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Background: These solutions were developed by JP Hirth and PM Anderson to provide students with 
answers to a portion of over 200 problems from the textbook, underscoring key principles and 
demonstrating worked examples of the application of dislocation theory. The complete set of solutions 

is available to instructors through the publisher website. Problems with the entry “MATLAB” at the 
beginning of the answer indicate that a supporting MATLAB file is available through the publisher 
website to aid in computing the answer. In many cases, extended answers are provided to both teach 
and expand the context of the application or theory. Red text in the question statement indicates a 
correction to the published question in the textbook. Suggestions or corrections to answers can be sent 
to anderson.1@osu.edu. 
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CHAPTER 1: INTRODUCTORY MATERIAL 

Description: These problems examine the physics of why dislocations facilitate deformation of 
crystals, surface ledges created by their motion, identification of vacancy and interstitial loops, 
and construction of Burgers circuits. 

1.1 Discuss qualitatively how the presence of edge dislocations (Figure 1.4) can account for 

the shear of crystals at stresses much less than theor. Is the same explanation valid for 
screw dislocations? 

For both edge and screw dislocations, the work necessary to move the dislocation is 
localized to the vicinity of the dislocation where bonds across the slip plane are 
incrementally broken and remade as the dislocation moves. The incremental process 
requires much less stress than the simultaneous shearing of an entire atomic plane.  

For an edge dislocation, Nabarro makes an analog of moving a large carpet by taking an 
entire edge of the carpet and sliding it relative to the floor in a direction normal to the 
edge, as to make a bulge that spans the entire width of the carpet. The rest of the 
carpet can be slid by propagating the bulge with relatively little force. This procedure is 
contrasted with pulling an edge of the carpet as to simultaneously slide the entire 
carpet – a process that requires considerably more force. For a screw dislocation 
(Figure 1.5), a similar analog applies except that the entire edge of the carpet is slid 
parallel rather than perpendicular to the carpet edge. 

1.2 A screw dislocation with b ∥ ξ lies along the axis of the 
cylinder in Figure 1.28 (See accompanying figure). 

a. If the ledge is along AB, is it recessing or overhanging? 

Recessing. The normal to the ledge surface points 
upward. 

b. If the ledge is along AC, is it recessing or overhanging? 

Overhanging. The normal to the ledge surface points 
downward. 

c. Is there any restriction on the ledge position? Could it be positioned at AD? 

There is no restriction. Yes, it could be positioned at AD. 

d. Construct a rule to specify the sign of the ledge (recessing or overhanging) in terms of 
b and ξ. Hint: Develop a right-hand or left-hand rule. 

Right-Hand Rule: Position your thumb, forefinger (index finger), and middle finger of 
your left hand at right angles to each other. If you orient your forefinger along ξ and 
thumb along the radial direction of the ledge (e.g., AB), then the middle finger points 

normal to the surface ledge. This assumes b  ξ > 0. The surface ledge normal is 

opposite if b  ξ < 0. 

Left-Hand Rule: The middle finger points opposite to the surface ledge normal if 

b  ξ > 0 and parallel to the surface ledge normal if b  ξ < 0. 

 
Problem 1.2. Figure 1.28. A screw 
dislocation lying along the axis of 
a cylinder. 
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1.3 Form a closed, planar square interstitial dislocation loop by inserting one atomic layer 
within the loop. Form a vacancy loop by removing an atomic layer. Specify the resulting 
dislocations in terms of b and ξ. Develop a rule that uses b and ξ to distinguish between 
interstitial and vacancy loops. 

Left-Hand Rule: Position your thumb, forefinger (index finger), and middle finger of 
your left hand at right angles to each other. If you orient your forefinger along ξ and 
thumb along b, then the middle finger points toward the extra plane of atoms. Thus, if 
the middle finger points toward the inside of the loop, then it is an interstitial loop and 
if the middle finger points toward the outside of the loop, then it is a vacancy loop. You 
can try this out on the vacancy loop shown in the figure for Prob. 1.4. 

Right-Hand Rule: If the middle finger points toward the inside of the loop, then it is a 
vacancy loop and if the middle finger points toward the outside of the loop, then it is 
an interstitial loop. 

1.4✰ Insert one of the loops of Prob. 1.3 into a cube of material and orient it parallel to one 
of the cube faces. Sketch the response of the loop to an imposed shear stress on the 
cube faces. Consider the three possible components of shear stress. 

Consider the adjoining figure showing a vacancy loop 
ABCD and Cartesian basis xyz. Each edge of the square 
vacancy loop is represented by an edge dislocation with a 
slip direction and slip plane (e.g., the slip plane for 
dislocation AB is parallel to the y-face). By analogy to 
Figure 1.19a,b, a shear stress – represented by a force 
parallel to the slip direction (e.g., along z) and applied to a 
cube face parallel to a slip plane (e.g., a plane parallel to 
the y-face) – will act to move the dislocation. Therefore, a 

shear stress yz (= zy) will tend to move dislocation AB along the z-direction and CD 

along the −z direction, and a shear stress xz (= zx) will tend to move dislocation DA 
along the z-direction and BC along the −z direction. 

1.5 Extra material can be inserted in Figure 1.19e to produce the edge dislocation in Figure 
1.19f. If a tensile stress were applied perpendicular to the extra plane of material, 
would you expect the dislocation to climb upward or downward? 

Downward. This is rationalized because a sufficiently large tensile stress (e.g., xx, 
where the x-axis is parallel to b of the edge dislocation) would tend to stretch the 
sample along the x-direction. This can be achieved by downward motion of the 
dislocation, which serves to extend the extra plane of material and therefore stretch 
the sample along the x-direction. 

1.6✰ The cuts in Figure 1.19 are parallel to cube faces. Show that the dislocations can be 
formed by a cut on any plane in the crystal. Specifically, form the same dislocations by 
a cut inclined at 45° to those in the figure. 

 
Problem 1.4. 
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The adjoining figure show three potential cuts – along 
OA, OB, and OC – each of which creates the edge 
dislocation shown in the center of the figure with line 
direction ξ pointing outward and b pointing to the right. 
For the cut OA, a right-handed Burgers circuit (circuit 
#1, shown in purple) is constructed in the deformed 
(dislocated) material. Using the SF/RH convention as 
detailed in Fig. 1.21, the Burgers vector is defined as the 
vector from the start (S) to finish (F) points. This is 
equivalent to the cut in Fig. 1.19b. Likewise, cuts OB 
(circuit #2, shown in green) and OC (circuit #3, shown in 
blue) can be used. The latter is a cut at 45 degrees and involves both relative opening 
and shearing of the surfaces along the cut. 

1.7 Use a Burgers circuit to determine b for the dislocation in the bubble raft of Figure 1.6. 
Show that the dislocation can be formed by any one of several cuts within the bubble 
raft, analogous to Prob. 1.6. 

Figure 1.6 is reproduced in the 
accompanying figure. If it is held at a 
glancing angle (e.g., viewing from lower 
right to upper left), one can see an 
extra plane of material beginning at 
point O and extending up to point A. 
The accompanying figure shows a right-
handed Burgers circuit about line 
direction ξ, which points outward. The 
Burgers vector b = SF is identified using 
the SF/RH convention detailed in Fig. 
1.21. 

1.8 Figure 1.29 shows the slip traces along a sample surface caused by motion of two 
dislocations initially at A and B. Which trace must have a surface ledge? Why? 

B must have a surface ledge. The 
reason is that B must be a pure 
screw, since the trace from B 
indicates cross-slip and only a screw 
dislocation can cross-slip. The pure 
screw nature of B means that the 
Burgers vector b must have a 
component normal to the surface. 
See Prob. 1.2 for an example.  

 
Problem 1.6. 

 
Problem 1.7. 

 

Problem 1.8. 
Figure 1.29. Slip 
traces generated 
where the slip 
surface intersects 
a free surface, for 
two dislocations 
originally at A and 
B. 
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CHAPTER 2: ELASTICITY 

Description: These problems examine: the transformation of strain or stress components 
arising from a change in basis; effects of crystal symmetry on elastic constants; and application 
of elastic constitutive relations. 

2.1 Consider a state of plane strain that has εxx, εyy, and εxy (= εyx) as the only nonzero 
components of strain. Find the components of strain referred to a coordinate system 
x’y’ that is rotated an angle φ about a common z axis. 

Use Eq. 2.40 and substitute expressions for the components, Tij, as defined by Eqs. 2.29 
and 2.30. The geometry is shown in Fig. 2.3, with θ = κ = 0, consistent with a rotation φ 
about a common z axis. In that case, Txx = cos φ, Txy = sin φ, Tyx = −sin φ, Tyy = cos φ, 
Tzz = 1, and all other Tij = 0. One of the resulting strain components is 

𝜀𝑥𝑥
′ =  𝜀𝑥𝑥cos2ϕ + 𝜀𝑦𝑦sin2ϕ + (𝜀𝑥𝑦+𝜀𝑦𝑥)sin ϕcosϕ 

Other components of strain are calculated in a similar manner. 

2.2 Consider a state of strain that has εxz (= εzx) and εyz (= εzy) as the only nonvanishing 

components. Find the components of strains referred to a coordinate system xy that 
is rotated an angle φ about a common z axis. 

Again, use Eq. 2.40 with the same values of Tij defined in Prob. 2.1. The nonzero 

components of strain in the xyz coordinate system are 

𝜀𝑥𝑧
′ = 𝜀𝑧𝑥

′ =  𝜀𝑥𝑧cosϕ + 𝜀𝑦𝑧sinϕ;    𝜀𝑦𝑧
′ = 𝜀𝑧𝑦

′ =  𝜀𝑦𝑧cosϕ − 𝜀𝑥𝑧sinϕ;    𝜀𝑧𝑧
′ =  𝜀𝑧𝑧  

2.3 Consider an arbitrary state of strain with components εij referred to the xyz coordinate 

system. Can the components of strain referred to a coordinate system xy that is 
rotated an angle φ about a common z axis be obtained by simply adding the results of 
Probs. 2.1 and 2.2? 

Yes. Adding the results of Probs. 2.1 and 2.2 suffices for the situation where the 
arbitrary state of strain involves nonzero components εxx, εyy, and εxy (= εyx) and εxz 

(= εzx) and εyz (= εzy). The reason is that the components of strain in the xy system 
depend linearly on the components in the xyz system (see Eq. 2.40). 

2.4 Write out the general matrix of elastic coefficients for the case where there is a 
reflection plane normal to the z axis. 

A unit cube with reflection plane normal to the z axis produces a coordinate system 

xyz in the reflected portion with x′ = x, y′ = y, and z′ = −z. Therefore, the nonzero 
components of the direction cosine matrix are Txx = 1, Tyy = 1, and Tzz = −1. Substitution 

into Eq. 2.53 reveals that cijkl = cijkl if the index 3 appears 0, 2, or 4 times among the 

indices ijkl (e.g., c3131 = c3131) and also cijkl = −cijkl if the index 3 appears 1 or 3 times 

(e.g., c3331 = −c3331). Physically, the material on each side of the reflection plane must 
have the same cijkl values because one can interchange which side of the mirror plane is 

labeled with the original (xyz) and reflected (xyz) systems. The only way that both 

c3331 = −c3331 and c3331 = c3331 can be satisfied is if c3331 = 0. In terms of the 6 × 6 
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convention of Eq. 2.25, the constants c14, c15, c24, c25, c34, c35, c46, c56 and their 
symmetric counterparts (cij = cji) are all zero. 

2.5✰ Show that an isotropic medium that is both compressible (that is, K is some finite, non-
zero value) and has Poisson’s ratio ν = ½ must be a compressible liquid. Hint: Show that 
the shear modulus and Young’s modulus are both zero, that is, μ = 0 and E = 0. 

Eq. 2.62 shows that when ν = ½, μ = E = 0 and K = λ. Hence, from Eq. 2.57, the material 
can sustain a state of pressure with σ11 = σ22 = σ33 = K(ε11 + ε22 + ε33), but the shear 
components σ23 = σ31 = σ12 = 0 for any imposed deformation state. It is elastically 
equivalent to a liquid. 

2.6 Show that the matrix ∂ui/∂xj consists of a symmetric matrix (the strain matrix εij) plus 
an antisymmetric matrix (the rotation matrix ωij). 

The components of strain εij and ωij are defined in terms of ∂ui/∂xj in Eqs. 2.5 and 2.10 
and also Fig. 2.2. The elastic distortion, Eq. 2.9, is simply the sum of εij and ωij. 

2.7✰ For an isotropic substance, derive the stress-strain, strain-displacement, and stress-
displacement relations in cylindrical coordinates. 

The solution is a standard derivation in introductory texts on elasticity. See for 
example, https://en.wikipedia.org/wiki/Linear_elasticity 

2.8✰ Use symmetry conditions to deduce the number of independent elastic constants for 
each of the six crystal systems. 

