
Part I Solutions

1. (a) Unit step input, X = 1/s 

Y= 2

s s2s29
=
1

s

2

s2

3

s3 j

*3

s−3 j

with

1=
2

s2s29∣s=0

= 2
29

=1
9

2=
2

s s29∣s=−2

= 2
−213 

=−1
13

3=
2

s s2s−3 j ∣s=−3 j
= 2
−3 j 2−3 j −6 j 

=−1
9

1
2−3 j 

=−23 j 
913 

Hence

y t =1
9
− 1

13
e−2 t− 1

913
[23 j e−3 j t2−3 j e3 j t ]

=1
9
− 1

13
e−2 t− 1

913  [23 j cos 3 t− j sin 3 t 2−3 j cos 3 t j sin 3 t  ]

=1
9
− 1

13
e−2 t− 2

913 
[2cos 3 t3sin 3 t ]

=1
9
− 1

13
e−2 t− 213

913
sin 3 t ,  =tan−1 2

3


With an impulse input, X = 1,

Y= 2

s2s29
=
1

s2

2

s3 j

*2

s−3 j

1=
2

s29∣s=−2

= 2
13

2=
2

s2s−3 j ∣s=−3 j
= 2
2−3 j −6 j 

=1
3

j
2−3 j 

23 j
23 j

=−32 j
313 

And

y t = 2
13

e−2 t 1
313

[−32 j e−3 j t−3−2 j e3 j t ]

= 2
13

e−2 t 1
39

[−32 j cos 3 t− j sin 3 t −3−2 j cos 3 t j sin 3 t  ]

= 2
13

e−2 t 2
39

[−3cost 3 t2sin 3 t ]

= 2
13

e−2 t 2
313

sin 3 t ,  =tan−1−3
2

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Part I Solutions

(b) It is not obvious from y(t) that all the terms cancel out at t = 0, but initial value theorem can be used to
show that y(0) = 0. As for y t∞ , the pure sinusoidal term will not go away. There is no one final value
and the final value theorem does not apply.
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Part I Solutions

2.

y ' ' y ' y=sin t

After Laplace transform,

Y= 1

s2s1


s22

The root of s2s1=0  are  −1/2± j 3 /4 . 

We expect y(t) to have a term of the form exp − 1/2 t sin 3 /4 t , which is an oscillation that decays
away in time. Eventually, we are left with a pure sinusoidal term associated with /s22 . There is no
final constant value and the final value theorem does not apply.
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3.

y ' '4 y '5 y= f t 

After Laplace transform,

Y
F
= 1

s24 s5
= 1/5
1/5s24 /5s1

The roots of  s24 s5=0  are s=−4±16−20
2

=−2± j

We expect the time dependent function exp −2 t sin t , an oscillation that decays in time.

Indeed, =
1

5
 ,   2=4 /5 ,   =1/24 /55= 2

5
~0.89 , only very slightly underdamped.

If we use a unit step input and Eq. (3-24), we can find the overshoot to be only 0.2%.
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4.

(a) Y =
10

 s12  s3
=

a
 s1


b

 s12


c
 s3

b=
10

 s3∣s=−1
=

10
2
=5

c= 10

 s12∣s=−3

=
10
4
=

5
2

10
 s3

=a  s1b{c-terms with  s12}

Differentiate once,

−10

 s32
=a{c-terms with  s1}

Set s = –1, a = –10/4 = –5/2, 

yt =−5
2

e−t5 t e−t
5
2

e−3t

=5e−t −
1
2
t  5

2
e−3t

(b) Y =
s3

s22s5
For

s22s5=0  ,  s=
−2±4−20

2
=−1±2j

Or we can see that

 s22 s5 = s22 s14= s1222

But for now, we do the long, slow way,

Y =
s3

s22s5
=

a
s−−12j


a *

s−−1−2j

a=
s3

s−−1−2j∣s=−12j
=

−12j3
−12j12j

=
1 j

2j
=

1− j
2

yt =1
2
1− j  e−12j t

1
2
1 j  e−1−2j t

=
1
2

e−t [1− jcos 2t jsin 2t1 j cos2t− j sin2t  ]

=
1
2

e−t 2 cos2tsin 2t

= 2e−t sin 2t ,  =tan−11=/4
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(c) Y =
e−4s

s2 s2
3s2

=
e−4s

2s  s2
3/2 s1

The roots of  s23/2 s1=0  are s=−
3
4
±

1
2 9

4
−4=−

3
4
± j 7

4
Or we can make use of

 s2
3
2

s1= s2
3
2

s
9

16
−

9
16

1= s
3
4


2


7
16

For now, we do it the long way. Consider first, without the time delay,

1

s s2
3
2

s1
=

a
s


b

s−
−3
4
 j 7

4



b*

s−
−3
4
− j  7

4


a= 1

s23/ 2 s1∣s=0

=1

b=
1

s [s−
−3
4
− j 7

4
]∣s=−3

4
 j 7

4

=
1

−3
4
− j  7

4  j
27

4 
=

8
−3 j 7 j  7

=
8

−7−37 j
−7 j 37
−7 j 37

=
8−7 j 37

499 7

=
8

112
−7 j 37=−

1
2
 j

37
14

yt =
1
2 {1e

−3
4

t

[−1
2
 j

37
14

cos 7
4

t jsin 7
4

t their conjugate terms]}
=

1
2 {1e

−3
4

t
−cos 7

4
t−3 7

7
sin 7

4
t }

We finally put the time delay back in,

yt−4 =
1
2 {1e

−3
4

t−4 

[−cos 7
4
t−4−3 7

7
sin 7

4
t−4]}u t−4

(d) This is like part (c). Consider first

1

s s29 
=

a
s


b
33j


b*

3−3j

a= 1

s29∣s=0

=
1
9

b=
1

s s−3j∣s=−3j
=

1
−3j−6j

=
−1
18

=b *

2



Part I Solutions

Without dead time,

yt =1
9
−

1
18

 e3 j te−3 j t 

=
1
9
1−cos 3t

Now with dead time,

yt−2 =[ 1
9

1−cos3t−2  ] u t−2
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5.

G= s1

s210 s1
=a

s
 b

s2
 c

10 s1

c= s1

s2 ∣
s=−1/10

= 9/10
1/100

=90

b= s1
10 s1∣s=0

=1

s1
10 s1

=a sb{c -terms with s2}

Differentiate once,

1
10 s1

−10
s1

10 s12
=a{c -terms with s }

Set s = 0, a = 1 – 10 = –9

G=−9
s
 1

s2
 90

10 s1

Can also find

g t =−9t9 e
− 1

10
t

1



Part I Solutions

6. The two s in the original equation cancel out. So, 

Y
X
= 3s2s−2
5 s36 s22 s3

With X = 1/s,

y t∞=lim
s0 [s 3s2s−2

5 s36 s22 s3

1
s ]=32−2

3
=−4

This result is only valid if all three roots of 5 s36 s22 s3=0  have negative real parts. We check with
MATLAB using

roots([5 6 2 3])

and found –1.26, +0.03±0.69j. So the final value theorem does not apply and the value –4 obtained above is
meaningless.

1



Part I Solutions

7.  The roots of s2−2 s−5=0  are s=1±1
2
4−20=1±2 j .

For

Y
X
= s1

s2s2−2 s5
,

we expect y(t) to have time dependence e−2 t  and et sin 2 t .  The e−2 t  term decays away when

approximately τ = 5 (½) [time units]. The et sin 2 t  term will grow exponentially with an oscillation.

With time delay due to e−1/2 s , it just means that any response to x(t) will be shifted by ½ time units. Whether
X(s) = 1 or 1/s, we still expect something like:

1



Part I Solutions

8.  The roots of s22 s2=0  are s=−1±1
2
4−8=−1 j .

For

Y
X
= 10 s s1
s2s22 s2

we have zeros at 0 and –1, and poles at –2 and –1 ±j. The response has time dependent functions  e−2 t  and
e−t sin t . 

For

Y
X
= 10

s2s22 s2

we expect y(t) to have the same time depdent functions as the first transfer function.

With X = 1/s, 

y t∞=lim
s0 [s 10

s2s22 s2
1
s ]=5

2

This 5/2 is the steady state gain of the transfer function. The response y(t) will reach a final value of 5/2 in an
oscillatory manner.

If we write s22 s2=2 1
2

s2s1 , and equate

1

s2
s1=2 s22 s1 ,

we find

= 1
2

, and 2=1 , or =
1
2
2= 1

2
.

If

Y
X
= 10

s2s22
, 

the poles are –2 and ± j 2 . We expect y(t) to have the functional dependence  e−2 t  and sin 2 t  . When
X = 1/s, the e−2 t  term will decay away and y(t) will eventually become a pure sine wave that oscillates about
the mean of 5/2 and with a frequency of 2 . There is no final value.

1
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9.  The Laplace transform of F(t) = 3 u(t) is F(s) = 3/s, so

Y= 18

s23 s9

3
s

(a)  y t∞=lim
s0

[ s Y ]=18 3
9
=6

(b)  
Y
X
= 2

1
9

s2 1
3

s1

So

=1
3

,  2=1
3

,  and =1
3

1
2

3=1
2

For ζ = ½, the overshoot is 0.16.

If X = M/s, the overshoot means 
10−M K p

M K p

=0.16 , or MKp = 8.62

From the transfer function, Kp = 2, so M = 8.62/2 = 4.31.

(c)
Y
F
= 5/9

1
9

s21
9

s1
,

=1
3

,  2=1
9

,  and =1
9

1
2

3=1
6
1

With both step and impulse response, we can calculate the period to be T = 2.12 [time units], and settling time
to be approximately 4 (τ/ζ) = (4)(1/3)(6) = 8 [time units].

For unit step input and ζ = 1/6, we can find that overshoot = 0.589, and decay ratio = 0.347. (The decay ratio
applies to an impulse response too.)
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10.  The Laplace  transform of

1

d c1

d t
=co−c1  ,  c10=0 , and   2

d c2

d t
=c1−c2  ,  c20=0

would give

C1s
Cos

= 1
1 s1

,  and   
C2s
C1s

= 1
2 s1

C2s
Cos

=
C2s
C1s

C1s
Cos

= 1
2 s1

1
1 s1

(a)  Now, Co(s) = 6,

C2s=
6

2 s11 s1

So, c2t∞=0 . We can confirm this with the final value theorem. And with the numerical values

1=
4

0.02
=200  s ,  2=

3
0.02
=150  s

we can either do partial factions or simple table look up to find,

c2t =
6
50

e−t /200−e−t /150 

which indeed approaches zero as time increases.

(b) τ = 4/2 = 2 min

C1s
Cos

= 1
 s1

 ,  
C2s
Cos

= 1

 s12
 , ,  

C5s
Cos

= 1

 s15

The plotting is an exercise in using MATLAB.

(c)  If the poles are distinct, we identify the dominant pole (the largest time constant, τ) and choose the time of
simulation to be at least 5τ (say 6τ), since  1−e−5~0.99 .

If there are multiple poles, as in part (b), we have O t4 e−t /  and it will take much longer than 5 or 6 τ to

have the term decays away (i.e., reaching the new steady state).  (To find the time t where t 4 e−t /= , with

≪1 , we'll need a trial and error calculation for a chosen ε.)

1
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11. The poles of a transfer function are not dependent on the input, so they stay at –4.5±2.5j whether it is a
step input or a rectangular pulse input.

12. The process is likely nonlinear.

1
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13. The steady state gain is the sum of the individual steady state gains, i.e., K1 + K2. Or you can use the final
value theorem and X = 1/s.

lim
s0

[ s Y ]=[s  K 1

1 s1


K 2

2 s1  1s ]=K 1K 2

Y
X
=

K 12 s1K 21 s1
1 s12 s1

=
K 12K 21sK 1K 2

1 s12 s1

So the poles are at −1/1 , and −1/2 , and the zero is at −K 1K 2/K 12K 21 .

1
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14. Y= 1

s s22 s3

The roots of  s22 s3=0  are s=−2±4−12
2

=−1± j 2

Y=a
s
 b sc

s22 s3

a= 1

s22 s3∣s=0

=1
3

1
3
s22 s3b s2c s=1

 1
3
bs2 2

3
c s1=1

So we have b = -1/3, and c = -2/3

s22 s3=s22 s12=s1222

−1
3

s−2
3
=−1

3
s2=−1

3
s11

Y=1/3
s
−1

3 [ s1

s122
 1

2
2

s122 ]
After inverse transform,

y t =1
3
−1

3
e−t [cos 2 t 1

2
sin 2 t ]

=1
3 [1−e−t 1

2
2cos 2 tsin 2 t ]

=1
3 [1−e−t  3

2
sin 2 t] ,  =tan−12

FYI. We could have gone the slower route too:

1

s s22 s3
=1/3

s



s−−12 j 


*

s−−1−2 j 

= 1
s s12 j ∣s=−12 j

= 1
−12 j −12 j12 j 

= 1
22 j −12 j 

= −1
22 j 2 j 

2− j

2− j
= −2− j 

2221
=−2 j

62

Back in time domain:

y t =1
3
− 1

62
[2− j e−12 j t2 j e−1−2 j t ]

1



Part I Solutions

=1
3 {1− e−t

22
[2− j e2 j t2 j e−2 j t ]}

=1
3 {1− e−t

22
[2− j cos 2 j sin 2 t 2 j cos 2− j sin 2 t  ]}

=1
3 [1− e−t

22
22cos 2 tsin 2 t ]

=1
3 [1−e−t  3

2
sin 2 t]  ,   =tan−12

2
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15.
Y
F
= 3

s s22 s4

The roots of  s22 s4=0  are  s=−2±4−16
2

=−1± j 3

Y
F
= 3 /4

s 1/4 s21/2 s1

So

=1
2

 ,  2=1
2

 ,  =1
4

2=1
2

Indeed, /=1 .

If F = 1/s,

Y= 3

s2S22 s4
= a

s2
 b sc

s22 s4

a= 3

s22 s4∣s=0

=3
4

So y(t) will oscillates initially, but eventually it becomes a pure ramp function with
slope 3/4.

If F = 1, Y= 3

s S22 s4
, the response is oscillatory but will reach a final steady state of ¾.

