C; is the controlled variable. The process
functionis given at the end of Part (b).

(d) The closed-loop characteristic equationis 1 +K.G, = 0, or

0,056
1+K -0
TR (0555+1)(085+1)(s+1)

0.446 $°+1.815°+2.36 5+(1+0.056 K ,)=0

Wemust have 1+ 0.056K. > 0, or K¢ > —17.9 (For positive K, that just meansK > 0)
And with the Routh array,

0.446 2.36
181  1+0056K_

bl
1+0.056 K

We need
(1.8)(2.36)—0.45(1+0.056 KC)

= >0

! 1.82

So for stability, we need 0 < K¢ < 153 (for positiveK), and Ko, = 153.
For GM =2, we need K. = 153/2 = 76.6

(e) The closed-loop characteristic equation is now

1
7,8

0.056
(0.555+1)(0.8s+1)(s+1)

1+K, |1+

Intuitively, we should choose the larger T, to have a more stable system. Indeed, we can see from root
locus plots (see MATLAB statements) that with T, = 2 min, the system is always stable.
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(f) Sowechooset; = 2 minto continue. With the characteristic equation in Part (€) and frequency response
analysis, wefind K, = 97.7. So for GM = 2, weneed K. = 97.7/2 = 48.9.

(g) Now we need to use aroot locus plot. FromMATLAB, to have asystem = 0.7, we need K. = 9.75.
(h) See MATLAB statementsfor the comparétive plot.

(i) Thisisjust amatter of plug and chug with the empirical tuning relations. SeetheMATLAB statementsfor
the cal culation and time response simulation.

() If wegoal theway back to Part (d) and apply K, and w to the Ziegler-Nichol s tuning relations, wed
find that the tuning relations would recommend tp = 0.3 or 0.9 in this problem. If we repeat the exercise

inthe MATLAB statements of this problem, we'd see that the point of this Part isto see when acontroller
bringsin phase lead.

With 1p = 0.3 min, the derivative action does not bring in the phase lead soon enough and so only T, = 2
min (lower corner frequency ¥2) can stabilize the system. If we had chosentp = 0.9 min, its corner
frequency islow enough that its phase lead can stabilize the system even whent, = 0.5 min.

(k). (1), and (m) _
Work that really needsMATLAB. Seethe MATLAB statementsfor details.

(n) Need thedifferential equations back in Parts (a) and (b). With only C, as the input, we can omit al the
terms associated with Q. For

ax o
E—AX%—BU, y=Cx
We have now
Cc/ —1/Tpl 0 0 K]_’L/Tpl
X=|C,'|, x= K/t —Uty, 0 , B= 0 , c=lo o 1]
Cs 0 Kylty; Uty 0

The numericd values are computed in theMATLAB statements.
(0) Thisisinthe MATLAB statementstoo.
(p) We can computethat Co=[B AB A2B] and Op =[C CA CAZT are both of rank 3.
(q) Thisisamater of applying the Ackermann'sformula. SeetheMATLAB statementsfor details.

(r) and (s). They areadsointhe MATLAB statements.
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