Eq. 2.26 illustrates the 6 x 6 matrix of elastic constants for a cubic system. Relative to 
the cubic system, the tetragonal system has a four-fold 3-axis but only two-fold 1 and 2 
axes. The four-fold 3-axis means that the 1 and 2 axes can be interchanged so that c13 = 
c23 ≠ c12 and c55 = c44 ≠ c66. The complete development for other systems is given in 
texts on crystal physics such as Physical Properties of Crystals: Their Representation by 
Tensors and Matrices by JF Nye (Oxford University Press, 1985, ISBN-10: 0198511655) 
or on crystallography. 

2.9 Use Eq. 2.43 to determine the components of force acting on a surface of area A with 
normal parallel to the z axis. Express your answer in terms of A and the components σij 
of some arbitrary stress state. 

As indicated in the accompanying figure, a force vector F 
acts on an area element that can be represented as a 
vector A = An. Here, the unit normal vector n to the 
surface has components [0 0 1], A has components [0 0 
A3] and F has components [F1, F2, F3]. The nonzero 
components of stress are therefore σ13 = F1/A3, σ23 = 
F2/A3, σ33 = F3/A3. The components of force acting on the 
surface A3 (= A) are F1 = σ13 A, F2 = σ23 A, F3 = σ33 A. 

2.10✰ Derive expressions for the stress and displacement fields produced by a row of point-
force pairs distributed along the axis of a cylinder and acting normal to the axis. Use 

 
Problem 2.9. 
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these results to determine the stress field of a cylindrical rod forced into a smaller 
cylindrical hole coaxially positioned in a larger cylinder. 

This is a cylindrical analog to the spherical geometry of Sec. 2.7b. Similar to Fig. 2.9, 
point force pairs are applied to the inner surface of a cylindrical hole at r = a and the 
pairs extend along the axis of the cylinder. The outer radius R is extended to infinity 
and the outer pressure P = 0. The only displacement component is ur and for an infinite 
body with a cylindrical hole of radius a and internal pressure p, ur = (p/2μ) a2/r (e.g., 
see Timoshenko‡). The non-zero cylindrical components of strain are given by εrr = 
∂ur/∂r and εθθ = ur/r. Using the constitutive relations for an isotropic, elastic solid 
(Eq. 2.57), σrr = −pa2/r2 and σθθ = pa2/r2. 

This stress state can be described by the Airy’s stress function Ψ = −pa2 ln r, where σrr = 
(1/r)(∂Ψ/∂r) and σθθ  = ∂2Ψ/∂r2 (see Sec. 2.5). 
‡ SP Timosheko and JN Goodier, Theory of Elasticity (3rd ed.), McGraw-Hill, 1932, ISBN: 
0070701229. Chapter 4: Two-Dimensional Problems in Polar Coordinates. 

CHAPTER 3: THEORY OF STRAIGHT DISLOCATIONS 

Description: These problems provide examples of: the interaction of straight dislocations with 
other straight dislocations as well free and fixed surfaces; end effects caused by free surfaces; 
concepts of hollow dislocation cores; and the volume change generated by an edge 
dislocation. 

3.1 In Figure 3.6, insert a screw dislocation of the same sign midway between the original 
screw and the surface. Compute the force exerted on this second screw. Will this force 
tend to move the inserted dislocation away from or 
toward the surface? 

Toward the surface. The accompanying figure shows 
the original screw (A), its image (A'), the inserted screw 
(B), and its image (B'). From Eq. 3.26, the force in the x-
direction exerted on B is (μb2/4π)(1/ℓAB + 1/ℓB’B + 
1/ℓA’B) = (μb2/4π) (2/ℓ + 1/ℓ + 2/3ℓ). The three 
contributions to this force all act to move the inserted 
dislocation toward the surface. 

3.2 Discuss the interaction between two edge dislocations on parallel glide planes (Figure 
3.20). If dislocation A is fixed, find the possible 
equilibrium positions of dislocation B in glide. 

The accompanying figure shows a modified version of 
Fig. 3.11a that depicts dislocation B in the stress field of 
dislocation A. Sectors 1 and 3 have σxy > 0 and sectors 2 
and 4 have σxy < 0. Thus, the glide force Fx/L generates 
unstable equilibrium positions at x = ±y (along the 
boundaries between sectors 1-2 and 3-4) and a stable 
equilibrium position at x = 0 (the boundary between 

 
Problem 3.1. 

 
Problem 3.2 
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sectors 2-3). Although the question focuses on glide, it is noted that all sectors 1-4 have 
σxx < 0 and thus the climb force Fy/L < 0 according to Eq. 3.65 (Note: another 
contribution to thermodynamic force for climb would arise from the free energy of 
formation of a vacancy).  

3.3 Consider an edge dislocation with ξ along the z axis and b inclined at 45° to the x and y 
axes. An external stress with components σxx, σyy, and σzz is present. Use Eq. 3.93 to 
determine the total force per unit length on the dislocation. Discuss the physical 
significance of the various terms. 

Eq. 3.93 states that the thermodynamic force per unit 
length of dislocation is F/L = (b ⋅ σ) × ξ. The 
accompanying figure shows that the components 
[bx, by, bz] = b[cos θ, sin θ, 0] and [ξx, ξy, ξz] = [0, 0, 1], 
where θ = 45° in this case. Therefore, the components 
of the dot product (b ⋅ σ) are b[σxx cos θ + σxy sin θ, σyx 
cos θ + σyy sin θ, 0]. The components of F/L are then 
[Fx/L, Fy/L, Fz/L] = b[σyx cos θ + σyy sin θ, −(σxx cos θ + σxy 

sin θ), 0]. Since θ = 45° and σxy = σyx = 0, the final result is Fx/L = σyyb/√2, Fy/L = 

−σxxb/√2, and Fz/L = 0. 

A physical interpretation of the forces is realized by working in the rotated x′-y′-z′ 
coordinate system shown in the accompanying figure, where Fx′/L = Fglide/L and Fy′/L 
= Fclimb/L). The components [bx′, by′, bz′] = b[1, 0, 0] and [ξx′, ξy′, ξz′] = [0, 0, 1] so the 
components of F/L are Fx′/L = σy′x′b (= Fglide/L), Fy′/L = −σy′y′b (= Fclimb/L), and Fz′/L = 0. 

Eq. 2.45 can be used with the transformation matrix [Til] that follows Eq. 2.54 to obtain 
σy′x′ = (−σxx + σyy)/2 and σy′y′ = (σxx + σyy)/2 so that Fglide/L = (−σxx + σyy)b/2 and 
Fclimb/L = −(σxx + σyy)b/2. Thus, if a pressure p is imposed, Fglide/L = 0 and Fclimb/L = p b. 
The result makes physical sense because an applied pressure does not impose any 
shear on the slip plane, but it does impose a thermodynamic driving force for the 
dislocation to climb. 

3.4✰ Consider two straight edge dislocations with mutually orthogonal Burgers vectors of 
the same magnitude (Figure 3.21). Calculate the energy to move dislocation A from x = 
∞ to x = a within the slip plane. The result shows that dislocations with nonparallel and 
even orthogonal Burgers vectors interact in general. 

The shear stress from dislocation B is given in Eqs. 3.45 but the 
coordinate system used in those equations is rotated clockwise 
by 90° relative to the coordinate system in the accompanying 
figure. The position (x, 0) in the figure is equivalent to using Eqs. 
3.45 with x = −c and y = −x. Thus, the shear stress from 
dislocation B at some position (x, 0) in the accompanying figure 
is σxy(x) = −[μb/2π(1 − ν)]c(x2 − c2)/(x2 + c2)2. The expression 
shows that σxy < 0 for x > c and σxy > 0 for x < c and therefore 

 
Problem 3.3. 

 
Problem 3.4. 
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dislocation A is attracted to the position x = c. This can be confirmed by noting the sign 
of shear stress in the lower left quadrant of the accompanying figure for Prob. 3.2. 

The energy (or work) to move dislocation A is calculated by first noting that dislocation 
B produces a thermodynamic force Fx/L = σxy(x)b on dislocation A . Therefore, an 
external force (Fx/L)ext = −σxy(x)b must be applied to dislocation A to hold it in 
equilibrium and the work, (Fx/L)ext dx, done by the external force to move A by dx 
equals the energy change. The total energy change per unit length of dislocation is 
therefore 

Energy

𝐿
= ∫ (

𝐹𝑥

𝐿
)

ext
𝑑𝑥

𝑎

∞

= ∫ −σ𝑥𝑦𝑏 𝑑𝑥
𝑎

∞

= 𝑀𝑐 ∫
𝑥2

𝑋2
 𝑑𝑥

𝑎

∞

− 𝑀𝑐 ∫
𝑐2

𝑋2
 𝑑𝑥

𝑎

∞

 

where M = μb2/2π(1 – ν) and X = x2 + c2. The integral of Mcx2/X2 dx = Mc[−x/2X + 
∫dx/2X] and that of −Mc3/X2 dx = −Mc[x/2X + ∫dx/2X]‡. Evaluation of the integral from x 
= R to x = a furnishes 

Energy

𝐿
= − [

𝑀𝑐𝑥

𝑥2 + 𝑐2
]

𝑥=𝑅

𝑥=𝑎

= −
𝜇𝑏2

2𝜋(1 − 𝜈)
[

𝑐𝑎

𝑎2 + 𝑐2
−

𝑐𝑅

𝑅2 + 𝑐2
] 

Thus, the energy change when dislocation A is moved from x = R to x = c is negative for 
R > a, consistent with the attractive Peach-Koehler force over the range R > c. The 
second term vanishes in the limit R → ∞. 
‡From CRC Standard Mathematical Tables (21st ed.), CRC Press, integrals 111 and 118. 

3.5 Consider a straight screw dislocation parallel to a rigid surface that cannot deform. 
Show that the screw is repelled from the surface by a force equivalent to that from an 
image dislocation of the same sign and magnitude. This result is relevant for 
dislocations near a surface with a hard oxide layer upon it. 

Unlike the free surface case in Fig. 3.6, the rigid 
surface requires equal and opposite displacements 
there from the dislocation and its image. This is 
accomplished by a like-sign image at l. This 
configuration is demonstrated in the 
accompanying figure showing two screw 
dislocations of the same sign, the formula for uz 
from Eq. 3.2, and the Burgers circuits for each 
dislocation (ref. Fig. 1.21). Along the surface (x = 
0), the positive values of uz from the real dislocation (A) on the left are canceled by the 
negative values of uz from the like-signed image (A′) on the right. Thus, the image force 
F/L = −μb2/4πl from a rigid boundary is repulsive. 

3.6✰ Suppose that the dislocations in Prob. 3.2 are in a copper crystal. Compute the glide 
and climb forces on dislocation B if x1 = 7 nm, y1 = 3 nm. Compare these forces with 

those produced by homogeneous external stresses σxy = 10−3, σyy = 10−3E. Note the 

correction in the question statement (red text). 
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From Appendix A1, the elastic shear modulus μ = 5.46 x 1010 Pa and Poisson’s ratio ν = 
0.324. The Burgers vector magnitude b is 0.254 nm. The glide and climb forces are 
given by Eqs. 3.63 and 3.65 with the stress field for an infinite straight edge dislocation 

in an infinite isotropic body given by Eq. 3.45. The result is Fglide/L = Fx/L = 1.9E-4 μ  nm 

and Fclimb/L = Fy/L = 9.8E-4 μ  nm. The homogeneous external stress would produce 

Fx/L = 10-3 μ  0.254 nm = 2.5E-4 μ  nm and Fy/L = 1E-3 E  b = 1E-3  2 μ (1 + ν)  0.254 

nm = 6.7E-4 μ  nm. Thus, the glide and climb forces produced by the dislocation 
interaction are comparable to those produced by applied homogeneous stresses ~ 10-3 
× elastic modulus (E or μ). 

3.7✰ The results for a screw dislocation in an infinite medium give virtual stresses on the 
ends of a coaxial finite cylinder enclosing the dislocation (Eq. 3.5). These virtual stresses 
can be removed by superposition. Consider the counterpart case of an edge 
dislocation. Show that no long-range stresses exist but that local forces do exist on the 
cylinder end. Estimate the length over which the perturbation caused by these forces 
extends. Hint: Include the stresses from ψR. 

From Eq. 3.46, the solution for the infinite medium gives virtual stresses and the 
nonzero component of interest that generates local forces on the cylinder ends is σzz = 
−C/r, where C = μbν (sin θ)/[π(1 – ν)]. The superposed stress function ΨR (Eq. 3.50) 
generates σzz(R) = −C 2r/R2. The force on the end of the cylinder is obtained by the 
integration, 2π∫σzz r dr, from r = 0 to r over the end of the cylinder, with the result 
−2πCr. Similarly, integration of the contribution from the stress function ΨR gives 

2π∫σzz(R) r dr = 2Cr3/R2. The contributions −Cr and 2Cr3/R2 cancel when r = R √3/2. Thus, 

end effects from free surfaces are expected to extend a distance R √3/2 from the free 
surface. 

3.8✰ Use the results of Exercise 3.5 to predict the equilibrium radius r0 of a hollow 
dislocation. Assume the surface energy γ of the hollow tube equals that of a bulk 
surface. For copper, with γ = 1.7 J/m2, how large a Burgers vector would be required to 
give a hollow dislocation of radius r0 = 1 nm (Frank 1951c)? 

MATLAB. One approach is to compute the energy change, Δℰ = the change in elastic 
strain energy upon introduction of a hollow tube of radius rh plus the increase in 
surface energy upon introduction of a hollow tube. 

The reduction in elastic energy upon introduction of the hollow tube is comprised of 
two terms. The first is W/L given by Eq. 3.54 with R = rh. This quantity, 
[μb2/(4π(1 − ν))] ln(rh/r0), represents the elastic strain energy that is removed when the 
material within a tube of radius rh is removed from an edge dislocation with core cutoff 
r0, without allowing the new surface at rh to relax. The second quantity, μb2/(16(1 – ν)), 
is the decrease in energy upon relaxation of the new surface to a free surface. This 
expression is obtained by ½ ∫ σrr(r = rh) ur(r = rh) 2πrh dθ, where σrr(r = rh) is given by Eq. 
3.46 and ur(r = rh) is given by Eq. 3.53 in Exercise 3.5. The reduction in elastic energy is 
therefore the sum, [μb2/(4π(1 – ν))] ln(rh/r0) + μb2/(16(1 – ν)). 
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The energy change is therefore Δℰ = −[μb2/(4π(1 – ν))] ln(rh/r0) − μb2/(16(1 – ν)) + 
2πrhγ, where the last term is the increase in surface energy per unit length of 
dislocation. The equilibrium condition, ∂(Δℰ)/∂rh = 0, furnishes the result 
rh = μb2/(8π(1 – ν)). The Burgers vector magnitude required to obtain rh = 1 nm is 
determined by substituting μ = 5.46E10 Pa, ν = 0.324, and γ = 1.7 J/m2 for copper. The 
result is b = 0.56 nm. 

This solution adopts the standard assumption that any hollow dislocation has right-
circular cylindrical symmetry. However, the core for edges is likely to deviate from that 
configuration ( see J. P. Hirth, Acta Materialia, 47, 1999). 

3.9 Consider a right-handed screw dislocation parallel to the surfaces of an infinite plate 
(Figure 3.22). The image dislocation B satisfies the boundary condition on surface 1 but 
leaves a residual stress on surface 2. Thus, an additional image E is required, which in 
turn requires an image F, etc. A similar set is associated with image C. The result is an 
infinite set of image dislocations. Show that the sum of all the image stresses acting at 
the origin on dislocation A is 

1 1

4 (1/ ) 4 (1/ )
yz

n n

b b

d n d d n d

 

=− =−

 
 = − =

 −  +
 

 

 The solution to this sum is (Morse and Feshbach 1951: 383) 

cot /
4

yz

b
l d

d


 = − 

 

 Note that the set of right-handed image dislocations is symmetric about the origin, so 
that σyz at the origin is produced completely by the left-handed set. 

The accompanying figure shows the 
first, second, and third-order images 
created by the right-handed (R) 
screw dislocation at x = 0. A1 and A2 
are the first-order, left-handed (L) 
images of A about surfaces 1 and 2, 
respectively. A12 and A21 are the 
right-handed (R), second-order 
images, created by the image of A1 
about surface 2 and the image of A2 
about surface 1, respectively. Likewise, A121 and A212 are the left-handed (L) third-order 
images of A12 about surface 1 and A21 about surface 2, respectively. The distances of 
the images to dislocation A are noted below each dislocation. The second-order images 
A12 and A21 are both right-handed and symmetrically positioned about A. Thus, they 
collectively exert zero force on A. The same is true for all even-order images. 

The remaining odd-order images are left-handed and therefore exert an attractive 
force on A. From Eq. 3.3, each one to the left of A generates σyz = −μb/2πD, where 
distance D = (2n)d – 2l, n = 1, 2, etc. Each one to the right of A generates σyz = μb/2πD, 
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where distance D = (2n)d + 2l, n = 0, 1, 2, etc. The contribution from the ones to the left 
can be restated as σyz = μb/2πD, where D = (2n)d + 2l, n = –1, –2, etc. Adding this to the 
contributions from those on the right gives the second sum that is stated in the 
question (the first sum is obtained through simple manipulation of signs). 

3.10✰ Show that the external volume change for an edge dislocation located on the axis of a 
right-circular cylinder is zero. This result is true for a dislocation in a finite body of any 
shape, since one can always create the dislocation by applying equal and opposite 
tractions to opposite sides of a glide plane cut. This can be demonstrated from Eq. 2.93 

Similar to the derivation leading up to Eq. 2.93, the volume change per unit length of 
dislocation is ∫rur dθ. The displacement ur for an edge dislocation in an infinite medium 
is given by Eq. 3.49. The only significant term is the first which integrates to zero over 
the domain from θ = 0 to 2π. The second is also zero for a similar reason. The third 
integral involves ∫θ cos θ dθ = cos θ + θ sin θ using integration by parts. Thus, the third 
integral is also zero. The zero change of volume is exact. This exact nature is related to 
the work of Eshelby and Rice, discussed in Sec. 3.8. 

CHAPTER 4: THEORY OF CURVED DISLOCATIONS 

Description: These problems offer practice in identifying the vacancy/interstitial nature of 
loops formed by dislocation motion, the transport of matter associated with dislocation 
motion, and the use of Eqs. 4.30 and 4.20 to compute the stress and displacement fields of 
curved dislocations. 

4.1 Consider the pure screw dislocation lying along ABC in Figure 4.7. A screw with a loop 

results if AB is moved conservatively through positions AB, AB, etc., while BC is held 
fixed. Is the loop a vacancy or an interstitial loop? 

It is a vacancy loop. Move AB to the position A′B′ to obtain the configuration shown in 
the accompanying figure. Draw the sense ξ and Burgers vector b on the newly created 
section of loop (B′B), consistent with the 
principle of continuity of a dislocation, Sec. 1.3c. 
A Burgers circuit using the SF/RH convention 
described in Fig. 1.21 reveals a closure SF = b. 
Note how S and F interpenetrate across the 
plane of the loop, consistent with a vacancy 
loop. 

4.2 The formation of the loop in Prob. 4.1 requires material transport. Where is the source 
or sink for this matter? Hint: Consider that the screw emerges normal to a free surface 
at A and study the configuration at A as the loop is formed. 

The motion of the screw AB creates a circular disc where AB intersects the surface. 
Hence the screw motion effectively transports material to the surface. 

4.3 Use Eq. 4.30 to derive the stress field for a pure screw dislocation in an infinite 
medium. 
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Eq. 4.30 provides the stress field produced by a closed dislocation loop in an infinite, 
isotropic, elastic medium. For this application, consider a screw dislocation extending 
from z′ = −∞ to +∞, with Burgers vector b along the z-axis. The stress component σyz at 
position (x, 0, 0) is obtained from Eq. 4.30, with α = y and β = z. Other portions of the 
loop are assumed to be sufficiently distant from (x, 0, 0) to have a relatively small 
contribution. The first term of Eq. 4.30 becomes 

σ𝑦𝑧 = −
𝜇𝑏

8𝜋
∫ ε𝑥𝑧𝑦

𝜕

𝜕𝑥′

2

𝑅
𝑑𝑧′

∞

−∞

 

where R = [(x’−x)2 + (y’−y)2 +(z’−z)2]1/2 is the distance from the point (x, y, z) where the 
stress is to be determined to the point (x’, y’, z′) where a segment of dislocation is 
positioned, over the range z′ = −∞ to +∞. The result above uses the relation ∇′2R = 2/R 
as noted in Eq. 4.19. The permutation tensor εxzy = −1 and (∂/∂x′) (2/R) = −2(x′−x)/R3, 
which equals 2x/(x2 + z′2)3/2 for the case where the stress is evaluated at (x, 0, 0) and 
the dislocation segment dz′ is positioned at (0, 0, z′). The integral becomes 

σ𝑦𝑧 =
𝜇𝑏

4𝜋
∫

𝑥

(𝑥2 + 𝑧′2)3/2
𝑑𝑧′

∞

−∞

=
𝜇𝑏

4𝜋

𝑧′

𝑥(𝑥2 + 𝑧′2)1/2]
−∞

∞

=
𝜇𝑏

2𝜋𝑥
 

The derivation for σyz at position (x, 0, 0) can be extended to a cylindrical coordinate 
system by replacing x with r and y with θ so that σθz = μb/2πr, consistent with Eq. 3.4. 

4.4✰ Demonstrate that the displacements u(r) given by Eq. 4.20 change discontinuously by 
Δu = ±b if the point r is intersected by the surface. 

The first term of Eq. 4.20 is −bΩ/4π where the 
solid angle Ω is defined in Eq. 4.21. Drawing 
on the development in Fig. 4.4 where the 
vectors r, r′, and R are defined, consider a 
point with position vector r located a distance 
h above a dislocation loop defined by area A 
and radius a as shown in the accompanying 
figure. Then R = (r2 + h2)1/2, dA = r dr dθ, and R 

 dA = −h 2π r dr. The solid angle expression 
from Eq. 4.21 is then 

Ω = −2𝜋 ∫
−ℎ 𝑟 𝑑𝑟

(𝑟2 + ℎ2)3/2

𝑎

0

=
−2πℎ

(𝑟2 + ℎ2)1/2
]

0

𝑎

= [
−2πℎ

(𝑎2 + ℎ2)1/2
+ 1] = 2π as ℎ → 0+ 

Substitution of Ω(0+) = 2π into the first term of Eq. 4.20 gives u(h = 0+) = −b/2. A similar 
calculation gives u(h = 0−) = b/2 for a point positioned just below the dislocation loop. 

The change in sign occurs because R  dA changes sign since R points upward for h = 0− 
but points downward for h = 0+. The other terms in Eq. 4.20 are not discontinuous from 
0+ to 0− and therefore the jump in displacement is Δu = u(h = 0+) − u(h = 0−) = −b. 
Physical examples of a jump are shown in Figs. 1.19 and 1.23. 
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4.5✰ Show that the displacements given by Eq. 4.20 are dependent only on the configuration 
of the dislocation line that forms the loop and not on the shape of the surface A, 
provided surface A is not intersected in the manner of Prob. 4.4. 

The integrals in Eq. 4.20 can be converted to line integrals so that the results are 
independent of the shape of the (cut) surface and only dependent on the configuration 
of the dislocation. Recall the result for Prob. 1.7. 

CHAPTER 5: APPLICATIONS TO DISLOCATION INTERACTIONS 

Description: These problems provide examples of interaction energies and forces between 
loops and parallel and nonparallel straight dislocations, as well as stress fields of infinitesimal 
loops and angular dislocations. 

5.1 Consider two parallel edge dislocations A and B with Burgers vectors inclined at an 
angle α. Dislocation A is constrained to remain at the origin of the coordinate system 
and both dislocations are constrained to remain parallel. 

The accompanying figure clarifies the geometry, where 
dislocation A has a Burgers vector along the x-direction so 
that bA = [bA, 0, 0] and dislocation B has bB = 
[bB cos α, bB sin α, 0].  

a. Explicitly express the interaction force on B as a function 
of R, θ, and α. 

Eqs. 5.18 and 5.19 are used to determine FR/L and Fθ/L, 
respectively. 

The first term in Eq. 5.18 is zero since bA ⋅ ξ = bB ⋅ ξ = 0. Only the second term 
contributes and thus 
FR/L = μbAbB(cos α)/2π(1 − ν)R. 

For Eq. 5.19, bA  R = bAR cos θ, bB  R = bBR cos(θ – α), bA x R = bAR sin θ k, bB x R = 
bBR (cos α sin θ −sin α cos θ) k, where ξA = ξB = k, a unit vector along the 3-axis. After 
substitution into Eq. 5.19 and simplification of the result, one finds  
Fθ/L = μbAbB sin(2θ – α)/2π (1 – ν)R. 

b. Is there an equilibrium position for dislocation B? If so, where? 

Yes. FR/L = 0 at α = π/2 and Fθ/L = 0 at α = 2θ. 

c. For constant R, show that Fθ vanishes when θ = α/2. 

The result in part (b) indicates that Fθ/L = 0 when θ = α/2. Thus, both FR/L = 0 and 
Fθ/L = 0 when α = π/2 and θ = π/4. 

5.2✰ Graphically compare the interaction force per unit length for two cases: (a) the two 
coaxial dislocation loops of Figure 5.2 as a function of z for the case a = c = 200b; (b) 
two parallel edge dislocations in the same glide plane as a function of their separation 
in the glide plane. In which case does the interaction force decrease more rapidly with 
increasing separation? Why? 
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MATLAB. Eq. 5.26 provides the interaction energy W12 for a pair of circular dislocation 
loops as shown in Fig. 5.2, with radius a and Burgers vector b1 = b2 = bez for both loops. 
The interaction energy per unit length is therefore W12/L= C k(K – E), where 
k2 =  4/(4 + a2/z2) and K(k) and E(k) are complete elliptic integrals of the first and second 
kind, respectively, and C = μb2/2π(1 – ν). The interaction force in the z direction per 
unit length of loop is Fz/L = −∂(W12/L)/∂z. 
For comparison, Eq. 5.18 shows that two 
infinitely long edge dislocations with b1 = 
b2 = bez separated by z have an 
interaction force Fz/L = C/R. The 
accompanying figure shows Fz/L for two 
circular loops of radius a = 200 b and for 
the two infinitely long edge dislocations. 
The loop interaction falls off more rapidly 
because the field of the loop is limited 
approximately to a sphere of radius a 
according to St. Venant's principle. 

5.3✰ Consider two perpendicular screw dislocations and determine the local interaction 
force as a function of position on the dislocation line. Assume that one screw is right-
handed and the other left-handed and that they are forced together by uniform 
external stresses. Qualitatively deduce the dislocation configuration when the 
interaction forces balance those caused by the applied stresses. 

Eq. 5.48 defines the force function δF = 
δF(y2, x) − δF(y1, x), where δF is the force 
exerted on dislocation segment dl1 at 
coordinate x by dislocation 2 that spans 
from coordinates y1 to y2 along ξ2. The 
coordinates x and y are defined in Figure 
5.4, which is reproduced here for 
convenience. The dislocations are 
oppositely signed, perpendicular screws 
so θ = π/2 in the figure. Dislocation 1 is 
chosen to be right-handed, so that 
b1 ⋅ ξ1 = b, and dislocation 2 is chosen to 

be left-handed, so that b2 = −bξ2 and b2 ⋅ ξ2 = −b. 

Eq. 5.50 is used to determine δF(y, x). The first term, Eq. 5.50a, is the only nonzero 
contribution because the dot and cross products in terms b, c, and d are zero. Eq. 5.50a 
is rewritten as Eq. 5.55a (p. 121, top). In that expression, only the first term survives 
since θ = π/2 and b1e = b2e = 0. Therefore, δF(y, x) = −(μb2/4π)(z/ρR) dl1  e3, where ρ, R, 
and h3 are defined near the top of p. 122. (Note: the same result for δF(y, x) is obtained 
from the first term of the original Eq. 5.50a, where b2 × b1 = −b2 e3, ∇(∇2R) = 
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∇(2/R) = (∂/∂x)(2/R2)e1 + (∂/∂y)(2/R) e2 + (∂/∂z)(2/R)e3, dl1 × dl2 = dl1 ξ1 × dy ξ2 = dl1 dy 
e3, and ∫(∂/∂z)(1/R) dy = z/ρR.) 

Thus, δF = δF(y2, x) − δF(y1, x), where y1 = −∞ and y2  = +∞ are chosen to model an 
infinitely long dislocation 2. δF(+∞, x) = 0 and δF(−∞, x) = −(μb2/4π)(z/[(y1 + R)R] dl1 e3 
as y1 → −∞. The limit is evaluated by noting that for x and z ≪ y1,  a Taylors series can 
be used to write ρ(x, y1, z) ≡ y1 + R = ρ(0, y1, 0) + (∂ρ/∂x)(0,y,0) x + (∂ρ/∂z)(0,y,0) z + 
(∂2ρ/∂x2)(0,y,0) x2/2 + (∂2ρ/∂z2)(0,y,0) z2/2 + higher order terms. ρ(0, y1, 0) = (∂ρ/∂x)(0,y,0) = 
(∂ρ/∂z)(0,y,0)  = 0 and (∂2ρ/∂x2)(0,y,0) = (∂2ρ/∂z2)(0,y,0) = 1/R. Therefore, δF(−∞, x) = 
−[μb2z/(8π(x2 + z2))] dl1 e3 and δF = μb2z/(8π(x2 + z2))] dl1 e3. One can confirm that δF 
has dimensions of force and that it acts along e3, consistent with segment dl1  being 
repelled the oppositely signed, perpendicular, screw dislocation (2). δF is largest in 
magnitude at x = 0, which corresponds to the minimum perpendicular distance 
between dl1 and dislocation 2. 

The interaction force is balanced by those from a uniform applied stress when δF − σb 
dl1 e3 = 0. Therefore, z is a maximum at x = 0, where the repulsive force is largest. 
Figure 22.2 shows an approximate sketch of the configuration. The exact equilibrium 
configuration must include the additional force exerted on dl1 by other segments along 
dislocation 1. 

5.4 Solve for the local interaction forces between a screw dislocation and a perpendicular 
edge dislocation whose Burgers vector is parallel to the line of closest approach 
between the two. Show that the interaction forces on one dislocation are 
perpendicular to the interaction forces on the other, so that there is no equal and 
opposite action and reaction. Discuss this apparent violation of Newton’s law.  

The derivation is analogous to that in Prob. 5.1. Again, sin θ = 1 and cos θ = 0. The only 
non-zero terms in Eq. 5.55 are first one on line 3 of (c) for the force on the screw and 
the second term in (b) for the force on the edge. The specific result is given in Hartley 
and Hirth (1965a). The force on the edge is [μb2/2h(1 – ν)] sin2 θ cos2 θ cos 2θ. The 
force on the screw is (μb2/4πh) sin 2θ. The integral interaction force is zero but there 
are local interaction forces that are orthogonal for the two dislocations. This arises 
because the force is a virtual thermodynamic force and there can be torques as well as 
direct forces. Thus, unlike the parallel dislocation case, the forces are not equal and 
opposite (also unlike Newton's laws) 

5.5 Compute the maximum local interaction force between the loop of Figure 5.12 and a 
straight screw dislocation lying in the same glide plane and with its Burgers vector 
parallel to the z axis. 

Insert an infinite, straight screw dislocation along the z axis in Fig. 5.12, with b = b ez 
and ξ = ez, as shown in the accompanying figure. Eq. 3.3 indicates that the screw 
generates σxz (= σzx) and σyz (= σzy) components of stress. The slip plane for the loop is 
the y = 0 plane and the Burgers vector and sense ξ are defined such that the material 
just below the loop (y = 0−) is sheared by b = b ez relative to material just above the 
loop, equivalent to a negative shear strain, εyz < 0, across the slip plane. Thus, an 
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applied shear stress σyz > 0 will act in an 
opposite fashion to the relative shear across 
the slip plane. The straight screw dislocation 
will therefore generate Peach-Koehler forces on 
the segments of the loop, of magnitude 
F/L = σyzb, in a direction that shrinks the loop. 

The relevant stress generated by the straight 
screw dislocation is obtained by setting y = 0 in 
Eq. 3.3 so that σyz = μb/2πx. Segments (2) and 
(4) of the loop have equal and opposite Peach-
Koehler forces, Fz/L = −μb2/2πx on segment (2) 
and Fz/L = μb2/2πx on segment (4). The sum of the forces on (2) and (4) is zero. 
Segment (1) has a total force Fx = (Fx/L)Δz = [μb2/2πx2]Δz and Segment (3) has a total 
force Fx = (Fx/L)Δz = −[μb2/2π(x2 + Δx)]Δz. The net force exerted on the loop by the 
infinite screw is therefore Fx = [μb2/2π][(1/x2) − (1/(x2 + Δx))]Δz. The force becomes 
singular in the vicinity of x2 = 0 and also x2 = − Δx. These are regions where the elastic 
analysis given by Eq. 3.3 breaks down. 

Another approach to the solution is use Eq. 5.56, where the first term in (c) is non-
vanishing. After one integration, the result is the same as that given above. 

5.6✰ Compute the five stress components other than yz (Eq. 5.70) for the angular 
dislocation. 

The geometry is shown in Figure 5.10. The results for the other components are given 
by Yoffe EH (1961) Phil. Mag. 6: 1147. 

5.7✰ Compute the six general stress components around the infinitesimal glide dislocation 
loop in Figure 5.12. 

The results are given by Kroupa F (1962a) Czech, J. Phys. 12B: 191. 

5.8 Consider four parallel edge dislocations lying on the same glide plane. There is no 
external stress but they are blocked at both ends of an interval L by barriers that exert 
short-range repulsive forces, extending over atomic dimensions only. Determine the 
equilibrium configuration of the array if the dislocations are constrained not to climb. 

Dislocations A and D will reside at the ends of the interval of length L so the distance 
between dislocations is x, L − 2x, and x as shown in the 
accompanying figure. By symmetry, one only needs to 
determine the equilibrium position of B. The force on B 
is proportional to 1/x – 1/(L – 2x) – 1/(L – x). Setting 
this equal to zero furnishes the quadratic equation 5x2 
– 5Lx + L2 = 0. The solution is xequil = ½ (1 ± 1/√5)L = 
0.277 L. 

5.9✰ Compute the long-range stress field around a dislocation dipole consisting of two 
parallel edge dislocations with equal and opposite Burgers vectors. Assume they are in 

 
Problem 5.8. 

 
Problem 5.5. 

https://www.cambridge.org/us/academic/subjects/engineering/materials-science/theory-dislocations-3rd-edition?format=HB&isbn=9780521864367


Student Version – Solutions to Problems, Theory of Dislocations, 3rd Ed. 
Cambridge University Press (2017). Publisher website 

18/74 

glide equilibrium with glide planes that are separated by a distance 2b. Hint: Use the 
interaction force on an element as a “test probe” for the stress. 

MATLAB. The relevant geometry for the two dislocations, A and B, is shown in the 
accompanying Figure 1 (below). Consider Eq. 3.45 for the stress field from dislocation 
A. The superposition of σxy from A and B gives the following, 

𝜎𝑥𝑦 =
𝑥(𝑥2 − 𝑦2)

(𝑥2 + 𝑦2)2
−

𝑥′(𝑥′2 − 𝑦′2)

(𝑥′2 + 𝑦′2)2
 

where x′ = x – 2b and y′ = y – 2b. The accompanying Figure 2 shows a plot of σxy as a 
function of x/b. Also shown is σxy from only A; it varies as 1/x. The result shows that σxy 
from the A-B dipole falls off faster than that from A alone, thereby demonstrating St. 
Venant's principle. 

 
 

 
Problem 5.9, Figure 1. 

 
Problem 5.9, Figure 2. 

 

5.10✰ Discuss the role of grain boundaries as sources of image stresses in real crystals. 

In the isotropic approximation, grain boundaries do not produce image stresses. For 
anisotropic analyses, there will be an elastic mismatch at the grain boundary except for 
special coincidence or twin boundaries. Hence, general grain boundaries will generate 
image forces and contribute to interactions between dislocations. While not exact, the 
relative importance of image forces roughly scales with the anisotropy ratio, values of 
which are listed in Appendix A. 

CHAPTER 6: APPLICATIONS TO SELF ENERGIES 

Description: These problems provide examples of the energy of various polygonal 
dislocations, including edge and screw bow outs, loops at free surfaces, zig-zag formation 
along straight dislocations, as well as triangular, square, hexagonal, and circular loops. 

6.1✰ Compute the energy of a semi-hexagonal dislocation loop lying normal to and 
terminating at a free surface. The Burgers vector is parallel to the free surface. Use a 
simple image construction. Compare the results with those of Eqs. 6.72 and 6.73. 

The accompanying Figure 1 shows the geometry of the semi-hexagonal loop (solid 
lines) and the image (dashed lines). The sense of the loop is continuous (clockwise) and 
b is the same for all segments 1-6. Thus, segments 2 and 5 are oppositely signed 
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segments, consistent with a free-surface image 
construction. Segment 6 is an image of segment 1, 
and 4 is an image of 3. This is evident if the sense 
(and Burgers vector) of 6 and 4 are reversed. 

Eq. 6.5 can be used for the sum of the self and 
interaction energies and compared to the energy 
change for a large bow-out that forms on a screw 
dislocation (Eq. 6.72) or edge dislocation (Eq. 
6.73): 

 

𝑊

𝐶
= 3(2 − 𝜈) [ln

𝐿

𝜌
− 0.84] = 5ln

𝐿

𝜌
− 4.2 for 𝜈 =

1

3
 (hexagonal loop, Fig. 6.7) 

Δ𝑊

𝐶
= (1 +

𝜈

2
) ln

𝐿

𝜌
− 0.04𝜈 − 2.05 = 1.2ln

𝐿

𝜌
− 2.1 for 𝜈 =

1

3
 (screw bow out, Fig. 6.9) 

Δ𝑊

𝐶
= (1 −

3𝜈

2
) ln

𝐿

𝜌
+ 2𝜈 − 2.05 = 0.5ln

𝐿

𝜌
− 1.4 for 𝜈 =

1

3
 (edge bow out, Fig. 6.9) 

where 𝐶 =
𝜇𝑏2𝐿

4𝜋(1 − 𝜈)
 

A bow-out on an edge dislocation has the smallest logarithmic coefficient, followed by 
a bow out on a screw. A bow out at a free surface (hexagonal loop) has the largest 
logarithmic coefficient because the strong attraction between segments 1 and 5 is 
larger than the weak interaction of segment CD with AB and EF (Fig. 6.9). Thus, a semi-
hexagonal bow out on a screw or edge dislocation is more likely than one at a free 
surface. This calculation does not include the additional creation (or removal) of a 
ledge at the surface for the case of a bow out at a surface. 

Extra Material: Calculation of energies of loops can be tedious and thus the terms for 
the energy of a hexagonal loop are provided. 

For two coplanar, non-parallel segments, Eq. 6.41 can be used to calculate the 
interaction energy. For the bow out configurations considered here, b is in the (x1 - x2) 
plane of the segments and thus only the term with I(xα, yβ) contributes. Also, b is 
common to all segments so that the b1 x b2 term vanishes. For this case, the interaction 
energy between segments p and q takes the form 

𝑊𝑝𝑞 =
𝜇𝑏2

4𝜋
(𝐶s +

𝐶e

1 − 𝜈
) 𝐼(𝑥𝛼 , 𝑦𝛽) 

The results below list the values of Cs, Ce, and I(xα, yβ) 
for interaction between the segments in the hexagonal 
geometry in the accompanying Figure 1 (above). 

Segments 1 & 2 

In this case, the sense and Burgers vector are both 
changed in sign for segment 1 and Eq. 6.41 is applied. 

 
Problem 6.1, Figure 2. Segments 
1&2. 

 
Problem 6.1, Figure 1. 
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Cs = cos φ 

Ce = 0 

I(xα, yβ) = I(L, L,) + I(0, 0) − I(L, 0) − I(0, L) = 2L ln [(1 + cos φ + 2 cos φ/2)/(1 + cos φ)], 
where the numerator of the ln term arises from I(L, L,) and the denominator from − 
I(L, 0) − I(0, L). I(0, 0) = 0. 

 

Segments 1 & 3 

Similar to the previous case, the sense and Burgers 
vector are both changed in sign for segment 1 and Eq. 
6.41 is applied. 

Cs = cos2φ 

Ce = −sin2φ 

I(xα, yβ) = I(2L, 2L,) + I(L, L) − I(2L, L) − I(L, 2L) where 

I(2L, 2L) = 4L ln(2 + cos 2φ) 

I(L, L) = 2L ln(2 + cos 2φ) 

I(2L, L) = I(L, 2L) = 2L ln(cos φ/2 + ½ + cos 2φ) + 
L ln(2cos φ/2 +2 + cos 2φ) 

 

Segments 1 & 4 

In this case, the segments are parallel and the sense 
and Burgers vector for segment 4 are reversed. 
Application of Eq. 6.45 gives 

Cs = −cos2φ 

Ce = −sin2φ 

I(xα, yβ) = I(L, L,) + I(0, 0) − I(L, 0) − I(0, L) where 

I(L, L) = I(0, 0) = D 

I(L, 0) = I(0, L) = R + (L/2)ln[(R – L)/(R + L)], where R = 
(D2 + L2)1/2 

 

Segments 1 & 5 

In this case, the sense and Burgers vector for segment 5 are reversed and Eq. 6.41 
gives 

Cs = −cos φ 

Ce = 0 

I(xα, yβ) = same as for segments 1 & 3 

 

Segments 1 & 6 

 
Problem 6.1, Figure 3. Segments 
1&3. 

 
Problem 6.1, Figure 4. Segments 
1&4. 
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In this case, the sense and Burgers vector for segment 6 are reversed and Eq. 6.41 
gives 

Cs = −cos2φ 

Ce = sin2φ 

I(xα, yβ) = same as for segments 1 & 2 

 

Segments 2 & 5 

In this case, the segments are parallel and the sense and Burgers vector for segment 5 
are reversed. Application of Eq. 6.45 gives 

Cs = −1 

Ce = 0 

I(xα, yβ) = same as for 1 & 4. 

 

The energy of the hexagonal loop is then expressed as: 

𝑊hexagon = 2𝑊s(screw) + 4𝑊s(mixed) + 4𝑊12 + 2𝑊13 + 2𝑊14 + 4𝑊15 + 2𝑊16 + 𝑊25 

where 

𝑊s(screw) =
𝜇𝑏2

4𝜋
𝐿ln

𝐿

𝑒𝜌
, 𝑊s(mixed) =

𝜇𝑏2

4𝜋
(cos2ϕ +

sin2ϕ

1 − 𝜈
) 𝐿ln

𝐿

𝑒𝜌
,  

where φ is the angle subtended by the Burgers vector and dislocation sense. The 
multiplying factors for each of the Wij terms above occur because within the loop, 

• W12 = W32 = W45 = W56 (mixed-screw 1st nearest neighbors) 

• W13 = W46 (mixed-mixed 2nd nearest neighbors) 

• W14 = W36 (parallel mixed-mixed) 

• W15 = W24 = W26 = W35 (mixed-screw 2nd nearest neighbors) 

• W16 = W34 (mixed-mixed 1st nearest neighbors) 

6.2✰ Suppose that each loop in Prob. 6.1 assumes an unstable equilibrium configuration 
under the same force σb. Which case will have a larger equilibrium value L? 

MATLAB. The energies of the bow out 
configurations in Prob. 6.1 were ranked 
with the coefficient of the logarithmic 
term being largest for the bow out from 
a free surface and smallest for a bow out 
on an edge dislocation. The effect of a 
uniform applied shear stress σ acting on 
the slip plane in the direction of b is to 
generate a Peach-Koehler force, σb, that 
does work, σb Abow out, where the area 
slipped by the bow out is Abow out = 1.3 L2.  

Problem 6.2. 
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The energy to create the bow outs is provided by the W/C and ΔW/C expressions in the 
solution to Prob. 6.1. The accompanying Figure shows a plot of (W − σb 1.3 L2)/C′ as a 
function of L/b, for σb/C = 0.1, where C′ = CL = μb2/(4π(1−ν)). The bow out at a free 
surface has the largest unstable equilibrium value (shown by the location U). This is 
logical because the bow out at a free surface has the largest prelogarithmic factor 
among the cases considered. At this value of stress, the “on screw” and “on edge” 
cases have sufficient stress to expand over the entire range of L/b shown.  

6.3 Determine the energy of regular polygons with 3, 4, 8, 12, and n sides, assuming equal 
area loops. Compare the results with those given for the circle and the hexagon. Take b 
normal to the plane of the loop in each case. 

MATLAB. The results for the sequence of 
sides 3, 4, 6 rapidly approaches that for 
both the hexagon and the circle. The 
results for cases with 8, 12 sides slightly 
diverge from that for the hexagon and 
approach that for the circle. Results for 
cases with numbers of sides >12 diverge 
increasingly from that for the circle 
because of the missing line length 
associated with the increasing number of 
corner cut-offs. 

The case of n = 3 is considered for 
demonstration purposes. The self energy 

of each segment is given by Eq. 6.18 with pure out-of-plane edge character for the 
loop: 

𝑊s = 𝐿ln
𝐿

𝑒𝜌
, 𝐶 ′ =

𝜇𝑏2

4𝜋(1 − 𝜈)
 

The interaction energy is given by the geometry of Fig. 2 in Prob. 6.1 for W12, except 
that the horizontal segment is rotated downward to make a 60° angle with the inclined 
segment. The interaction energy between adjacent 60° segments is then 

𝑊12 = −𝐶′𝐿[ln(3) − 1] 

The total energy is 

𝑊𝑛=3 edge loop = 𝐶′3𝐿 [ln
𝐿

3𝑒𝜌
+ 1] 

The accompanying figure (above) shows the energies of triangular (n = 3), hexagonal 
(n = 6), and circular loops of equal area, where energy is normalized by C′. All of the 
cases show a similar trend but the hexagonal case is a better approximation to a circle 
and is close to the exact result. 

6.4✰ Calculate the energy of the square loop of Figure 6.12 as a function of the angle φ. 

 
Problem 6.3. 
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The energy increases with increasing φ until φ = π/2. This occurs because the two 
initially-screw segments develop an increasing edge component until they become 
pure edge at φ = π/2. 

6.5✰ Compute the interaction energy between two perpendicular screw dislocations. 
Differentiate this energy with respect to the separation distance between the two and 
show that the resulting force agrees with that of Exercise 5.5. 

Eq. 6.33 is used with θ = π/2 in the 
accompanying figure. Dislocation 1 is 
chosen to be right-handed, so that 
b1 ⋅ ξ1 = b, and dislocation 2 is chosen to 
be left-handed, so that b2 = −bξ2 and 
b2 ⋅ ξ2 = −b. Thus, only the first term in Eq. 
6.33 is nonzero and since ξ1 × ξ2 = e3 and 
b2 × b1 = −b2 e3,  W12 = (μb2/4π)I(xα, yβ). 

I(xα, yβ) is defined by Eq. 6.27 where x2 and 
y2 → ∞ and x1 and y1 → −∞ and I(x, y) is 
defined in Eq. 6.36 and equals 
½(x + y) ln[z2/((R – x )(R – y))]. This can be 
differentiated so that Fz = −∂W12 /∂z. The process is tedious. 

An alternative approach is to use the result of Prob. 5.3 where the force exerted by 
dislocation 2 on an infinitesimal segment dl1 is δF = [μb2z/(8π(x2 + z2))] dl1 e3. 
Integration with respect to x gives Fz = −(μb2/8π) tan-1(x/z), evaluated from x = −∞ to 
x = +∞. The result is Fz = −μb2/8, signifying an attractive force (See. Fig. 22.2). The result 
is independent of the separation distance z, for infinitely long dislocations and 
dependent on z if the length of dislocation 1 is finite. 

6.6✰ Under what conditions could a straight dislocation line spontaneously break up into a 
zigzag dislocation line? Hint: The problem is analogous to that of breaking up a flat 
surface into a hill-and-valley structure (Herring 1949). In the isotropic approximation, 
can any type of dislocation break up in this manner? 

One can think of the small bow out configuration (Fig. 6.8) as an incipient zig-zag. The 
zig-zag is stable if the energy per unit length of the pair of segments AC and CB is 
sufficiently less than that of the initial segment AB that it offsets the increase in line 
length. That is, a torque acts on the incipient segments and leads to a zig-zag shape. 
The torque associated with the screw-edge character in the isotropic elastic 
approximation is insufficient to cause the zig-zag instability for pure crystals. Selective 
solute adsorption to the dislocation could cause the instability. However, for pure 
crystals in the anisotropic case, the variation in energy with screw-edge character can 
be greater and it can and does cause the instability. 

 
Problem 6.5. 
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CHAPTER 7: DISLOCATIONS AT HIGH VELOCITIES 

Description: These problems consider the effects of dislocation motion on cross slip and 
interaction between dislocations, the time for dislocations to achieve a specified velocity from 
a stationary position upon application of a uniform stress, fundamental frequencies of 
vibration of segments and dampening, and contributions of kinetic energy to ledge formation 
at surfaces. 

7.1✰ Consider a screw dislocation moving at a velocity v = Ct/10, parallel to a free surface 
and a distance l below it. Compared to a static screw in the same position, is the 
moving dislocation more or less likely to cross slip out of the crystal because of the 
image interaction? 

Less likely. Although the image force exerted on the screw is of magnitude μb2/(4πLγ) 
and increases with increasing velocity (see Eq. 7.10 for γ), inertia keeps the dislocation 
moving in the same direction and thus cross slip is less likely. 

7.2 Consider a screw dislocation moving parallel to the surface of a semi-infinite slab and a 

distance l below the surface. If the applied stress σ = 10−3μ, how long will it take for the 
dislocation to reach a velocity 0.9 Ct starting at rest? How far has it moved? Assume 
quasi-uniform motion and ignore all friction. 

MATLAB. Eq. 7.23 provides an equation of motion, Fx/L = m*(dv/dt) where the effective 
mass is m* = (W0/L)/Ct

2. This can be integrated with respect to time t, with the initial 
conditions that v(t = 0) = 0 and x(t = 0) = 0 and that the force Fx/L = σb is constant for 
t > 0 . The results for the velocity and position are:   

𝑣 =
𝜎𝑏

𝑊0/𝐿
𝐶𝑡

2𝑡;   𝑥 =
𝜎𝑏

𝑊0/𝐿
𝐶𝑡

2
𝑡2

2
 

The time t0.9 and distance x0.9 at which the dislocation achieves a velocity v = 0.9Ct are 
given by rearranging the above equations. For copper, the results are: 

Ct = 2.47 x 103 m/s (Eq. 7.3) 

W0/L = (μb2/4π)ln(R/r0) = 1.49 x 10-9 J/m (Eq. 3.13), using R/r0 = 200. 

t0.9 = 0.9 (W0/L)/σbCt = 3.9*10-11 s 

x0.9 = 0.92 (W0/L)/2σb = 211 b = 4.3 x 10-8 m 

The results are based on a uniform applied shear stress σ/μ = 1E-3, elastic shear 
modulus μ = 5.46E10 Pa (Appendix A1, Table A.2), density ρ = 8.94E3 kg/m3 
(Engineeringtoolbox.com), and R/r0 = 200, which corresponds to a dislocation density of 
~1010/cm2 with r0 = b (= 2.54E-8 cm for ½<110> dislocations). 

7.3✰ Plot the distribution of shear stress σxy around an edge moving at a velocity v = Ct/10 
and compare the result with the static case. Use the physical parameters for copper, 
with the elastic constants given in Appendix 1. How will two like-sign edge dislocations 
interact if they are moving uniformly on the same glide plane? On parallel glide planes? 
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MATLAB. The accompanying figure shows the stress fields for the static (Eq. 3.45) and 
moving (Eq. 7.24 with the sign of b changed and v = 0.1 Ct) cases. The ±45° contours in 
the stationary case are slightly shifted to be less than ±45° for the moving case, 
consistent with the depiction in Fig. 7.5. The decrease in angle is almost imperceptible 
in the figure but it becomes more noticeable at larger velocity. The moving dislocation 
has larger values of shear stress along the x-axis and smaller values along the y-axis, 
compared to the stationary case. Therefore, like-sign dislocations on the same glide 
plane have a larger repulsion force at v = 0.1 Ct. For the two dislocations separated in 
the y-direction, the angular range over which the dislocations attract increases with v 
and covers the entire range of positions at vR. This has consequences for the Zener 
model of a shock front. The restoring force to keep the two dislocations vertically  

aligned increases with increasing v up to vR. 

7.4 Consider a screw segment of length L that is pinned at the ends. If the segment is 
visualized as a string with a line tension S and effective mass per unit length m*, what is 
the basic frequency of vibration? Determine the appropriate effective mass. 

The frequency f of oscillatory vibration of a string is the inverse of the time required for 
a wave to travel along the length L of the string and back at velocity v (e.g., see 
Sokolnikoff (1956) or https://en.wikipedia.org/wiki/String_vibration): 

f = v/2L 

The velocity of a shear wave in the string is 

v = (S/m*)1/2 

where the effective mass/unit length of a dislocation is m*. If S = W0/L is used as an 
approximation (Eq. 6.85) and m* = (W0/L)/Ct

2 (Eq. 7.21), then the frequency of vibration 
is 

f = (1/2L)(S/m*)1/2 = Ct/2L 

 
Problem 7.3. 
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Using Ct = 2.47E3 m/s (Eq. 7.3) for copper (See Eq. 7.3 and Prob. 7.2) and taking L = 100 
b = 2.54E-8 m, then f = 4.9E-10 s-1. The actual frequency without the approximations is 
of this form but larger, Eq. 15.56. 

7.5✰ Assume that the radiation per unit length from the vibrating string in Prob. 7.4 is given 
approximately by Eq. 7.49. How rapidly does the fundamental vibration dampen out? 
Ignore all other dissipative mechanisms. 

A simple approximation for the time to dampen out the fundamental frequency is 

𝑡 =
𝑊0/𝐿

𝑊̇/𝐿
=

4

π4
ln (𝑅/𝑟0)

𝐿3

Χ2𝐶𝑡
 

where expressions for W0/L and 𝑊̇/𝐿 are obtained from Eqs. 3.13 and 7.49 and Ω = 
Ct/2L. Using Ct = 2.47E3 m/s (Eq. 7.3) for copper, R/r0 = 200, and vibration amplitude Χ 
= 2b, then the time to dampen out the fundamental vibration is t = 5.6E-13 s. 

7.6✰ Assume that the effective mass of an edge dislocation is given by Eq. 7.64 with an outer 
cutoff radius R ~ 104b. Determine the kinetic energy of an edge dislocation in copper 
moving at a velocity v = Ct/10. Suppose that the dislocation approaches a grain 
boundary. Determine whether the kinetic energy is sufficient to supply the surface 
energy of the step formed on the grain boundary when the edge intersects it. Assume 
the surface energy of the grain boundary step is γ = 0.6 J/m2. Neglect image forces. 

The condition for the kinetic energy to supply the surface energy of the step is 

½m*v2 > γb 

For copper, Ct = 2.47E3 m/s (see Prob. 7.2) and therefore v (= Ct/10) = 2.47E2 m/s. The 
effective mass m* = (W0/L)/Ct

2 = (2.6E-9 J/m)/(2.47E3 m/s)2 = 4.3E-16 kg/m and 
therefore the (kinetic energy/b) is 0.051 J/m. This is less than γ (0.6 J/m2) and therefore 
the kinetic energy is insufficient to create the step. 

The result is of interest for grain boundary hardening and is relevant to the Frank 
reflection mechanism for dislocation multiplication, Chap. 21. 

7.7 Prove that the elastic displacements for a uniformly moving screw satisfy Eqs. 2.2 if one 
includes an inertial term 

fi = ρ0(∂2ui/∂t2) 

The displacement field uz for a moving screw dislocation is given in Eq. 7.9 and the 
resulting stress components σxz and σyz are given in Eq. 7.11. Substitution of these 
stress components and the proposed expression above for fi into the equations of 
equilibrium (Eq. 2.2 with i = z) and cancelling out terms gives the expression 
μ(1 − γ2) − ρv2 = 0. This equality can be proven by replacing γ with the definition in Eq. 
7.10 and using the definition for Ct in Eq. 7.3. 

The expressions for stress σxz and σyz for the moving screw dislocation (Eq. 7.11) reduce 
to those for the stationary dislocation (Eq. 3.3) in the limit v → 0. The former is derived 
in the moving frame and subsumes the dynamic inertial term. Thus, the addition of the 
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inertial term to Eq. 2.2 for the static case is equivalent to the solution in the moving 
frame. 

CHAPTER 8: THE INFLUENCE OF LATTICE PERIODICITY 

Description: These problems consider the effects of a Peierls (diffuse core) description of a 
dislocation on the stress field, cross slip, resistance to motion, and dissociation of dislocations. 
Estimates of kink widths, kink separation distances, and interaction energy between a kink and 
jog are also discussed. 

8.1✰ Graphically compare the results of Eqs. 3.45 and 8.13 for the stress σxy about an edge 
dislocation. For copper, at what distance from the core do the results differ by 20%? 
What is the value of the elastic strain at this position? 

MATLAB. The stress field for a Peierls dislocation does not diverge at the actual origin 
as it does as is the case for the Volterra dislocation and thus the Peierls dislocation is 
more realistic in the core region. Specifically, the field above the glide plane is 
equivalent to that of a virtual Volterra dislocation with an origin a distance ζ below the 
glide plane, and similarly the field below the glide plane is equivalent to that of a virtual 
Volterra dislocation with an origin above the glide plane.  

The accompanying figure to Prob. 8.1 shows contour plots of normalized σxy for the 
Volterra (left) and Peierls (right) edge dislocations using Eqs. 3.45 and 8.13, 
respectively. For the Peierls case, ζ = ±0.5 b where ζ = +0.5 for y ≥ 0 and ζ = −0.5 for y < 
0. See the text just before Eq. 8.13. 

The results show that the 0 and ±0.1 contours for both cases are similar but the ±0.2 
contours differ modestly and the difference increases for larger magnitude (e.g., ±0.3) 
contours closer to the center of the dislocation. For the Peierls case, the maximum 
shear stress of ~0.5 occurs away from the center whereas for the Volterra case, the 
stress is singular at the origin. The two solutions differ by 20% approximately in the 
vicinity of the ±0.2 contours which span up to 5b from the center. 

 
Problem 8.1. 

https://www.cambridge.org/us/academic/subjects/engineering/materials-science/theory-dislocations-3rd-edition?format=HB&isbn=9780521864367


Student Version – Solutions to Problems, Theory of Dislocations, 3rd Ed. 
Cambridge University Press (2017). Publisher website 

28/74 

8.2 Compare the tendency to cross slip for a Peierls dislocation vs. a Volterra dislocation. 

There is no width to the core for the Volterra case while there is for the Peierls case. 
One can imagine the latter as a nascent extension. This spreading obviously tends to 
prevent cross-slip because the deformation/distortion around the core is more diffuse. 
The extended width would have to contract to permit cross-slip and this would require 
an additional energy for the cross-slip process. 

8.3 Atomic binding is often described in terms of central forces that act between atom 
centers and resist changes in bond length, and directional forces that resist changes in 
bond angle. The former are predominant in close-packed metals. Discuss how each 
type of force affects the width ζ of a Peierls dislocation and the width w of a kink. 
Classify fcc metals, bcc metals, ionic crystals, covalent crystals, and van der Waals 
crystals in order of increasing Peierls barrier. 

Central forces give stronger repulsive forces for nearest neighbors compared to the 
directional bonding case. Hence, central forces tend to increase the widths of 
dislocations and kinks and therefore reduce the Peierls barrier. The strength of bonding 
is weak for van der Waals crystals and strong for covalent crystals and it also has an 
effect on Peierls barrier. Together, an approximate ranking in order of increasing 
Peierls barrier is van der Waals, fcc, bcc, ionic and covalent bonding. 

8.4✰ Discuss the qualitative differences in the magnitudes of the kink width and kink energy 
between kinks, based on the approximate energy relations in Figure 8.9 and the exact 
relations. 

The sinusoidal potential is "hard" compared to more realistic potentials. Thus, the 
sinusoidal potential almost certainly overestimates the Peierls barrier. Nevertheless, as 
discussed in the text, such a potential can be used as an empirical fit. 

8.5 Calculate the equilibrium separation between the kinks in a kink pair, assuming a pure 

screw dislocation with an applied resolved shear stress σ = 10−5 μ. 

The interaction force between the oppositely signed kinks is attractive and given in Eq. 
8.52. An applied stress produces a force, F = σyz bz a that acts to separate kinks in a kink 
pair, where a is the height of the kink (see Fig. 8.11). The equilibrium separation 
distance, Lequil, between kinks is determined by equating the magnitudes of the 
attractive interaction force and the repulsive force from the applied stress. The result is 

𝐿equil

𝑏
= (

𝑎(1 + 𝜈)

𝑏(1 − 𝜈)8πσ𝑦𝑧/μ
)

1/2

 

Lequil ≈ 89 b for the case σyz/μ  = 10-5, ν = ⅓, and a/b = 1. 

8.6 Consider three like-sign kinks in an edge dislocation, piled up against a pinning point 

that locks the first kink. The applied stress is σ = 10−4 μ. What are the kink separations? 

The kinks are A…L1…B…L2…C, where L1 and L2 are the spacings between A and B, and 
between B and C, respectively. C is locked. The applied force F = σxy bx a acts on each 
kink in the direction toward the pinning point. On A, the interaction forces K/𝐿1

2  from B 
and K/(L1 + L2)2 from C both act to push A away from the pinning point. On B, the 
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interaction force K/𝐿2
2  from C is away from the pinning point and the force K/𝐿1

2  from A 
is toward the pinning point. Here K = FintL2 = μb2a2(1 – 2ν)/[8π(1 – ν)] as defined in Eq. 
8.53c. The net force on A minus that on B eliminates the applied stress terms and leads 
to the equilibrium equation (2/𝐿1

2) – (1/𝐿2
2) + [1/(L1 + L2)2] = 0. The only physical solution 

is L2 ≈ 1.25 L1. Substitution into the equilibrium equation for A or B and setting a = b 
and ν = 1/3 furnishes 

𝐿1

𝑏
=

𝐿2

1.25𝑏
=

0.15

(σ𝑥𝑦/μ)
  (= 15 for

σ𝑥𝑦

μ
=  10−4) 

This presages the calculation for a kink pileup. 

8.7✰ Estimate the width of kinks in screw dislocations in aluminum. Assume that σp = 10–5 μ. 

MATLAB. The kink width w = a(W0/2Wp)1/2 (Eq. 8.73), where: the kink height a (see Fig. 
8.17) is approximated as b (= 2.86E-10 m, based on aAl/sqrt(2), where the lattice 
parameter for Al is aAl = 4.05E-10 m); the dislocation line energy per unit length is W0/L 
= (μb2/4π)ln(R/r0) = 2.65E10 J/m (Eq. 3.13), using R/r0 = 200; and the Peierls energy 
Wp/L = σpab/π = 6.92E-15 J/m (Eq. 8.44). The resulting kink width is w = 7.4E-8 m, 
which is ≈ 250 b. The large value of w/b is consistent with a small kink angle ψ (Fig. 
8.17). The small ψ justifies the use of Eq. 8.73. 

8.8✰ Based on the Peierls-Nabarro model and elastic isotropy, would the core of a 110 
screw dislocation dissociate on a (0 0 1) plane or on a (1 1̅ 0) plane in a NaCl structure? 
Which slip system would have a smaller Peierls barrier? Which is observed 
experimentally (see Chap. 12)? 

See Fig. 12.14. The interplanar spacing is larger for the (1 1̅ 0) plane so the Peierls 
model would predict a smaller barrier for that plane, in agreement with experiment. 

8.9✰ Discuss whether the difference in energy between positive and negative kinks in mixed 
dislocations is important for phenomena other than those involving interaction with an 
external surface. 

The difference would favor a bias in the bow-out associated with groups of kinks. One 
type of kink would be favored if the kinks nucleated heterogeneously where a 
dislocation intersected a grain boundary, for example. 

8.10✰ In view of the symmetry on an atomic scale, show that the Peierls barrier for (1 1 1) 
screw dislocations in {1 1 0} and {1 1 2} planes is asymmetric (Hirth and Lothe 1966). 

See the reference in the textbook for the solution. 

8.11✰ Discuss the physical justification for defining Eq. 8.6 by its principal value. 

Without the use of the residue method, the integrals would be indeterminate, 
diverging as 𝑥 → 0. 

8.12 Compute the elastic interaction energy between an oblique kink and a right-angle jog. 

The accompanying figure shows (a) an oblique kink and (b) an oblique kink with a right-
angle jog. The energy of each configuration is modeled by summing the self and 
interaction energies detailed in Eq. 8.46: 
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∆𝑊(𝑎) = 𝑊s(1′) + 𝑊s(3) + 𝑊s(4) + 𝑊s(5) + 𝑊int(1′3) + 𝑊int(1′4) + 𝑊int(1′5)  
                           +𝑊int(34) + 𝑊int(35) + 𝑊int(45) 

∆𝑊(𝑏) = 𝑊s(1) + 𝑊s(2) + 𝑊s(3) + 𝑊s(4) + 𝑊s(5) + 𝑊int(12) + 𝑊int(13) + 𝑊int(14) + 𝑊int(15)
+ 𝑊int(23) + 𝑊int(24) + 𝑊int(25) + 𝑊int(34) + 𝑊int(35) + 𝑊int(45) 

The difference is then 

∆𝑊(𝑏) − ∆𝑊(𝑎) = 𝑊s(2) + 𝑊int(21) + 𝑊int(23) + 𝑊int(24) + 𝑊int(25) + 

[𝑊int(13) − 𝑊int(1′3)] + [𝑊int(14) − 𝑊int(1′4)] + [𝑊int(15) − 𝑊int(1′5)] 

The important terms in the interaction energy are those that depend on L. Thus, the 
first two terms can be excluded in the 
limit where the segment lengths ℓ1, ℓ5 ≫ 
L. The remaining terms are the 
interaction of segments 3, 4, and 5 with 
the jog segment 2, and with segment 1 
minus that with segment 1′. The 
interaction energies can be computed 
using Eq. 6.41 for nonparallel coplanar segments, Eq. 6.45 for parallel coplanar 
segments, and Eq. 6.33 for noncoplanar segments such as 2 and 4. In the limit of a ≈ d 
≪ L, the interaction energy between segments 2 and 4 takes a form similar to that for 
interacting kinks (Eq. 8.51), where the sign of the interaction depends on the projected 
angle θ between the segments, as defined in Figure 6.4. 

8.13 Would it be physically meaningful to invoke a Peierls model for dislocation climb? 

No. The jogs are so sharp that the usual assumptions in deriving kink energies are 
invalid. The best procedure is to assume that jogs are sharp, with lines at 90° to the 
dislocation line. 

CHAPTER 9: SLIP SYSTEMS OF PERFECT DISLOCATIONS 

Description: These problems consider the stability of dislocations to dissociation, the effect of 
c/a ratio on the Peierls stress in hcp crystals, calculation of the resolved shear stress on specific 
slip systems, independent slip systems, and compatibility across grain boundaries. 

9.1 For what range of orientations 
should a dislocation with b = 
[1 0 0] be stable in a fcc crystal? 
The analysis should include the 
variation of energy with screw-
edge character. 

MATLAB. Consider dissociation 
into parallel dislocations [1 0 0] → 
½[1 1 0] + ½[1 1̅ 0] on a (0 0 1) 
plane. Use Eq. 5.18 to calculate 
the interaction force FR/L. If the 
force is negative, then the parallel 

 
Problem 9.1. 

 
Problem 8.12. 
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dislocations are attracted and the [1 0 0] case is stable. The explicit force is  
𝐹𝑅

𝐿
=

μ𝑏2

2π𝑅
[cos(θ + π/4)cos(θ − π/4) + (

1

1 − ν
) (sin(θ + π/4)sin(θ − π/4)] 

The accompanying figure defines θ as the angle subtended by the line direction and 
Burgers vector. FR is symmetric about θ = 0 and is negative for |θ| < π/4 and 
3π/4 < |θ| < π. Thus, there is attraction (stability) when the screw (b ⋅ ξ) character > 
edge (b × ξ) character. The dependence of FR on character increases with ν as shown in 
the figure. 

9.2 For the hcp slip systems listed in Table 9.3, explicitly estimate the dependence of the 
Peierls stress on the c/a ratio. What is the effect of a superposed isostatic pressure on 
the Peierls stress? 

From Eq. 8.41, σP = −[2μ/(1 – ν)] exp(−4πζ/b) = −[2μ/(1 – ν)] exp(−2πd/(1 − ν)b), where 
the last expression is obtained by using Eq. 8.33 to substitute for ζ. The factor (d/b) ∝ 
(c/a) and thus the value of the exponential factor in the expression for σP is expected to 
monotonically increase with decreasing c/a as ranked in Table 9.3, from Cd to Yt. 
Values of elastic shear modulus are given in Appendix A.2. A superposed isostatic 
pressure is expected to decrease d and b in the same proportion so that the 
exponential factor does not changed significantly with pressure. 

9.3✰ Compute the resolved shear stresses on slip systems of the type <1 1 2̅ 0> {1 0 1̅ 0} if a 
uniaxial compressive stress acts in the [1 1 2̅ 3] direction in an hcp single crystal. Note: 
The corrections (in red text) to properly specify the slip direction with < > and to ensure 
that l = −(h + k). There are also errors in Table 9.3 that do not satisfy l = −(h + k). 

For the solution to the problem, consider the example with slip direction b = [1 2̅ 1 0] 
and slip plane normal n = [1 0 1̅ 0]. Use Eq. 9.6 (or fig. 9.10 if a pole figure is available) 
to compute the resolved shear stress σ′12. In this case, the dot product T11 between the 
slip direction and compression axis [1 1 2̅ 3] is 0 and thus σ′12 = 0. This is just one 
example; other slip systems in the <1 1 2̅ 0> {1 0 1̅ 0} family can produce σ′12 ≠ 0. 

9.4 Compute the resolved shear stresses on the [1 1̅ 0] (1 1 1) and [0 1 1] (1 1̅ 1) slip 
systems in a fcc crystal if a uniform torque is applied about the [1 1 2] axis.  

Fig. 9.11 is used where the unit vector along the 3-axis is 

e3 ∥ [1 1 2]. The axes 

e1 ∥ [1 1 1̅] and  

e2 ∥ [1 1̅ 0] 

are chosen arbitrarily to define an orthogonal system. A moment M about e3 generates 
components of shear stress σ21 (= σ12) and σ31 (= σ13) that are a function of r, ψ, and R 
as noted in Eq. 9.8. The slip plane normal is defined by e3′ and the slip direction by e1′. 
The resolved shear stress on the slip system is 

σ′13 = σ12 cos θ1′1 cos θ3′2 + σ21 cos θ1′2 cos θ3′1 + σ13 cos θ1′1 cos θ3′3 + σ31 cos θ1′3 cos θ3′1 

where θi′j is the angle subtended by the ei′ and ej axes and cos θi′j = ei′ ⋅ ej. Thus, there 
are several dot products to perform. 
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For the first slip system, 

e1′ ∥ [1 1̅ 0] and 

e3′ ∥ [1 1 1] 

so that cos θ1′1 = cos θ3′2 = cos θ1′1 = cos θ1′3 = 0. Therefore,  

the resolved shear stress is σ′13 = σ21 cos θ1′2 cos θ3′1 = (σ0 cos ψ)/3 

where σ0 = 2Mr/(π R4) and (r, ψ) define the position within the crystal (see Fig. 9.11). 

For the second slip system, 

e1′ ∥ [0 1 1] and 

e3′ ∥ [1 1̅ 1] 

so that cos θ1′1 = 0. Therefore,  

the resolved shear stress is σ′13 = σ21 cos θ1′2 cos θ3′1 + σ31 cos θ1′3 cos θ3′1 = σ0 
[(cos ψ)/6 – (sin ψ)/√12], 

where σ0 = 2Mr/(π R4) and (r, ψ) define the position within the crystal. 

9.5 How many independent slip systems exist in a simple cubic structure in which the 
allowed slip planes are the cube faces and the allowed slip directions are the cube 
edges? 

Three of the six slip systems are independent in that the strain produced by operation 
of one slip system cannot be reproduced by operation of the other two. 

Construct a Cartesian basis using the normal to each of the faces as in Fig. 9.15a. In that 
case, operation of the two slip directions [0 1 0] and [0 0 1] on the [1 0 0] face can 
produce shear strains ϵ21 (= ϵ12) and ϵ31 (= ϵ13) (see Eq. 9.13). Likewise, operation of the 
two slip directions on the [0 1 0] face can produce shear strains ϵ12 (= ϵ21) and ϵ32 (= 
ϵ23), and the slip directions on the [0 0 1] face can produce ϵ13 (= ϵ31) and ϵ23 (= ϵ23). The 
six slip systems therefore produce only three independent components of strain: ϵ12 (= 
ϵ21), ϵ32 (= ϵ23), and ϵ13 (= ϵ31). Therefore, there are only 3 independent slip systems. 

Compatible deformation in a polycrystal generally involves rotation of grains so that 
grain boundaries do not open up or material does not interpenetrate. In such cases, it 
may be necessary for slip systems to provide arbitrary amounts of strain and rotation. 
Since there are three independent components of shear strain and three independent 
components of rotation, six independent slip systems are necessary to achieve an 
arbitrary state of strain and rotation. 

9.6 Consider three slip systems with slip vectors β1, β2, 
and β3. Let β3 be normal to β1 and β2, and let β1 and β2 
have a common slip plane. Assume that the glide plane 
for β3 is any plane containing β3. Are the three slip 
systems independent? 

No, they are not independent. The accompanying 
figure shows the three slip directions, the common 
glide plane for β1 and β2 (in blue), the glide plane for 
β3, and various axes. Glide on slip system 1 generates 

 
Problem 9.6. 
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plastic shear strain components ε13 = ε31, glide on system 2 generates ε1′3 = ε31′, and 
glide on system 3 generates ε31′′ = ε1′′3. In general, the plastic shear strain produced by 
system 3 can be expressed in terms of combination of ε31 (= ε13) and ε32 (= ε23). This 
combination can in general be reproduced by operation of systems 1 and 2.  

9.7✰ Consider the same case as in Prob. 9.6 except that β3 is not normal to β1 and β2. Are 
the slip systems independent? 

Yes. This is a more general case of Prob. 9.6. 

9.8✰ In Prob. 9.6, is there a special choice of slip plane for β3 such that a purely longitudinal 
strain in the β3 direction would be impossible? 

No. For any plane containing β3, the slip system cannot produce the strain component 
ε33. 

9.9 Discuss how climb processes modify the requirement for independent slip systems. 

Climb processes introduce non-conservative motion as defined in Sec. 4.2. For 
example, an edge dislocation with Burgers vector [b1 0 0], slip plane [0 1 0], and sense ξ 
= [0 0 1] as shown in the accompanying figure can produce strain components ε12 = ε21 
> 0 if the dislocation glides in the 1-direction, and also ε11 > 0 if the dislocation climbs in 
the −2-direction. Eq. 9.14 is modified to show the possible plastic strain components 
produced by glide and climb 

ε𝑖𝑗 = [
ε11 ε12 0
ε21 ε22 0
0 0 ε33

] 

The equation shows that nonzero values of 
ε22 and ε33 can also occur. They can arise 
from transport of atoms from external 
surfaces (e.g., sites e) or internal surfaces 
(e.g., site f) to the dislocation core (see red 
arrows). For external surface sites, 
conservation of matter requires that the 
macro creep strains satisfy ε11 + ε22 + ε33 = 0 
and for internal surface sites, ε22 = ε33 = 0. 
With both types of sites available, climb in 
the ±2-direction can thus produce an 
arbitrary strain ε11 with ε22, ε33, and ε22 + ε33 

opposite in sign to ε11 and bounded in value by 0 and ε11. 

If three edge dislocations with orthogonal Burgers vectors and slip planes as described 
in Prob. 9.5 are present, then an arbitrary state of strain can be achieved with macro 
strains ε11, ε22, and ε33 of arbitrary sign and magnitude provided internal surface 
sources exist. If only external surface sources exist, then the macro creep strains satisfy 
ε11 + ε22 + ε33 = 0. 

 
Problem 9.9. 
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9.10✰ For the bicrystal in Figure 9.18, what orientations would require only one slip system in 
each crystal? Would elastic anisotropy change the result? Note the correction in the 
question statement (red text). 

Consider a Cartesian coordinate system with x and z in the plane of the grain boundary 
and y normal to it, as shown in Figure 9.18. Eq. 9.23 states that the strain components 
εxx, εzz, and εxz (= εzx) must be continuous across the grain boundary to avoid sliding or 
opening up/interpenetration of material at the boundary. This can be satisfied by one 
slip system in each grain if the components of Burgers vector bx, bz and components of 
slip plane normal nx, nz are equal for both slip systems. This would be satisfied, for 
example, if the grain boundary is a mirror plane. In general, the components by and ny 
do not need to be equal for both slip systems. 

The statement of compatibility above holds for the total strain, which can be 
partitioned into elastic and plastic contributions. If the grains are elastically anisotropic, 
it is possible that the components of elastic strain alone and the components of plastic 
strains alone do not satisfy Eq. 9.23 but the total strain components must. In such 
cases, bx, bz and nx, nz could be different. During plastic deformation, the plastic strains 
can become much larger than elastic strains in which case bx, bz and nx, nz must be the 
same in grains A and B. 

CHAPTER 10: PARTIAL DISLOCATIONS IN FCC METALS 

Description: These problems consider a variety of analyses involving partial dislocations, 
including the equilibrium separation distance between partials, reactions involving stacking 
fault tetrahedra, partials bounding intrinsic and extrinsic faults, extended nodes, cross slip of 
extended dislocations, and other geometries. 

10.1 Determine the variation with orientation of the 
equilibrium separation of partials bounding an 
intrinsic stacking fault in copper. 

MATLAB. Eq. 10.15 can be used where β is the 
angle subtended by the Burgers vector and 
sense as shown in the inset (and Figure 10.6). 
For Cu, γI = 45E-3 J/m2, μ = 5.46E-10 N/m2, ν = 

0.324, b1 = 2.54E-10 m, and b2 = b3 = b1/(√3/2). 
The accompanying figure shows re (in nm) as a 
function of β. The minimum and maximum 
values occur for pure screw and edge 
character, respectively. 

10.2 Using the γI values from Appendix 2, find which fcc metals should have meaningful 
partial dislocation extensions; that is, re > 2b. 

MATLAB. Similar to Prob. 10.1, Eq. 10.15 can be used, where re/b ≈ μb/8πγI ≈ 12 for Cu, 
for which γI = 45 E-3 J/m2. For comparison, the most significant aspect is that γI = 16 E-3 

 
Problem 10.1. 
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J/m2 for Ag and 17 E-2 J/m2 for Al, so that compared to Cu, re/b is larger for Ag and 
smaller for Al (< 2b). 

10.3✰ In terms of nearest neighbor bond energies φ1, evaluate the stacking fault energy 
associated with 

a. Climb of a Shockley partial 

b. Glide of the stair rod αδ 

c. Glide of a Frank partial 

For all three cases, three near-neighbor bonds are severely distorted. The direct climb 
is most unlikely. 

10.4✰ Draw the various stages of the advance of a 1 1 0 jog line by absorption of a vacancy. 

The jog line is equivalent to a row of ⅓ vacancies. Absorption of a vacancy advances a 
length of 3 atom spacings by an atomic distance normal to the jog line and parallel to 
the glide plane, creating a kink on the jog line. Eventually, with more absorption, the 
jog line is displaced by one atomic distance. 

10.5✰ Discuss the possible reactions that would produce a tetrahedron from a triangular 
interstitial disc. What configuration would form if the Frank partial bounding the disc 
dissociated directly to form a Shockley partial bounding an intrinsic fault? 

Use Fig. 10.10 with Dδ as the Frank partial. There are three 
places on the loop where a tetrahedron could start to 
form. For example, a reaction is Dδ = Dγ(c) + γδ, as in Fig. 
10.26. The Frank partial could not glide but it could act as 
a source for a glissile dislocation by reacting to form a stair 
rod and a perfect dislocation: for example, Dδ = DB + Bγ. 

10.6 Label the dislocations in Figure 10.28 using the Thompson 
notation. 

See the accompanying figure for the solution. 

10.7✰ Show that simultaneous glide collapse from two corners of 

an intrinsically faulted tetrahedron results in a perfect ½1 1 0 dislocation loop 
(Kuhlmann-Wilsdorf 1965). 

The accompanying figure (left image) 
shows the collapse of a stacking fault 
tetrahedron at point D; it is the reverse of 
the process shown in Fig. 10.26. When the 
segments βD, γD, and αD reach the base 
of the tetrahedron, a stacking fault (gray 
region) is produced with dislocations of 
Burgers vector δD and counterclockwise 
sense ξ bounding the fault. The right 

image shows if a partial dislocation Bδ nucleates from point A, the fault is removed 

 
Problem 10.7. 
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(white region) and a perfect ½1 1 0 dislocation loop results. The combined process 
involves the collapse from D and A. 

10.8 Consider the dissociation of dislocation AC(d) into an intrinsic 
stacking fault over some length, after which it dissociates into 
an extrinsic stacking fault on the same {1 1 1} plane. What 
partial crosses the dislocation where the change occurs? 

Axiom 10.2 is used to construct the dissociation of AC(d) into 
an intrinsic fault bounded by δC on the left and Aδ on the 
right looking along the positive sense, and an extrinsic fault 
bounded by Aδ on the left and δC on the right. This is 
consistent with Fig. 10.11. Reversing the sign of Aδ, we have 
δA + δC = Bδ.  

10.9✰ Consider an extended dislocation node that is parallel to a 
free surface. Determine whether the image forces increase or decrease the apparent 
value of γI. 

The image forces are expected to constrict the node, which corresponds to an increase 
in the apparent stacking fault energy 
(see Sec. 10.4d). The direction of the 
image forces can be rationalized by 
constructing an extended node and its 
image as shown in the accompanying 
figure (the real node is in the 
foreground and the image is offset for 
visibility: it actually superposes on the 
real node when viewed normal to the 
surface). The signs of the image forces 
can be deduced more easily in the 
piecewise straight approximation of Fig. 
10.33. 

There are two approaches to rationalize why the image exerts forces that cause the 
extended node to constrict (i.e., shrink the gray faulted region). In the first approach, 
the accompanying figure (left) shows that the partials Bδ, Cδ, and δA have pure screw 
character at the sites marked s. They repel one another; this must be so as to oppose 
the constricting force that arises from the stacking fault energy. Specifically, Bδ is 
repelled by Cδ and δA. At sites s′, the image dislocations are also pure screw but 
opposite in sign to their real counterparts. Thus, Bδ must be attracted by the images δC 
and Aδ and the node contracts. A similar effect occurs for dislocations δA and Cδ. 

In the second approach, equilibrium is considered at one of the “arms” of the extended 
node, indicated by the sites marked m. The inset to the right a view along the arm, 
where the sense ξ for all dislocations (real and image) points along the 1-axis. 
Dislocation δB experiences a force in the 3-direction from the oppositely signed image 

 
Problem 10.8. 

 
Problem 10.9. 
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dislocation Bδ; this does not expand or contract the extended node. However, image 
dislocation δC has an oppositely-signed screw component and like-signed edge 
component to δB (See the Thompson tetrahedron, Fig. 10.10). Oppositely-signed screw 
components generate an attractive radial force and thus there is a force in the −2 
direction on δB, constricting the node. The edge component also exerts a force in the 
−2 direction on δB, provided the extended node is sufficiently far from the surface for 
h > w. This geometric aspect is confirmed by consulting the plot of the stress field 
around an edge dislocation (Fig. 3.11) and also Prob. 3.20. Under such conditions, the 
stable equilibrium position for two like-signed edge dislocations occurs when they are 
vertically stacked above one another. The combined screw and edge contributions are 
such that the image δC exerts a glide force in the −2 direction on δB, thus constricting 
the node. For similar reasons, the glide component of the image force on Cδ is in the +2 
direction.  

10.10✰ Consider the node between the dislocations AC, BA, and CB in the (d) plane. The 
dislocations are ribbons of intrinsic stacking fault and the order of the branches is such 
that the node would be contracted unless an extrinsic stacking fault forms at the node. 
Show how the node could become extended by the formation of an extrinsic fault. 

Fig. 19.28b shows a sequence leading to the formation of a hexagonal extrinsic stacking 
fault in the center. 

10.11✰ Consider the intrinsically dissociated dislocation AC(d). Describe the possible superjogs 
that can dissociate into extrinsic faults on the (c) plane. 

In Fig.10.17, if one nucleates a loop γC on the jog fault, the end partial is converted 
from γA to Bγ. Similarly, the stair-rod converts to γδ/AB. 

10.12✰ Consider a dissociated screw with an intrinsic fault as it cross slips onto a conjugate 
plane without contracting. Describe the intermediate dissociated configuration. Would 
cross slip be easier if the screw dissociated extrinsically on the conjugate plane? 

Consider the dissociation of AB into δB on the left and Aδ on the right, viewed from 
outside the tetrahedron (Figs. 10.9, 10.10) along the positive sense. The cross-slip 
dissociation of the leading partial is Aδ → Aγ +γδ, viewed along the positive sense. The 
Escaig mechanism, Fig. 27.18c, is most likely. 

10.13 Could twinning occur by the formation of successive layers of extrinsic fault? If so, what 
shear would accompany twinning? 

Yes. A stacking sequence for a twin boundary follows ABCAB/C/BACBACBA. The twin on 
the left would propagate to the right, with the layers to the right of C shifting to 
/C/CBACBA. The high energy fault is removed by the shift C → A so the final 
configuration is ABCAB/C/ABACBACB, and the twin advances. The twin has advanced by 
two layers but the net Burgers vector is the ⅙<112> type. Thus, the twinning shear is 
half that associated with intrinsic glide partials. 

10.14 Consider an isolated Shockley partial in copper. Use Eq. 8.41 to compare the magnitude 
of force caused by the Peierls stress vs. that associated with the stacking fault. 
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Eq. 8.41 furnishes an estimate, σP = 3.2E5 Pa, based on values from the Appendix: μ = 

5.46E10 Pa, ν = 0.324, and d/bp = √2. The Peach-Koehler force on the partial dislocation 
is therefore F/L = σPbp = 4.6E-5 N/m. For comparison, the force F/L exerted by the fault 
is γI = 4.5E-2 J/m2. This is several orders of magnitude greater than F/L associated with 
the Peierls stress. 

10.15 Discuss the stability of the partial Dγ/AC that can form by the reaction of DC and γA. 

The vectors are DC = ½[1 1 0]. γA = ⅙[2 1̅ 1] and Dγ/AC = ⅙[5 1̅ 1]. The corresponding 
values of b2, which are proportional to the line energy, are ½, ⅙, and ¾. Thus, the 
partial Dγ/AC is not favored since ½ + ⅙ (= ⅔) < ¾. 

CHAPTER 11: PARTIAL DISLOCATIONS IN OTHER STRUCTURES 

Description: These problems consider candidate twin planes in fcc and hcp structures, the 
formation of extended jogs, effects of dissociation on core structure, equilibrium spacing 
between partials, and considerations for ordered alloys. 

11.1 Why is the basal plane in hcp metals not a twin plane, like the close-packed plane in fcc 
metals? What is the formal definition of twinning? 

The twin plane has mirror symmetry or, equivalently, a 2-fold rotation axis parallel to 
the twinning direction. Although <1 1 2> is a 2-fold axis in fcc, <1 1 2̅ 0] is not a 2-fold 
axis in hcp. 

11.2 Show that (1 0 1̅ 2) is a possible twin plane in hcp structures. 

It is a possible twin plane because it has mirror symmetry. 

11.3✰ Consider the dislocation AC in the basal plane of an hcp metal. If the dislocation 
contains a jog that is an uneven number of plane spacings high, can the jog extend in a 
fashion similar to the jog in Figure 11.12? What partials result? 

The jog plane is (1 0 1̅ 0). As in Fig. 9.5 (p. 239), this plane produces a zig-zag structure. 
The two vectors connecting the black atoms in Fig. 9.5 are not translation vectors but 
rather ϵC type partials (see Table 11.1, p. 288). Therefore, dissociation is possible but 
the probability is likely to be small because the fault energy is likely to be large. 

11.4✰ Show that dislocations AC and B0C0, lying on adjacent basal planes, can combine to 
form a configuration resembling that in Fig. 10.8b. What are the resultant partials and 
types of stacking faults? Note the correction in 
the question statement (red text). 

An example is shown in the Figure. The fault is 
an extrinsic fault. Note the sense vectors are 
opposite to those in Fig. 11.2, which should 
point out of the page. 

11.5 Draw models for the core of a pure screw 
dislocation b = ½<1 1 1> in a bcc structure, with the core dissociated on the (1 1̅ 0) 
plane. Show that the core structure is different above and below the slip plane. 

 
Problem 11.4. 
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Both are I1 in character. They are bounded by Aα type faults on one plane and A0α0 
type faults on the other. The partials at the edge of the jog are Aϵ type. The stair rods 
are combinations such as ