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CHAPTER 1: INTRODUCTORY MATERIAL

Description: These problems examine the physics of why dislocations facilitate deformation of
crystals, surface ledges created by their motion, identification of vacancy and interstitial loops,
and construction of Burgers circuits.

11

1.2

Q

Discuss qualitatively how the presence of edge dislocations (Figure 1.4) can account for
the shear of crystals at stresses much less than Giheor. Is the same explanation valid for
screw dislocations?

A screw dislocation with b || § lies along the axis of the
cylinder in Figure 1.28 (See dccompanying figure).

If the ledge is along AB, is it'recessing or overhanging?

If the ledge is‘along AC, is it recessing or overhanging? Problem 1.2. Figure 1.28. A screw

dislocation lying along the axis of
a cylinder.

Is,there any.restriction on the ledge position? Could it be positioned at AD?

Construct a rule to specify the sign of the ledge (recessing or overhanging) in terms of
b.and §. Hint: Develop a right-hand or left-hand rule.
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Form a closed, planar square interstitial dislocation loop by inserting one atomic layer
within the loop. Form a vacancy loop by removing an atomic layer. Specify the resulting
dislocations in terms of b and §. Develop a rule that uses b and § to distinguish between
interstitial and vacancy loops.

Insert one of the loops of Prob. 1.3 into a cube of material and orient it parallel to one
of the cube faces. Sketch the response of the loop to aniimposed shear stress on the
cube faces. Consider the three possible components of shear stress.

Consider the adjoining figure showing a\\acaneVy lofp

ABCD and Cartesian basis xyz. Each edge Of\the $&tare _ﬁ,Tb ”,_B
vacancy loop is represented by an edge“dislocation with a ; %
slip direction and slip plane (e.g., the slip®plane for Dj ,i‘l—
dislocation AB is parallel to thegy-face). By analogy to

Figure 1.19a,b, a shear stress — ré@presented by a force y

parallel to the slip direction [€.g:palong z) and applied to a x

cube face parallel to a slip¥lane (€.g., a plane parallel to ~ Problem 1.4.

the y-face) — will act t@"myve the dislocation. Therefore, a

shear stress o= og)gWill #end to move dislocation AB along the z-direction and CD
along the -z digection,“a@amd a shear stress ox; (= o) will tend to move dislocation DA
along the z-diféctionfand BC along the -z direction.

Extra material canibe inserted in Figure 1.19e to produce the edge dislocation in Figure
1.19f. ifia tensile stress were applied perpendicular to the extra plane of material,
would youexpect the dislocation to climb upward or downward?

The cuts in Figure 1.19 are parallel to cube faces. Show that the dislocations can be
formed by a cut on any plane in the crystal. Specifically, form the same dislocations by
a cut inclined at 45° to those in the figure.

3/74


https://www.cambridge.org/us/academic/subjects/engineering/materials-science/theory-dislocations-3rd-edition?format=HB&isbn=9780521864367

1.7

1.8

Student Version — Solutions to Problems, Theory of Dislocations, 3™ Ed.
Cambridge University Press (2017). Publisher website

The adjoining figure show three potential cuts — along
OA, OB, and OC — each of which creates the edge
dislocation shown in the center of the figure with line
direction § pointing outward and b pointing to the right.
For the cut OA, a right-handed Burgers circuit (circuit
#1, shown in purple) is constructed in the deformed  A--{-
(dislocated) material. Using the SF/RH convention as
detailed in Fig. 1.21, the Burgers vector is defined as the
vector from the start (S) to finish (F) points. This is
equivalent to the cut in Fig. 1.19b. Likewise, cuts OB  proplem 1 »

(circuit #2, shown in green) and OC (circuit #3, shown in PY

blue) can be used. The latter is a cut at 45 degrees and involv& tive opening

B

o

! ~C

and shearing of the surfaces along the cut.

Use a Burgers circuit to determine b for the dislocation imt le raft of Figure 1.6.
Show that the dislocation can be formed by any one ofiseveral«<uts within the bubble
raft, analogous to Prob. 1.6.
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Problem 1.7. v
Figure 1.29sh slip traces along a sample surface caused by motion of two
dislocati itially at A and B. Which trace must have a surface ledge? Why?

‘ Problem 1.8.
7K Figure 1.29. Slip
o ’ traces generated

where the slip
surface intersects
a free surface, for
B_'—l_'-'_' two dislocations
originally at A and

B.
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CHAPTER 2: ELASTICITY

Description: These problems examine: the transformation of strain or stress components
arising from a change in basis; effects of crystal symmetry on elastic constants; and application
of elastic constitutive relations.

2.1 Consider a state of plane strain that has €4, €y, and &y, (= €,x) as the only nonzero

components of strain. Find the components of strain referred to a coordinate system
X'y’ that is rotated an angle ¢ about a common z axis.

2.2 Consider a state of strain that has €x; (= €x) and €, (= €)yas the only nonvanishing
components. Find the components of strains referred to a coordinate system x'y’ that
is rotated an angle ¢ about a common z axis.

2.3 Consider an arbitrary state of strainiwith,components €; referred to the xyz coordinate
system. Can the components of strain referred to a coordinate system x'y’ that is
rotated an angle ¢ about a'cemmon z axis be obtained by simply adding the results of
Probs. 2.1 and 2.2?

24 Write out the general matrix of elastic coefficients for the case where there is a
reflection‘plane normal to the z axis.
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Show that an isotropic medium that is both compressible (that is, K is some finite, non-

zero value) and has Poisson’s ratio v = %2 must be a compressible liquid. Hint: Show that

the shear modulus and Young’s modulus are both zero, that is, u=0and E = 0.

Eqg. 2.62 shows that whenv =%, u=E =0 and K = A. Hence, from Eq. 2.57, the material
can sustain a state of pressure with 011 = 022 = 033 = K(€11 + €22 + €33), buigthe shear
components 023 = 031 = 012 = 0 for any imposed deformation state. |tfis elastically
equivalent to a liquid.

Show that the matrix dui/dx; consists of a symmetric matrix (the strain matkix €;) plus
an antisymmetric matrix (the rotation matrix wj).

For an isotropic substance, derive the stress-strain, strain-displaéement, and stress-
displacement relations in cylindrical coordinates.

The solution is a standard derivation ingintr@du€tory texts on elasticity. See for
example, https://en.wikipedia.org/wiki/Linedk elasticity

Use symmetry conditions to deduce the‘humber of independent elastic constants for
each of the six crystal systems.

Eqg. 2.26 illustrates the 6 x 6 matiX of elastic constants for a cubic system. Relative to
the cubic system, the tetragonal’sySkemzhas a four-fold 3-axis but only two-fold 1 and 2
axes. The four-fold 3-axis m@ansishat the 1 and 2 axes can be interchanged so that c¢13 =
C23 # C12 and Cs5 = Caa # Cosupl e COMplete development for other systems is given in
texts on crystal physig§*slish asyPhysical Properties of Crystals: Their Representation by
Tensors and Matrices\bf JF Nye (Oxford University Press, 1985, ISBN-10: 0198511655)
or on crystallogiaphy.

Use Eqg. 2.43 to determine the components of force acting on a surface of area A with
normal parallel torthe z axis. Express your answer in terms of A and the components oj;
of som@,arbitrary stress state.

|3
A=An F
Area element A
1.~ \

2
Problem 2.9.

2.10% Derive expressions for the stress and displacement fields produced by a row of point-

force pairs distributed along the axis of a cylinder and acting normal to the axis. Use
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these results to determine the stress field of a cylindrical rod forced into a smaller
cylindrical hole coaxially positioned in a larger cylinder.

This is a cylindrical analog to the spherical geometry of Sec. 2.7b. Similar to Fig. 2.9,
point force pairs are applied to the inner surface of a cylindrical hole at r = a and the
pairs extend along the axis of the cylinder. The outer radius R is extended to infinity
and the outer pressure P = 0. The only displacement component is u, and for an infinite
body with a cylindrical hole of radius a and internal pressure p, ur = (p/2p) a?/r (e.g.,
see Timoshenko?). The non-zero cylindrical components of strain are gi € =
ou,/or and ggp = u,/r. Using the constitutive relations for an isotropic,qelastic®solid
(Eq. 2.57), o, = —=pa?/r* and oee = pa?/r.

This stress state can be described by the Airy’s stress function@¥ = , where o, =
(1/r)(0W/dr) and oee = 02W/Ar? (see Sec. 2.5).
* SP Timosheko and JN Goodier, Theory of Elasticity (3™ edff, -Hill, 1932, ISBN:

0070701229. Chapter 4: Two-Dimensional Problems in R®la ordinates.

CHAPTER 3: THEORY OF STRAIGHT DISLOCATION

ei ctipn of straight dislocations with
cesy effects caused by free surfaces;
v@lume change generated by an edge

Description: These problems provide examples of:
other straight dislocations as well free and fixed su
concepts of hollow dislocation cores; an
dislocation.

3.1 In Figure 3.6, insert a screw disl on of the same sign midway between the original
screw and the surface. Compute orce exerted on this second screw. Will this force
tend to move the inserted di io ay from or y

toward the surface?
|_—Free surface

— ] ——]—

A B B" A

Screws | Image screws

Problem 3.1.

C &e interaction between two edge dislocations on parallel glide planes (Figure

3.20). If dislocation A is fixed, find the possible
equilibrium positions of dislocation B in glide.

)
4 E
«@LX” “‘lejf*
SN
v

Problem 3.2
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3.3 Consider an edge dislocation with § along the z axis and b inclined at 45° to the x and y
axes. An external stress with components oxx, 0y, and o is present. Use Eq. 3.93 to

determine the total force per unit length on the dislocation. Discuss the physical
significance of the various terms. 6

”

“ s

‘ b‘ﬁ»/ "“345" )

£=[001] (out of plane)
Protsiém 3.3.

3.4¥¢ Considert t edge dislocations with mutually orthogonal Burgers vectors of
ude (Figure 3.21). Calculate the energy to move dislocation A from x =
in the slip plane. The result shows that dislocations with nonparallel and

eve gonal Burgers vectors interact in general.

hear stress from dislocation B is given in Egs. 3.45 but the

ca@rdinate system used in those equations is rotated clockwise y

y 90° relative to the coordinate system in the accompanying
figure. The position (x, 0) in the figure is equivalent to using Egs. c=—{B A
3.45 with x = —-c and y = —-x. Thus, the shear stress from
dislocation B at some position (x, 0) in the accompanying figure
is Ox(x)= —[ub/2m(1 - v)]c(x® - c?)/(x* + c?)?. The expression  proplem 3.4,
shows that ox,< 0 for x > ¢ and oy, > 0 for x < ¢ and therefore
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dislocation A is attracted to the position x = c. This can be confirmed by noting the sign
of shear stress in the lower left quadrant of the accompanying figure for Prob. 3.2.

The energy (or work) to move dislocation A is calculated by first noting that dislocation
B produces a thermodynamic force Fx/L = ox/(x)b on dislocation A . Therefore, an
external force (Fi/L)exx = —Ox/(X)b must be applied to dislocation A to hold it in
equilibrium and the work, (F«/L)ext dx, done by the external force to move A by dx
equals the energy change. The total energy change per unit length of dislocation is
therefore

E a F a a
nirgy = L (Tx)ext dx = L —Oxyb dx = Mcf —2 e
where M = pb?/2r(1 — v) and X = x? + ¢. The integral of Mc[-x/2X +
Jdx/2X] and that of —-Mc3/X? dx = -Mc[x/2X + [dx/2X]*. Eval t e integral from x
= R to x = a furnishes
Energy [ Mcx ]x=a_ ub?
L W?+cr 2m(1-v) 2+c2

Thus, the energy change when dislocation
R > a, consistent with the attractive Peac
second term vanishes in the limit R

*From CRC Standard Mathematical Tables .), CRC Press, integrals 111 and 118.

Consider a straight screw disloc parallel to a rigid surface that cannot deform.
Show that the screw is repelled fromithe,surface by a force equivalent to that from an
image dislocation of the same sign and magnitude. This result is relevant for
dislocations near a surface with a hard oxide layer upon it.

frem x = R to x = c is negative for
rce over the range R > c. The

¥ —Rigid surface

b Beq/2m Uy = -b Qyage/27

real /’Qims,
Z

—[——]—

Y

%Gl

A A’
Screw Image screw (like sign)
E=e,b=be, E=-¢,b=-be,
Problem 3.5.

Suppose that the dislocations in Prob. 3.2 are in a copper crystal. Compute the glide
and climb forces on dislocation B if x1 = 7 nm, y1 = 3 nm. Compare these forces with
those produced by homogeneous external stresses oy, = 1073, 0,, = 1073E. Note the
correction in the question statement (red text).
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From Appendix A1, the elastic shear modulus p = 5.46 x 10%° Pa and Poisson’s ratio v =
0.324. The Burgers vector magnitude b is 0.254 nm. The glide and climb forces are
given by Egs. 3.63 and 3.65 with the stress field for an infinite straight edge dislocation
in an infinite isotropic body given by Eq. 3.45. The result is Fgide/L = Fx/L = 1.9E-4 i - nm
and Feimb/L = Fy/L = 9.8E-4 p- nm. The homogeneous external stress would produce
F/L =103 p-0.254 nm = 2.5E-4 p-nmand F,/L = 1E-3E- b= 1E-3-2 (1 +v) - 0.254
nm = 6.7E-4 p-nm. Thus, the glide and climb forces produced by the dislocation
interaction are comparable to those produced by applied homogeneous stfessés ~ 103
x elastic modulus (E or p).

on'the
ual stresses

3.7%  The results for a screw dislocation in an infinite medium give virtual
ends of a coaxial finite cylinder enclosing the dislocation (Eq. 3'5).
can be removed by superposition. Consider the counterpart cas
dislocation. Show that no long-range stresses exist but that/{foc s do exist on the
cylinder end. Estimate the length over which the perturbation caused by these forces
extends. Hint: Include the stresses from Y.

From Eq. 3.46, the solution for the infinite s virtual stresses and the

nonzero component of interest that generates | fogees on the cylinder ends is 0=
-C/r, where C = pbv (sin 8)/[r(1 — v)]. TheNgupe d stress function Wr (Eq. 3.50)

generates o,(r = —-C 2r/R%. The forc nd of the cylinder is obtained by the
integration, 2nfo,, r dr, from r = 0 to r ov e end of the cylinder, with the result
-2nCr. Similarly, integration o contribution from the stress function Wg gives
21tJ0(r) r dr = 2Cr3/R?. The cont ions, —Cr and 2Cr3/R? cancel when r = R \/3 /2. Thus,
end effects from free surfa expected to extend a distance R /3/2 from the free
surface.

3.8%¢  Use the results of Ex .5to predict the equilibrium radius ro of a hollow
urface energy y of the hollow tube equals that of a bulk
o = 1.7 J/m?, how large a Burgers vector would be required to
give a hollow @ n of radius ro =1 nm (Frank 1951c)?
MATLAB. appfoach is to compute the energy change, AE = the change in elastic
strain @mergyl@pon introduction of a hollow tube of radius ry plus the increase in
s cee upon introduction of a hollow tube.

The tion in elastic energy upon introduction of the hollow tube is comprised of
terms. The first is W/L given by Eq. 3.54 with R=ry. This quantity,
[1B®%/ (41(1 - v))] In(rn/ro), represents the elastic strain energy that is removed when the
aterial within a tube of radius r is removed from an edge dislocation with core cutoff
ro, without allowing the new surface at ri to relax. The second quantity, ub?/(16(1 —v)),
is the decrease in energy upon relaxation of the new surface to a free surface. This
expression is obtained by % [ o.Ar = ) u/r=rn) 2nry dO, where on(r = 1) is given by Eq.
3.46 and u/(r = rn) is given by Eqg. 3.53 in Exercise 3.5. The reduction in elastic energy is
therefore the sum, [pub?/(4m(1 —V))] In(rn/ro) + ub?/(16(1 = v)).
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The energy change is therefore AE = —[ub?/(4(1 — V))] In(rn/ro) — pb?/(16(1-v)) +
2nrny, where the last term is the increase in surface energy per unit length of
dislocation. The equilibrium condition, 0(AE)/0rm=0, furnishes the result
rn = ub?/(8m(1 —v)). The Burgers vector magnitude required to obtain r, = 1 nm is
determined by substituting u = 5.46E10 Pa, v = 0.324, and y = 1.7 J/m? for copper. The
result is b =0.56 nm.

