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Exercises on Ch.6 Stability 
6.4 Summary of stability conditions

6.5 Limit of stability

6.6 Limit of stability of alloys

6.8 Limit of stability in phases with sublattices

6.9 Le Chatelier's principle

 

6.4 Summary of stability conditions 

Exercise 6.4.1 

The slope of the G versus T curve for a given substance at constant P is obtained as 
(∂G/∂T)P = – S. If S is always positive, then this slope must always be negative. Examine 
if there is a similar rule for the curvature, (∂2G/∂TT

2)P. 

Hint 

Find a relevant stability condition, assuming that the system is stable. 

Solution 

(∂2G/∂TT

2)P = – (∂S/∂T)P and in the ordinary energy scheme the conjugate pairs are (T,S), ( 
– P,V) and (μi,Ni). One of the stability conditions is thus (∂T/∂S)P,Ni > 0. We can apply this 
because Ni is constant for a given substance. Thus, (∂2G/∂TT

2)P = – (∂S/∂T)P = – 1/(∂T/∂S)P 
< 0. It should be noted that this result is quite general whereas the sign of S in (∂G/∂T)P = 
– S depends upon the choice of zero point for S. 

Exercise 6.4.2 

Formulate as many stability conditions as possible governing the change of U. 

Hint 
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Consult Table 3.1 in Section 3.5. The important point is to define what variables should 
be kept constant. 

Solution 

The first set from the entropy scheme yields a number of conditions ∂( – 1/T)/∂U > 0 
which can be written as ∂T/∂U > 0 since d( – 1/T) = (1/TT

2)dT and T > 0. Thus, 
(∂T/∂U)P/T,μi/T > 0; (∂T/∂U)v,μi/T > 0; (∂T/∂U)P/T,Ni > 0; (∂T/∂U)v,Ni > 0. The first set from the 
volume scheme yields (∂P/∂U)T/P,μi/P > 0; (∂P/∂U)S,μi/P > 0; (∂P/∂U)T/P,Ni > 0; (∂P/∂U)S,Ni > 0. 
In addition, one can let some μi/T and some Ni stay constant. 

6.5 Limit of stability 

Exercise 6.5.1 

We have seen that 1/Cv > 0 is a stability condition. Another one is 1/KTT > 0 because KTT = 
– 1/V(∂P/∂V)TT and we know that Fvv ≡ (∂[ – P]/∂V)TT > 0 is a stability condition. Show 
which one of the above conditions is more restrictive. Consider a substance with fixed 
composition. 

Hint 

Remember Cv = T/(∂T/∂S)v = T/Uss. In order to compare the values of (∂[ – P]/∂V)TT and 
(∂T/∂S)v the variables of one must be changed to those of the other. Change (∂[ – P]/∂V)TT 
to S and V using Jacobians. 

Solution 

The result will be (∂[ – P]/∂V)TT = Uvv – [(Usv)2/Uss] but (∂T/∂S)v = Uss. In a stable region 
Uvv > 0 and Uss > 0 and now we see that it is necessary to have Uvv > (Usv)2/Uss in order to 
satisfy the condition (∂[ – P]/∂V)TT > 0. When coming closer to the stability limit, Uss will 
decrease but, before it reaches zero, it will come to a value Uvv = (Usv)2/Uss where (∂[ – 
P]/∂V)TT = 0. We conclude that 1/KTT > 0 is more restrictive than 1/Cv > 0. 

Exercise 6.5.2 

We have found that the limit of stability of a unary system can be written as Fvv = (∂[ – 
P]/∂V)T,N = 0. Try to express this criterion in terms of derivatives of G. 

Hint 

Change variables from V and T to P and T by inverting the derivative. 

Solution 
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Fvv = – (∂P/∂V)TT = – 1/(∂V/∂P)TT = – 1/GPP = 0 because GP ≡ (∂G/∂P)v = V. This gives GPP 
= – ∞. 

Exercise 6.5.3 

Suppose that for some reason one would like to evaluate the limit of stability for a pure 
substance by studying the variation of H. Exactly what derivative should one use? 

Hint 

Using Table 3.1 in Section 3.5, find a form of the combined law having H as one of the 
variables and only one more extensive variable. 

Solution 

Line 5 in Table 3.1 is the only one listing H. We may take N ( = Ni for a pure substance) 
as the other extensive variable and should introduce ( – P) instead of V/T. Then, 

– d[(TS + PV)/T] – d[( – P)(V/T)] = – dS = ( – 1/T)dH – (V/T)d( – P) + (μ/T)dN, and thus 
1/T = (∂S/∂H)P,N. The criterion for the stability limit is SHH = (∂[1/T]/∂H)P,N = 0, i.e. 
(∂T/∂H)P,N = 0. 

Exercise 6.5.4 

We have seen that the most severe stability conditions are those with only one extensive 
variable among those kept constant, the one that defines the size, usually N for a pure 
substance, and all those conditions are equivalent. Try to define the same stability 
condition using only extensive variables. 

Hint 

Change variables using Jacobians. 

Solution 

One may, for instance, start from (∂T/∂S)P > 0 and change variables to S and V. Exercise 
5.5.2 shows that the result is (∂T/∂S)P = Uss – (Usv)2/Uvv. The stability condition may thus 
be written 

0>
VVSV

VSSS
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UU

 

This matrix has actually been called stiffness matrix. 

6.6 Limit of stability of alloys 

Exercise 6.6.1 
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Darken and Gurry (1953) defined an excess stability for binary solutions, α = EG2/x1
2. 

Darken (1967) instead proposed α = g22 – RT/x1x2. Show how this second α is related to 
the excess Gibbs energy. 

Hint 

Start from Gm = x1
oG1 + x2

oG2 + RT(x1lnx1 + x2lnx2) + EGm. 

Solution 
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6.8 Limit of stability in phases with sublattices 

Exercise 6.8.1 

A simple model of a ternary solution gives the following expression: Gm = xA
oGA + xB

oGB 
+ xC

oGC + RT(xAlnxA + xBlnxB + xClnxC) + xAxBLAB + xBxCLBC + xAxCLAC, where LAB, LBC and L  
are regular solution parameters for the three binary systems. 

AC

Positive L values result in miscibility gaps on the binary sides which extend into the 
ternary system. When a homogeneous alloy is cooled inside a miscibility gap it can 
remain metastable but below a sufficiently low temperature it becomes unstable. Derive 
an equation for the calculation of that temperature limit for a given alloy composition. 

Hint 

For the composition there are two independent variables, e.g. xB and xC, and xA must then 
be regarded as 1 – xB – xC. 

Solution 

Let xB be variable 1 and xC be variable 2. We find g1 = – °GA + °GB + RT( – lnxB A + lnxBB) + ( – 
xB + xB A)LAB + xCLBC – xCLAC; g2 = – °GA + °GC + RT( – lnxA + lnxC) – xBBLAB + xBLB BC + ( – xC + 
xA)LAC; g11 = RT(1/xA + 1/ xBB

LLLLLLL 2222 −−−

) + ( – 1 – 1)LAB; g12 = RT(1/xA) – LAB + LBC – LAC = g21 ; g22 = 
RT(1/xA + 1/ xC) + ( – 1 – 1) LAC. The criterion for limit of stability gives . 

  
.  

It is reassuring to see that this equation is symmetric with respect to all three components. 

21122211 gggg =
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It does not matter which x was chosen to be the dependent variable. The numerical value of 
the temperature limit can easily be evaluated by inserting the alloy composition. 

6.9 Le Chatelier's principle 

Exercise 6.9.1  

In Exercise 6.9 we considered a container of constant volume and with water and water 
vapour. The question was what would happen after adding some amount of heat. The 
vapor would try to expand and thus raise the pressure as an immediate result of heating. 
That may cause some condensation and thus a further increase of the temperature due to 
the heat of condensation. On the other hand, the heating of the vapor would increase the 
vapor pressure and thus cause evaporisation and a temperature decrease unless the 
pressure from the expansion of the vapor has already increased the vapor pressure more 
than the equilibrium vapour pressure of water has increase due to the heating. It was 
argued that Le Chatelier’s principle predicts that the heating of the water dominated and 
there will be some evaporisation and a temperature decrease. Now examine what one 
may thus conclude about the variation of the equilibrium vapor pressure with 
temperature. 

Hint  

Suppose the vapor can be approximated as an ideal gas, RTPV = , and the vapor 
pressure can be represented with )/exp( RTQKP −⋅= . 

Solution 

The heating will change the pressure of the already existing vapor by  but 
the equilibrium vapor pressure by . The principle requires that 

. Inserting 

VRdTdP // =
)/(/ 2RTQPdTdP +⋅=

VRRTPQ // 2 > RTPV =  we find . This should hold for all 
condensed substances. 

RTQ >

Exercise 6.9.2 

Test Le Chatelier's principle on the change of pressure during a similar experiment where 
the volume is increased isothermally and then kept constant for a long time. 

Hint 

At equilibrium at a given temperature water has a certain vapour pressure, the 
equilibrium pressure. 

Solution 
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The volume increase will result in an instantaneous decrease of the pressure. The 
equilibrium is thus disturbed and during a second stage there will be further evaporation 
and the pressure will increase in agreement with Le Chatelier's principle. If the second 
stage also occurs under isothermal conditions, the pressure will return to its initial value. 
Evidently, this is a case where (∂Yb/∂Xb)D = 0 = 0. 

Exercise 6.9.3 

Test Le Chatelier's principle on the change of volume during a similar experiment where 
the pressure is decreased isothermally and then kept constant for a long time. 

Solution 

The pressure decrease will result in an initial increase of the volume. Then there will be a 
further increase during a second stage due to further evaporation. This is in apparent 
contradiction to Le Chatelier's principle but in full agreement with the inverse form of the 
principle. It may be interesting to note that, if the external temperature and pressure are 
kept constant in this experiment, the process will not stop until all the water has 
evaporated. 

Exercise 6.9.4 

Somebody has objected to Le Chatelier's principle by referring to the following case. 
Consider a two-phase system of liquid water–water vapour at constant temperature. It is 
an experimental fact that an increase in pressure will give an immediate compression and 
then there will be a further compression due to an internal process, – spontaneous 
condensation at the increased pressure. Thus, the change due to the internal process will 
go in the same direction as the primary change, but would not Le Chatelier's principle 
require it to go in the opposite direction? 

Hint 

Identify what is a potential and what is an extensive variable. 

Solution 

The experimental fact concerns the change of volume, which is an extensive quantity, 
caused by a change of pressure, which is its conjugate potential. Le Chatelier considered 
the change of a potential, caused by a change of an extensive quantity. Thus we should 
expect the opposite result. 
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