1
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16.
(a)


d c1

d t
=co−c1−k c1

, 


d c2

d t
=c1−c2−k c2

 with =V /Q=4  min , and k = 1.5 min−1.  Take the first CSTR equation and rewrite as


d c1

d t
1k c1=co

This becomes

p

d c2

d t
c1=K co

,  with  p=


1k 
  and  K= 1

1k 

This is a linear equation, so it takes the same form even in deviation variables, and after Laplace transform, we
should get

C1s
Cos

= K
p s1

And similarly for the second CSTR equation, we should get

C2s
C1s

= K
p s1

since k and τ are constants. So

C2s
Cos

=[ K
p s1 ]2

The steady state gain is K 2 . Response is critically damped. The time τp may appear as if it were the time

constant because it is associated with e
−t / p , but the actual time dependent term is really t e

−t / p , which is
much slower (See Part b.)

(b) The 63% response is only applicable to a first order function, not in this problem. 
Now with k = 0,  K = 1, and τp = τ, and the input, Co(s) = 1/s,

C2s=
1

 s12
1
s
=a

s
 b
 s1

 c

 s12

a= 1

 s12∣s=0

=1

c=1
s∣s=−1/

=−

1
s
={a -terms with  s12}b  s1c

1
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Differentiate once,

− 1

s2
={a -terms with  s1}b

Set s = - 1/τ

b=
−2


=−

c2t =1− 1


e−t /− t

2
e−t /=1−e−t /− t


e−t /

c2t =1−1 t

e−t /

At t  = τ,

c2=1−2e−1=0.264 ,  or 26.4%

This response is much slower than the first order 63.2% 1−e−t  .

2
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17.

Y
F
=

K p

p s1
,   with  F=


s2

Y=
K p

s2p s1
=a

s
 b

s2
 c
p s1

b=
K p

p s1∣s=0

=K p

c=
K p

s2 ∣
s=−1/ p

=K pp
2

K p

p s1
=a sb{c -terms with s2}

Differentiate once,

−
K pp

p s12
=a{c -terms with s}

So setting s = 0 gives

a=−K pp

And the time domain response is

y t =K p [−ptp e
−t / p ]

The large time asmptote has slope  α Kp, and intercept τp:

y t∞~K pt−p

1
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18.
(a)

y x =
 x

1−1 x

The first order approximation is

y x ~ y  x s[ 
1−1 x s

−
−1 x s

1−1 x s
2 ] x−x s

y x ~ y x s[ 
1−1 x s

2 ] x ' ,  with  x '=x−x s

(b)

P i
s=Pc exp A1−

A2

TA3 
The first order approximation is

P i
s T =P i

s T sPc [ A2

TA3
2

exp A1−
A2

TA3 ]T s

T−T s

=P i
s T s[ A2

T sA3
2

P i
s T s]T ' ,   with T '=T−T s

1
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19.

d x
d t
=−D xs x ,  (19.1)

 
d s
d t
=D S in−S − 1

Y
s x ,  (19.2)

where  s=
m s

K ms
Linearization of the nonlinear terms:

D x~Ds x sDs x 'x s D '

D sin~Ds sin , sDs s ' insin , s D '

D s~Ds ssDs s 'ss D '

where the deviation variables are:

 x '=x−x s ,  D '=D−Ds ,  s '=s−ss , and  s ' in=sin−sin , s

and also,

s x~ss x s m s

K mss
x−x sx s m

K mss

−
m ss

K mss
2 s−ss

=ss x sss x '[ x s

m K m

K mss
2 ]s '

Further define

s ss=
m K m x s

K mss
2

Eq. (19.1) can be written as

d x '
d t

=−Ds x 'x s D ' ss x 's ss s '

d x '
d t

Ds−ss x '=−x s D 's sss '

And in terms of time constant and gains,

1
d x '
d t

x '=−K 1 D 'K 2 s ' (19.3)

where

1=
1

Ds−ss
 ,  K 1=

x s

Ds−ss
 ,  and  K 2=

s ss
Ds−ss

and we have purposely chosen to have the negative sign to associate with the D' term because we know
increase in D will lead to a decrease in x.

1
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After Laplace transform,

X=[ −K 1

1 s1 ]D[ K 2

1 s1 ]S (19.4)

Repeating the same exercise with Eq. (19.2), we have

d s '
d t
=−Ds s ' insin, s D '  −Ds s 'ss D '  − 1

Y [ss x 's sss ' ]
d s '
d t
Ds

1
Y
ssss '=Ds s ' insin, s−ssD '− 1

Y
ss x '

And in terms of time constant and gains,

2
d s '
d t
s '=K 3 s ' inK 4 D '−K 5 x ' (19.5)

where

2=
1

Dss ss/Y
 ,  K 3=2 Ds  ,  K 4=2sin, s−ss  ,  and  K 5=2ss/Y

S=[ K 3

2 s1 ]S in[ K 4

2 s1 ]D[ −K 5

2 s1 ] X (!9.6)

Now substitute Eq. (19.6) in (19.5):

X=[ −K 1

1 s1 ]D[ K 2

1 s1 ]{[ K 3

2 s1 ]S in[ K 4

2 s1 ]D[ −K 5

2 s1 ] X }
1 s12 s1X=−K 12 s1DK 2 K 3 S inK 2 K 4 D−K 2 K 5 X

Finally,

X=[ K 2 K 4−K 12 s1
1 s12 s1K 2 K 5

]D[ K 2 K 3

1 s12 s1K 2 K 5 ]S in

2
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20.  The nonlinear term is

r C A , C B=
k C AC B

1K AC AK BC B

r C A , C B~r C A
s , C B

s [ k C B

1K A C AK B C B

−
k K AC A C B

1K AC AK B C B
2 ] s.s.

C A−C A
s 

[ k C A

1K A C AK BC B

−
k K B C AC B

1K A C AK B C B
2 ] s.s. C B−C B

s 

=r C A
s , C B

s [ k C B1K AC AK B C B−k K A C A C B

1K AC AK BC B
2 ] s.s.C ' A

[ k C A1K A C AK B C B−k K B C A C B

1K AC AK B C B
2 ] s.s.C ' B

=r C A
s , C B

s [ k C B 1K B C B

1K A C AK B C B
2 ] s.s.

C ' A[ k C A1K AC A

1K AC AK B C B
2 ] s.s. C ' B

Define shorthand

=[ k C B1K B C B

1K A C AK B C B
2 ] s.s.  ,  

=[ k C A1K A C A

1K A C AK B C B
2 ] s.s.

So for the nonlinear equation,

d C A

d t
= 1

C Ao−C A−r C A , C B

At steady state,  0=1

C Ao

s −C A
s −r C A

s , C B
s 

And after substituting for the nonlinear term and using deviation variables,

d C ' A

d t
=1

C ' Ao− C ' A−C ' A−C ' B

d C ' A

d t
 1

C ' A=

1


C ' Ao−C ' B

where  C'A and C'B are the deviation variables.

1
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21.
First in closing the small internal loop,

K /S
1K v K /s

= K
sK v K

C
R
=

K
sK v K

1 K
sK v K

= K

s2K K v sK

C
R
= 1

1
K

s2K v s1

If K = ¼, =1/K  = ½, and

2=K v  , ζ = 0.7,

Kv = 2 (0.7) (1/2) = 0.7

1
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22.

C p 1 M 1

d T m

d t
=h1 A1T i−T m ,    and   C p2 M 2

d T i

d t
=h2 A2T o−T i 

can be written as

1

d T m

d t
=T i−T m ,   and   2

d T i

d t
=T o−T i

where

1=
C p 1 M 1

h1 A1
,    and  2=

C p2 M 2

h2 A2

After putting the equation in deviation variables, the linear equations will retain the same form. Further with
Laplace transform,

T m

T i

= 1
1 s1

,    and   
T i

T o

= 1
2 s1

T m

T o

= 1
1 s1

1
2 s1

The response is 2nd order overdamped with time constants τ1 and τ2. The steady state gain is 1 and hence Tm

will eventually be identical to To.

1
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23.  The key is that the dominant pole in (b) is complex and oscillations die out more slowly than in (a). In (c),
the pole at  s = 0 will lead to a constant from an impulse input and a ramp from a step input.

  *  A little “bump” will appear if the oscillations die out quickly.

1
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24.

f 1= y1− y1 y2

f 1~ y1−[ y1
s y2

s y2
s y '1 y1

s y ' 2] ,    with  y '1= y1− y1
s , and y ' 2= y2− y2

s

f 2=− y2 y1 y2

f 2~− y2[ y1
s y2

s y2
s y '1 y1

s y ' 2]

At steady state,

0= y1
s− y1

s y2
s

0=− y2
s y1

s y2
s

The linearized equations are:

d y '1

d t
= y '1− y2

s y '1− y1
s y '2

d y ' 2

d t
=− y ' 2 y2

s y '1 y1
s y ' 2

In matrix form,

d
d t [ y '1

y ' 2]=[1− y2
s − y1

s

 y2
s −1 y1

s ][ y '1

y ' 2]
The characteristic polynomial is

s−1 y2
s s1− y1

s y1
s y2

s=0

After expansion and cancellation of terms,

s2 y2
s− y1

ss y2
s y1

s−1=0

1
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25.  There are three poles. The transfer function is third order.

(a) [s 2 j ] [s 2 j ]=[ s 2 j ] [ s 2 j ]= s 2 2 1

G s =
s 1

s 4 s
2 4 s 5

=
20

s 1

1

4
s 1

1

5
s2 4

5
s 1

The steady state gain is given as 2, so 2 = /20 or  = 40. Hence,

G s =
2 s 1

1

4
s 1

1

5
s

2 4

5
s 1

(b)  The term (s + 4) gives rise to e 4 t , and s
2 4 s 5  gives e 2 t sin t  in the time domain. The

time constants are  and .

We can double check with 1/5 s
2 4 /5 s 1 ,

 =1/ 5  ,  2 =4 /5  ,  = 1/2 4 /5 5 =2 / 5

So,  / = 1/ 5 5/ 2 =1/ 2 .

(c)  With =2/ 5=0.89 , the response will only be very slightly underdamped.

A reasonable settling time can be either 3 /  (for within 5%) or 4 /  (within 2%), meaning 3/2 or 4/2.

Note: in the rough hand sketch, we casually labeled “~5/2” only because the drawing is close to being

at the steady state, and so we denoted that as roughly 5 / .

(d)  Now

Y

X
=G=

40 s 1

s s 4 s
2

4 s 5

With the additional pole at s = 0, a step input will lead to a ramp response.

1
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26.
The poles and their time domain functional forms are:

±2 j    ⇔    sin 2 t

−2    ⇔     e−2 t

−6±2 j    ⇔     e−6 t sin 2 t

1
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27.

Q2s =
1

6 s12
 ,   and the input  Qos=1

So q2t   should have the form a1a2 t e−t / , with τ = 6, and  q2t∞=0 .

If  Q2s=
1

s 6 s1 ,  then  q2t∞=1 .

1
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28.

1
s 1 s12 s1

=a
s
 b
1 s1

 c
2 s1

with

a= 1
1 s12 s1∣s=0

=1

b= 1
s 2 s1∣s=−1/1

=
1

2/1−1
=

1
2

2−1

c= 1
s 1 s1∣s=−1/2

=
2

1/2−1
=

2
2

1−2
=
−2

2

2−1

y t =1
1

2

2−1

1
1

e
−t /1−

2
2

2−1

1
2

e
−t /2

=1 1
2−1

[1e
−t /1−2 e

−t /2 ]

1
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29.

e=R−H b

C=ab=F eG e  ,  b=G e

So

b=G e=G R−H b

b= G R
1G H

And

e=R [1− H G
1G H ]=R

1
1G H

C=[ FG
1G H ]R

1
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30.

C
R
=

2 K
s s1

1 2 K
s s1

= 2 K
s s12 K

C
R
= 1

 1
2 K
s2 1

2 K
s1

The transfer function has unity gain, so there is no steady state error.

If the overshoot is 0.1, then ζ = 0.59,

= 1
2 K

 ,  2= 1
2 K

 ,  = 1
4 K
2 K=1

4  2
K

K = 0.357

1
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31.
(a)  

f t =2 t−2t−2u t−2

The second term on the right really is the function g t−2=g t−2u t−2 , where  g t =−2 t . You
cannot write -2t + 4.

Here,

F s= 2

s2
− 2

s2
e−2 s= 2

s2
1−e−2 s

(b) 

f t =t−2t−2u t−2t−4u t−4

F s= 1

s2
− 2

s2
e−2 s 1

s2
e−4 s

= 1

s2
1−2e−2 se−4 s

(c)  The answer to this part is based on parts (a) and (b), and we need to superimpose four functions: 

f t =2 t−2t−2u t−2−2t−6u t−62t−8u t−8

F s= 2

s2
1−e−2 s−e−6 se−8 s 

1
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32.  The algebraic relations based on Fig. PI.32:

E2=E1 G
*

M

And skipping one step, we can still see from the diagram that

E
1
=R C e s

C
1

 ,  with  C
1
=G

*
M

After substituting for E1 in the E2 equation:

E
2
= R C e

s
G

*
M G

*
M

E2= R C G M  ,  after defining  G=G
* 1 e

s  

From these reduced block diagram (see sketch on the right),

the location where we usually have the controller function is:

Gc=
G

1 G G
=

G

1 GG
* 1 e s

So finally,

C

R
=

Gc G p

1 G
c
G

p

=
G Gp

1 G G
*

1 e
s

GG p

Alternate route: use Mason's gain formula.

There is only one forward path with the path gain:

F1 = GGp

There are three negative feedback loops: the big one plus two smaller ones within. The system

determinant is

= 1 G G
p

G G
*

G G
* e s

 

or

= 1 GG
p

GG
* 1 e

s

Note that the last term is negative because as we go through this loop, we encounter two minus signs.

Dividing these two quantities gives us the transfer function above.

1
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33.

q=C v Rl−1P h
s
1/2  ,   P h=

Pog h−P1

gc

To linearize the nonlinear term:

q~q l s , hs ∂q
∂ l ∣s.s. l '∂q

∂h∣s.s. h '  ,    l '=l−l s , h '=h−hs

∂q
∂ l ∣s.s.=C v P hs

s
1/2ln R Rl s−1=q l s , hs ln R≡C1

∂q
∂h∣s.s.=C v Rl s−1 1

2
g

gcs
P hs
s

−1/2

≡C2

where we have defined C1 and C2 as “shorthand” notations. The differential equation becomes:

A
d h '
d t
=q ' o−C1 l '−C2 h '

A
d h '
d t
C2 h '=q 'o−C1 l '

A
C2

d h '
d t
h '= 1

C2

q ' o−
C1

C2

l '

 d h '
d t
h '=K 1q ' o−K 2 l '  ,    = A

C2

 ,   K 1=
1

C2

 ,   K 2=
C1

C2

After Laplace transform:

H s=[ K 1

 s1 ]Qos−[ K 2

 s1 ]L s

1
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34.
The mass balance of A is:


d CA

d t
=CAi−CA rA

 ,  with  −rA=2 ko e−E/RT CA
2 (34-1)

which follows the chemical kinetics convention of A r . And the energy balance:

 d T
d t
= Ti−T

−H
Cp

−rA −
U Ac

Cp Q
T−Tc (34-2)

Here, the linearized reaction rate is

−rA~2 ko e
−E/R Ts CA , s

2 4 ko e
−E/RTs CA , sCA−CA , s

E

R Ts
2

2 ko e
−E/RTs CA , s

2 T−Ts

Define

−rA , s=2 ko e
−E/RTs CA , s

2  ,  kTs=ko e
−E/RTs  ,

  C'A=CA−CA , s  ,  T '=T−Ts

and the linearized rate in a more compact form:

−rA~−rA , s4 kTsCA , s C'A
E

R Ts
2
−rA , sT' (34-3)

After linearization, the reactant A mass balance becomes


d C'A

d t
=−C'A−[4 kTsCA , s C'A

E

R Ts
2
−rA , sT ']


d C'A

d t
[14 kTsCA , s ]C'A=−

E

R Ts
2
−rA , sT '

A

d C'A
d t
C'A=−KA T ' (34-4)

where

A=


14 kTsCA , s

 ,  and   
KA=

 E

R Ts
2
−rA , s

14 kTsCA , s

After Laplace transform,

CAs=−[ KA

A s1 ]Ts=−GAsTs (34-5)

1
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The linearized energy balance becomes

 d T '
d t
=T'i−T '

−H
Cp [4 kTsCA , s C'A

E

R Ts
2
−rA , sT ']−T'−T 'c ,   =

U Ac

Cp Q

 d T '
d t
[1−−H

Cp  E

R Ts
2 −rA , s]T'=T 'i[ −H

Cp

4 kTsCA , s]C'AT 'c

Define ”shorthand” notations,

=1−
−H
Cp  E

R Ts
2 −rA , s  ,   =

−H
Cp

4 kTsCA , s  ,

then we can write

 d T '
d t
T '=T 'iT'cC'A

and finally, 

T

d T'
d t
T '=KT1

T'iKT2
T 'cKT3

C'A (34-6)

where

T=



 ,   KT1
= 1


,   KT2

=



,   KT3
=



  

After Laplace transform,

Ts=[ KT1

T s1 ]Tis[ KT2

T s1 ]Tcs[ KT3

T s1 ]CAs

=GT1
sTisGT2

sTcsGT3
sCAs

(34-7)

Sub Eq. (34-7) in (34-5):

CAs=−GAs[GT1
sTisGT2

sTcsGT3
sCAs]

CAs=[ −GAsGT1
s

1GAsGT3
s ]Tis[ −GAsGT2

s

1GAsGT3
s ]Tcs (34-8)

The same procedure applies to the energy balance equation.
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1. (a) 

Gc=K c

D s1

D s1
 ,   G p=

K p

p s1

With simple unity feedback,

C
R
=

Gc G p

1Gc G p

=
K c K pD s1

D s1p s1 K c K pp s1

C
R
=

K c K pD s1

Dp s2DpK c K pDs1K c K p

Rewriting it as

C
R
= K

2 s22 s1

where we have the closed-loop steady state gain and natural time period defined as 

K=
K c K p

1K c K p
 , and  = Dp

1K c K p
1/2

To find the damping ratio,

=1
2

DpK c K pD

1K c K p  1K c K p

Dp
1/2

=1
2

D K c K p p

Dp1K c K p

(b) From the natural time period equation, if α  decreases, so does τ.

(c)  Load change problem. We expect G L=K d /p s1 , i.e., same process time constant τp, and

C
L
=

G L

1Gc G p

Offset due to load change = 0 −
K d

1K c K d
, where the zero represents no change in R.

(d)  

1



Part II Solutions

(e) We can  figure out with a simple root locus sketch, without doing much work, that the system with a real
PID will not have complex closed-loop poles (or underdamped behavior).

2



Part II Solutions

1 (partial, without Part e).
(a) 

Gc=K c

D s1

D s1
 ,   G p=

K p

p s1

With simple unity feedback,

C
R
=

Gc G p

1Gc G p

=
K c K pD s1

D s1p s1 K c K pp s1

C
R
=

K c K pD s1

Dp s2DpK c K pDs1K c K p

Rewriting it as

C
R
= K

2 s22 s1

where we have the closed-loop steady state gain and natural time period defined as 

K=
K c K p

1K c K p
 , and  = Dp

1K c K p
1/2

To find the damping ratio,

=1
2

DpK c K pD

1K c K p  1K c K p

Dp
1/2

=1
2

D K c K p p

Dp1K c K p

(b) From the natural time period equation, if α  decreases, so does τ.

(c)  Load change problem. We expect GL=K d /p s1 , i.e., same process time constant τp, and

C
L
=

G L

1Gc G p

Offset due to load change = 0 −
K d

1K c K d
, where the zero represents no change in R.

(d)  

1
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2.  The characteristic equation is

1Kc
−s1

 s1s2 
=0

(a)   s1 s2 Kc −s1=0

s23−Kc  s2Kc=0

For a stable system, we need

3−Kc 0 , and 2K c 0

So

−2K c3

(b) The term (–s + 1)/(s + 1) is the first order Padé approximation of e−2s . The presence of the open-loop 
positive zero (s = 1) makes the system unstable when Kc > Kcu, the ultimate gain. Otherwise, both 
“systems” with the respective characteristic equations, 

1Kc
1

 s1s2 
=0 , and  1Kc

1
 s2

=0

are always stable.

FYI. To find the Kcu rigorously, we need to use

1Kc
e−2 s

 s2
=0

and Bode plots as explained in Chapter 8 and MATLAB Session 7. We should find Kcu = 2.38.

(c)  To explain stability using frequency response, we write

G*=−s1 1
 s1

1
 s2

Before we do the Bode plot, we need to take a look at G(s) = (–s + 1) and its Nyquist plot.  For this 
function,

G(j) = 1 – j.

So its Nyquist plot is a vertical line that begins at +1 when  = 0, and goes downward to negative infinity. 
The format expressions for the magnitude and phase angle are

|G(j)| = √(1 + 2), and    G(j) = tan–1(–.

So the log-log magnitude plot of this function is like a first-order lead, with a slope of +1 past the break 
frequency, but its phase angle plot is like that of a first order lag.

1
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The G* magnitude plot is identical to that of 1/(s + 2). The (–s + 1) and  (s + 1)  contributions cancel each 
other. In the phase angle plot, all three “terms” contribute a –90° lag each.

Note: Since we wrote the solution, MATLAB made some changes to their computational algorithm and 
the Bode plot of  G(s) = (–s + 1) begins at 360° instead of 0°, but its calculation of gain margin (or really 
critical gain) is still correct. 

2



Part II Solutions

3. (a)  The characteristic equation is

s s2s21K c 2s1=0

Expanding,

s42 s3s221K cs2 K c=0

So the necessary conditions for stability is

21K c0 ,  K c−1   and  2 K c0

That is, we need Kc > 0 for positive proportional gains.

Now with the Routh array

1 1 2 K c

2 21K c 0

b1 2 K c

c1 0

2 K c

where

b1=
2−21K c

2
0 ,  meaning  −K c0 , or K c0

This requirement contradicts Kc > 0 from the coefficient test. 
We cannot find a proportional controller if Kc > 0.

(b)  With a PI controller,

1K c

I s1
I s

2s1
s s2s21

=0

we now add one more open-loop pole at s = 0. It is unlikely to work.

With a PD controller,

1K c D s1 2s1
s s2s21

=0

By adding just one more open-loop zero, −1/D , this appears to be the more sensible thing to try.

(c)   Use rlocus( ) in MATLAB,

A system with PD control is stable if τD is large enough.

1
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4.  The closed-loop characteristic equation is

1K c
K

s p s1
=0

The closed-loop transfer function is

C
R
=

Gc G p

1Gc G p

=
K c K

s p s1 K c K
= 1

 p

K c K s2 1
K c K  s1

(a)  The system has unity steady state gain; there is no offset. We do not need integral control. We can use P or
PD control.

(b)  

(c)

 p

K c K s2 1
K c K s1=2 s22 s1

= p

K c K 
1/2

 ,  =1
2

1
K c K  K c K

p
1/2=1

2
1

K c K p

Now

=1/2 , K = 0.6, τp = 3, 

K c=
1
2

1
30.6

=0.28

The closed-loop poles are −/± j 1−2/ . With Kc = 0.28, and τ = 4.24, the poles are at –0.167± 0.167j.

(d)  The time constant is / = 4.24/0.707 = 6.  Can double check with



= p

K c K 
1/2

2K c K p
1/2=2p=6

(e)  /=2p  is independent of ζ.  Results in parts (c) to (e) are consistent with the root locus plot.

1
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4 (partial, without part b).
The closed-loop characteristic equation is

1K c
K

s p s1
=0

The closed-loop transfer function is

C
R
=

Gc G p

1Gc G p

=
K c K

s p s1 K c K
= 1

 p

K c K s2 1
K c K  s1

(a)  The system has unity steady state gain; there is no offset. We do not need integral control. We can use P or
PD control.

(c)

 p

K c K s2 1
K c K s1=2 s22 s1

= p

K c K 
1/2

 ,  =1
2

1
K c K  K c K

p
1/2=1

2
1

K c K p

Now

=1/2 , K = 0.6, τp = 3, 

K c=
1
2

1
30.6

=0.28

The closed-loop poles are −/± j 1−2/ . With Kc = 0.28, and τ = 4.24, the poles are at –0.167± 0.167j.

(d)  The time constant is / = 4.24/0.707 = 6.  Can double check with



= p

K c K 
1/2

2K c K p
1/2=2p=6

(e)  /=2p  is independent of ζ.  Results in parts (c) to (e) are consistent with the root locus plot.

1
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5.  We first need to close the inner loop:

We also want to take note that the feedback function 1/(s + 10) has a steady state gain of 1/10. To have a
system with consistent units, we need to add this 1/10 as Km as in Fig. 5.5 (text), but which is omitted in
this problem statement. You'd also find that you need this Km if you need to show that the system, with a
PI controller (Fig. PII. 5b) has no offset.

(a) For Fig. PII. 5A,

C
R
=

K c D s1/s3

1
K c D s1
s3s10 

=
K c D s1s10 

s3s10 K c D s1

Take R = 1/s,

c t∞=lim
s0
[s C ]=

10 K c

30K c

and  

offset = 1−c t∞=1−
10 K c

30K c

We now repeat by adding Km (Fig. 5.5 text) back, then

c t∞= 1
10

10 K c

30K c

=
K c

30K c
 , and   offset = 1−

K c

30K c

= 30
30K c

For Fig. PII 5b,

C
R
=

K c I s1s10 
I s s3s10 K c I s1

With R = 1/s, c t∞=10 . Indeed we need to introduce Km = 1/10 so that c t∞=1/10 10=1 .
Now, there is no offset.

(b) The closed-loop characteristic equation is

1K c D s1 1
s3

1
s10 

=0

s213K cDs30K c=0

So we need

30K c0 , and  13K cD0

The system is always stable with Kc > 0 and τD > 0.

1
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(c) Three general possibilities:

(d) We have underdamped behavior only when τD < 1/10. To find an expression for the damping ratio, we
need the closed-loop characteristic equation in part (b) written as

 1
30K c  s2 13K cD

30K c
s1=0

so

= 1
30K c 

−1/2

, and =1
2  13K cD

30K c
30K c

1/2=1
2

13K cD

30K c
1/2

(But actual computation is much easier with root locus and using the =cos  line to find Kc.) The other
two ranges of τD have no oscillations, but they are also slower—the closed-loop dominant poles are closer
to the origin. So we prefer τD < 1/10 as the basis of the controller.

(e)     1K c

I s1
I s s3s10 

=0

Possibilities of the range of τΙ:

(f) Need to use MATLAB and root locus plots. When τΙ = 0.3, cannot have ζ = 0.2. For ζ = 0.9, Kc ~ 29. 

(g) τΙ = 1/3 will lead to pole-zero cancellation. The root locus plot is that of a second order system with open-
loop poles at 0 and -10.
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5 (partial, Part a only).
We first need to close the inner loop:

We also want to take note that the feedback function 1/(s + 10) has a steady state gain of 1/10. To have a
system with consistent units, we need to add this 1/10 as Km as in Fig. 5.5 (text), but which is omitted in
this problem statement. You'd also find that you need this Km if you need to show that the system, with a
PI controller (Fig. PII. 5b) has no offset.

(a) For Fig. PII. 5A,

C
R
=

K c D s1/s3

1
K c D s1
s3s10 

=
K c D s1s10 

s3s10 K c D s1

Take R = 1/s,

c t∞=lim
s0
[s C ]=

10 K c

30K c

and  

offset = 1−c t∞=1−
10 K c

30K c

We now repeat by adding Km (Fig. 5.5 text) back, then

c t∞= 1
10

10 K c

30K c

=
K c

30K c
 , and   offset = 1−

K c

30K c

= 30
30K c

For Fig. PII 5b,

C
R
=

K c I s1s10 
I s s3s10 K c I s1

With R = 1/s, c t∞=10 . Indeed we need to introduce Km = 1/10 so that c t∞=1/10 10=1 .
Now, there is no offset.

1
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6. The characteristic equation is

1 K
s2s4

=0

s26 s8K=0

The closed-loop poles are s=−3±1
2
36−4 8K  .

When the system is critically damped, 36−4 8K =0  or K = 1.  Thus the system is overdamped 
when K < 1 and underdamped when K > 1.

 1
8K s2 6

8K s1=0

2 s22 s1=0

= 1
8K

,  =
1
2

6
8K

8K= 3
8K

 , and thus   8K= 3 
2

When ζ = 0.707, K = 10. 

The steady state gain should be K/(8 + K). So when K = 10, the steady state error is 1 – K/(8 + K) = 0.44, quite
large.

The time constant is /=1/8K 8K /3=1/3 , which is obvious from the closed-loop poles. So
95% settling time would be roughly 3/=1  [time units], and if we choose 98% settling time, the tmie
constant would be roughly 4/=4 /3 .

If the overshoot is 0.1, then from 0.1=exp −/1−2 , =0.59 , and

8K=3/2 , or K = 17.7

The load function should also have (s + 2) (s + 4) in its denominator.

1
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6 (partial, Part b only).
The characteristic equation is

1 K
s2s4

=0

s26 s8K=0

The closed-loop poles are s=−3±1
2
36−4 8K  .

When the system is critically damped, 36−4 8K =0  or K = 1.  (Thus the system is overdamped 
when K < 1 and underdamped when K > 1.)

1
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7.   1
K c e−0.35 s

5.1 s11.2 s1
=0

(a) Define (time constants are in minutes)

G s=
K c e−0.35 s

5.1 s11.2 s1

With Kc = 7.5, ω = 0.8 rad/min,

∣G  j∣=7.5
1

15.12 0.82

1

11.22 0.82
=1.29

∢G  j=tan−1−5.1×0.8 tan−1−1.2×0.8 −0.35 0.8 180 /
=−76.2o−43.8o−16o=−136o

(b) This part follows Example 7.4A. Use MATLAB. First enter

p = conv([5.1 1], [1.2 1]);
g = tf(1,p);
tdead = 0.35;

Then follow the example, and after using margin(), should find Kcu = 19.1

When there is no dead time, it is a simple second order system and this is always stable.

(c) Use Kc = 19.1/1.7 = 11.2
(We can do a MATLAB margin() calculation to confirm that.)

(d) This follows Example 6.3D. After generating the results in part (b), put together 

tmp = [freq; mag; phase]'

Should find where the frequency is approximately 1.02, that magnitude ~ 0.12, and phase angle ~ 150°. 

So we use Kc = 1/0.12 = 8.3. (Again, we can do a MATLAB calculation to confirm that Kc = 8.3 will have
a PM ~ 30°.)

1
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8. The characteristic equation is

1K c I s1

I s  2
2 s1

=0

(a) Expected shape of the root locus plots:

Only when τI = 1 will we have complex closed-loop poles. (Note that τI = 2 leads to pole-zero
cancellation, what direct synthesis tries to do.)

(b)  Use MATLAB and ζ = ¾

Gp = tf(2, [2,1]);
taui = 1;
Gc = tf([taui 1], [taui 0]);
rlocus(Gc*Gp)
sgrid(3/4, 1)
rlocfind(Gc*Gp)

Should find Kc ~ 0.26 at the closed-loop poles –0.38± 0.34j, 
and Kc ~ 1.01 at the closed-loop poles –0.76± 0.66j.

1
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9.  The characteristic equation is

1
21 s
s s2

=0

If β is a positive number, the roots will always have a negative real part and the system is always stable.

1/2s21s1=0

=1/2 ,  2=1 , and thus =1/221=1/2

To be underdamped, we want

=
1
2
1 ,  lead to  12  and  0.41

1
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10.  The characteristic equation is

1K 1b s
s  s1

=0

 s21K bsK=0

Now, K = 1, and τ = 1,

s21bs1=0 , leading to 2=1b  or =1
2
1b

If ζ = 0.7, b = (2) (0.7) – 1 = 0.4.
If b increases, ζ increases and the system is less underdamped. It would be overdamped when b > 1. 
If b = 0, the system would only have proportional control (as buried in this big K in this  problem.)

For

c1s
c s
=1b s , or  c1t =cb

d c
d t

the feedback information includes the rate of change of controlled variable c.

1
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11.
Case (a): the characteristic equation is

1
K c K p 1D s
p s1

=0

Case (b): the characteristic equation is

1
K c K p 1D s
p s1

=0

They are identical. Their root locus plots are also identical. Can take on either one of the two possibilities:

But the two cases have different closed-loop functions.
Case (a):

C
R
=

K c K p 1D s
p s1K c K p1D s

=
K c K p1D s

pK c K pDs1K c K p

C
R
=

K 11D s
1 s1

;  with  K 1=
K c K p

1K c K p
, and 1=

pK c K pD

1K c K p

Cae (b):

C
R
=

K c K p

p s1K c K p 1D s
=

K 1

1 s1

They have the same steady state gains K1 and time constant τ1, but case (a) has the response of a lead-lag
element, while case (b) is just first order.

Both cases have offset = 1 – K1 = 1/(1 + Kc Kp).

1
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12.  The characteristic equation is

1K c I s1

I s  1
s1s2

=0

The MATLAB statements are similar to those in Example 7.5A:

Gp = tf(1, conv([1 1], [2 1]));
taui = 2.5  %or 1.5 , 0.5
Gc = tf([taui 1], [taui 0]);
rlocus(Gc*Gp)
sgrid(0.7,1)
rlocfind(Gc*Gp)

(a)  From the MATLAB results for ζ = 0.7,

τI Gain and closed-loop poles

 τI = 2.5

Kc ~ 1.16, 
poles at –0.33 and –0.58±0.59j

 τI = 1.5 

Kc ~ 0.57, 
poles at –0.33±0.34j  and  –0.83

 τI = 0.5 

Kc ~ 0.1,  
poles at –0.21±0.22j  and  –1.07

1
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(b) The case with τΙ = 0.5 is the least desirable. The system can become unstable with low Kc and for ζ = 0.7,
the dominant poles at −2.1± 0.22j are the slowest of all three cases. (Recall that the real part of the
complex pole is −ζ/τ.)

For τΙ = 1.5 and 2.5, the dominant poles are –0.33±0.34j and –0.33, respectively. So in terms of “speed”
and settling time, they behave the same. The difference is that with τΙ = 2.5, the complex pole is “faster”
and so oscillations will be damped out quicker than when we use τΙ = 1.5, in which case the complex poles
are the slower ones (c.f. real pole at –0.83.).

2
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13.  The closed-loop characteristic equation is

1K c

D s1
12 s1s1

=0

The possibilities (can be from doing MATLAB) are:

Only case (1) can have an underdamped system. In all cases, we have a second order system with no positive
zero; the system is stable for all Kc > 0.

With a PI controller, we have

1K c

I s1
I s 12 s1s1

=0

The possibilities (can be from doing MATLAB) are:

All choices of τΙ lead to an underdamped system. It can become unstable when τΙ < 1. 

Now given τΙ = 0.5, the closed-loop characteristic equation is

1K c

 1
2

s1

1
2

s 12 s1s1
=0

1
2

s 12 s213 s1K c 
1
2

s1=0

12 s313 s21K cs2 K c=0

So simply based on the coefficients, we must have

1
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1K c0 , or K c−1    (Or simply Kc > 0 for positive proportional gains)

Now the Routh array:

12 1K c

13 2 K c

b1

2 K c

with

b1=
131K c−24 K c

13
0

13 1K c 24 K c , or 1.18K c

So we need  (for positive proportional gains)

0K c1.18

Repeat with s = jω substitution:

−123 j−1321K c j2 K c=0

The real parts:

2 K c−132=0 , K c=13 /2 2

The imaginary parts:

−1221K c=0

Substituting for Kc:

−122113
2
2=0

will lead to

n
2=0.18 , K cu=1.18

Finally, with PI control, there is no offset.

2
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14.
(a) The closed-loop characteristic equation is

1K c
3 e−s

4 s1
=0

Using a first-order Padé approximation, it becomes

1K c
3−1/2 s1
4 s11/2 s1

=0

 1
2

s14 s13 K c −
1
2

s1=0

2 s23
2
3−K cs13 K c=0

Stability requires

3−K c0 , or K c3

13 K c0 , or K c−1/3

Together, for positive values of proportional gain,

0K c3

(b) Substituting s = jω in the original characteristic equation,

4 j13 K c cos− j sin=0

The real parts:

13 K c cos=0

The imaginary parts:

4−3 K c sin=0

Substituting for Kc:

4tan=0

Solving with MATLAB, should find u=1.72  and K cu=−1/3cos=2.3 .

(c) Need to add the dead time to the MATLAB bode() phase angle as in Example 8.6. We can also use our
M-file “ezbo.m” which contains most of the statements that we need.
Note: the default frequency vector chosen by MATLAB in this problem is too low. Make sure you define
your own as in

  freq = logpsace(-2,1,100);
  [mag, phase] = bode(G,freq);

From our ezbo.m, we found Kcu = 2.31 and ωcg = 1.71, which are consistent with the results in part (b).

1
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15.
(a) With G p=K /s2 , there are two poles at the origin. A step input (1/s) will give 1/s3, and the time response

is to the order of t2.

(b) With Gc = Kc,

C
R
=

K K c

s2K K c

, which is of the form 


s22

The closed-loop step response is a sinusoidal function with frequency K K c , so if we have picked Kc,
we can compute K.

(c) With a PI controller, there will be three open-loop poles at the origin, which is unlikely to have stable
system.
An ideal PD controller should provide a stable system:

 (You can try both PI and PD controllers with MATLAB.)

1
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15 (partial, without Part c).
(a) With G p=K /s2 , there are two poles at the origin. A step input (1/s) will give 1/s3, and the time response

is to the order of t2.

(b) With Gc = Kc,

C
R
=

K K c

s2K K c

, which is of the form 


s22

The closed-loop step response is a sinusoidal function with frequency K K c , so if we have picked Kc,
we can compute K.

1
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16.

(a) First, follow the text and set C /R=e− s /c s1 , which leads to

Gc=
p s1

K p e
−td s

e− s

c s1−e− s

Gc=
p s1

K p

1

c s1−e− s  if we choose to have =td

Now substitute e− s=−
2

s1/ 
2

s1 ,

Gc=
1

K p

p s1

2

s1

c s1

2

s1−
−
2

s1

= 1
K p

p s1

2

s1

cs c/2
c

s1
=

p

K pc [1 1
p

1
s 

2

s1

* s1 ] ,  where  *=
c/2
c

So we have

K c=
p

K pc
, and  I=p   (they are the same as direct synthesis)

Also D=

2

, 

and for the real derivative part, *=
c

c

2
=
c

c
D

The ratio c /c  is less than 1 but not that small. This is also the answer to part c.

(b) G p= G p +
G p - , where now

G p -=
K p

p s1 
2

s1
,  and G p +=−


2

s1

Now

Gc
*= 1
G p -  1
c s1 2=p s1 

2
s1

K p

1

c s12

1
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Gc=
Gc

*

1−Gc
* G p

=

p s1 
2

s1

K p

1

c s12

1− 1

c s12
−

2

s1

After simplification,

Gc=
1

K p

1
s

p s1 
2

s1

c
2 s2c/2

This can be rearranged to a PID controller,

Gc=
p

K p2c/2
1 1
p

1
s
  2 s1

* s1  , with *=
c

2

2c/2

And we can identify

K c=
p

K p2c/2
,  I=p ,  and  D=/2

The value of Kc is slightly smaller than that of using direct synthesis, but the choice of τI is the same.

Typically, τp > θ, so we have τI > τD too. And for the (approximate) real derivative action, D
=* ,

which is not that small a value.

2
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17.

G p=
2

20 s1
 has open-loop pole at –1/20 or –0.05

G v=
0.5
s1

 has open-loop pole at –1

(The problem statement has an open-loop pole at –5, but the original solution used –10. So here's the answer 
to the –5 in the text.)

(a) Now with two additional open-loop poles at 0 and –5, and zeros at –0.1 and –0.5, the system must have a 
real PID controller.

Typically, I > D, so we should have I = 10 (1/0.1), and D = 2 (1/0.5).
And –1/D = –5, meaning  = 0.1.

Gc=K c I s1

 I s   D s1

D s1 =K c10 s1
10 s   2 s1

0.1 s1 
(b) The order of the system with Gp, Gv, and the real PID controller is 4.

(c) You can tell what is on the real axis easily, but you need MATLAB to get the shape of the root locus plot.

1
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18.  The closed-loop characteristic equation is, after cancellation of (s + 5),

1K 10
s s20

=0

s220 s10 K=0

The poles are at

s=
−20±400−40 K

2

(a) The system is overdamped when  400 – 40K > 0 or K < 10;
critically damped when K = 10, with the two repeated closed-loop poles at –10;
and underdamped when 400 – 40K < 0 or K > 10;

(b)  

(c) With integration in Gp, the system has no offset. We can confirm that by finding the closed-loop steady 
state gain.

C
R
=

Gc G p

1Gc G p

=
10 K

s s2010 K

C
R
=

1

 1
10 K  s2

2
K

s1
, which has unity gain

To find K such that the system has a damping ratio of 0.7, match

 1
10 K  s2

2
K

s1=2 s22 s1

2=
1

10 K
 , =

1
2

2
K
10 K 1/ 2= 10

K

If  = 0.7, K = 10/0.49 = 20.4

1
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19.
Parts (a) and (b):
Fig. PII.19(a) can first be modified to

So

C=[ Gc G p

1Gc G p ]R [G p G fG L

1Gc G p ]L
To elimintae the effect of disturbance L, we want G p G fGL=0 , or G f=−GL/G p .

Fig. PII.19(b) can be rearranged to

So

C=[ Gc G p

1Gc G p ]R [C c G p G fG L

1Gc G p ]L
To eliminate the effect of L, we want Gc G p G fG L=0 , or G f=−G L/Gc G p .

Part (c):
Fig. PII19(a) is better because we can compute Gf without having to worry about Gc. In Fig. PII.19(b),
not only does Gf depends on Gc, but the function Gf can easily end up to have a higher order nominator
polynomial.

Part (d):  Fig. PII.19(c) is

Using the (dummy) variable b,

C=K c G p b

b=1 1
I s
R−C −D s C =1 1

I s
R−1 1

I s
D sC

Substitute for b,

1
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C=K c G p [1 1
I s
R−1 1

I s
D sC ]

C
R
=

K c1
1
I s
G p

1K c 1
1
I s
D sG p

With Fig. PII.19(d), 

again with C=K c G p b

b= 1
I s
R−C −1D sC = 1

I s
R−1 1

I s
D sC

C
R
=

K c
1
I s

G p

1K c 1
1
I s
D sG p

Part (e):  System with an ideal PID

C
R
=

K c 1
1
I s
D sG p

1K c 1
1
I s
D sG p

So the systems in parts (c) to (e) all have the same closed-loop characteristic polynomial.

2
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20.  With a simple unity feedback system, the characteristic equation is

1K c I s1

I s  0.5
s−2 =0

Now τI = 1,

1K c  s1
s  0.5

s−2 =0

s2−2 sK c 0.5 s1=0

s20.5 K c−2s0.5 K c=0

For stability, we need

0.5 K c−20 , and 0.5 K c0

meaning,

K c4

So the ultimate gain is Kcu = 4, and we can confirm that with direct substitution.

−2−2 j0.5 K c j0.5 K c=0

Imaginary parts: −20.5 K c=0 , or K cu=4

Real parts: 2=0.5 K c , or n ,u=2

1
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21.
(a) With PD control, the closed-loop characteristic equation 1 + GcGp = 0  is 

1K c 1D s K
s−2
=0

s−2K c K 1D s=0

s=
2−K c K

1K c K D

For stability, we need

1K c K D0 , and 2−K c K0

The first inequality simply means that all the gains and time constant should be positive, and the second
leads to

K c 2/K

Compared with proportional control, the characteristic equation and stability criterion are

s−2K c K=0

s=2−K c K0

Thus requiring K c 2/K

In this problem, the stability criteria with P and PD controllers are the same.

(b) Now with a PI controller, the characteristic equation is

1K c I s1

I s  K
s−2
=0

I s s−2K c K I s1=0

I s2I K c K−2sK c K=0

For stability, we need τI > 0, K > 0, Kc > 0, and

 Kc K – 2 > 0, or Kc > 2/K.

The criterion stays the same.

(c)

1



Part II Solutions

(d) The ultimate gain in all these cases  is 2/K. 
For P and PD control, the root locus sketch indicates that the ultimate frequency (on the real axis) is zero.

For PI control, we need to do a direct substitution, s = jω. The characteristic equation becomes

−I
2I K c K−2 jK c K=0

Re: K c K−I
2=0

Im: I K c K−2=0 , meaning Kcu = 2/K

Substitute Kcu in the real part equation

K  2
K
−Iu

2=0 , or u= 2
I

The smaller the τI the larger is ωu.

2
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22.  The load function is not in the closed-loop characteristic equation and has no effect on the stability.

(a) 1 + GcGp = 0 leads to

1K c
2

s−4
=0

s−42 K c=0

s=4−2 K c

For stability, we need 4 – 2Kc < 0, or Kc > 2.

(b)

(c) The ultimate gain is Kcu = 2 (when s = 0). At this position, the system is stable with an impulse input but
not a step input (the system response will be a ramp).

(d) With Gc=
1

G p

1
c s

Gc=
s−4

2
1
c s
= 1

2c

1−4
s


The controller function has integrating action, but it could be done only if we could build a device with a
positive zero.

1
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23. The characteristic equation is

1K c
1.2 e−0.7 s

0.2 s14 s1
=0

(a) This problem follows Example 7.4A in Chapter 8. So with MATLAB, we can find
Kcu = 6.86 with ωcu = 1.91 rad/min
(The time unit stays with that of the time constants in the transfer function.)

(b) Using the Ziegler-Nichols tuning relations and (Kcu ,ωcu) from Part (a), we can calculate, for example,
Kc = 4, τI = 1.64, τD = 0.4
for a ¼-decay response.

The closed-loop characteristic equation is

1K c 1
1
I s
D s 1.2 e−0.7 s

0.2 s14 s1
=0

Again using MATLAB and Bode plot, we can find GM = 1.9 for the Z-N ¼-decay settings.

(c) The basis of the calculation is the function

1 1
I s
D s 1.2 e−0.7 s

0.2 s14 s1
=0 , with values of τI and τ∆ from Part (b).

Again, using MATLAB, we find Kcu = 7.7

With GM = 1.7, Kc = 7.7/2.7 = 4.5

Repeating the calculation with Kc = 4.5, we find PM = 38°.

1
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24. The system with a secondary loop is equivalent to

where

Gv
*=

K c2 Gv

1K c2 Gv

Now

Gv
1

5 s1
, and  Gv

*=
K c2

5 s1K c2

=
 K c2

1K c2


 5
1K c2  s1

To speed up the valve, we make the time constant of G*v to be 1/10 of that with Gv. So

5
1K c2

=0.15 ,  and  Kc2 = 9, Gv
*= 0.9

0.5 s1

The closed-loop characteristic equation is

1K c
0.9

0.5 s10.1 s1s1
=0

0.05 s30.65 s21.6 s10.9 K c=0

From the last constant coefficient, we  need  1 + 0.9 Kc > 0, or Kc > – 1/0.9

With the Routh array:

0.05 1.6
0.65 10.9 K c

b1

where we need

b1=
0.65 1.6 −0.05 10.9 K c

0.65
0

1.040.050.045 K c

 Kc < 22

Hence, the ultimate gain is Kcu = 22.

If we want GM = 2, then we need Kc = 22/2 = 11.

The system equation without cascade control is

1K c
1

5 s10.1 s1s1
=0

1
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On a Bode plot, the corner frequency of the valve function is 1/5. With cascade control, this corner
frequency becomes 2 (time constant = 0.5), so the phase lag that it brings in is at a much higher frequency
than when we have no cascade control. The consequence is that the cascade system has a wider
bandwidth. Nonetheless, it still can become unstable as a third order system (containing 3 first-order lags).

2
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25.

G s= 18 2 s1
s23 s9s4

=

1
2
2 s1

 1
9

s2 1
3

s1 1
4

s1

(a) This part follows the properties of different functions in Example 8.2 to 8.4, and 8.9.

High frequency asymptote

Corner frequencies Type Magnitude slope Phase lag

1/2 1st order lead +1 +90°
1/3 2nd order lag –2 –180°

4 1st order lag –1 –90°

So on the magnitude plot, the slope of |G(jω)| is –2 at high frequencies. At low frequency, the slope is, of
course , zero and the value is ½, the steady state gain of G(s).

On the phase angle plot, the total phase lag at high frequencies is –180°. It is of course 0° at very low
frequencies. By first bringing in the first-order lead at lower frequencies, the total phase lag of∢G  j
never crosses over –180°.

(b) log∣G  j∣=log  1
2
log 142−log 1−2/922/9−log 12/16

∢G  j=tan−12tan−1
−/3

1−2/9
tan−1−1

4


(c) The steady state gain of G(s) is ½.
For the term

1
9

s21
3

s1=2 s22 s1

=1/3 , =1
2

1
3

3=1
2

, and 


=2

3

1−2


=1−1/4

1/3
=3

2
3

So from the characteristic polynomial, the two time-domain functions are

 e
−3

2
t
sin  33

2
t , and e−4 t .   And e

−3
2

t  decays much slower than e−4 t . We can consider the

complex poles −3
2
± j

33
2

 to be dominant.

(d) As noted in Part (a), the system is always stable. GM is not defined.

1
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26.
(a) For the system 1 + GcGp = 0, we have 

open-loop poles at –0.5, –3±j√3, –6±j√5, –9
open-loop zero at –0.5

A good possibility is that we have a PD controller and more specifically, a real PD controller that also
contributes the large open-loop pole at –9. Whether it is ideal or real PD, we probably have chosen τD = 2
to cancel the open-loop pole from Gp.

(b) s3−3 j s33 j =s323=s26 s12

s6−5 j s65 j =s625=s212 s41

G p=
K

s26 s12s212 s41s1/2

The steady state gain is 2, so

2= K
12411/2 , and K = 492

After pole-zero cancellation, the system characteristic equation is

1K c
1

 1
9

s1

2

 1
12

s21
2

s1 1
41

s212
41

s1
=0

Next, we need a root-locus plot to find Kc such that the decay ratio is 0.25 (ζ = 0.344 with Eq. 5.19).
Using MATLAB, Kc ≈ 0.4. The key is to use the more dominant poles (loci) that come off the –3±j√3
open-loop poles.

(c) Simply repeat with DR = 0.1 (ζ = 0.215). Kc ≈ 0.64.

(d) We should have done this first before we get the answers to Parts (b) and (c)!  (Sketch from MATLAB:)

(e) The system characteristic equation stays the same. So we certainly can design a controller to handle
disturbance.

1
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27.
(a) We have to choose between Qc and Qj as the manipulated variable. There is no clear cut answer here; Qj

has a larger steady state gain but a much larger time constant. We shall select the cooling jacket flow Qj

anyway on the basis that we may compensate for its lack of speed by a proper system design (for
example, with the use of cascade control).

Next, we need to make several assumptions to evaluate the Qj regulating valve gain. Normal half-open
operation provides 20 (gpm, flow units), so full range is 2 x 20. The valve may be driven by a 0-10 mV
signal. We are guessing this on the basis of the sensor-transmitter output. The valve gain must be negative
because the process gain is negative (and presuming Kc of the controller is positive). And without info on
dynamics, we take Gv = Kv, and

K v=
−220 

10
=−4

gpm
mv

For the sensor, the measurement gain is K m=
10−0

200−100
=0.1

mV
°C

The system is

The closed-loop equation is

1K c
0.145

10 s112 s1
=0

120 s222 s12 K c=0

 120
12 K c

s2 22
12 K c

s1=0

So

= 120
12 K c 

1/2

, = 22
12 K c  1

2  12 K c

120 1/2= 11
120

1

12 K c

Now ζ = 0.707, substitute in ζ expression; can find Kc = 0.51.

(b) The key is that we cannot use those empirical tuning relations based on first-order with dead time
functions. Here, we may apply Example 6.2 (or Example 6.4 for a PI controller).

Say we choose τc = 3 [time unit] to be sufficiently faster than 10 and 12. Then with Example 6.2, we can
calculate

K c=
1012
23

=3.7 ,  I=1012=22 ,  D=
10 12
1012

=5.45

1
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28. The closed-loop equation is

1K c

1 1
3 s
2

3
s

10 s120 s10.5 s1
=0

and  2 s23 s1=2 s1s1

So we have
open-loop zeros at  –1/2, –1
open-loop poles at  0, –1/10, –1/20, –2

From MATLAB:

(b) G PRC=
1

10 s120 s10.5 s1
≈ e−10.5 s

20 s1

(c) Only P control:

1K c
1

10 s120 s10.5 s1
=0

100 s3215 s230.5 s1K c=0

Routh array:

100 30.5
215 1K c

b1

So we need

b1=
215 30.5 −100 1K c

215
0 , leading to Kc < 64.5

We now have a “simple” third-order system and only one Kcu = 64.5.

(d) Apply the GPRC approximation in Part (b) and Table 6.1. A matter of plug-and-chug or using the M-file
“recipe.m.”

(e) With the addition of derivative action, we can use a larger Kc.

1
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29. Features of the plots:

• Phase lag goes from 0° to –250°.  It appears that the phase lag would eventually reach –270° at very
frequencies

• At large frequencies, the magnitude plot has slope approximately –3
• At frequency around ~ 4 rad/min, |G| is slightly larger than the value at very low frequencies

A logical guess is that

G s= K

1 s12 s22 s1

where

K ~ 1.1

ζ must be less than ½
1/τ is in between 4 and 10 rad/min
1/τ1 is between 1 and 10 rad/min; from the fact that the phase lag of G drops quite a bit “very soon” (1/τ1

is probably between 1 and 4)

For a closed-loop experiment, the magnitude and phase lag will be that of the closed-loop function C/R.

1
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30. The block diagram in Fig. PII.30 is equivalent to

so the closed-loop characteristic equation is

1
0.5 G p

2 s10.5 K v

=0

(a) For Gp, the model A
d h '
d t
=q 'o  should give us G p=

1
A

1
s
= 1

2 s
 (A = 2 units)

So we have

1 0.5
2 s 2 s10.5 K v

=0

4 s2211
2

K vs0.5=0

8 s222K vs1=0

=8 ,  and =22K v
1
2

1

8

Now ζ = 1 (critically damped), 2 + Kv = √8, or Kv = 0.828

(b) =1/82K v , so ζ is proportional to Kv, and the system is less underdamped if we increase Kv.

(c) Do not matter what Kv is. System has integrating action from Gp. There is no offset. Change in h will
always match change in the set point.

1
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31. The response at large times oscillates about ½ with an amplitude of approximately 0.34 and a phase lag of
roughly 137°.

Y s= K
s  s1

A
s22

=a
s
 b
 s1

 c sd

s22

The first term on the far right (with coefficient a) contributes toward the constant, while the last term
associates with the sinusoidal response. And the coefficient a is

a=
A K 

 s1s22∣s=0

=
A K 
2
= A K


Given: ω = ½ rad/min [=1/2 (1/2π) cycle/s; can confirm this from plot]
Also from plot: A = 1 and a = ½, so

1
2
=1K 

1/2 , or K = 1/4

With

G s= K
s  s1 ,   ∢G  j=−90°tan−1−

Now ∢G  j=−137°

−137°=−90°−tan−1 ,  leading to τω = 1/1.07

With ω = ½ rad/s, τ = 1.07/(1/2) = 2.14 s

Double check:

∣G  j∣= K

122
= 0.25

1/212.14 21/22
=0.34 , same as data

The very key is that the units of τω are radians, and calculations are based on ω with the units of rad/time.

1
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32. The characteristic equation is

1K mGc G2e
−1

2
s
G5=0

where Km = 0.15 V/°C, td = 0.5 min, G2=
4

s1
°C/V, and G5=

1
10 s1

(a) Proportional control, Gc = Kc,

1K c
0.15 4

s110 s1
e
−1

2
s
=0

To find the ultimate gain, we need to follow Example 7.4A in Chapter 8. From MATLAB, Kcu = 39.8 (with
ωcg = 1.39 rad/min).

Without transport lag, the system equation is

1K c
0.6

s110 s1
=0

It is a second order system that is always stable.

(b) K c=
K cu

GM
=39.8

2
=19.9

(Can check this with MATLAB; we should find also PM = 29.4°.)

(c) The basis of calculation is

G*= 0.6
s110 s1

e
−1

2
s

From MATLAB, at ω ≈ 0.73 rad/min, |G*| = 0.066, ∠G* = –139° ≈ –140°

So we need Kc = 1/0.066 = 15.2  (Check this with MATLAB, the PM is 40.9°.)

(d) Plug and chug with Ziegler-Nichols tuning relation using Kcu = 39.8 and ωcg = 1.39 rad/min

Should find Kc = 13.3, τI = 2.3 min, τD = 1.5 min
(Check with MATLAB using ideal PID and the equation

1K c 1 1
I s
D s 0.6

s110 s1
e
−1

2
s
=0 pg 

should find GM = 2.9, PM = 66°.)

(e) Approximate

GPRC=
0.6 e

−1
2

s

s110 s1
≈ 0.6 e

−3
2

s

10 s1

With the Ziegler-Nichols tuning relations, we found
Kc = 13.3, τI = 3 min, τD = 0.75 min
(Check this with MATLAB, GM = 5, PM = 45.5°.)

1
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(f) Need to use MATLAB (or Simulink) for the simulations.

(g) Disturbance is Qo,

GFF=
−G3

K mG2G5 e
−1

2
s , where  G3=

−5e
−1

2
s

10 s1s1
  °C/gpm

GFF=
5e
−1

2
s

10 s1s1
10 s1s1

0.15 4e
−1

2
s
= 5

0.6
=8.3   °C/gpm

It is a steady-state compensator.

(h) Disturbance is V2

GFF=
−G4

K mG2G5 e
−1

2
s , where  G4=

2.5
10 s1

  °C/V

Now 1/exp − 1
2

s  will become a time lead, exp  1
2

s , and we need to redefine GFF without it.

GFF=
−G4

K mG2G5

= −2.5
10 s1

10 s1s1
0.15 4

=−0.625 s1

In practice, we would either add a large pole as in Eq. (10.8) in text or simply omit the dynamic
compensator and try first GFF = –0.625 °C/V.
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33. The process function

G p=
0.5

0.01 s20.04 s1

has open-loop poles at –2±9.8j.

(a) With τ = 0.1, ζ = (0.04)(1/2)(1/0.1) = 0.2

The time constant is τ/ζ = 0.1/0.2 = ½, which is consistent with the pole

(b)
System is stable but very
underdamped and has offset; 
ζ of system < 0.2

System can become unstable

System is stable but has offset

Not allowing offset, we must use a PI controller. And we may want to select the larger τI = 1/4 s. (From
the perspective of Chapter 8 analysis. τI has a corner frequency of 4 rad//s < 10 (1/0.1) of Gp and thus
“eliminates” the integrator phase lag before the second order phase lag sets in.)

(c) The best is a PID controller. With τD < τI, we can choose τD = 1/8 s, with τI = 1/4 s. We do the root-locus
analysis with the system equation

1K c 1 1
I s
D s 0.5

0.01 s20.04 s1
=0

The dominant poles are the loci that come off the two complex open-loop poles.

1
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34. The phase angle plot clearly indicates that presence of dead time. From the magnitude plot, the slope at
high frequency is –1, so the function must be first order with dead time:

G s=K e− s

 s1

From the given corner frequency, τ = 1/2.5 = 0.4 s
From the low frequency asymptote, K = 5

The phase angle equation is (in degrees)

∢G  j=−tan−1−180



Now τ = 0.4 and given when ω = 1 rad/s, and the phase lag = –33°

−33°=−tan−10.4 −180

 , so θ = 0.19 s

and

G s=5e−0.19 s

0.4 s1

1



This is one of several problems similar to Example 4.6. We do not really have to synthesize the
state space model for each system as in the example. MATLAB can do that and much more, and
there are more elegant approaches. However, these examples should help to take some of the
mystery away and make us feel more comfortable in using canned packages or working with block
diagrams.

II.35. The two equations that we can write are:

  X1
X2 + Kc (R – X1)

=
Kp

τp s + 1 ,   and    X2
Kc(R – X1)

= 1
τ I s

They can be rearranged to appear as

  τpX1 s = – (1 + KcKp) X1 +Kp X2 +Kc KpR , and    τ IX2 s = – Kc X1 + KcR

The resulting state space model is obvious from here on:

   

d
d t

x1
x2

=
–
1 + KpKc

τp

Kp

τp

– Kc
τI

0

x1
x2

+ Kc

Kp

τp

1
τI

r  ,  and  
 

y = 1 0 x1
x2

The system matrix characteristic polynomial is

det |sI – A| =   s +
1 + Kc Kp

τp
s +

Kc Kp
τ I τp

which is identical to what we'll get in Example 5.3.



This is one of several problems similar to Example 4.6. We do not really have to synthesize the
state space model for each system as in the example. MATLAB can do that and much more, and
there are more elegant approaches. However, these examples should help to take some of the
mystery away and make us feel more comfortable in using canned packages or working with block
diagrams.

II.36. The two equations that we can write are:

 X1
X2 + Kc (R – X1)

= K
s + a ,

and
 X2

Kc(R – X1)
= z – p
s + p .

They can be rearranged to

 sX1 = – (a + Kc K)X1 + KX2 + Kc K R , and   sX2 = – Kc (z – p) X1 – pX2 + Kc (z – p) R

The final state space model is

  d
d t

x1
x2

=
– (a + Kc K) K
– Kc (z – p) – p

x1
x2

+ Kc
K

z – p
r ,  and  

 
y = 1 0 x1

x2

You can further show that the system matrix characteristic equation is identical to

(s +p)(s + a) + KcK(s + z) = 0



This problem follows the development in the two previous problems in II.35 and II.36.

II.37. With a serial PID, the derivative action is in the feedback path. The PI action in the forward
path follows that of Problem II.35. Similarly, the derivative function, introduced in Eq. (5-7), is
rearranged according to the lead-lag element in Problem II.36. With the locations of the state
variables identified in the block diagram, we can write the four state equations:

  X1
X2

=
Kp

τ1 s + 1 ,  or    τ1 sX1 = – X1 + KpX2

  X2
X3 + Kc R – 1

α(X1 + X4)
= 1

τ2s + 1 ,  or  
  τ2 sX2 = – X2 +X3 –

Kc
α (X1 + X4) + Kc R

  X3
Kc R – 1

α(X1 +X4)
= 1

τ I s ,  or  
  τ I sX3 = – Kc

α (X1 + X4) + Kc R

and
  X4

X1
= 1 τD1 τD – 1 ατD1 ατD

s + 1 ατD1 ατD
,  or    sX4 = – X4 ατDX4 ατD + 1 τD1 τD – 1 ατD1 ατD X1

The resulting state space model is:

   

d
dt

x1
x2
x3
x4

=

– 1
τ1

Kp
τ1

0 0

– Kc αKc α
τ2

– 1
τ2

1
τ2

– Kc αKc α
τ2

– Kc αKc α
τI

0 0 – Kc αKc α
τI

1
τD

– 1
ατD

0 0 – 1
ατD

x1
x2
x3
x4

+ Kc

0

1
τ2
1
τI
0

r  ,  and  y = [1 0 0 0] x



Part II Solutions

38.
(a) The closed-loop characteristic equation is

1K c I s1

I s  2
4 s15 s1

=0

I s 20 s29 s12 K c I s1=0

20I s39I s2I 12 K c2 K c=0

First, we need  2Kc > 0, and τI(1 + 2Kc) > 0,

meaning  Kc > 0, and τI > 0.

Next, with the Routh array,

20I I 12 K c
9I 2 K c

b1

2 K c

So we need

b1=
9I

212 K c−40I K c

9I

0

9I 12 K c 40 K c

I 
40 K c

9 12 K c
, or  

9I

40−18I

K c

(b) When τI = 1, we need K c
9

40−18
=0.41

And when τI = 10, we need 
9
4


K c

12 K c
, which is always satisfied with Kc > 0; system is always stable.

(c) With τI = 1, we use MATLAB to get the root-locus plots:

1



Part II Solutions

(d) When τI = 1, from Part (b), Kcu = 0.41.

For GM = 2, we need Kc = 0.41/2 = 0.205.
To find PM, we need MATLAB. So from a Bode plot, we found PM = 14° (this is a bit low).

(e) With τI = 10, the system is always stable.

(f) We need to do a root-locus plot. From MATLAB, for ζ = 1/√2, Kc ≈ 0.033.

The dominant poles are the two complex loci branching off from the real axis.

(g) With τI = 10, again we need MATLAB and a root-locus plot. For a system with “embedded” response
corresponding to ζ = 1/√2, Kc ≈ 0.48.

Here, the dominant pole is the loci on the negative real axis. The oscillations will damp out relatively
quickly.

(h) We need MATLAB to do the Bode plots. With τI = 1, the system equation is

1K c  s1
s  2
4 s15 s1

=0

Frequency asymptote limits
Corner frequencies Type Log magnitude slope Phase lag

– integrator –1 –90°

1/5 1
st

 order lag 0 to –1 0 to –90°
1/4 1

st

 order lag 0 to –1 0 to –90°

1 1
st

 order lead 0 to +1 0 to +90°

The magnitude slope goes from –1 at low frequencies to –2 at high frequencies. In terms of the phase
angle, the first-order lead comes in too late. The phase lag goes below –180° before the first-order lead
brings the phase angle back to –180° at high frequencies.

With τI = 10, the system equation is

1K c  10 s1
10 s  2

4 s15 s1
=0

Frequency asymptote limits

Corner frequencies Type Log magnitude slope Phase lag

– integrator –1 –90°
0.1 1

st

 order lead 0 to +1 0 to +90°

1/5 1
st

 order lag 0 to –1 0 to –90°
1/4 1

st

 order lag 0 to –1 0 to –90°

Now, the first-order lead comes in and compensates for the integrator phase lag before the two first-order
lags come in. The phase angle never crosses over –180°.

2
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39.
(a) From Section 3.4.3 (text), τ1 = A1R1, τ2 = A2R2 

d
d t

x=[ −1/1 1/1

R2/R1/2 −1R2/R1/2
]x[R1/1

0 ]u
where now  x = [h1  h2]T,  and  u = qo.

The output is  y = [ 0  1 ] x.

With numerical values A1 = 5 m2, A2 = 2 m2, R1 = R2 = 1 min/m2, τ1 = 5 min, and τ2 = 2 min,

A=[−1/5 1/5
1/2 −1 ] , and  B=[1/50 ]

(b) With  det |A – λI| = 0

−1
5
−−1−− 1

10
=0

26
5
1

5
− 1

10
=0

102121=0

The transfer function from Section 3.4.3 is

H 2s
Qos

= 1
5 s12 s2−1

= 1

10 s212 s1

Since the characteristic equations are the same, the poles will too. (A quick quadratic root calculation will
find them to be –0.901 and –1.1.)

(c) For proportional control, the characteristic equation is 1K c

H 2

Qo

=0 , leading to

10 s212 s1K c=0

10
1K c

s2 12
1K c

s1=0

= 10
1K c 

1/2

,  = 12
1K c

1
2  1K c

10 1/2= 6
10

1

1K c

With ζ = 0.7, Kc = 6.35 (with the poles at –0.6±0.612j)

(d) We can find the state feedback gain easily with the Ackermann's formula. (Details in the MATLAB M-
file.)

(e) With PI control, the characteristic equation is

1K c 1 1
I s  1

10 s212 s1
=0

1
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with τI = 0.5 min, we can use root-locus plot to find that Kc ≈ 0.022.

(f) and (g) – details also in MATLAB M-file.
But there is one important note regarding the time response simulation when we use the state feedback
gain without integration. Here, x2 (i.e., h2) is the output, so we need to define Kr = K2 such that Eq. (9.24)
is

u t =−K 1 x1K 2r−x2

and Eq. (9.25) becomes.  in this problem,

ẋ=A−B K xB K 2 r

2
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40.
(a) Based on the given equation, the pairing is xD-L and xB-V, and the gain matrix is

K=[0.6 −0.5
0.3 −0.4 ]

The corresponding relative gain parameter is

x D , L=
1

1−−0.50.3 
0.6 −0.4 

=2.67 1

If we switch the pairing to xD-V and xB-L, the plant equation becomes

[ x D

x B ]=[ −0.5 e
−1

2
s

7 s12
0.6

7 s12

−0.4
14 s10.4 s1

0.3 e
−1

2
s

16 s10.5 s1
] [VL ]

Now

K=[−0.5 0.6
0.4 0.3 ] ,  and  x D ,V=1.67 1

If both cases, λ > 1, and from the values, it probably would not make that big of a difference in pairing.
Nonetheless, we would choose the case with the slightly small λ (1.67) as the basis of the system design.
The Simulink file is set up accordingly. It also includes the decouplers, which can be “turned off” by
setting their gains to be zero.

(b) The first controller Gc1 will be based on

G11=
−0.5 e

−1
2

s

7 s12

Using MATLAB and Bode plots,  Kcu = 10.7 at ωcg = 0.298 [rad/time unit]
If GM = 2,  Kc = 10.7/2 = 5.35

The second controller Gc2 is based on

0.3 e
−1

2
s

16 s10.5 s1

From a Bode plot, Kcu = 126 at ωcg = 1.76 [rad/time unit]
If GM = 2,  Kc = 126/2 = 63

(c) From MATLAB, |G11| = 0.19 when  ∠G11 = –135°
So we need Kc = 1/0.19 = 5.3

For Gc2, |G22| = 0.0195 when  ∠G11 = –135°
 So we need Kc = 1/0.0195 = 51.2

1
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(d) Using Ziegler-Nichols tuning relation, and

 Kcu = 10.7, ωcg = 0.298,  leads to Kc = 4.9, τI = 17.6 [time units]

 Kcu = 126, ωcg = 1.76,  leads to Kc = 57, τI = 3 [time units]

(e) To detune the PI controller, reduce Kc and increase τI.

(f) For the two decoupling functions,

D21=−
G21

G22

= 0.4
14 s10.4 s1

16 s10.5 s1

0.3 e
−1

2
s

We'll need to omit the exp(– ½ s) term because it will lead to advance in time. The time constants here are
very similar and we may try to omit the dynamic terms. So we may begin with, simply,

D21≈
0.4
0.3
=1.3

And with

D12=
−G12

G11

= 0.6

7 s12
7 s12

0.5 e
−1

2
s

The (7s + 1)2 term of course cancels out, and again we need to omit exp(– ½ s), so

D12≈
0.6
0.5
=1.2

Those values are used to set up the Simulink file. In this problem, they help a bit, and if they are not set
right, the system actually becomes unstable.

2
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1.  First, we need to get the transfer functions from the information given.

CO2s
Q s

=G p=
K p

p s1
,   Kp = 0.23 

ppm
ml/min

 ,   τp = 5 min

Gm=
K m

m s1
,   Km = 5/400 = 0.0125 V/ppm = 12.5  mV/ppm , τm = 0.1 min

Gv=
K v

v s1
,   Kv = 0.2 

ml/min
mV

, τm = 0.02 min

Kamp = 10 
mV
mV

We also have transport lag, td = 0.75 min in the feedback path.
The closed-loop characteristic equation is

1Gc K amp Gv G p Gm e
−td s=0

With KampKvKpKm = 5.75 [mV/mV], we have

1Gc
5.75 e−0.75 s

0.02 s15 s10.1 s1
=0

(a) Gc = Kc. We define

G *= 5.75 e−0.75 s

0.02 s15 s10.1 s1
=0

From a plot of |G*| versus ω and  ∠G* versus ω (i.e., Bode plot of G*), the ultimate gain is Kcu = 1.7 at
ωcg = 1.9 rad/min. Hence for system with GM = 1.7,

Kc = Kcu/1.7 = 1

(b) See the MATLAB file. Briefly, we use the Ziegler-Nichols ultimate gain tuning relations for a slight
overshoot response. To further tune the controller, we cannot use root locus because of the dead time. And
if we do not use techniques such as closed-loop log modulus, we just have to do a trial and error search to
find ζ ≈ 0.45 (20% overshoot). But it is not as bad as it sounds because the Ziegler-Nichols tuning
relations have settings that give us the Kc that would not have overshoot. 

1
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III.2.

(a) Key features from Fig. PIII.2a:
• High frequency asymptote of the magnitude plot has a slope approximately –2
• Phase lag varies from 0° to –180°
• Low frequency asymptote of the magnitude plot is 10 (= Kp)
• The magnitude curve rises above 10 before approaching the high frequency asymptote

All these observations are consistent with Gp being an underdamped second-order function.

From the magnitude plot, the corner frequency is approximately 0.3 rad/s. So

1/τ ≈ 0.3, or τ ≈ 3.3 s, and τ2 ≈ 11

Also given that the function has a 25% overshoot in a unit step response experiment, 
OS = 0.25 (or ζ ≈ 0.4). So

2ζτ ≈ (2)(0.4)(3.3) = 2.7

G p=
10

11 s22.7 s1

(b) The plots now are for |GcGp| and ∠GcGp .
• The phase angle now varies from 0° to –90° at very high frequencies. No phase change at low 

frequency, but Gc brings in phase lead at high frequencies; Gc must be a PD controller.
• The system is always stable.
• Compare the phase plots in (a) and (b), the corner frequency due to the PD controller (1/τD) is likely 

to be higher than 1/τ = 0.3
• From the magnitude plot at low frequencies, |GcGp| ≈ 20, so Kc ≈ 2
• The slope of the high frequency asymptote in the magnitude plot is approximately –1 (no longer –2). 

The PD controller must be ideal, not real.

The key features can be summarized as:
Corner Frequency asymptotes

Function frequencies Log magnitude slope Phase lag
1/(11s2 + 2.7s + 1) ≈ 0.3 0 to –2 0 to –180°

(τDs + 1) 1/τD 0 to +1 0 to +90°

Net value at very high frequencies –1 –90°

The high and low frequency asymptotes of GcGp are shown next: 

1
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(c)
• The phase angle now begins at –90° at very low frequencies, then goes below –180° before 

approaching –180° at very high frequency. So the system can become unstable. We can jump to the 
conclusion that Gc is a PI controller. (If nothing else, the integrator contributes a constant –90°.)

• From the magnitude plot, the slope is about –1 at low frequencies, suggesting again the presence of 
an integrator. The slope at high frequency is about –2, consistent with a PI controller together with a 
second-order function.

• Comparing the phase plots in (a) and (c), it is likely that the corner frequency of the (τIs + 1) term, 
1/τI, is higher than 1/τ = 0.3.

The key features can be summarized as:
Corner Frequency asymptotes

Function frequencies Log magnitude slope Phase lag
1/s – –1 –90°

1/(11s2 + 2.7s + 1) ≈ 0.3 0 to –2 0 to –180°

(τI s + 1) 1/τI 0 to +1 0 to +90°

Net value at very high frequencies –2 –180°

Asymptotes of Gc and Gp that may explain Fig. PIII.2c are sketched below:

2
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3.
(a) The closed-loop equation is 1 + GcGaGpGm = 0

Now, Km = +1, Kc > 0, and Kp = –0.05 [ppm/gpm], so
Ka must be negative, or be –1 [gpm/mV], to have a negative feedback system.

If [SO2] exceeds the set point, the controller output will decrease. But with a negative Ka, the action will
increase the water flow to remove more SO2 and bring its concentration back down.

(b) With the characteristic equation

1K c I s1

I s  −1 −0.05
2 s1 =0

we have a second-order system with no positive open-loop zeros. It is always stable for Kc > 0 
(and τI > 0).

(c) Same as Part (b). The system with a PD controller is always stable with Kc > 0, and τD > 0. (You should
confirm with a coefficient test or a root locus sketch.)

(d) With PD control, whether it is ideal or real (see Problem II.1), the system is always overdamped. (It is
first-order if the PD is ideal.) To get underdamped behavior, we need a PI controller with τI < τp 
(i.e., τI < 2). 

Now τI is given as 0.5 min in Part (b), so the closed-loop equation is

1K c  0.5 s1
0.5 s   0.05

2 s1 =0

To find Kc such that the system has a damping ratio of 0.7, the quick way is to use MATLAB to do a root-
locus plot. With that, we found either 
Kc ≈ 3.5 with closed-loop poles at  –0.3±0.31j, or
Kc ≈ 113 with closed-loop poles at  –1.67±1.7j
In actual application, we may saturate the system with Kc = 113. If so, we need to choose Kc = 3.5.

The slow way is to actually solve for Kc analytically. A couple of steps and the closed-loop characteristic
equation should become

 1
0.05 K c s2 0.050.025 K c

0.05 K c
s1=0

from which we can find

1



Part III Solutions

= 1
0.05 K c 

1/2

,  and  =
1
2

0.050.025 K c

0.05 K c
1/2

Substitute ζ = 0.7, and after a couple of algebraic steps, we should find

6.25 x 10−4K c
2−0.073 K c0.25=0

The two solutions are Kc = 3.53 and 113.3.

(e) The problem statement implies that we now include

Gm=1.2 e−0.2 s  
mV
gpm

;  Km = 1.2 
mV
gpm

and  Ga=
−0.9

0.3 s1
 

mV
gpm

And if we are to use the result from Part (d), we certainly want to use the much more conservative 
Kc = 3.5 because of the dead time in the system that was not accounted for before.

To do a simulation with R = –10/s, using Simulink is easy. To use feedback() and step(), we need
to approximate the dead time with the Padé function and multiply the result with –10.

2
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4.
(a) Both open-loop and closed-loop results point to the presence of an integrator in the process function. The

system can be underdamped with only a proportional controller. Hence the process function must also
have at least a first-order term. The simplest possible function that can explain the result is of the form:

G= K
s  s1

So even with just a proportional controller, we have a second-order system that has no offset.

(b) We write the process function as Y/X = K/s(τs + 1) to explain the constant term in the sinusoidal response.
With a given sinusoidal input, X = ωA/(s2 +ω2), the response is

Y= K
s  s1

 A

s22
=
1

s

2

 s1

3 s4

s22

The last term on the right leads to sustained oscillations, while the second (the middle) term decays in
time. The first term gives rise to the constant value

1=
K  A

 s1s22∣s=0

=K A


This is the mean of the sinusoidal response in Fig. PIII.4. Since we know A and ω from the input, we can
calculate K.

Also with the function K/s(τs + 1), the integrator contributes a –90° lag and the first-order lag contributes
another –90° at high frequencies to give a –180° total. The experimental results are consistent with these
features. (The experimental procedures must use an actuator (Ga) and a sensor (Gm). That's why the
functional form K/s(τs + 1) is a lumped function that hides these details.)

(c) With a fast (relative to Gp) actuator and sensor, we take Ga = Ka, and Gm = Km. Also τ = τp.

(d) Here,

G= K
s p s1 ;  K = Km Ka K p

(e) From the small Fig. PIII. 4(b), the phase  lag is approximately 153°. Based on G = K/s(τps + 1), 

∢G=−153°=−90°−tan−1p

The experiment used ω = 2(2π) rad/s, so τp = 0.16 s

(f) With

∣G∣=K
1


1

1p
22 ,

1
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we could have measured the amplitude of the normalized response in Fig. PIII.4(b), which is |G|, and with
τp from Part (e), and ω chosen in doing the experiment, we can calculate K.

(g) To analyze the time response curve, we first need to go back to the closed-loop equation

1K c
K

s p s1
=0 ,  with  K = Km Ka K p

 p

K c K s2 1
K c K  s1=0

In the form 2 s22 s1=0

= p

K c K 
1/2

,  =
1
2  1

K c K p 
1/2

From the small Fig. PIII.4(a), the overshoot is roughly 0.5. So with OS = 0.5, we can find  ζ = 0.215.

With τp = 0.16 s from Part (e) and Kc = 0.02 from the problem statement, 
we can calculate K = 1733 ≈ 1700.

(h) Take K = 1733, τp = 0.16, Kc = 0.02,

= p

K c K 
1/2

=0.067

Estimation of settling time T s≈
4

=40.067 

0.215
≈1.3

And time to peak  T p=


1−2
≈0.22

These  values are consistent (to one significant figure) with what we can estimate from Fig. PIII.4(a). We
need the overshoot to calculate ζ. So of course, we get the overshoot back if we begin with ζ.

(i) With a PD controller, the system characteristic equation is

1K c D s1 K
s p s1

=0

There are two general possibilities:

Now τp ≈ 0.16 s from Part (e). This explains why the system does not oscillate when τD ≈ 0.2 (> 0.16), but
underdamped behavior is observed when τD ≈ 0.1 (< 0.16).

2
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(j) From Parts (d) and (g), we write the closed-loop characteristic function in the form

C
R
= 1

2 s22 s1

The magnitude is ∣CR∣= 1

1−22222

Now with τ ≈ 0.067, ω = 2(2π) rad/s, and ζ = 0.215,

∣CR∣=2.15≈2

Indeed the magnitude can be doubled at certain frequencies.

(k) The phase lag is ∢C /R=tan−1−2
1−22 

If we choose ω to do an experiment and measure |C/R| and ∠C/R , we theoretically have 2 equations (also
magnitude equation in Part j) with 2 unknowns τ and ζ.  With two highly nonlinear equations. However,
the exercise of solving them would not be that much fun.

(l) We certainly want to use PD control to improve the system response. If we use direct synthesis,

Gc=
s p s1

K
1
c s
= 1

K c

p s1

which also is a PD controller.

(m) With a PD controller, the system is always stable (see Part (i) root locus) and we do not need to consider
stability criteria. The Bode plot of the system will be based on

GOL=
K
s
D s1 1

p s1

It has corner frequencies 1/τD and 1/τp. And we want τD < τp such that we have an underdamped system,
1/τD > 1/τp. The sketch of a Bode plot based on the asymptote properties:

3
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(n) We have a second-order system and we could find the answer analytically. Here, after so many parts, we'll
take the easy route and use a root locus plot. So from MATLAB, we found Kc ≈ 0.003 for a 
system with ζ = 0.7.

(o) To make the system less underdamped, the easiest is to reduce Kc. Otherwise, 
we need to choose a larger τD and repeat the calculations.

4
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5.
(a)

(b)

Controlled variable = measured variable = [NH3] in air outlet stream ( ppm)
Manipulated variable = water inlet flow rate (gpm)
Disturbance possibilities are air inlet flow, and NH3 inlet concentration

 Gm=K m=
20−4
200

=0.08  
mA
ppm

K I /P=
15−3
20−4

=0.75  
psi
mA

K v=
−500

10
=−50  

gpm
psi

(We need Kv negative as we'll see that Kp is negative.) Further, we need a fail-open or air-to-close valve
for safety. So

Gv=
−50
5 s1

  
gpm
psi

(c) From the units given the data are for the process function Gp only. The NH3 concentration is the actual
measurement, so the deviation is [NH3] – [NH3]s.s., where [NH3]s.s = 50 ppm.

For the plot (see MATLAB statements in the M-file), we approximate the process itself as a first-order
with dead time function. The dead time is approximately 25 s, and the time constant is approximately 55 s.

The steady state gain is (51.77 – 50)/(–50) = –0.0354 (ppm/gpm). So

G p=
−0.0354 e−25 s

55 s1
 

ppm
gpm

(d) So the process gain Kp is negative and if the controller gain Kc is also positive, then the actuator (valve)
gain Kv must be negative, as we did in Part (b).

(e) One possibility is to use empirical tuning. Here, GPRC = KI/PKm Gv Gp. So

1
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GPRC=
K I /P K m K v K p

5 s155 s1
e−25 s≈

K I /P K m K v K pe
−30 s

55 s1

With this first-order with dead time process reaction curve function, we can easily find the controller
settings (see MATLAB statements in the M-file).

(f) and (g). See MATLAB Statements. 
For example, if we use the ITAE settings, we have a 44% overshoot and we'll have to detune the
controller by, for example, reducing Kc.

2
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6.
(a) Use the cooling jacket, which has a much larger steady state gain. It takes about 10 min to reach steady

state. So the time constant is approximately 2 min, consistent with other information given. So we have

G p=
−5

2 s1
 
°C

gpm

K m=
5−0

120−70
=0.1  

V
°C

;   Gm=
0.1

1/4s1
 

V
°C

K v=
210 

5
=4  

gpm
V

;   Gv=
4

1/2s1
 

gpm
V

(b) We want a fail-open valve to ensure the temperature in the reactor may stay low. If the controller gain Kc

is positive, a rise in temperature above the set point will lead to lower controller output. So we need an air-
to-close valve to increase coolant flow rate. Hence we really need Kv to be negative and Gv should be

Gv=
−4

0.5 s1
 

gpm
V

(c) Possible disturbances are reactant flow, reactant concentration, inlet temperature, and water flow in the
condenser. Transfer functions are given in Parts (a) and (b) above.

(d) The closed-loop characteristic equation is

1K c  −4
0.5 s1   −5

2 s1   0.1
0.25 s1 =0

Expanding,

s313
2

s211 s4 12 K c=0

We must have (1 + 2Kc) > 0, or Kc > –1/2

Routh array:

1 11
13 /2 4 12 K c

b1

4 12 K c

So we also must have 

b1=
13 /211−4 12 K c

13 /2
0

13 11
8

12 K c , or Kc < 8.44

So for positive Kc, the stability criterion is  0 < Kc < 8.44

1
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(e) From a root locus plot using MATLAB, we found Kcu ≈ 8.5 at ±3.3j.
Overshoot of 5% means ζ = 0.69. 
Again from a root locus plot, we found Kc ≈ 0.66.

(f) Here  GPRC=Gv G p Gm≈
2e−0.5 s

2 s1

With this process reaction curve function, we can use empirical tuning relations to find the controller
settings. 

(g) We can use IMC too because we can apply the method to a first-order with dead time function (Example
6.5).

(h) With a Bode plot of G* = Gv GpGm, we found Kcu = 8.5 at ωcg = 3.3 rad/min.

(i) Here, we use Kcu and ωcg with the Ziegler-Nichols ultimate gain tuning relations. 
For slight overshoot, Kc = 2.8, τI = 0.95 min, τD = 0.63 min.

(j) The closed-loop characteristic equation is now

1K c 1 1
I s
D s  −4

0.5 s1   −5
2 s1   0.1

0.25 s1 =0

With τI = 0.95 min, τD = 0.63 min, the PID controller contributes a +180° lead at low enough frequencies.
The system has a net –90° lag at high frequencies. It is always stable.

(k) See MATLAB statements in the M-file for the simulation.

2
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7.
(a)

(b) With a sensor that is sensitive to the fuel-air ratio and its fluctuations (noise measurement), we should
omit derivative action and use only a PI controller.

(c) In this system, the measurement gain Km (slope in Fig. PIII.7b) varies from extremely large about the
steady state value to almost zero away from it. So if the fuel-air ratio deviates just a bit from steady state,
we “lose” the feedback signal. The system operates almost on an on-off basis.

In this system design, we'll not estimate Km from Fig. PIII.7b. Instead, we'll lump Km together with Kc, on
the presumption that some day, we may learn to design an adaptive controller that can adjust Kc according
to the instantaneous value of Km. So the closed-loop characteristic equation is

1K m K c 1 1
I s  0.5  1

0.02 s1
 1

s1  e−0.2 s

0.1 s1
=0

where the sensor transfer function is split into two parts: the gain is lumped with Kc, separated from the
dynamic part. See MATLAB statements in the M-file for details.

1
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8.
(a)

The odd situation that we face is that the controller output change is given only as 5%. We could assume
that its full range is 0–1 V as is the transmitter, such that

K m=
1−0 V

500−300 °C
=0.005  

V
°C

 = 5 
mV
°C

 Another approach is simply to use “%” as a unit for both the transmitter and the controller. So

K m=
100 %

500−300 °C
=1

2  
%
°C

But we do not really need to use Km explicitly; its value is embedded in the PRC data. From Fig. PIII.8,
we can estimate

GPRC=Ga G p Gm≈
K e
−td s

 s1

where K = KaKpKm. From the figure,

K=445−425 °C
5 %

=4  
°C
%

,  td ≈ 2 min, and τ = 6 min

(b) and (d).
With the first-order with dead time function, we can calculate controller settings based on IMC or
empirical tuning relations. (See MATLAB statements.)

(c) The closed-loop equation is

1K c 1 1
I s
D s 4 e−2 s

6 s1
=0

and with τI = 7 min, τD = 0.86 min chosen with IMC in Part (b), and using Bode plots, we need Kc = 1.16
to have PM = 30° (See MATLAB statements).

(e) See MATLAB statements in the M-file for the simulation.

1
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9.
(a) With Ti , F, and CA taken as constants, Tc is the only input to the process equation, and the temperature

dependence is the only nonlinear term. And its linearized approximation is

e−E /RT≈e
−E /RT o E

RT o
2 e−E /RT oT−T o

In terms of deviation variable T '=T−T o , the linearized energy balance is

d T '
d t
=−F

V
T '

−H C A

C p

k o e
−E /RT o E

RT o
2 T '−

U At

C p V
T '−T ' c

d T '
d t
  FV  U At

C p V
−
−H C A

C p

k o e
−E /RT o E

RT o
2  T ' =

U At

C p V
T ' c

leading to

d T '
d t
a T '=K T ' c

where

a= FV  U At

C p V
−
−H C A

C p

k o e
−E /RT o E

RT o
2  ,  and   K=

U At

C p V

After Laplace transform of the equation in deviation variables,

T s
T cs

= K
sa
=G ps

(b) For the process to be stable, we need a > 0,

F
V


U At

C p V

−H C A

C p

k o e
−E /RT o E

RT o
2

which can loosely be interpreted that the heat removal rate must be larger than the heat generation rate by
the chemical reaction.

(c) With the data given, a = – 0.123 < 0. So the chemical reactor is unstable. (Calculation details are in the
MATLAB statements.)

(d) With the data given, we also find K = 0.0134. So

G p=
0.0134

s−0.123

The closed-loop characteristic equation with proportional control is

1K c
K

sa
=0 , or  s = – (KKc + a)

For stability, we need  (KKc + a) > 0 , or Kc > a/K
Substitute the numerical values, we need Kc > 9.18

1
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(e) and (f)
We need integral control to eliminate offset. Thus we need a PI controller (and a PID if we need a bit
more flexibility). See MATLAB statements for details.

2
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10. We first need to linearize the nonlinear terms:

D S i−S ≈Ds S i
s−S sS i

s−S sD 'Ds S i '−Ds S '

S
K mS

≈ S s

K mS s


K m

K mS s2
S '

So the linearized equation in deviation variable is

d S '
d t
=S i

s−S sD 'Ds S i '−Ds S '−
m C

Y

K m

K mS s2
S '

d S '
d t
Ds

mC

Y

K m

K mS s2 S ' =S i
s−S sD 'Ds S i '

p
d S '
d t
S '=K p D 'K L S i '

where

p=
1
a

, K p=
S i

s−S s

a
,  K L=

Ds

a
,  and   a=Ds

mC

Y

K m

K mS s2

Choosing D' as the manipulated variable, and after Laplace transform, the process function is

S s
D s

=
K p

p s1
=G p s

Next, with the data and equations given, we find the steady state values

Ss = (1 – 0.95) Si = 0.5 g/L

Ds =µm Ss/(Km + Ss) = 0.364 h–1

C = Y(S i s – Ss) = 3.8 g/L

and finally, Kp = 9.6 g.h/L and τp = 1 h.

The closed-loop characteristic equation of the system is

1Gc  3
0.06 s1   9.6

s1   e−0.15 s

0.24 s1 =0

With dead time in the system, we should use frequency response analysis to find Kcu and ωcg. After that, we
can use Ziegler-Nichols tuning relation to find the PID settings and tune the response with simulation. (See
MATLAB statement for details.)

1
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11.
(a) From the units of Fig. PIII.11, the plot gives us GaGp (the Km has to be factored out). Let's consider

Ga G p=
K

2 s22 s1
,   where  K = KaKp

with Gm = Km, and a proportional controller, Gc = Kc, the closed-loop transfer function is

C
R
=

K c K m K

2 s22 s1K c K m K

So the system steady state gain is K c K m K /1K c K m K  ,

and the offset is 1−{K c K m K /1K c K m K }=1/1K c K m K 

Next, we find the numerical values. From Fig. PIII.11, we approximate

Overshoot = (2.5 – 1.5)/1.5 = 0.67
Oscillation period T ≈ 0.32 s

From these values, we find ζ ≈ 0.13, and τ ≈ 0.05.
And from the fact that offset is 0.4 and when Kc = 1,

0.4= 1
1K m K ,  leading to KmK = 1.5

(From Fig. PIII.11, K = KaKp = (1.5 cm)/(0.2 V) = 7.5 cm/V.  Hence, Km = 1.5/7.5 = 0.2 V/cm)

In this problem, all we need is KmK = KmKaKp = 1.5, and

Ga G p Gm=
1.5

0.05 2 s220.13 0.05 s1

(b) The function in Part (a) is only approximate. The system can only become unstable if it is third order in
this problem. The closed-loop characteristic equation is

1K c
1.5

a s12 s22 s1
=0

When GM = 1, Kc = Kcu, and using the magnitude of the “open-loop” function, we can write

1=
K cu1.5 

1a
22 1−22222

Substitute Kcu = 1.65, ω = ωcg = 36.6 rad/s, τ = 0.05, ζ = 0.13, we can find τa = 0.007 s

(c) The time constant of the second-order function is

τ/ζ = 0.38 s  >> τa = 0.007 s

So indeed the influence of the 1/(τas + 1) term is masked in the open-loop response experiment (see
MATLAB statements for the plotting).

1
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(d) To find a set of PID controller settings, we cannot use those relations that depend on a first-order with
dead time process reaction curve function. But we can use the Ziegler-Nichols ultimate gain relations with
Kcu and ωcg. (See MATLAB statements for details.) 

And if we use an ideal PID function, it is possible to have complex open-loop zeros. In fact, such a design
may allow us to have a faster and less oscillatory system response.

2



Part III Solutions

12.
(a) For the first CSTR,

V
d C1

d t
=Q Co−C1−V K C1

2

We need to linearize the nonlinear terms first:

Q Co≈Qs Co
sQs Co 'Co

s Q '

Q C1≈Qs C1
sQs C1 'C1

s Q '

C1
2≈C1

s22C1
s C1 '

Substitute these expansions and cancel out the steady state terms:

V
d C1 '

d t
=Co

s−C1
sQ 'Qs Co '−Qs C1 '−2V k C1

sC1 '

Define τ = V/Qs,


d C1 '

d t
12k C1

sC1 ' =Co 'Co
s−C1

s

Qs Q '

p1

d C1 '

d t
C1 '=K 11 Co 'K 21Q '

where the time constant and steady-state gains are

p 1=


12k C1
s ,  K 11=

1

12k C1
s ,  and  K 21=

Co
s−C1

s/Qs

12k C1
s

After Laplace transform,

C1s= K 11

p1 s1 Cos K 21

p 1 s1 Q s
(b) The equations for the other two CSTRs are 

V
d C2

d t
=Q C1−C2−V K C2

2

V
d C3

d t
=Q C2−C3−V K C3

2

as V and k (constant temperature) are the same in all CSTRs. Following the derivation in Part (a), and by
induction, we should arrive at

C2s= K 12

p 2 s1 C1s K 22

p 2 s1 Q s
C3s= K 13

p 3 s1 C2s K 23

p 3 s1 Q s
where
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Part III Solutions

p 2=


12k C2
s ,  p 3=


12k C3

s

K 12=
1

12k C2
s ,  K 22=

C1
s−C2

s /Qs

12k C2
s

K 13=
1

12k C3
s ,  K 23=

C2
s−C3

s /Qs

12k C3
s

The numerical values are handled in the MATLAB statements. From the steady state gain values, the inlet
concentration Co will be a more effective manipulated variable than Q. So the process function can be
written as

G p=
C3s
C1s

=  K 11

p 1 s1   K 12

p 2 s1   K 13

p 3 s1 
From the MATLAB statements, it appears numerically as

G p=  0.28
0.55 s1   0.4

0.8 s1   0.5
s1 

(c) So now Co is the manipulated variable, Q is the disturbance, and C3 is the controlled variable. The process
function is given at the end of Part (b).

(d) The closed-loop characteristic equation is 1 + KcGp = 0, or

1K c
0.056

0.55 s10.8 s1s1
=0

0.446 s31.81 s22.36 s10.056 K c=0

We must have  1 + 0.056 Kc > 0, or Kc > –17.9 (For positive Kc, that just means Kc > 0)
And with the Routh array,

0.446 2.36
1.81 10.056 K c

b1

10.056 K c

We need

b1=
1.8 2.36 −0.45 10.056 K c

1.82
0

So for stability, we need 0 < Kc < 153 (for positive Kc), and Kcu = 153.
For GM = 2, we need Kc = 153/2 = 76.6

(e) The closed-loop characteristic equation is now

1K c 1 1
I s  0.056

0.55 s10.8 s1s1
=0

Intuitively, we should choose the larger τI to have a more stable system. Indeed, we can see from root
locus plots (see MATLAB statements) that with τI = 2 min, the system is always stable.
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Part III Solutions

(f) So we choose τI = 2 min to continue. With the characteristic equation in Part (e) and frequency response
analysis, we find Kcu = 97.7. So for GM = 2, we need Kc = 97.7/2 = 48.9.

(g) Now we need to use a root locus plot. From MATLAB, to have a system ζ = 0.7, we need Kc = 9.75.

(h) See  MATLAB statements for the comparative plot.

(i) This is just a matter of plug and chug with the empirical tuning relations.  See the MATLAB statements for
the calculation and time response simulation.

(j) If we go all the way back to Part (d) and apply Kcu and ωcg to the Ziegler-Nichols tuning relations, we'd
find that the tuning relations would recommend  τD = 0.3 or 0.9 in this problem. If we repeat the exercise
in the MATLAB statements of this problem, we'd see that the point of this Part is to see when a controller
brings in phase lead.

With τD = 0.3 min, the derivative action does not bring in the phase lead soon enough and so only τI = 2
min (lower corner frequency ½) can stabilize the system. If we had chosen τD = 0.9 min, its corner
frequency is low enough that its phase lead can stabilize the system even when τI = 0.5 min.

(k), (l), and (m)
Work that really needs MATLAB. See the MATLAB statements for details.

(n) Need the differential equations back in Parts (a) and (b). With only Co as the input, we can omit all the
terms associated with Q. For 

d x
d t
=A xBu ;  y = C x

We have now

x=〚C1 '

C2 '

C3 '〛 ,  x=〚−1/p1 0 0

K 12 /p 2 −1/p 2 0

0 K 13 /p 3 −1/p 3
〛 ,  B=〚K 11/p1

0
0 〛 ,  C=〚0 0 1〛

The numerical values are computed in the MATLAB statements.

(o) This is in the MATLAB statements too.

(p) We can compute that Co = [B  AB  A2B] and Ob = [C  CA  CA2]T are both of rank 3.

(q) This is a mater of applying the Ackermann's formula. See the MATLAB statements for details.

(r) and (s).  They are also in the MATLAB statements.
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