This solution adopts the standard assumption that any hollow dislocation has right-
circular cylindrical symmetry. However, the core for edges is likely to devi that
configuration ( see J. P. Hirth, Acta Materialia, 47, 1999).

Consider a right-handed screw dislocation parallel to the surfaces of/@ inite’plate
(Figure 3.22). The image dislocation B satisfies the boundary éondit % rface 1 but
leaves a residual stress on surface 2. Thus, an additional image equired, which in
turn requires an image F, etc. A similar set is associated with'image ‘@ The result is an

infinite set of image dislocations. Show that the sum of all the'image stresses acting at
the origin on dislocation A is

__ub ¢ 1
Oy = 4ndn§;n—(1/d)

The solution to this sum is (Morse an

b
G,=5—0C
4d
Note that the set of right-ha i islocations is symmetric about the origin, so

that oy, at the origin is pro pletely by the left-handed set.

J y
- V] Sl 2
E 2
€ lal-|8
w P

Az Ap 4 | A7 A As Aspr

I R E R I; R L sign (Ror L)
4d-21 2d 2d-21 21 2d  2d+2l distance Dto A
Problem 3.9.
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3.10¥% Show that the external volume change for an edge dislocation located on the axis of a
right-circular cylinder is zero. This result is true for a dislocation in a finite body of any
shape, since one can always create the dislocation by applying equal and opposite
tractions to opposite sides of a glide plane cut. This can be demonstrated

2.93
Similar to the derivation leading up to Eq. 2.93, the volume change per UMit length of
dislocation is [rur dB. The displacement u, for an edge dislocation inge inite?’medium
is given by Eq. 3.49. The only significant term is the first whi€h inte % 0 zero over
the domain from 6 = 0 to 2. The second is also zero for a siMilar féason. The third
integral involves [B cos B8 dB = cos 8 + 0 sin B using integration ts. Thus, the third
integral is also zero. The zero change of volume is exaci®This exact nature is related to
the work of Eshelby and Rice, discussed in Sec. 3.8.

CHAPTER 4: THEORY OF CURVED DISLOCATION

Description: These problems offer practice in ide
loops formed by dislocation motion, the
motion, and the use of Egs. 4.30 and 4.20 to co
curved dislocations.

ifyl e vacancy/interstitial nature of
f matter associated with dislocation
the stress and displacement fields of

4.1 Consider the pure screw dislocationilying along ABC in Figure 4.7. A screw with a loop
results if AB is moved conse ly through positions A'B’, A''B", etc., while BC is held
fixed. Is the loop a vacanc an interstitial loop?

Problem 4.1.

4.2 The formation of the loop in Prob. 4.1 requires material transport. Where is the source
sink for this matter? Hint: Consider that the screw emerges normal to a free surface

at A and study the configuration at A as the loop is formed.

4.3 Use Eq. 4.30 to derive the stress field for a pure screw dislocation in an infinite
medium.
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N
,-,'{f?

4.45%x  Demonstrate that the displace u(r) given by Eq. 4.20 change discontinuously by
Au = tb if the point ris intersect the surface.

The first term of Eq. 4.20 is

where the ,
solid angle Q is defined inNBg. 4.21. Drawing 1
on the developmen ig. 4.4 where the
vectors r, r’, dgfined, consider a
point with positi located a distance
h above a dis oop defined by area A
and radiu n in the accompanying
figure.gihen (PP+h?)Y2, dA=rdrdd,andR o piemaa.
. = = dr. The solid angle expression

f g.4.21is then

( —hrdr —2mh —2Th +
fL=—2m f 2+ R0 (7 + h2)1/2] [(a2 Thniz T ] =2mash =0
0

height h above the loop

dislocation loop
Burgers vector b

Substitution of Q(0*) = 2m into the first term of Eq. 4.20 gives u(h = 0*) = -b/2. A similar
calculation gives u(h = 07) = b/2 for a point positioned just below the dislocation loop.
The change in sign occurs because R - dA changes sign since R points upward for h = 0~
but points downward for h = 0*. The other terms in Eq. 4.20 are not discontinuous from
0* to 0" and therefore the jump in displacement is Au = u(h = 0*) - u(h = 07) = -b.
Physical examples of a jump are shown in Figs. 1.19 and 1.23.
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4.5v¢  Show that the displacements given by Eq. 4.20 are dependent only on the configuration
of the dislocation line that forms the loop and not on the shape of the surface A,
provided surface A is not intersected in the manner of Prob. 4.4.

The integrals in Eq. 4.20 can be converted to line integrals so that the results are
independent of the shape of the (cut) surface and only dependent on the configuration
of the dislocation. Recall the result for Prob. 1.7.

CHAPTER 5: APPLICATIONS TO DISLOCATION INTERACTIONS

Description: These problems provide examples of interaction energies and forges betWween
loops and parallel and nonparallel straight dislocations, as well as stress figlfS®f infipitesimal
loops and angular dislocations.

5.1 Consider two parallel edge dislocations A and B with Burgers vectors inclined at an
angle a. Dislocation A is constrained to remain at the originfof the coerdinate system
and both dislocations are constrained to remain parallels

a. Explicitly express the interaction force oniB,as a function
of R, 6, and a.

Problem 5.1.

b. Is thereian eguilibrium position for dislocation B? If so, where?

c..sFor constant R, show that Fg vanishes when 6 = a/2.

5.29%  Graphically compare the interaction force per unit length for two cases: (a) the two
coaxial dislocation loops of Figure 5.2 as a function of z for the case a = ¢ = 200b; (b)
two parallel edge dislocations in the same glide plane as a function of their separation
in the glide plane. In which case does the interaction force decrease more rapidly with
increasing separation? Why?
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MATLAB. Eq. 5.26 provides the interaction energy Wi, for a pair of circular dislocation
loops as shown in Fig. 5.2, with radius a and Burgers vector b; = b, = be; for both loops.
The interaction energy per unit length is therefore Wiy/Ll= C k(K-E), where
k?* = 4/(4 + a®/z?) and K(k) and E(k) are complete elliptic integrals of the first and second
kind, respectively, and C = pub?/2m(1 — v). The interaction force in the z direction per

unit length of loop is F,/L = -0(W12/L)/0dz.
For comparison, Eq. 5.18 shows that two
infinitely long edge dislocations with b1 =
b, = be; separated by z have an
interaction force F,/L = C/R. The
accompanying figure shows F,/L for two
circular loops of radius a = 200 b and for
the two infinitely long edge dislocations.
The loop interaction falls off more rapidly
because the field of the loop is limited
approximately to a sphere of radius a
according to St. Venant's principle.

Consider two perpendicular screw dislocatio

force as a function of position on the
handed and the other left-handed and tha

félL (units of Cb)

0.012
0.01} !
\.
0.008- ||
0.006
0.004} )
parallel edge disl.
0.002F  circ, loops S~
radius = 200 b T
(] 200 400 00 800 1ooo Z/b

Prob ‘

rmine the local interaction
line. Assume that one screw is right-
re forced together by uniform

external stresses. Qualitatively e the dislocation configuration when the
interaction forces balance those ed by the applied stresses.

M

P Iane 2
= 0)
€2)

«— 7
(PI&nej —
T=g) Lz
L R= Xo€q
D dis],
o NP,
\‘i :::gl
b,

bleTIsY3.

bedleft-handed, so that b, = -b§; and b - &,

Eg. 5.48 defines the force function 6F =
6F(y2, x) — 6F(y1, x), where 6F is the force
exerted on dislocation segment dl; at
coordinate x by dislocation 2 that spans
from coordinates y1 to y, along . The
coordinates x and y are defined in Figure
5.4, which is reproduced here for
convenience. The dislocations are
oppositely signed, perpendicular screws
so © = m/2 in the figure. Dislocation 1 is
chosen to be right-handed, so that
b1 - &1 =b, and dislocation 2 is chosen to

Eqg. 5.50 is used to determine 6F(y, x). The first term, Eq. 5.50a, is the only nonzero
contribution because the dot and cross products in terms b, ¢, and d are zero. Eg. 5.50a
is rewritten as Eq. 5.55a (p. 121, top). In that expression, only the first term survives
since 8 =1/2 and bie = bae = 0. Therefore, 8F(y, x) = —(ub?/4n)(z/pR) dl1 es, where p, R,
and hs are defined near the top of p. 122. (Note: the same result for §F(y, x) is obtained
from the first term of the original Eq. 5.50a, where by xb;=-b%es, V(V?R)=
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V(2/R) = (8/0x)(2/R?)e1 + (0/dy)(2/R) e2 + (0/0z2)(2/R)es, dli x dl, =dl1 §& xdy & = dl1 dy
e3, and [(8/0z)(1/R) dy = z/pR.)
Thus, 6F = 6F(y2, x) = 6F(y1, x), where y1=-o0 and y, =+oo are chosen to model an
infinitely long dislocation 2. §F(+o°, x) =0 and 8F(-o°, x) = —(ub?/4n)(z/[(y1 + R)R] dl1 e3
as y1 = —o=. The limit is evaluated by noting that for x and z < y1, a Taylors series can
be used to write p(x, y1, z) = y1+R = p(0, y1, 0) + (0p/0X) (0,00 X + (0p/0Z)(0,,002 +
(02p/0x3)(0,,0) X2/2 + (8%p/32%)(0,y,0) 2/2 + higher order terms. p(0, y1, 0) = (dp/dx)(0,,0) =
(0p/02)(0y,00 = 0 and (0%p/dx%)0,y,0) = (020/0z%)0y0 = 1/R. Therefore

repelled the oppositely signed, perpendicular, screw dislocgtion
magnitude at x = 0, which corresponds to the minimum
between dl; and dislocation 2.

The interaction force is balanced by those from a unif i8¢ stress when 6F - ob
dl1 es = 0. Therefore, z is a maximum at x = 0, wh the ulsive force is largest.
Figure 22.2 shows an approximate sketch of th iguation. The exact equilibrium
configuration must include the additional f@kxce don dl; by other segments along

dislocation 1.

Solve for the local interaction forces b crew dislocation and a perpendicular
edge dislocation whose Burgers vector is pa to the line of closest approach

between the two. Show that thefinteraction forces on one dislocation are
perpendicular to the interaction s an the other, so that there is no equal and

opposite action and reactio uss this apparent violation of Newton’s law.

pute the maximum local interaction force between the loop of Figure 5.12 and a
ht screw dislocation lying in the same glide plane and with its Burgers vector
allel to the z axis.
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(%2, 2 fe— Az —»|
< L §__> infinite screv\é
Problem 5.5.

Compute the five stress components other than'cy, (Eq. 5.70) for the angular
dislocation.

The geometry is shown in Figure 55%0. The results for the other components are given
by Yoffe EH (1961) Phil. Magf'6™147.

Compute the six general stress components around the infinitesimal glide dislocation
loop in Figure 5.12.

The results are Biuen W Krofipa F (1962a) Czech, J. Phys. 12B: 191.

Consider four paralleledge dislocations lying on the same glide plane. There is no
external stress'but they are blocked at both ends of an interval L by barriers that exert
short-range repulsive forces, extending over atomic dimensions only. Determine the
equilibrium canfiguration of the array if the dislocations are constrained not to climb.

A B C D
] | | |
x L-2x X
+—rt—r—>
Problem 5.8.

Compute the long-range stress field around a dislocation dipole consisting of two
parallel edge dislocations with equal and opposite Burgers vectors. Assume they are in
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glide equilibrium with glide planes that are separated by a distance 2b. Hint: Use the
interaction force on an element as a “test probe” for the stress.

MATLAB. The relevant geometry for the two dislocations, A and B, is shown in the
accompanying Figure 1 (below). Consider Eq. 3.45 for the stress field from dislocation
A. The superposition of oy, from A and B gives the following,

_x@ -y x@” -y

Oxy = (x2 + y2)2 (er +y,2)2
where x' =x—2b and y’' =y —2b. The accompanying Figure 2 shows a pldt o as a
function of x/b. Also shown is o, from only A; it varies as 1/x. The result s s that oy,
from the A-B dipole falls off faster than that from A alone, thereb nstkating St.
Venant's principle. 0‘
0O,y (units of ub/2m (1-v))
0.25
y yll 0.2 \
E 015} |
Ts ‘ 0.1
(2b, 2b) 0.05
0
Al—x -0.05

Problem 5.9, Figure 1.

Discuss the role of grain b

grain boundaries do not produce image stresses. For
e an elastic mismatch at the grain boundary except for

oundaries. Hence, general grain boundaries will generate
ribute to interactions between dislocations. While not exact, the
)f image forces roughly scales with the anisotropy ratio, values of
Appendix A.

ATIONS TO SELF ENERGIES

In the isotropic appr

image forces ;
relative impo
which are i

A
ip:&se problems provide examples of the energy of various polygonal

including edge and screw bow outs, loops at free surfaces, zig-zag formation
t dislocations, as well as triangular, square, hexagonal, and circular loops.

Compute the energy of a semi-hexagonal dislocation loop lying normal to and
terminating at a free surface. The Burgers vector is parallel to the free surface. Use a
simple image construction. Compare the results with those of Egs. 6.72 and 6.73.

The accompanying Figure 1 shows the geometry of the semi-hexagonal loop (solid
lines) and the image (dashed lines). The sense of the loop is continuous (clockwise) and
b is the same for all segments 1-6. Thus, segments 2 and 5 are oppositely signed
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segments, consistent with a free-surface image
construction. Segment 6 is an image of segment 1,
and 4 is an image of 3. This is evident if the sense 1 /. £\ 3
(and Burgers vector) of 6 and 4 are reversed.

tnq

—b surface
Eg. 6.5 can be used for the sum of the self and . /.
interaction energies and compared to the energy 6\ 4
change for a large bow-out that forms on a screw SR .

dislocation (Eq. 6.72) or edge dislocation (Eq.

6.73): Problem 6.1, Figure 1. \‘

w

- =32 -v) [ln—— 0. 84] = SInE— 4.2 forv =— (hexagonal lo
AW
Tz(

AW
C

L
+ —) InZ — 0.04v — 2.05 = 1.2In% — 2.1 forv = ut Fig. 6.9)
2/ p p

oW =

L
(1——>lnp+2v—205—051n;—14for bow out, Fig. 6.9)

ub<L

h =
where C (=)

A bow-out on an edge dislocation has t st logarithmic coefficient, followed by
a bow out on a screw. A bow qut,at a free surface (hexagonal loop) has the largest
logarithmic coefficient because strong attraction between segments 1 and 5 is
larger than the weak interactien of ent CD with AB and EF (Fig. 6.9). Thus, a semi-
edge dislocation is more likely than one at a free

Extra Material:
the energy of gonal loop are provided.

For two on-parallel segments, Eq. 6.41 can be used to calculate the
. For the bow out configurations considered here, b is in the (x1 - x2)
gments and thus only the term with /(xq, yg) contributes. Also, b is
C on segments so that the b1 x b, term vanishes. For this case, the interaction
ener ween segments p and g takes the form

ub Ce
Wog = G+ 755 ) 13 3p)

The results below list the values of Cs, Ce, and I(xa, yp) 1 /

for interaction between the segments in the hexagonal — ./E \\?5

geometry in the accompanying Figure 1 (above). L ‘
Segments 1 & 2 ).(/

In this case, the sense and Burgers vector are both
changed in sign for segment 1 and Eq. 6.41 is applied. ;’;Zb'em 6.1, Figure 2. Segments
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Cs=cos ¢

Ce=0

I(xa, yg) = I(L, L,) + 1(0, 0) = /(L, 0) = (O, L) = 2L In [(1 + cos & + 2 cos $/2)/(1 + cos d)],
where the numerator of the In term arises from /(L, L,) and the denominator from -
I(L, 0) - 1(0, L). /(0, ) = O.

Segments 1 & 3

Similar to the previous case, the sense and Burgers
vector are both changed in sign for segment 1 and Eq.
6.41 is applied.

Cs = cos’d

Ce = -sin’d

I(xa, yg) = (2L, 2L,) + I(L, L) = I(2L, L) = I(L, 2L) where ‘«b—
I(2L, 2L) = 4L In(2 + cos 2¢0) /2;_

I(L, L) = 2L In(2 + cos 2¢) X
I(2L, L) = I(L, 2L) = 2L In(cos ¢/2 + %5 + cos + Problem 6.1, Figure 3. Segments
L In(2cos /2 +2 + cos 2¢) 183.

Segments 1 & 4

this case, the segments are parallel and the sense
rgers vector for segment 4 are reversed.

X
L/ @
X)p ication of Eq. 6.45 gives
. y s = —C0S’d
D L f ~ Ce - —sinzcb

I(xa, yg) = I(L, L,) + (0, 0) = I(L, 0) = (0, L) where
I(L, L) =1(0,0)=D
I(L,0)=1(0, L) =R+ (L/2)In[(R-L)/(R + L)], where R =

Prohlem 6.1, re 4. Segments (DZ + L2)1/2
124,

ents 1 &5
hisCase, the sense and Burgers vector for segment 5 are reversed and Eq. 6.41
gi
s=—cos P
Ce=0
I(Xa, yp) = same as for segments 1 & 3

Segments 1 & 6
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In this case, the sense and Burgers vector for segment 6 are reversed and Eq. 6.41

gives
Cs = —cos’d
Ce = sin’d

I(xq, yg) = same as for segments 1 & 2

Segments 2 & 5

In this case, the segments are parallel and the sense and Burgers vector for seg t5
are reversed. Application of Eq. 6.45 gives

C5=_1 .

Ce = O
I(Xa, yg) = same as for 1 & 4.

The energy of the hexagonal loop is then expressed a
Whexagon = 2VVs(screw) + 4‘M'/s(mixed) + 4‘VVlZ + 2VVlS 4 + 15 + 2W16 + WZS

where

ub? L b? ., . sin’d L
Ws(screw) = ELIHJ; Ws(mixed) = s“d + 1—v Lln—,

where ¢ is the angle subtende the Burgers vector and dislocation sense. The
multiplying factors for each of the W; terms above occur because within the loop,

rew 1t nearest neighbors)

6.2  Supposet 3 op in Prob. 6.1 assumes an unstable equilibrium configuration

under the same force ob. Which case will have a larger equilibrium value L?

AB: energies of the bow out
configurations in Prob. 6.1 were ranked (Woow out — 0bAsow oud/C'

the coefficient of the logarithmic x T 0
term being largest for the bow out from i ///aﬁree surface

ee surface and smallest for a bow out of =

on an edge dislocation. The effect of a o - Qq screw
uniform applied shear stress ¢ acting on -600
the slip plane in the direction of b is to 1%
generate a Peach-Koehler force, ob, that 1200
does work, ob Abow out, Where the area MO0 g oo L/P
slipped by the bow out is Apowout = 1.3 L2 broblem 6.2.
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The energy to create the bow outs is provided by the W/C and AW/C expressions in the
solution to Prob. 6.1. The accompanying Figure shows a plot of (W -0ob 1.3 ?)/C’ as a
function of L/b, for ob/C = 0.1, where C’ = CL = ub?/(4r(1-v)). The bow out at a free
surface has the largest unstable equilibrium value (shown by the location U). This is
logical because the bow out at a free surface has the largest prelogarithmic factor
among the cases considered. At this value of stress, the “on screw” and “on edge”
cases have sufficient stress to expand over the entire range of L/b shown.

Determine the energy of regular polygons with 3, 4, 8, 12, and n sides, assumingequal
area loops. Compare the results with those given for the circle and the he n. eb
normal to the plane of the loop in each case.

) !
w/c X
70 . . . -
) Q
60 o
50 2
40 : >
30}
20
10 C
0 ) ) d
0 20 40 60 80 A/p?
Problem 6.3. '\

X

Calculate the energy of the square loop of Figure 6.12 as a function of the angle ¢.
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The energy increases with increasing ¢ until ¢ =m/2. This occurs because the two
initially-screw segments develop an increasing edge component until they become
pure edge at ¢ = /2.

6.5%¢  Compute the interaction energy between two perpendicular screw dislocations.
Differentiate this energy with respect to the separation distance between the two and
show that the resulting force agrees with that of Exercise 5.5.

Eg. 6.33 is used with 6 = m/2 in the —
accompanying figure. Dislocation 1 is P

. dne p
chosen to be right-handed, so that (5= g
b1 - &1 =b, and dislocation 2 is chosen to €@ | disl-"’-‘_:-__vzbz

be left-handed, so that b,=-b§, and Playe |

b, - § =-b. Thus, only the first term in Eq. sy 2

6.33 is nonzero and since & x & =es and , R =x.e,

b, x by = -b? e3, W1, = (ub?/41)(Xq, yp). O'E\dlzl. I a ",/

I(xq, yp) is defined by Eq. 6.27 where x; and .

y2 = oo and x1 and y1 & —<° and I(x, y) is \ -“b?l

defined in Eg. 6.36 and equals§Q p, 6.

Y(x +y) In[22/((R=x )(R—y))]. This can be W

differentiated so that F, = -0W1, /dz. ocess is tedious.

An alternative approach is to use the resu Prob. 5.3 where the force exerted by

segment dly is 8F= [ub%z/(8m(x?+ 2%))] dl es.
=4 (ub?/8n) tan'}(x/z), evaluated from x = —eo to
ng an attractive force (See. Fig. 22.2). The result
distance z, for infinitely long dislocations and
dependent on z if the islocation 1 is finite.

6.6%c Under what co

dislocation 2 on an infinites

t: The problem is analogous to that of breaking up a flat
valley structure (Herring 1949). In the isotropic approximation,

zigzag dislocati
surface into a

can any ty dislocation break up in this manner?

One ca@ythin the small bow out configuration (Fig. 6.8) as an incipient zig-zag. The
zIgdzag is le if the energy per unit length of the pair of segments AC and CB is
suf less than that of the initial segment AB that it offsets the increase in line

h. That is, a torque acts on the incipient segments and leads to a zig-zag shape.

The’ torque associated with the screw-edge character in the isotropic elastic

proximation is insufficient to cause the zig-zag instability for pure crystals. Selective

solute adsorption to the dislocation could cause the instability. However, for pure

crystals in the anisotropic case, the variation in energy with screw-edge character can
be greater and it can and does cause the instability.
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CHAPTER 7: DISLOCATIONS AT HIGH VELOCITIES

Description: These problems consider the effects of dislocation motion on cross slip and
interaction between dislocations, the time for dislocations to achieve a specified velocity from
a stationary position upon application of a uniform stress, fundamental frequencies of
vibration of segments and dampening, and contributions of kinetic energy to ledge formation
at surfaces.

7.1%  Consider a screw dislocation moving at a velocity v = Gt/10, parallel to a freesurface
and a distance / below it. Compared to a static screw in the same positiongis the
moving dislocation more or less likely to cross slip out of the crystal becauseof the
image interaction?

Less likely. Although the image force exerted on the screw is qfymagaitudle ub?/(4nLy)
and increases with increasing velocity (see Eqg. 7.10 for y), inertiatkeeps the dislocation
moving in the same direction and thus cross slip is less likelj

7.2 Consider a screw dislocation moving parallel to the surface of assemi-infinite slab and a
distance / below the surface. If the applied stress a.=,10%, how long will it take for the
dislocation to reach a velocity 0.9 G startingat rest2#How far has it moved? Assume
quasi-uniform motion and ignore all friction.

7.3%  Plot the distribution of shear stress ox, around an edge moving at a velocity v = C;/10
and compare the result with the static case. Use the physical parameters for copper,
with the elastic constants given in Appendix 1. How will two like-sign edge dislocations
interact if they are moving uniformly on the same glide plane? On parallel glide planes?
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0./ (H/21(1-v), stationary (copper)
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Problem 7.3.

15

Oy/(K/2m), vel v = 0.1 C, (copper)

15

10+

5L

ylbol

=10+

04

-15L
=15

MATLAB. The accompanying figure shows the stress

moving (Eq. 7.24 with the sign of b changed and
the stationary case are slightly shifted t
consistent with the depiction in Fig. 7.5. Th
in the figure but it becomes more no
has larger values of shear stress along t

compared to the stationary ca
plane have a larger repulsion f
the y-direction, the angular

and covers the entire ra of

model of a shock front,_Ihe
aligned increases wi e

e

-10

ds fo

5

0 X/b S 10 15

e static (Eqg. 3.45) and
cases. The +45° contours in

n +45° for the moving case,

asefin angle is almost imperceptible
larger velocity. The moving dislocation

is and smaller values along the y-axis,
herefore, like-sign dislocations on the same glide
at v = 0.1 G. For the two dislocations separated in
hich the dislocations attract increases with v

itions at vg. This has consequences for the Zener
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Assume that the radiation per unit length from the vibrating string in Prob. 7.4 is given
approximately by Eq. 7.49. How rapidly does the fundamental vibration dampen out?
Ignore all other dissipative mechanisms.

A simple approximation for the time to dampen out the fundamental frequeggy is

LWk 4

=L - R
where expressions for Woy/L and W/L are obtained from Eqg 3.1 @ 49 and Q =
Ct/2L. Using C: = 2.47E3 m/s (Eq. 7.3) for copper, R/ro = 200, a ib amplitude X
= 2b, then the time to dampen out the fundamental vibratigf'is t =5.,6E-13 s.

Assume that the effective mass of an edge dislocation is@iv y Eqg. 7.64 with an outer
ed
ti

cutoff radius R ~ 10%b. Determine the kinetic energy o ge&'dislocation in copper
moving at a velocity v = C¢/10. Suppose that the di pproaches a grain
boundary. Determine whether the kinetic g fficient to supply the surface
energy of the step formed on the grain boundary he edge intersects it. Assume
the surface energy of the grain boun epis y = 0.6 J/m?. Neglect image forces.

The condition for the kinetic energy to supp

surface energy of the step is

For copper, C: = 2.47E3 m/s ProB®¥7.2) and therefore v (= Ci/10) = 2.47E2 m/s. The

effective mass m* = (Wdhl)/C: (2.6E-9 J/m)/(2.47E3 m/s)? = 4.3E-16 kg/m and
therefore the (kinetic is 0.051 J/m. This is less than y (0.6 J/m?) and therefore
the kinetic enesgy is icient to create the step.

The result is o
reflection mec

grain boundary hardening and is relevant to the Frank
or dislocation multiplication, Chap. 21.

Prove thatthe ¢ displacements for a uniformly moving screw satisfy Egs. 2.2 if one
includes an inertial term

&’ = pold%ui/0)
04
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CHAPTER 8: THE INFLUENCE OF LATTICE PERIODICITY

Description: These problems consider the effects of a Peierls (diffuse core) description of a
dislocation on the stress field, cross slip, resistance to motion, and dissociation of dislocations.
Estimates of kink widths, kink separation distances, and interaction energy between a kink and
jog are also discussed.

8.1%  Graphically compare the results of Egs. 3.45 and 8.13 for the stress oy, about.an edge

dislocation. For copper, at what distance from the core do the resul by20%?
What is the value of the elastic strain at this position? )

MATLAB. The stress field for a Peierls dislocation does not dIV actual origin
as it does as is the case for the Volterra dislocation and t S the ierls dislocation is
more realistic in the core region. Specifically, the the glide plane is
equivalent to that of a virtual Volterra dislocation wit a distance { below the
glide plane, and similarly the field below the gll [ uwalent to that of a virtual

Volterra dislocation with an origin above th

The accompanying figure to Prob. 8.1 sho
Volterra (left) and Peierls (right)
respectively. For the Peierls case, {=+0.5 b
0. See the text just before Eq. 8.

The results show that the 0 and"£@)l cantours for both cases are similar but the +0.2

contours differ modestly an difféfence increases for larger magnitude (e.g., +0.3)

contours closer to the center of the dislocation. For the Peierls case, the maximum

shear stress of ~0.5 away from the center whereas for the Volterra case, the

stress is singul@t at rigin. The two solutions differ by 20% approximately in the
&o

pIots of normalized oy, for the
ocations using Egs. 3.45 and 8.13,
e(=+0.5fory>0and {=-0.5fory<

vicinity of the which span up to 5b from the center.

O/ (1/21(1-v), Eq. 3.45, Volterra Edge O,/(1/21(1-v), Eq. 8.13, Peierls Edge, {=0.5b
/b ° Iyl ° |
Y o .
d { v e
ol S—_—— . R e ° 04 | ol i L -.‘0 2 | s o o1
— e « o S
o ( < <&l | o \ \\\ 03 Z{'-'; 03
-2 ~/ LI‘“ . -2 r A N 01
-4} 4r
6L 8’ ’
"6 4 2 0 2 4 6 6 <1 2 0 4 6
x/b x/b
Problem 8.1.
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Compare the tendency to cross slip for a Peierls dislocation vs. a Volterra dislocation.

Atomic binding is often described in terms of central forces that act between.atom
centers and resist changes in bond length, and directional forces that resist'changes in
bond angle. The former are predominant in close-packed metals. Discuss how each
type of force affects the width T of a Peierls dislocation and the width w ofia kink.
Classify fcc metals, bcc metals, ionic crystals, covalent crystals,’and van der Waals
crystals in order of increasing Peierls barrier.

Discuss the qualitative differences in the'magnitudes of the kink width and kink energy
between kinks, based on the approximate energy relations in Figure 8.9 and the exact
relations.

The sinusoidal potential is "hard"“@emdpared to more realistic potentials. Thus, the
sinusoidal potential almost €ertaily overestimates the Peierls barrier. Nevertheless, as
discussed in the text, such a'peotential can be used as an empirical fit.

Calculate the eguilibriumsseparation between the kinks in a kink pair, assuming a pure
screw dislocationiwithi@an applied resolved shear stress 6 = 107 .

Consider three like-sign kinks in an edge dislocation, piled up against a pinning point
that locks the first kink. The applied stress is o = 107* . What are the kink separations?
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8.7%¢  Estimate the width of kinks in screw dislocations in aIuminum.Assu atop, = 107° .
MATLAB. The kink width w = a(Wo/2W,)"? (Eq. 8.73), where: th@&ki ght a (see Fig.
8.17) is approximated as b (= 2.86E-10 m, based on a rt where the lattice
parameter for Al is aa = 4.05E-10 m); the dislocation ling,e er unit length is Wo/L
= (ub?/4n)In(R/ro) = 2.65E10 J/m (Eq. 3.13), using R/ = 20Q;#8nd the Peierls energy
W,/L = opab/m = 6.92E-15 J/m (Eq. 8.44). The resulti ink width is w = 7.4E-8 m,
which is = 250 b. The large value of w/b igco with a small kink angle { (Fig.
8.17). The small ¢ justifies the use of Eq. 8.

8.8%  Based on the Peierls-Nabarro model isotropy, would the core of a (110)
screw dislocation dissociate ona (00 1) pla on a (11 0) plane in a NaCl structure?
Which slip system would have a ller Peierls barrier? Which is observed
experimentally (see Chap. 12)?
See Fig. 12.14. The interpl a is larger for the (11 0) plane so the Peierls
model would predict a smaller barrier for that plane, in agreement with experiment.

8.9%  Discuss whether the ncein energy between positive and negative kinks in mixed
dislocations is or forfphenomena other than those involving interaction with an
external surface
The difference @ avor a bias in the bow-out associated with groups of kinks. One
type of k vauld be favored if the kinks nucleated heterogeneously where a
dislocation int@ssected a grain boundary, for example.

8.10¢ I% symmetry on an atomic scale, show that the Peierls barrier for (11 1)

scre cations in {1 1 0} and {1 1 2} planes is asymmetric (Hirth and Lothe 1966).
he reference in the textbook for the solution.

8.11% DisScuss the physical justification for defining Eq. 8.6 by its principal value.

Without the use of the residue method, the integrals would be indeterminate,
diverging asx — 0.

8.12  Compute the elastic interaction energy between an oblique kink and a right-angle jog.
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(b)

Problem 8.1 \

CHAPTER 9: SLIP S

Description: These prg

F PERFECT DISLOCATIONS

consider the stability of dislocations to dissociation, the effect of
hcp crystals, calculation of the resolved shear stress on specific
Ip systems, and compatibility across grain boundaries.

f orientations
Fp/L

9.1 For wh
s da cation with b = b2 [2aR
[0 stable in a fcc crystal? 05—
nalysis should include the g';'
variation of energy with screw- 0z
edge character. 01} s fnuhnol16 .
of NV
0.1} 8 £
02| \/v
03¢
-0.4
-0'5-4 -2 0 2 0 4
Problem 9.1.
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For the hcp slip systems listed in Table 9.3, explicitly estimate the dependence of the
Peierls stress on the c/a ratio. What is the effect of a superposed isostati¢pressure on
the Peierls stress?

Compute the resolved shear stresses on'slip systems of the type <1120>{1010}ifa
uniaxial compressive stress acts in the [1 1 2 3Jidirection in an hcp single crystal. Note:
The corrections (in red text) to preperly specify the slip direction with <> and to ensure
that / = —(h + k). There are also errors,in Table 9.3 that do not satisfy | = —(h + k).

For the solution to the probfemfconsider the example with slip direction b = [12 1 0]
and slip plane normal n = [0 1 0]®Use Eq. 9.6 (or fig. 9.10 if a pole figure is available)
to compute the resoly@dShearstress o'12. In this case, the dot product T11 between the
slip direction 8ad camgresgion axis [1 12 3] is 0 and thus o’12 = 0. This is just one
example; other slighsystemis in the <1 12 0> {1 0 1 0} family can produce o1, # 0.

Compute the resolved’shear stressesonthe [110](111)and [011] (11 1)slip
systems inaxfcc erystal if a uniform torque is applied about the [1 1 2] axis.
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o

<.

9.5 How many independent slip systems exist in a simple cubic structure in which the
ip

allowed slip planes are the cube faces and the al
edges?

irections are the cube

9.6 ider three slip systems with slip vectors B1, B2,
and Bs. Let B3 be normal to B1 and B2, and let B1 and B2
ave a common slip plane. Assume that the glide plane
for B3 is any plane containing Bs. Are the three slip
systems independent?

Problem 9.6.
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Consider the same case as in Prob. 9.6 except that Bz is not normal to B1 and B.. Are
the slip systems independent?

Yes. This is a more general case of Prob. 9.6.
In Prob. 9.6, is there a special choice of slip plane for B3 such that a purelyslongitudinal
strain in the B3 direction would be impossible?

No. For any plane containing Bs, the slip system cannot prod&ce t ' component
€33.

Discuss how climb processes modify the requirement for in a \t slip systems.

T°22: €2
e
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For the bicrystal in Figure 9.18, what orientations would require only one slip system in
each crystal? Would elastic anisotropy change the result? Note the correction in the
guestion statement (red text).

Consider a Cartesian coordinate system with x and z in the plane of the grain boundary
and y normal to it, as shown in Figure 9.18. Eq. 9.23 states that the strain components
Exx, €2z, and €x; (= €) must be continuous across the grain boundary to avoid sliding or
opening up/interpenetration of material at the boundary. This can be satisfied by one

slip plane normal ny, n, are equal for both slip systems. This would be
example, if the grain boundary is a mirror plane. In general, the co n
do not need to be equal for both slip systems. o

The statement of compatibility above holds for the total a hich can be
partitioned into elastic and plastic contributions. If the graigs are el@stically anisotropic,

it is possible that the components of elastic strain alon ejeomponents of plastic
strains alone do not satisfy Eq. 9.23 but the total in components must. In such
cases, by, b; and nx, n; could be different. During ic rmation, the plastic strains
can become much larger than elastic straing in case by, b; and ny, n, must be the

same in grains A and B.

CHAPTER 10: PARTIAL DISLOCATIONS | TALS

Description: These problems consideggagvariety of analyses involving partial dislocations,
including the equilibrium separation d%etween partials, reactions involving stacking
hSic

fault tetrahedra, partials bounding i
extended dislocations, and other

10.1

10.2

extrinsic faults, extended nodes, cross slip of

Determine the variati i jentation of the
equilibrium separati artials bounding an r (nm)

. . . . 7
intrinsic stackin I per.

6

5

R
- N :
et

. ()

n

1

N

-4 -2 0 2 B
Problem 10.1.

Using the y; values from Appendix 2, find which fcc metals should have meaningful
partial dislocation extensions; that is, re > 2b.
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In terms of nearest neighbor bond energies ¢1, evaluate the stacking fault energy
associated with

a. Climb of a Shockley partial
b. Glide of the stair rod aé

c. Glide of a Frank partial
For all three cases, three near-neighbor bonds are severely distorted. Theddirect*climb

is most unlikely.

Draw the various stages of the advance of a (11 0) jog line bﬁ o Q a vacancy.
The jog line is equivalent to a row of % vacancies. Absorpti
length of 3 atom spacings by an atomic distance normal t@(t
the glide plane, creating a kink on the jog line. Even y, wit
jog line is displaced by one atomic distance.

off@yvacancy advances a
jog ¥ine and parallel to
ore absorption, the

Discuss the possible reactions that would produc rahedron from a triangular
interstitial disc. What configuration would f

dissociated directly to form a Shockle
Use Fig. 10.10 with D& as the Frank partial® are three
places on the loop where a tetrahedron could start to
form. For example, a reaction i = Dy(c) + v§, as in Fig.
10.26. The Frank partial cou ut it could act as
a source for a glissile dislo reacting to form a stair
rod and a perfect dislocatio r example, D6 = DB + By.

Label the disloeation gure 10.28 using the Thompson
notation.

Show that us glide collapse from two corners of
an intrinsical ulted tetrahedron results in a perfect %2(1 1 0) dislocation loop
( a sdorf 1965).

The accompanying figure (left image)
shows the collapse of a stacking fault
tetrahedron at point D; it is the reverse of
the process shown in Fig. 10.26. When the
segments BD, yD, and aD reach the base
of the tetrahedron, a stacking fault (gray
region) is produced with dislocations of
Problem 10.7. Burgers vector 8D and counterclockwise

sense § bounding the fault. The right
image shows if a partial dislocation B& nucleates from point A, the fault is removed
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(white region) and a perfect %A(1 1 0) dislocation loop results. The combined process

involves the collapse from D and A.

10.8  Consider the dissociation of dislocation AC(d) into an intrinsic
stacking fault over some length, after which it dissociates into
an extrinsic stacking fault on the same {1 1 1} plane. What gT extrinsic
partial crosses the dislocation where the change occurs?

|
10.9%¢ Consider an extended dislocation node that is parallel to a \

Ad 5C

1_,2
3
5C intrinsic AS
Q 4
§ §
em 10.8.

free surface. Determine whether the image forces increase or decrease the apparent

value of y..

The image forces are expected to constrict the

Problem 10.9. U

hic® corresponds to an increase
i e @dpparent stacking fault energy
(see™Sec. 10.4d). The direction of the
age forces can be rationalized by
onstructing an extended node and its
image as shown in the accompanying
figure (the real node is in the
foreground and the image is offset for
visibility: it actually superposes on the
real node when viewed normal to the
surface). The signs of the image forces
can be deduced more easily in the
piecewise straight approximation of Fig.
10.33.

There twoapproaches to rationalize why the image exerts forces that cause the
de to constrict (i.e., shrink the gray faulted region). In the first approach,

the ‘aecompanying figure (left) shows that the partials B8, C8, and 8A have pure screw
acter at the sites marked s. They repel one another; this must be so as to oppose
theSconstricting force that arises from the stacking fault energy. Specifically, B is
elled by C6 and 8A. At sites s’, the image dislocations are also pure screw but

opposite in sign to their real counterparts. Thus, B6 must be attracted by the images 6C
and Ad and the node contracts. A similar effect occurs for dislocations 6A and C8.

In the second approach, equilibrium is considered at one of the “arms” of the extended
node, indicated by the sites marked m. The inset to the right a view along the arm,
where the sense § for all dislocations (real and image) points along the 1-axis.
Dislocation 8B experiences a force in the 3-direction from the oppositely signed image
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dislocation B&; this does not expand or contract the extended node. However, image
dislocation 8C has an oppositely-signed screw component and like-signed edge
component to 8B (See the Thompson tetrahedron, Fig. 10.10). Oppositely-signed screw
components generate an attractive radial force and thus there is a force in the -2
direction on 8B, constricting the node. The edge component also exerts a force in the
-2 direction on 6B, provided the extended node is sufficiently far from the surface for
h > w. This geometric aspect is confirmed by consulting the plot of the stress field

around an edge dislocation (Fig. 3.11) and also Prob. 3.20. Under such co s, the
stable equilibrium position for two like-signed edge dislocations occurs nt are
vertically stacked above one another. The combined screw and ed riblitions are
such that the image 86C exerts a glide force in the -2 directio& on constricting
the node. For similar reasons, the glide component of the image§for 6 isin the +2
direction.

10.10% Consider the node between the dislocations AC, BA, an (d) plane. The

dislocations are ribbons of intrinsic stacking fault and orderm®f the branches is such
that the node would be contracted unless an extri tacking fault forms at the node.
Show how the node could become extended by tion of an extrinsic fault.

Fig. 19.28b shows a sequence leading to the i f a hexagonal extrinsic stacking
fault in the center.

10.11% Consider the intrinsically dissociated dislocation’AC(d). Describe the possible superjogs
that can dissociate into extrinsi ts on the (c) plane.

o on the jog fault, the end partial is converted
d converts to y6/AB.

In Fig.10.17, if one nucleates
from yA to By. Similarly, th

10.127% Consider a dissociated scre
plane without contr
cross slip be ea

ith an intrinsic fault as it cross slips onto a conjugate
Describe the intermediate dissociated configuration. Would
screw dissociated extrinsically on the conjugate plane?

Consider the
outside t

10.13, C twinning occur by the formation of successive layers of extrinsic fault? If so, what
shea Id accompany twinning?

10.14 Consider an isolated Shockley partial in copper. Use Eq. 8.41 to compare the magnitude
of force caused by the Peierls stress vs. that associated with the stacking fault.
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Discuss the stability of the partial Dy/AC that can form by the reaction of DC and yA.

CHAPTER 11: PARTIAL DISLOCATIONS IN OTHER STRUCTURES

Description: These problems consider candidate twin planes in fcc angh hcpstructures, the
formation of extended jogs, effects of dissociation on core strficture, @guilibrium spacing
between partials, and considerations for ordered alloys.

111

11.2

11.3%

11.4%¢

11.5

Why is the basal plane in hcp metals not a twin plane, like the close-packed plane in fcc
metals? What is the formal definition of twinning?

Show that (1 0 1 2) is a possible twin plane in hcp structures.

Consider the dislocation AC ifi the basal' plane of an hcp metal. If the dislocation
contains a jog that is an uneven number of plane spacings high, can the jog extend in a
fashion similar to the joglin Figure 11.12? What partials result?

The jog plane (1 0 B.0). Asggin Fig. 9.5 (p. 239), this plane produces a zig-zag structure.
The two vectorss€onnectifg the black atoms in Fig. 9.5 are not translation vectors but
rather eC typé@lpartials, (see Table 11.1, p. 288). Therefore, dissociation is possible but
the probalility Y§ylikély to be small because the fault energy is likely to be large.

Show that dislocations AC and BoCo, lying on adjacent basal planes, can combine to
form a configuration resembling that in Fig. 10.8b. What are the resultant partials and
typesiof stacking faults? Note the correction in

thexquestion statement (red text). Co Ao

An/eéxample is shown in the Figure. The fault is “A_"' Coto
an extrinsic fault. Note the sense vectors are =ap //Ba+ A,
opposite to those in Fig. 11.2, which should aA Ba =Ca

point out of the page.
Problem 11.4.
Draw models for the core of a pure screw

dislocation b = %<1 1 1> in a bcc structure, with the core dissociated on the (1 1 0)
plane. Show that the core structure is different above and below the slip plane.
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Devise a rule for the proper stacking sequence in the construction of the extrinsic fault,
Eqg. 11.8. For example, the inserted layer EF cannot be put between C and D as to
produce the sequence ABCEFDE. Explain why.

Apply Eqg. 10.14 to the bcc dissociations of Figure 11.14. Develop explicit expressions
for the equilibrium partial spacing re and determine the proper.dissociation to form the
fault /s.

A polynomial can be developed to balance the Pé&agh-Koehler force Fpx/L on a
dislocation arising from the stress field of all othgr disfocations with the force F,/L = -y,
where vy is the energy/area of the fault betwe@aftheftwo dislocations bounding the
fault. The negative sign denotes thatF,/L acs to attract the bounding dislocations to
one another.

Which jogs in Figure 11.30 can be formed directly by an intersection process?

Only the jog in Fig. a can be fornd@gh by intersection. The jog heights in Figs. b and ¢ can
only be formed by intersegtiens With Ae type partials, which perforce are not
translation vectors.

Could a junction of fourfantiphase boundaries exist in B-brass? Could it dissociate; that
is, would any two of thesfoupdomains be in phase? Are such junctions expected after
deformation? After annealing, which junction allows atom regrouping?

Discuss the likelihood of dissociations to form ¥({1 1 1) partials on {1 1 2} in ordered B-
brass.

11.11% Figure 11.38a shows a superdislocation containing dislocations with collinear Burgers

vectors. It contains a jog and a stepped antiphase boundary (APB). The jogs in each
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component dislocation lie in the same (yz) glide plane, so if the dislocation moves in
the y direction, the trailing dislocation annihilates the antiphase boundary created by
the leading dislocation. The superdislocation in Figure 11.38b is composed of
dislocations with jogs that are misaligned in the x direction. Show that motion of this
superdislocation creates a rectangular tube of antiphase boundary (Vidoz and Brown
1972).

The cited reference (see the text. p. 686) details the solution.

CHAPTER 12: DISLOCATIONS IN IONIC CRYSTALS

Description: These problems consider for ionic crystals the effective charg@aleng¥edge and
screw dislocations as well as at jogs and kinks, and implications for mgpilityfand cr@ss slip.

Unless otherwise stated, the problems refer to the NaCl structure.

12.1

12.2%

12.3

12.44%

12.5

Suppose that a square prismatic loop with Burgers vector b'= [1.0.1]'and edges along
[010] and [1 0 1] forms by vacancy condensation. What is the magnitude of the
effective charge of the corners?

Suppose that the jog in the screw in Figure 12.19 has an effective charge g. — e, but this
changes to gc + e after moving one step forward. How is the charge balanced during
such motion?

The crystal is divalent, e.ggMgO~<ghe jog carries a unit charge. If it is negative, it could
convert to a positive chang@either by the addition of a doubly-charged Mg cation
(cation vacancgy emigSiom) or DBy the emission of a doubly-charged Cl anion (anion
vacancy absorptien).

If screws withBurgers,vector b = [1 0 0] existed, would kinks and jogs in such screws be
charged?

Consider an edge dislocation with b = [1 0 1] moving through a monatomic surface
ledge lying along [0 0 1] on (0 1 0). Determine the charge of the kink in the ledge and
derive the charge balance for the process.

Sttes along the ledge have charges *e/2. The dislocation cuts the ledge and leaves a
surface kink in it. The charge on the kink is te/2 and it oscillates in sign if it propagates
along the ledge.

Should the accumulation of jogs of one sign of charge affect the tendency of a screw
dislocation gliding on (1 1 0) to cross slip onto (0 0 1)? Why?

40/74


https://www.cambridge.org/us/academic/subjects/engineering/materials-science/theory-dislocations-3rd-edition?format=HB&isbn=9780521864367

Student Version — Solutions to Problems, Theory of Dislocations, 3™ Ed.
Cambridge University Press (2017). Publisher website

12.6 A NaCl single crystal is bounded by {1 0 0} faces and compressed along [0 0 1]. Suppose
that slip occurs by the motion of only pure edge and pure screw dislocations.

a. What predominant type of intersection jog should be formed?

U O
b. Which set of dislocations is more mobile: screws or edges?
o
c. Which set of dislocations, screws or edges, can produce transientel al currents
during glide?
12.7¥% Consider a CsCl or B-brass type of ionic crystal th onthe systems (1 0 0){1 1 0}.

Determine whether or not the following de
edge jogs, edge kinks.
Consider the case of monovalent CsCl a

charged: screw jogs, screw kinks,

S + - + -

[110]

: : - + - +
The structL.Jre is an mtc?rpenetra c D 1 [001]
structure instead of interp + - + -
accompanying figure (r a/Tﬁ B E
. ¥ _ _
12.1 + +
4) shows that if a scr o (110)

and § out of the pap et
ED - DE - CB, 3
column of mag
transport. The
the directiah, o

lide on path BE -
se théWould result and the
in the loop would shift out of the paper, producing charge
)bn at the top of the column signifies a transport of charge of +e in
fthe plane of the paper. Motion of the screw along each leg of the

Problem 12.7.

circuit@woul tribute to the charge transport: g along the primary glide planes ED
B < along the cross slip planes BE and CD (see Sec. 12.4a). The simplest
appreximation is that g. = gg = +e/4. If instead the path enclosed a Cl- atom, then gc = g;

4 More likely, because of the symmetry, gc # gg but still gc + gz = e/2.

Copsider a pure screw dislocation that is gliding along the path BE.

he glide of a kink BE on the screw gliding on the primary slip plane, transports
charge gc in the [1 1 0] direction, eventually emerging at the surface and propagating a
surface step (see Sec. 12.4b)
e The glide of a kink on the screw gliding on the cross-slip plane, transports charge gg in
the [0 0 1] direction.
* The kink on the cross-slip plane is a jog relative to motion on the primary glide plane.
If the screw moves in the [11 0] plane, the jog will be sessile and can only move by
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absorbing/emitting a vacancy or interstitial. If it moves, it changes sign. Therefore, the
screw jog has charge te/2.

Motion of a kink on an edge dislocation does not change or transport any charge so
g = 0 (slip occurs in the plane of the surface and thus there is no charge transport to the
surface. See Fig. 12.13).

e Formation of a jog on an edge: te/2 (this requires diffusion of atoms or vacancies to
the dislocation. Transport of a Cs* ion to the dislocation core or a vacancy to_replace a
Cs™ ion at the core transports a charge of +e to the dislocation. See Sec,
case of a jog pair, the charge of e is proportioned between the two jogs.

12.8  Should superjogs tend to form in MgO? In PbS? Discuss the role of po bili
superjog formation. ‘

12.9¥¢ What is the charge on the (0 0 1) surface at the poi
dislocation along [1 0 1]? The surface ledge lies

ergence of a screw
and is shown in Fig. 12.19.

Burgers vector and dislocation

The exact geometry differs from that in Fig.
line are not perpendicular to the sur . Al the ledge, the ions alternate in sign. If
the ledge moved all the way across the cr o new corners, each with charge +e/8
would be created. Therefore, the paint of emergence has charge +e/8.

Another way to rationalize th swer is to modify the figure for Prob. 12.7 to
represent a (00 1) surface. ha the Na* and CI” ions would form a square
instead of rectangular patéérn, afel motion of a screw dislocation with Burgers vector
along [101] around BEDCB would shift a Na* ion out of the surface,

port“e along the dislocation. Thus, slip along the portion BE
only would be 7%f theéftotal circuit and a charge transport of e/4 would result. The slip
along BE coulg omplished by inserting two oppositely signed screw dislocations
at the midpoi and expanding the dipole so that one dislocation resides at B and
the other a arge transport of e/4 would result, equivalent to a charge of e/8 at
rgence of each screw dislocation. If the dipole were expanded further,
g the dislocation at E one unit distance to the right, a negative ion would
be ed out of the surface, equivalent to a charge transport of —e/4 along the

ing dislocation. The charge at the point of emergence of the displaced dislocation
wallld be -e/8 (= e/8 -e/4). Thus, the charge at the point of emergence would

uctuate from +e/8 to —e/8 during glide along a cube direction.

CHAPTER 13: DISLOCATIONS IN ANISOTROPIC ELASTIC MEDIA

Description: These problems involve the computational of elastic constants along directions
relevant to slip systems and examples of anisotropic elastic effects on the interaction between
partials.

equivalent to
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Compute the components s'; of the compliance matrix for a cubic crystal, referred to
the coordinates of Figure 13.2. Verify that {s'} is the inverse of {c'} for this case.

The 9x9 compliance matrix {s'}oxo with components referred to the coordinates of
Figure 13.2 satisfies the same form as Eqg. 13.35 so that {s'}oxo = {Q}Toxo {S}oxo {Q}oxo,
where the structures of {s}oxg and {c}oxo referred to the cubic crystal basis are given by
Eg. 13.38 and the values of {Q} for the transformation from the cubic crystal basis to
that in Figure 13.2 are provided by Eq. 13.37. This provides the necessary information
to determine all of the components of {s'}oxe in terms of the components ofi{s}9

}9x {Q}T9x9 =
{Itoxo and thus the previous relation can be simplified to {s'}ox8c’ Joxt @ 9 {S}oxo {C}oxo
{Q}oxa. Finally, {s}oxo {C}oxo = {/}oxg and therefore the previous rela cadBe simplified to
{s"}oxo {¢"}oxo = {Q} 9x0 {Q}oxs = {/}oxo. {5'}oxo is therefore the inv@rse of &} oxo.
Find the elastic-constant matrix appropriate to determine the energy of a
(11 23){11 2 2}screw dislocation in an hcp crystal. What.class of solution for p,,
applies in this case?
See Teutonico U (1970) Mater. Sci. Eng. 7 hefelastic constants are such that
there is no simple solution in this cas

Produce a polar plot of oxx and oy, foran e location with b =%[101] and § =

[0 1 0] in NaCl. Compare the result with the isotropic results of Figure 3.12.

As in Exercise 13.9 (p. 361), Ce = 2nr. The elastic constants are in Eq. 13.42 and the
stresses are given in Eq. 13. : 7. Polar plots with the x-axis || b can be made.

untington 1958) are given in units of 10 GPa.

Metal Ci13 Caa Ke(x) Ks
Cd 4.42 1.85 3.43 2.60
Co 10.3 7.53 125 7.31
Mg 2.17 1.64 2.47 1.66
Zn 5.01 3.83 5.50 493

anergy coefficients Ks and Ke for (1 12 0)(0 0 0 1) dislocations in these

a. Show that the separation widths between the partials of a 60° mixed dislocation in
fcc crystals is r = Keb?/12my.
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Use this result to verify the results of Table 13.1 for the 60° dislocation.

Compare the relative widths given in Table 13.1 to those given by Eqg. 10.15. Do this
for Al, Cu, Au, and Pb using the Voigt averages for wand v.

Compare the above results with those obtained using the,Reuss averages for pand v.

Compare the above results with those'@btained using the crude approximation p = cas
andv=1/3.

Derive the formula for the equilibrium width of a %2(1 1 1) screw dislocation that
dissociates into partials 75(1 1 1yand %(1 1 1) bounding an intrinsic stacking fault in a
bcc crystal.

Show that the solution for p, does not reduce to a third order equation in p? if the
dislocation lies along the threefold axis of a trigonal crystal. Why not?

For trigonal crystals, ci4 # 0. Thus, the reduction to the simple form of Eq. 13.97 is not
possible.

A screw dislocation in a cubic crystal lies along a (1 1 0) direction parallel to a free
surface. Discuss whether a simple image construction yields the correct force acting on
the screw. Does the same reasoning apply for a (1 1 1) screw dislocation?
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The relevant stresses are those of Egs. 3.3 and 13.129. In both cases, x is zero at the
surface and the stresses are odd in y. Thus, the mirror image construction satisfies the
free surface boundary condition. For a <1 1 1>screw, o, given in Eq. 13.158 does not
vanish when the image stress is added and the simple image construction does not give
the correct answer.

13.9%% A [11 1] partial dislocation lies along [1 1 0] in a Cu crystal. Use a force balance to
assess the likelihood of dissociation into the two partials %[1 1 2] and %[1 1 0

The mixed %[1 1 1] partial splits into a %[1 1 0] screw partial and a %5[1 1 rtial
Thus, as in Sec. 13.6, the stress fields are such that the two partials do n teract, at
least based on the linear-elastic fields. Probably splitting would no use the
single core likely has a lower core energy than two cores. Hélveve e/'two partials

were separated, they would not interact and would remain separated.

CHAPTER 14: EQUILIBRIUM DEFECT CONCENTRATION

Description: These problems compute the entropy, effecti ass,®widths, concentrations,
and interaction energies of kinks and the concentration cafgies and different solutes in
the vicinity of dislocations, including the effects of@las dwlus mismatch between solutes

and solvents.

14.1¥c a. For o =10 and 10%? s, compute atwhich the entropy of the vibrational
mode approaches the high T limit.
MATLAB. The expression for k w that follows Eq. 14.2 is rearranged to provide an
equation for T through expansion hg exponential factor in high T limit : [1 -
exp(-Aw/kT)] = (hw/kT) —( 2, Setting this equal to 0.95 (hw/kT) provides an
estimate, T = 20hw/k = 1.584 and ¥.5E2 for w = 10*! and 10*? s7%, respectively.

b. If wp=1012s7"
contribution to

and 11571 compute the kink entropy Sk. Compare the entropy
eenergy contribution at room T if 2W\ = 0.3 eV. At what T are

m the result of Eq. 14.6 to that of (b) at room T, assuming an effective mass m”
/G of the kink and a typical value C; ~ 10° cm/s.
= 3.1E-23 J/K based on Eq. 14.6 with g = 1E-8 m, h = 6.63E-34 kg m?/s, T=293 K, C; =
1E3 m/s, and Wk = 0.15 eV. The resulting effective mass of the kink is m"* = 0.15 eV/10°
m?/s? = 2.4E-26 kg.
14.2 Use Egs. 8.40 and 8.80 to compute the approximate kink widths in copper, silver, and
gold. Show the range of orientations for which a discrete kink model should apply for
these metals, in terms of a polar plot of orientations in the slip plane.
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Problem 14.4a.
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gy in the free energy of formation of a kink

Plot the equilibrium concentration of kink pairs as a
r copper at 200 K. Over what distance does the
fect the kink pair concentration?

MATLAB. For copper, v = 0.327, u = 5.46E10
Pa, and b = 2.54E-10 m for a »%<110>
dislocation. The approximation a = b is used to
estimate the interaction energy Win: (Eq. 8.51)
and energy of formation 2Ws (Eg. 8.50). The
former is for a kink pair and thus it is negative.
As noted in the discussion of Eq. 8.50, the
small length of kinks introduces significant
uncertainty in the estimate of 2W: In the
logarithmic factor, a/p = 6 is used for the ratio
of the kink height to cutoff, to ensure 2Ws > 0.
In the accompanying figure for Prob. 14.4a,
the plot shows the kink concentration without

the interaction energy (blue) and with the interaction energy (red). The negative
interaction energy increases the concentration as the kink separation distance, h,
diminishes. The concentration is affected appreciably over the range shown here.
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) _ Jog concentration (m™)
MATLAB. For the jog pair, the relevant 1077

relations are Egs. 8.95 and 8.97. The Copper, T = 200 K

Y
o

accompanying figure shows a similar trend to :

that for kinks except that the concentrations 7t

are orders of magnitude smaller. The results 6r

are very sensitive to the choice of cutoff p. s- | Includesloginteracion term

For example, changing a/p from 6 to 5 to 4 4r

changes the concentration from 1E-17 to 1E- :iuojcg.jcg‘ '

11 to 1E-3 m—l. I interacticlnterm . o | — | —
. 0 20 40 60 80 h/b 100

Consider two solute atoms that are near the

center of a large spherical crystal and Problem 14.4b. \v

separated by distance h. Let vs > va. Use the

results of Sec. 2.7 to show that there is no isostatic intenact een the two atoms

in the absence of image stresses. Compute the isostatic interaction when image terms
are present.

For an elastically deforming body, Eq 2.91
of the radial displacement u, and du,/0r,
infinite body is given by the first ter 0. Combining these, one finds that p =
—(0xx + Oyy + 02)/3 = 0. Therefore, if a solute is approximated as a point source of
expansion in an infinite body, the stress field generated by the solute atom
involves shear components of s but the internal pressure p is zero. If insertion of
the second atom is modele second point source of dilatation of magnitude 6y,
there is no p &v interaction, bet n the two atoms. With an external surface at R,
p = -a. The image ter, = nd from Eqg. 2.91 the pressure is p = —=(3\ + 2p)a and
therefore a finige sol olute interaction energy occurs. However, p and therefore the
interaction ene is ition independent, so there is no interaction force between
the solute at 2.90 and 2.91 are written for a point source of expansion and
thus the C are valid in the limit where the separation distance between the
atoms is mu reater than the radius of the atoms.

re théycomponents of stress in terms
er or a source of expansion in an

e isotropic continuum model result, V, = v, + v, for the external volume
ction associated with a given vacancy. Identify which volume terms would be

in the following experiments and whether these terms would all be in
ment. Note the modification to the question statement (red text).

ilatometric determination of the lattice contraction accompanying the annealing out
of vacancies at room T under zero external stress (Fraikor and Hirth 1967).

This measures the external volume change W,.

Pressure dependence of the quenched-in resistivity following quenching from
elevated T under various pressures (Huebener and Homan 1963).

This is sensitive to only .
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High-T dilatometric measurements, subtracting out the effect of thermal expansion of
the bulk lattice (Simmons and Balluffi 1962).

This measures the external volume change W,.
Thus, the three measurements do not all measure the same quantity.

14.7¥ Consider a cylindrical crystal under uniform simple tension ox parallel to the cylinder

14.8

14.9

axis. Assume local vacancy equilibrium at the crystal surfaces. Compute the local
equilibrium concentration at the surfaces where ox is applied and at the lat free
surfaces where oy is not applied.

At the lateral free surfaces where ox = 0, there is no external work tegm w a solute
atom moves to a surface kink and thereby creates a vacancy. At thij ate ¢ = ¢’ At
the surface where oy is applied, the addition of an atom at ghe kink entails
external work oxAxa, where Ay is the surface area ofgtheéQatom and a is the
displacement normal to the surface. Then, from Eq. 14.38fc =46y° (oxx Ax a/kT). The
vacancy concentration is increased if ox>0 (te n) and/decreased if ox<O0
(compression).

For the case of gold, compare the vacancy conce ns as a function of distance
from a pure edge dislocation, as given by E s. Eq. 14.45.
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t 100,

MATLAB. Eq. 14.77 gives the number of clean segment® o | per unit length of
dislocation, where a = b =2.866E-10 m is used for BC n, G .8eV,and Gg=1.0eV
(see the discussion in Sec. 18.5 related to Wreid D n, LS (1965), Trans. Metall.
Soc. AIME 233:122). The integral C dl pfrom ' to [I" gives C =
[exp(-ql') - exp(-ql")]/gb, where g = (Gs + GYkTa"Witl¥"a = 1E4 b. The result is C = 2.3E-
3, 1.1E-2, and 3E-2 for the cases T=1

Determine the divalent impurity concentration‘that would give To = 300 °C in NaCl.
Take va=4.4 x 1072 cm? and Wy 2@.01 eV (Etzel and Maurer 1950) and assume A =
0.20 eV.

14.12% Eq. 14.89 applies to th N‘Uckel radius in the intrinsic range. Consider an
extrinsic range with ent impurity concentration ¢** and suppose all cation

ched out. Estimate the Debye-Hiickel radius if both divalent
acancies can rearrange themselves to provide an atmosphere.
an be used to estimate A in the absence of impurities, when cation
ant. There, n is the concentration of ions, equal to 1/Q, where Q is
ion. Typical values for alkali halides such as NaCl are Q = 8.21E-30 m3
e fraction of vacancy sites, a, is given by Eq. 14.85 with only Fc in the
where F. = 9.648E4 J/mol is representative for alkali halides such as NaCl. At
00K, a=3.98E12 and A=0.209 nm. This provides very efficient screening. At
T =700 K, A =180 nm. The screening is less efficient because of the greater vacancy
concentration and entropic spreading.
If the anion vacancy concentration is fixed by the divalent impurity fraction X = ¢**/n,
(see Eq. 14.104), then a in Eq. 14.89 is replaced by X. As an example, if X = 0.001, then A
= 0.139 nm and the screening is considerably greater. The intrinsic screening lengths
increase with increasing temperature while the extrinsic lengths decrease weakly, in
proportionto T.
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14.13 Substitute a host atom with an incompressible atom having a volume dv larger than
that of the host atom.

a. Calculate the external expansion V.

b. If an external pressure P is present, show that an extra amount of work P d\/is
required to insert the atom. Hint: If the crystal is compressed initially, a volume dw +
Pv./B must be opened up to accommodate the inserted atom.

14.147¢: Consider the situation in Prob. 14.13 but assume a compressible substitutional atom
with bulk modulus K’ # K. Show thabif an external pressure P acts, then the extra
amount of work to insert the atomis again P oV.

Eq. 14.46 is used with K’ # Og6provide a first-order estimate of 6V. More formally, the
higher order work term wélld inclide Av./va = P/Ka and Avs/vs = P/Ks so that the higher
order term is P(Ava — Al

CHAPTER 15: DIFFUSIVE GLIDE/AND CLIMB PROCESSES

Description: These pr@blem&explore length scales for diffusion of vacancies, velocities of kinks
and dislocations, the effiect of stress on kink activation energy and vacancy concentration, and
the collapse or expal8ion of vacancy loops.

15.1  Verify byddirect substitution that the solution for concentration,
¢ = (4nDt)Y2 exp(=x?/4Dt)

satisfies the 1D diffusion equation d¢c/dt = D 9%¢/dx? for all particles concentrated at
x=0att=0.

15.2  Discuss the time dependence of the solution in Prob. 15.1. Show that (x?) = 2Dt.
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Assume for a metal that Dy = b?v exp(-W.'/kT) (see Eq. 15.7),v=103s1 b =
2 x 1078 cm, W,/ = 0.2 ub3, and the melting point Tm = (2 x 1072) ub3/k. How far will a
vacancy diffuse in 1 s at T just below the melting point?

Suppose that Dy is given by Eq. 15.11. How fast will the kink move relative te/Cgat room
T when acted upon by a force F= 10™* ub?, corresponding to a stress o ~ 107* u? Use
the Einstein mobility relation and assume pb® =5 eV.

MATLAB. Eqg. 15.9a is used to estimate vk and C: = vpb, soghat W&/C: =\b>h/kT. The
result, vi/C: = 0.02, is obtained by taking o = 1E-4 y, the kink height Asb6T 0om = 293 K,
and ub®=5eV.

Find the velocity of a screw dislocation under the conditions‘ef Pnob. 15.4, with one
kink per 30 kink sites in the dislocation. Assume a =h =b.= 2 x10°8 cm.

Consider a straight dislocation segment ofilength L lying in a Peierls valley. Suppose it
can move to a kink pair configuration with kink'separation ~ L. How large a resolved
shear stress is required to changeithe energy of the kinked configuration by kT relative
to the unkinked configuration? Howdlarge is this stress for L = 103 b? For L = 102 b?
Assume kT~ ub3/400 ~ 0.012 eV'and h = b.

MATLAB. Eqg. 8.49 indicates\that the change in energy to form a kink pair on a screw
dislocation is W = 2 + Wint, Where Wk is given by Eqg. 8.50 and Win: by Eq. 8.51. If a
shear stress o agting ‘@a'theslip plane in the direction of slip is present, then the energy
change is W #8bfL and this is equated to k7. The required shear stress is o=
(W - kT)/bhL.Bhis cambe normalized so that (o/p)(L/b) = [1/2r(1-v)][In(a/ep)-(1-V)] -
[1/8m(L/b)eL+VW@*=V)] - (kT/ub3), where a is the kink height as shown in Fig. 8.11.
Taking@a/p = G = v (copper) = 0.324, and kT/ub3® = 1/400, then o/u = 2.5E-5 for L/b =
188fand 26k#4 for L/b = 1E2.

Discuss,the significance of the inception of amplitude dependence in a Bordoni peak
experiment, in terms of the results of Prob. 15.6.

Thére is no amplitude dependence provided there is only one kink pair formed in the
interval during one cycle. An amplitude dependence arises when more than one pair
forms because there is a pair-pair interaction that influences the nucleation rate.

a. Consider a crystal that suddenly is subjected to an isostatic compressive stress P
under isothermal conditions. Before the vacancy concentration changes, is there a
super- or under-saturation ¢/c° of vacancies according to the definition of c® in Eq.
14.39?
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Undersaturation. The pressure aids in the lattice contraction at the vacancy site and
thus lowers the energy of formation.

b. Will an edge dislocation in the crystal move transiently before a new equilibrium
concentration is established?

Yes, there will be a transient climb driving force that vanishes when the vacancy
concentration equilibrates.

c. Derive the expression for the initial total force on the dislocation.

The dislocation moves up in Fig. 15.15a, thereby creating vacancies withiithe
dislocation core. The climb force is given by Eq. 15.74, where c is givemgby the,second
equation after Eq. 15.76. ¢ < ¢, in accord with example (a) above.

15.9  Consider a region of crystal with a pressure P + p and a vacancy‘€encentration that is in
equilibrium with local internal sources and sinks in that regioh. Is there a super- or
under-saturation of vacancies in the region?

15.10 If internal sources and sinks are present, discuss thefmeghanism by which vacancy
diffusion tends to diminish internal stresses.

15.11 Derive an expression for the time fora circular prismatic dislocation loop, formed by
collapse of a vacancy disc, to shrink to one-half the original radius R.

15.127% Express Egs. 15.135 and 15.136 in a general vector notation for v in terms of a force
produced by the stress tensor o.
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In both equations, replace F/L by Eq. 3.95. The climb motion is in the (b x §)/|b x §|
direction.

15.13% a. Derive the growth velocity analogous to Eq. 15.108 for a square prismatic loop
formed by vacancy disc collapse. Assume quasi-equilibrium with jogs everywhere on
the dislocation line.

The exact solution is very difficult to obtain but the process is similar to that in Prob.

15.11. Eq. 15.108 provides an expression for the climb velocity, v = 2nCiSo/4€&L, where
C1 = UDsva/2(1-V)kT, C' = pub?/4nt(1-v), and 2nR is replaced by 4L

as So=0W/0L, the variation in energy with respect to a ch@
dislocation loop. W for a square prismatic loop of edge Ien@n Li
procedure outlined in Prob. 6.3 and it takes the form: \

L
Wh=4 prismatic loop = C'L [4‘1115 +

The In term represents the contribution from th e y of the four edges and C
captures the interaction energies betweenghe dges; it is not calculated in this
example. The result is So = C’ In[(L/ep) + 1 +\&/4]"

The line tension therefore takes the C’In(L/ep) = C'In(L/b). The energy of the
square is then 4LSo. Here, ON/AL = Sova/ diffusion solution is the same and Eq.
15.106 becomes C’In(L/b). Eq. 15.208 is then replaced by v = nD\SovaC'In(L/b)/LKT. This
is quite similar to Eq. 15.108.

b. Note that the square shap loop suggests that geometric jogs are absent in
growth because they grow out tothe corners of the square and vanish. Discuss the
at condition must occur for the quasi-equilibrium
alid?
Ir nucleation and growth, the jog equivalent of Eq. 15.45.
distance, pertinent to the mechanism of Eq. 15.43, must be close

such a loop shrinks, the shape tends to be circular in contrast to a square (or
e generally polygonal) growth shape. Discuss the reason for this difference in
shape. There is a direct analog to this shape difference in the topography of crystal
owth and dissolution (Frank and Ives 1960).

As the loop shrinks the interaction forces, « 1/L, become very large so that the
nucleation barrier becomes quite small and the nucleation rate is quite large. The kink
spacing is then so small that the line becomes essentially a circular shape. The circle,
as opposed to other curves shapes, is stabilized kinematically by the diffusion process.
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15.145¢ Discuss the situations analogous to that in Figure 15.29b where a vacancy is absorbed
in the middle of the jog line and where a vacancy is absorbed at each end of the jog line
at the same time.
The absorption in the middle is more difficult because it results in twice the number of
jogs. Adsorption at one end when there is already a vacancy absorbed at the other end
is more favorable because there is an elastic attraction force between the two jogs.

CHAPTER 16: GLIDE OF JOGGED DISLOCATIONS

Description: These problems discuss the velocity of screw dislocations with jogSiereep¥ates,
motion of superjogs, and the formation of jogs from intersection of dislocat;
@ 5% and

16.1 a. Compute the value of & for which Eq. 16.5 approximates®q. 16
also 1%. Assume silver at 800 °C with / = 100 b. \
- (4

b. Compute v for c = 1073 pu at 800 °C. Assume Ds = ao®v exp(-Ws/kT), v=103s"1, and W;s
= 1.9 eV. What creep strain rat es this v correspond to if the active dislocation
density p = 102 cm/cm?3?

16.2% Assume an en
at a jog. Comp

10c

. X
W (o, X) =1.5(W, +W.) (1——Jsm2 (”—j
& “ a
pare the magnitudes of the various terms in Eq. 16.10 for this case.

Eq.}16.9 provides the definition for a”. Set C(c) = 1.5(W, + W'\)(1 — 100/u) so that W =

n?(rnx/a). The result is sin(2ra’/a) = obla/nC. If a*/a is small, then a” = obla?/2nC.
The terms in Eq. 16.10 are la”, la”, -la”. Here, the terms dC/dc are assumed to be small
compared to 0a‘/dc. The conclusion is that all three terms are comparable in
magnitude.

16.3% a. How are the point forces at jogs in screw dislocations affected if the jogs are
superjogs?
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The point forces scale with the jog height if the superjog moves uniformly. The point

forces would change little if the superjog advanced by a mechanism wherein unit jogs
traverse the superjog.

b. Derive the equation analogous to Eq. 16.7 for the superjog case.
If the jog height is na where n is an integer and a is an atomic distance along the
superjog, then Eq. 16.7 is modified by a factor n in the denominator.

c. Describe a mechanism whereby superjogs can advance by single-vacancy emission.
Draw the appropriate jog configurations.
Unit jogs traverse the superjog as discussed in Sec. 15.6 and as illustrated indkig. 15.29.

16.4  Compute the critical stress for motion of vacancy-forming jogsywithout thermal
activation, for silver with W, ~ 1.0 eV and W; ~ 4 eV. Do the sam@for interstitial-

forming jogs. Compare these stresses with the that requiredsto move a dislocation at a
velocity of 10° cm/s (Eq. 16.18). Use / = 10% b and T = 800,°C.

16.5% In a fcc material, consider an,extended screw dislocation that intersects a random array
of dislocations.
a. What are the probabilities of forming acute and interstitial jogs?
For interSeéctionsgWith a random array, there would be equal numbers of acute or
obtus@jogs agwell as equal numbers of interstitial-forming and vacancy-forming jogs.

b. Deéscribe'amechanism by which an acute extended jog can become an obtuse
extended jog.

TRe conversion can occur when the dislocation line rotates as in the sequence
(@)~ (c)—=>(b) in Fig. 10.19.

c. Which type of jog is expected to predominate in an equilibrium array?
Acute jogs should dominate because of their smaller stair-rod Burgers vectors.

16.6% Along a screw dislocation, suppose that an acute extended jog is a superjog. Show
mechanistically how such a jog can climb by single-vacancy absorption.
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In Fig. 10.20a, a vacancy would form at the partial aA. Since the jog-line is equivalent to
a row of 1/3 vacancies, the dislocation advances by a distance 3a, where a is the atomic
spacing along the jog-line.

CHAPTER 17: DISLOCATION MOTION IN VACANCY SUPERSATURATIONS

Description: These problems address the climb of dislocations upon up quenching, nucleation
of vacancy loops upon quenching, operation of Bardeen-Herring sources with interacting arms,
the formation of helical dislocations, the formation of jogs on stacking fault tet a, and
the interaction of concentric partial dislocation loops.

17.1

17.2%

17.3

Consider a silver crystal with an edge dislocation along the axis of a rig

cylinder of radius R = 10%b. If the cylinder is rapidly up-quenched frc @

the melting point, compute the maximum possible climb rate a
n

steady-state climb rate of the dislocation. Assume W, =1.0£€V a

For an aluminum crystal quenched fro t0 300 °C, compute the nucleation rate of
circular prismatic %(1 1 0) loops in the presence of normal stresses ¢ = 107, 10~“E,
1072E, and 107! E. Note the corr n in the question statement (red text).

ady-state nucleation rate J = Zwn, where Z =

®),. and w and n. are given by Egs. 17.7 and 17.8,
Sec. 17.3b cites AG" = 3.25 eV and this is lowered by
vides an estimate, r' = 4E-10 m. Thus, AG" is lowered
3.2 eV for the four values of stress, assuming that the
pplied normal stress and b = 2.89E-10 m and E = 7.1E10 Pa
3 predicts the equilibrium concentration of critical size loops to
41, 4.6E2, and 1.1E28 m™ for the four values of stress. Eq. 17.7
equency at which vacancies join the loop, w = 2.6E2/s, based on an
ency v = 1E13/s as adopted in Prob. 16.1b, a concentration ¢ =

MATLAB. Use Eq. 17.6 to esti
0.1 (see text following E
respectively. The discussio
obmr'?, where the di n
by 3.2E-5, 3.2E<8

te

7

discussion that appreciable densities of loops (e.g., in Figure 17.1) require values of
applied stress approaching the theoretical strength.

Compute the nucleation rate of circular, Frank partial, prismatic %(1 1 1) loops after
quenching from 650 to 300 °C, assuming y1 = 200 mJ/m?2. Compare the results to those
of Prob. 17.2. Discuss the experimental observation of %(111) faulted loops in high-
purity quenched aluminum.
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17.4%< Suppose that one arm of an operative Bardeen-Herring sou
screw dislocations so that it passes over the opposite by three interplanar
distances. Consider the likelihood of annihilation j h se and also the resultant
dislocation configuration.

The attractive interaction force is ub?/6na,
plane of Fig. 17.5. The dislocations w
Herring mechanism applies only to planar ar

ere‘@lis'the atomic spacing normal to the
ilate under such a stress. The Bardeen-

17.5¥% What forces act on a helical disl ion formed from a screw and lying normal to a free
surface? What results when t elixglides into the surface? Assess the likelihood of
such glide quantitatively.

The helix is of mixed screw-edlge character. Image forces attract the helix, which moves
by climb. However, t b8 conservative since opposite segments have opposite
the overall process is glide of the helix to the surface by a
anism. The overall (thermodynamic) image force is the same
serew parallel to the surface. The surface is locally sheared but its

conservative
as that foras

topographyai anged when the helix glides out, just as for a straight screw. The
likelih of h glide is greater when the removal of dislocation energy, ub?In 2,
he e is greater in magnitude than the energy, yb, of the step, wherey is the

energy/akea of the step riser.

17. ider a straight mixed dislocation line in an unstressed crystal. If an external
isostatic pressure is applied to the crystal, show that the dislocation will initially tend to
ansform into a helical shape but will eventually straighten out. Discuss the forces
acting on the dislocation at each stage.
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Suppose a mixed dislocation transforms into a helical dislocation in the absence of net
mass transport to or from the dislocation. Show that the helix formation requires both
local core diffusion and net climb of the dislocation, i.e., the axis of the helix is
displaced from the original position of the straight dislocation. Compute the distance of
climb as a function of A, r, and be.

As in Fig. 17.8, the helix is topologically equivalent to a straight dislocati

climb by a distance L, the number of point defects produced i
results gives the answer.

17.8  Construct a sequence of diagrams showing the stages e following:

a. Formation of an acute jog line at a tetrahedron co acancy emission.
b. Annihilation of an interstitial at an obtuse jog li etrahedron.

17.9% Use the method of Chapter 6 to verify that a positive interaction energy results for a
hexagonal Frank partial and a s r, concentric triangular Frank partial. This means
that the nucleation of such triangle favorable and it indicates the possibility of
heterogeneous nucleation.

. he stable form of a Frank loop is a circle,
approximated as a hexagon in Chap. 6. Single Frank
loops form by vacancy condensation under

3 > irradiation. The question is whether the nucleation
of a second loop is more favorable than the
A formation of another single Frank loop.
- The accompanying figure shows the geometry and
\ ,\ bloutofplane 6 interaction energy between the loops involves the
‘ toward the viewer) paired terms: W1 and W4, W7, and W7s; W73 and
“E— 1 W76. W71 involves the interaction of parallel, like-
Iblem 179, signed segments and therefore it is positive. W74 is

negative but the segments are more separated
than for W71. Therefore, the sum W71 + W74 is positive. Likewise, the other pairs involve
pairs with oppositely signed Burgers vector when the coordinate system of Figure 6.4 is
imposed. The net result is a positive interaction energy between the hexagonal and
triangular loops. Thus, a second loop at the same site is unfavorable and single loops
should be favored, consistent with experimental observations.
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CHAPTER 18: EFFECTS OF SOLUTE ATOMS ON DISLOCATION MOTION

Description: These problems consider forces to move excess atoms in a potential well, creep
velocities with interstitial carbon present, estimates of breakaway stress when dislocation
cores are not fully saturated with solute, binding of a second phase to a dislocation core, and
the effect of supersaturation of solutes on dislocation nucleation.

18.1  Show that Eqg. 18.35 follows from Egs. 18.11 and 18.36.

18.2

18.3% Use Egal8.7 compute the creep velocity in mild steel for ¢ ~ 107 p at 7= 600 K.
e rbon equilibrates with cementite.
B.,Similar to Prob. 18.2, the Peach-Koehler formula (Eq. 3.93) provides the
maodynamic force unit length, F/L = ob on a dislocation arising from the applied
str@ss. This is equated to the drag force/unit length provided in Eq. 18.72. The solution
the dislocation velocity is
v=0b D kT/co B? I(z0) = 0 b w/kT co zo* (ro/b)? I(20)
The second equality is obtained by substituting D = b?> w and B = kT ro zo. The mean
jump frequency w = v exp(-G/kT), where the activation energy for diffusion of carbon in
BCC iron is 1.6 eV/atom (Wells et al. AIME 188, 553 (1950)) and v = 10*3/s as used in
previous problems. co is approximated by c- for carbon in equilibrium with cementite,
as described in Prob. 18.2. zo = Wmax/kT (Eq. 18.74) defines the maximum binding
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energy of a solute atom to a dislocation, relative to kT, and /(zo) is defined in Eq. 18.75.
Substitution zo = 2, ro = b, and the other quantities into the above equation for velocity
gives the answer, v = 1.5E-16 m/s. This answer is relevant to a Cottrell atmosphere,
where drag is associated with the translation of solute atoms with the dislocation, as it
moves.

Assume that Wg » kT but co is low so that the core is not saturated. Generalize the
theory of Sec. 18.5 to describe such conditions. In particular, derive the equations
equivalent to Egs. 18.124, 18.129, and 18.130.

The equations are the same but W5 is replaced by XWs, where X is the fragbion of core
sites occupied by solute.

Discuss the possibility of using the results of Prob. 18.4 to construct aitheory for
amplitude-dependent internal friction in very dilute substitutionalalloys.

The value of L in Fig. 15.12 is limited by solute pinning totthesspacing between solute
atoms in the core, which can be appreciable in the dilute dimit. There is then a
spectrum of values of L for the kink-pair model of Sec@5.3b. As the stress increases,
larger lengths have the configuration of Fig. 1542 at’the ‘€titical frequency, leading to
an amplitude dependent internal friction.

The stress field of a dissociated pure serew dislocation interacts with impurities. Will
logarithmic divergence arise as discussed in'Sec.,18.3? Derive an approximate formula
for the Cottrell drag in this case.

Consider Cottrell dragf6ran edge dislocation in an AB alloy that is not dilute. Discuss
what diffusion@oefficient should be used in this case.

The diffusivity issthat ofth@ solute B alone. The bulk diffusivity depends on the diffusion
coefficient fortboth Aland B, but here only the diffusivity of the solute B is relevant. The
Cottrell m@del YSyinapplicable once the atom fraction of B exceeds ~0.20. A new theory
is needed for@kreater B concentrations.

Discuss qualitatively how binding between core impurities might affect the critical
stressifor,dislocation breakaway from the core solute.

Fofa fixed bulk concentration of solute, such binding would increase the number of
empty sites on the core, make it easier to create solute free lengths, and decrease the
breakaway stress.

Vacancies can form a Cottrell atmosphere about a dislocation according to Eq. 14.45.
Compute the drag force produced by such an atmosphere on a screw dislocation and
compare the results to Eq. 16.4. Is it justified to neglect the second-order Cottrell
atmosphere effect in this case?
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18.10%¢ Discuss the various factors that contribute to the binding of a g ocation to a tube of

18.11

18.12+% Estimate the

18.13

second phase precipitated on the dislocation. Cal t inding energy as a
function of displacement for the case of thetholl slocation core (Prob. 3.9).

Consider the screw case. There is a mod
(Ap b%/4m) In(Rp/ro), where Ap is the in elastic shear modulus and Rp is the
radius of the cylindrical precipitate. Au = oid (a second phase of zero modulus).
The dislocation is smeared int ntinuous distribution of infinitesimal dislocations
on the interface and the seIf-e%duced to (1 b%/4n) In(R/Ry). The results for the
edge are analogous with A[ V) acing Ap and with a factor (1 —v) added to the
self-energy.

, giving an interaction energy:

Consider the possibili
dislocation in

ki type locking is caused by vacancies at an extended

agnitude binding energy between a solute and dislocation to

achieve sp dislocation generation in a supersaturated solid solution.

If a disl@catiofMoop of radius R formed, the energy would be Ws = ub? R In(R/ro) and

t mo f solute would be reduced by the number of solutes in the core, N =

nR? here a is the atomic spacing normal to the loop and Q is the atomic volume.
saturated core, this process lowers the energy by W = 2nRWgN(1 - X), where X is

thelsolute volume fraction in the matrix. When W > W, spontaneous generation of

Islocations is possible.

Compute the drag force for the glide motion of the

APB
configuration in Figure 18.24a. J/. /

APB

Problem 18.13.
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CHAPTER 19: GRAIN BOUNDARIES AND INTERFACES

Description: These problems consider dislocation descriptions of simple tilt, twist boundaries
as well as boundaries formed by specific slip systems, stress fields from grain boundaries,
interactions between dislocations and boundaries, and forces on boundaries generated by an
applied stress.

19.1

19.2

19.3%

:?___

19.4¢

Derive N; for a simple tilt boundary consisting of one set of edge dislocations.

Determine N1 and N for a simple twist boundary consisting of sets of orthogonal
screw dislocations.

Consider two sets of dislocationMgers vectors that are inclined to one another
at 45°. Determine Ny and N u ist boundary in their common glide plane.
What is the dislocation defsity in two sets for an angle of rotation 6?

,  The two sets of dislocations are drawn as pure
screw dislocations as shown in the accompanying
figure, with reference axes i, j, k, and Burgers
vectors b1 and b, rotated by 22.5° so that the angle
subtended by the Burgers vectors is 45°. Eq. 19.43
applies, consistent with the case of two sets of
dislocations where the rotation axis a || (b1 x by).
Also, n- b1 = n - by = 0 so that the result is: N1 =
(sin 22.5° i + cos 22.5° j)/bi(cos 45°) and N; =
(sin 22.5° i + cos 22.5° j)/ba(cos 45°). Using Eq.

@oblem 19.3. 19.20, N1 =+2/b; and N, =+2/b, and Eq. 19.19

furnishes the dislocation densities 1/D;=

N1 2 sin(6/2) and 1/D; = N, 2 sin(8/2), where 0 is the angle of twist (Figure 19.15a). In

any equilibrium boundary with fixed Burgers vectors, the lines of dislocations can be

rotated in this manner.

k (into i-j plane)

aal
N

—

S,

f
1
1
o |
|
Ny
Ny
w
4

o
N

A
KPP

A grain boundary in a simple cubic crystal system is composed of the dislocations
b;1=[100], b2=[010],and b3 =[00 1]. Determine N1, N2, and N3 when
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1
a= M[IB], n=[100]
What are the directions of the dislocations? What are the dislocation densities when
6 =5°?
This is an interesting problem in that it entails the inadequacy of the independent slip
system concept when interfaces with significant rotations are present. The
independent slip system concept is exact when the dislocations have minally
uniform distribution (see UF Kocks, CN Tomé, HR Wenk, Texture a
Academic Press, New York, 2000). Additional systems may be required rotations
are involved, as at grain boundaries, twins, or shear bands. This is se here: the
methods of Chapter 9 would imply that they are only tf_independ
However, for the present case, only b1 can contribute to tilt t\ e by and bs lie
in the boundary and only b, and bz can contribute to twist since ¥1 is normal to the
boundary. Hence, the boundary is special in that it is a §tp€erposifion of a tilt boundary
with a single Burgers vector and a twist boundary re ing tWo Burgers vectors, even
though they would be classified as independent i hapter 9 methodology.

ta abdlit the x-axis of o = 2.67°, a tilt
rot about the z-axis of y = 1.33°.

The rotation of 5° can be split into a twist
rotation about the y-axis of B =4.00°, and a t
For the twist contribution about the x- screw dislocations are orthogonal with
¢ |l bz and by, and rotated by 1.34° with respect to each grain, giving the relative twist
of a = 2.67°. For the tilt about y-axis, & ||l ey, the Burgers vector is b1, and the tilt
angle is B = 4.00°. For the tilt abo z-axis, € || e;, the Burgers vector is bs, and the
tilt angle isy = 1.33°.

The dislocation densities a iven by Eg. 19.5 as follows. For the twist boundary, both
screw sets have N1 = 5/b%For the tilt about the y-axis, the result is N, = 0.0349/b.
is, N3 = 0.016/b.
ere that are of general interest. First, the intersecting
would react at nodes and combine into one slant set of edges,
& same Burgers vector. The formalism of grain boundary theory
solution. There are always possible reactions of this combining type or

Sec hile a twist boundary of the above type probably has minimum energy, the
ould also comprise edge or mixed dislocations (see J.P.Hirth (1993)
“Stabilization of Strained Multilayers by Thin Films” J Materials Research 8: 1572-77).
th some elastic anisotropy cases, the edge or mixed configurations could have lower
symmetry. Also, they could exist as metastable arrays as a consequence of the
formation process.

19.5% What boundaries in a NaCl-type structure can form by glide if the only active slip
systemsare[101](101)and[101](101)?
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Eqg. 19.40 applies for the case since p1 x p2 and b1 x b, are collinear. In such cases, the
discussion following Eqg. 19.39 indicates that any boundary plane parallel to by x by (=
[0 1 0]) is possible.

What boundaries in a NaCl-type structure can form by glide if the only active slip
systems are [101] (101)and[110](110)?Is this a realistic case?

Generalize the example of Figure 19.34 to fcc tilt boundaries fgrme @ e on
intersecting slip planes.

A simple example would be BA(d) + DB(a) > 6A(d) + Da(a) ##a6. long-range field is
that of a tilt wall of DA dislocations. The aé stair-rods_h character. The other
partials have components parallel to the tilt plane butgdhey ar ual and opposite. The
product is a Lomer-Cottrell barrier. See Chap. 22.

Derive the stress distribution around the bound rob. 19.3. Show explicitly that
no long-range stresses exist.

k (into i-j plane)

t
Dy}

:

‘

4————5 —————— =
2
Vi

Problem 19.8.

emonstrate that the general theory for grain boundary energies (Sec. 19.7) agrees
the results of Prob. 19.8. Calculate the values of F;and F/"' for that example and
discuss the limiting behavior as X; > 0.
The interaction force between grain boundary A and a segment of length €1 in grain
boundary B is depicted in Figure 19.40. For the grain boundary in Prob. 19.8, the stress
field for each set of screw dislocations is given by Eqgs. 19.85, where X = x/D and Y = y/D
are reduced coordinates parallel and perpendicular to an array. The force/unit length
on a segment is given by the Peach-Koehler formula (Eq. 3.93) and in general it does
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not decay with increasing normalized distance, Y, from the boundary. However, the
superposition of the stress fields from sets 1 and 2 does decay with increasing Y
provided bi1/D1 = by/D,. That is the case for Prob. 19.8. An approximate form for the
decay, Eq. 19.94, explicitly shows that the interaction force drops rapidly
(exponentially) for distance larger than the dislocation spacing in the boundary. This
result demonstrates St. Venant's principle.

19.10 What type of applied stress tensor could cause a pure twist boundary to glid

a. Inthe most general case?

b. When the sets of dislocations i

19.115% Consider the interacti a le dislocation DC(a) when it intersects the pure twist
boundary composed e pure screws AB, BC, and CA on glide plane (d) in an fcc
crystal.

o/u
0.9 x10%
2y
1.81
1.6
bowed loop as a source, the effect of interaction between "
bow outs and surface ledges on source operation. "
1
20.1  Estimate the critical resolved shear stress to yield a 08
. . . ~o 20 40 60 80
crystal with a dislocation network of average B
segment length / = 10% b.
Problem 20.1.
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Consider a prismatic loop that has formed by vacancy condensation on a (1 1 1) plane
in a fcc structure and that has reacted so that no stacking fault is present in the plane
of the loop. Can this loop be a source for slip? If so, specify the planes and slip
directions.

oS

A source consists of a pure twist boundary of screw segments’
(11 1) plane in an fcc crystal. Which slip systems can operat rrc&
Figure 10.9 and the accompanying Thompson tetrahedro i 0) show that the
hexagonal mesh would be comprised of screw dislogations alang <1 1 0> directions.
Each screw dislocation could cross slip onto anothefy {11 1} plane, e.g., a screw
dislocation CB along [1 0 1] could cross slip fro vP e to plane (a). Likewise, CA
could cross slip from (d) to (b) and BA from (d)Wé (c)#'Thus, three slip systems could
operate by cross slip, in addition to the three'slip systems on the parent (1 1 1) plane.

For 6 < Geit, compute the stable and meta quilibrium positions of a bowed loop
with the geometry in Figure 20.1, Determine the activation energy to achieve the latter
from the former. Show that the ess is unlikely under thermal activation unless ¢ ~

Ocrit. A

£/ub2a/(4m(1-v)) MATLAB. Consider a bowed loop of radius

R as shown in Figure 20.1, where 2a is the

100
0.2 distance between the ends of the bowed
50 i loop (i.e., the pinning sites), and d0 in the
o — X 05 image is replaced by 0. If a resolved shear
\ stress ¢ acting on the slip plane in the
0 direction of slip is present, then the energy
i ofc .t=0.9\\0'8 to introduce the loop into a stress-free
“ body is Eicop = 2RBS, where the line tension

< 1% 50 100 150 200 S is approximated by
¥ [ub?/41(1-v)]In(2a/p). See Eqg. 20.1. The

Mem 20.4. work of the applied shear stress acting
through the relative slip b and over the
area that is sheared when the dislocation bows from a straight segment to one with
radius R is Wapplied stress = 0bR?[20 — sin (20)]. The total energy is Eiotal = Eioop — Wapplied
stress. The variable R can be replaced by a/sin © and Eiotal, normalized by pb%a/4n(1 - v) is
Whotalinorm) = (206/sin 8)In(2a/p) — (o/w)2m(1-v)(a/b)(26 — sin(26))/sin%6.
The accompanying figure shows Wiotalinorm) @s a function of 8 for a/b = 1E3, p/b = 1, and
the following values for copper: u = 5.46E10 Pa, v = 0.343, and b = 2.54E-10 m. For
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reference, ub?a/4n(1 - v)/kT = 2.6E4 at room temperature and ocit = S/bR = 8.9E-4 L.
The accompanying plot shows the normalized total energy for o/ocit = 0.2, 0.5, 0.8, and
0.9. Even at o/oqit = 0.9, the activation energy, which is the difference in Wiotal at the
unstable equilibrium (in the vicinity of 8 ~ 150°) and Whotal at the stable equilibrium
location (in the vicinity of 8 = 60°) is ~ pub%a/4m(1-v) ~ 3E4 kT. This activation energy is
too large to be thermally accessible. At o, the activation energy is zero. Thus, the
activation energy is ~ kT only when ¢ ™ Ocrit.

Use the straight segment methods of Chapter 6 to compute the degree of bow out as a
function of stress for a loop constrained to have its component segments i 1
directions on a {1 1 1} plane in germanium, as in Figure 20.2. Compa esults with
those of Eq. 20.1. Assume that the original unbowed segmen"s& %

Problem 20.5.
For pinned segments |form|y spaced along a screw dislocation, compute the
contribution ofiinter tween adjacent loops to the bow out energy for the

loops. Assume h
It suffices to

composed of straight segments, as in Prob. 20.5.
three adjacent semi-hexagonal bow-outs as shown in the

accompan gur€. The middle loop would interact with the other two. A primary
issue igawhe the interaction would increase or decrease the energy Wioop Of the

rl e interaction energy between segments on opposite sides of “mirror
p ” and “mirror plane 2” will be positive and negative, e.g., W11 < 0 is expected

ments 1 and 1’ have the same b but the in-plane components of § and &’ are
oppeositely signed. Conversely, Wiz > 0 since the segments are parallel and have the
same b and § Wiy is

2 expected to have a

/v ‘ \ larger magnitude than

W13z due to the smaller

2 distance between
interacting segments
Problem 20.6. and thus the effect of

67/74


https://www.cambridge.org/us/academic/subjects/engineering/materials-science/theory-dislocations-3rd-edition?format=HB&isbn=9780521864367

Student Version — Solutions to Problems, Theory of Dislocations, 3™ Ed.
Cambridge University Press (2017). Publisher website

the neighboring segments is expected to decrease Wioop. This ought to decrease Whotal,
particularly as the loops extend toward the inverted “V” shape (green dashed lines
shown in Prob. 20.5) and W11 grows in magnitude relative to Waz. This is expected to
decrease the applied stress and activation energy to expand a loop.

20.7¥% Consider the formation of a closed dipole loop by the mechanism of Figure 20.5f. Show
that the relative resolved shear stress makes formation less likely in a fcc crystal
compared to a simple cubic crystal. For which other crystal systems is the process more
likely? A
If the resolved shear stress favors the initial cross-slip, it
disfavors the final cross slip. Thus, the final step is more n,
favorable after unloading, whereupon the interaction Nt a I
energy would favor the final (secondary) cross-slip. Also, £
if the proper stress gradient were present, the final ro .
cross slip event might occur more easily. These effect
would be exacerbated in the simple cubic case since relatiVe resolved shear stress
on the cross slip plane is larger (equal to that on imaky plane).
To demonstrate, the accompanying figure Show ringlary slip plane with ny || y axis =
[111] and nz =[111]. A screw dislocation With € || z axis = [1 1 0] resides at the
intersection of these planes. A shear oyawill favor glide of the screw dislocation
to the right and a portion of oy,, of magnitu vz (N1 - n2), will drive the first cross slip

event. The portion, o,; (n1 - -ny) rive the second cross slip event on the —n; plane is
therefore reversed and thus t cond event would be disfavored by the applied
stress. For the FCC geometr o =108° and thus oy, will have an asymmetric effect,
favoring one cross slip event w disfavoring the other. For a cubic system, the

uces no resolved component on the first and second
asymmetric nature can make formation of the double

applied oy, is symme
events. For t
cross slip more

In systems suc 3
cross-slip abbe small, the process would be favored.

20.8  Singul

sur is,dislocation nucleation more likely? For which type of surface is edge
cation reflection by the Frank mechanism more likely? Why?
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CHAPTER 21: DISLOCATION PILEUPS

Description: These problems examine the calculation of equilibrium positions in pile-ups and
the length and number of dislocations in pile-ups. Applications are made to determine the
stress field around cracks, including the effects of free surfaces, and also to precipitates.

21.1

21.25¢

21.3%

21.4

21.5

Consider a glide pileup of three edge dislocations that form against a barrier under an
applied resolved shear stress o. Assume the leading dislocation is fixed and calculate
the positions of the second and third dislocations relative to it.

Suppose that the frictional stress on the glide planefisicr. Determine the length of a
single-sign glide pileup of N edge dislocations if no applied stress is present.

The formalism for the single-sign pile-up under anmapPplied stress o (Sec. 21.5) can be
used except that o is replaced by o —'Ofhen'a frictional stress is present. Accordingly,
Eq. 21.36 is used with o — of replacing o. Up@m unloading, c — or - 0 and then upon
further unloading, o takes omptfte value or. Thus, the length of the pile-up is
£ = uNb/[r(1 - v)os].

Use the preceding problem to estimate dislocation core widths. Assume that the

critical shear stress for slip ofia perfect crystal is 11/20.

The resolved shear sifessién the partials differs. The one with the larger shear stress o
will move first'amd must ove€rcome the attractive force provided by the fault to break
away. Thus, in B§"24.36,"N = 2, o is replaced by y/b + ub/20, and b is the Burgers vector
of the partial.

The shear stress to operate a source of edge dislocations is ¢*. A barrier exists at a
distancell in front of the source but not in the rear. How many dislocations will pile up
behind thebarrier if a resolved shear stress ¢ > " is applied? What is the resultant
force'ondthe barrier?

A microcrack grows and fractures a brittle solid at a tensile stress ¢ = 1073 u. Estimate
the size of the microcrack if the surface energy y = ub/10 and Poisson’s ratiov = 1/3.
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A surface source of screw dislocations operates at a negligibly small stress and forms a
pileup forms at a distance L below the source. Estimate the force on the obstacle under
an applied stress o.

The force at the tip is that of a pile-up of length L, plus that of the image pile-up. To
first-order, the image stress is that of a superdislocation with Burgers vector Nb at
position (-Lp, 2L) with the pileup tip at (0, 0). More precisely, the image field is given by
Egs. 21.51 and 21.52.

The single pile-up in the vicinity of a free surface can be approximated by

(image)
dislocations for x < 0 (see also Figure 3.16 for the image cofistruc e force per
unit length in the double pile-up is given by Eq. 21.21 for a C
dislocations, except that the (1 —v) factor is omitted, cafisistentwith the different
expressions for the stress field for edge and screw dislogat s. 3.3 and 3.45). The
result is F/L = 1t 0® £/4. For comparison, F/L for a singlé pile- rom a source far from
a free surface is obtained from F/L = Nob, wher, i

F/L =1 0?8/, is larger than that for the su

Derive the equivalent of the Griffith criterion

normal to a free surface. Use the ana ith'Prob. 21.6.
Now the image tip position is at (0, 2L) an procedure is the same as that in the

previous problem.

Determine the plane of maxi n stress ahead of an edge dislocation glide
pileup. K

Uij/(Ku/z"r)
2

1.5
1

2 5
-150 -100 -50 0 50 100 150

%roblem 21.8.
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21.9 Use a continuum theory to verify that a pure tilt boundary composed of a single set of
uniformly spaced edge dislocations has no long-range stress field. Do long-range
stresses occur if the dislocations are not uniformly spaced?

coherent, plate-shaped precipitate.

Suppose the precipitate is a circular disc of radius r and thickness d in thé®@direction.
The atomic spacing differs in the z-direction so part of the field is % rismatic

dislocation loop at the disc periphery with b = (0, 0, b;) and® ag qual to the
difference in z spacing. The coherency stress involving diff r;&l atomic spacing
parallel to the plane of the disc must be computed sepaffat IMdspecial cases, line
force fields may be needed, see Hirth et al (2016a) with@orrectiafis in (2017).
CHAPTER 22: DISLOCATION INTERSECTIONS AND S
Description: These problems consider: the intera&tion es petween dislocations and their

relaxations under glide and climb; dislocations andfegs iated with reactions, cross slip,
and dissociation; and the extension of barriers:

22.1¥ Compute the distribution of interaction force between two orthogonal edge
dislocations, separated by a distante h, each with its Burgers vector parallel to the line
of the other dislocation.
Consider the geometry in Fig. where the line directions for dislocations A and B
are along the x and ections, respectively. However, there are two edge
dislocations, with by, ted®along the y-direction and bg oriented along the -x
i experience a glide force, F,/L = 0,274(x, z = h)ba, and a

climb force, F
generated b @ ation B at the site of dislocation A. The stress components
0,574(x, z aAee6,,5~4(x, z = h) can be expressed as o,,/(-x’, y = h) and o,,{-x’, y = h),
7' coordinate system is that used in Figure 3.10. According to Egs. 3.45,
0 hus no glide force is exerted by B on A. However, o,2(-x, y = h) =
- 2+ h?), where C = pbv /ri(1 — v). Therefore, a climb force F,/L = Cb h/(x* + h?) is
ted“on A. This is largest at x = 0. Likewise, dislocation B has a climb force
F./ = -0, 78(y, z=-h) = -Cb h/(x* + h?).

22.2 dicate how the two dislocations in Prob. 22.1 would relax if (a) only glide is allowed
and (b) both climb and glide are allowed.
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Consider interactions in bcc crystals that yield dislocations of the (1 0 0) type. Classify
these interactions in terms of the screw-edge character of the reacting dislocations and
the line direction of the product dislocation. If the [0 0 1] dislocation is glissile on (1 1 0)
and (1 1 0) but sessile on other planes, which reactions yield sessile [0 0 1] dislocations?
Attractive junctions would be of the type %[111] + %[11 1] = [100]. Unlike the fcc
case, the attractive junction forms for all screw-edge characters. All other combinations
of ¥%4<1 1 1> Burgers vectors are unstable.

Consider the possibility that an intrinsically dissociated screw dislocation cross slips into
an extrinsically dissociated screw through an intermediate state analogouste,thatin
Figure 22.18d. Would this be an easier cross-slip process than that in Figure 2218d if ye
were only slightly larger than y,? Use the Frank b? criterion for'the energy of the
partials. What reservations exist concerning the application of the Erank criterion?

The partial loop would bulge downward with the Burgers ¥ectagmnoW being 6A and the
fault being extrinsic. The smaller stair-rod would ef€ergetically favor this reaction
according to the Frank criterion but nucleation might still be less favorable because of
the larger core. A more accurate analysis wouldftreéar th@screw-edge character using
an expanded Frank criterion. The screw-edge chasatterdiffers for the trailing partials in
the two cases.

Derive the extrinsically faulted barriers corfesponding to barriers (1) to (4) in Figure
22.12.

The equivalent for barrier 1 woulelkbe the configuration of Fig. 22.10 rotated by m in the
page. The trailing partials weuld DegbPt, upper left, and 8A, upper right. A similar
procedure, with shape invegsion, Works for the other barriers.

Assume a tensile stressqaets along [0 0 1] in a NaCl-type crystal. Verify that the
dislocation jogs.formed by intersections between the [101](101)and [011](01 1)
slip systems are interstitialsforming.

Assume that thelopération of a slip system is proportional to the resolved shear stress
on it. ker fcc tensile tests, show that barriers (1) and (4) are favored to form when the
ténsile axis.isinear [2 1 1], while barriers (2) and (3) are favored for orientations near
[12°0]. In_both cases, the axes lie within the unit stereographic triangle [1 0 0], [1 1 0],
[d9 1]

Verify that the equilibrium configuration of barrier (5) in Eq. 22.6 should be
asymmetric. Note the correction in the question statement (red text).

The equilibrium configuration is asymmetric because aC and By are mixed. Hence,
compared to symmetric barriers, they have smaller forces that depend only on their
edge components.
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Which barriers in Table 22.1 can be considered extended in a meaningful sense? How
does this result affect the pileup size that a barrier can sustain if (1 1 0){0 0 1} slip easily
occurs in fcc?

22.10% Draw the product barrier of Eqg. 22.5 if it extends to form an obtuse angle barrier.

Identify the types of faults in the barrier. Note the correction in the question statement
(red text).

The dislocation DB now enters from the top. See Fig”22.10 {fight). The partial 6A
remains the same but the trailing partial aB is at the Upper left, the stair-rod is BD/a,
and the upper fault is extrinsic.

CHAPTER 23: DEFORMATION TWINNING

Description: These problems consider: candidatg,twih planes; estimates of the stress in the
vicinity of a twin; influence of stress components oRWinning, growth or shrinkage of twins;
and dislocation interaction with twins.

23.15¢

23.2

23.3%

23.4

In principle, could (1 1 0) be a twin planein a fcc crystal?
No. The (1 10) plane already haSimirror symmetry.

Consider a twin lamella.ef thickness h formed by %[1 1 1] glide on (1 1 2), the K; plane.
What is the superdislocation at the spearhead of the twin? Estimate the stress at a
distance ~ h ahead of'the spearhead, assuming no emissary glide has occurred.

Consider the same twin as in Prob. 23.2, but it is formed by Bullough’s mechanism. Are

the stresses at the spearhead different in this case?

The Bullough case is depicted in Figure 23.3b, where the twin is formed by slip on
plgnes K; in a direction parallel to n,. The difference is highly localized, only within a
distance equal to the dislocation spacing in the Bullough case. If the shear is imparted
but the local rotation is suppressed, there will be small differences in the local strain.
See the reference for Hirth, Pond, and Lothe (2006) in the textbook.

Do compressive stresses normal to Ki influence twinning if it proceeds as assumed in
Prob. 23.2? As in Prob. 23.3?
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Are shear stresses other than that resolved on the twinning plane and in the twinning
direction important for twin nucleation in the models of Figures 23.7a and 23.7b?

Discuss why the concept of a critical resolved shear stress for twinnij g
inadequate. Problems 23.4 and 23.5 are relevant to this ques%\
C)

Consider Figure 23.16. During annealing, should twin shrink or grow to consume
the entire slipped zone? Why?

The twin should slowly grow or shrink u i bounded on the top and bottom by
{11 2} twin planes. The weak driving force for this slow process is the decrease in
surface area of the twin, reﬂec%y by an attraction of twinning disconnections
with oppositely signed steps

Derive the possible reactions for 72(1 1 0) type dislocations that glide through coherent
twin interfaces in fcc Is leave partials in the boundary.

Consider a (1 1) tv@. For all such reactions, the product and reactant Burgers
vectors have 3 m t %[111] normal to the twin plane and an in-plane
component of' [Ype %<1 1 2>. Thus, all residual vectors are sums of two %<1 1 2>

vectors. C of the form %[1 2 1] + %[1 1 2] = %[0 1 1]. All other combinations
result ip prodcts that are partials. Also, the defect could remain in the boundary. An

plefould be a %4[1 1 0] reacting to form a sessile %[1 1 1] partial dislocation or a
%ﬂon and a glissile partial %[1 1 2].

D)
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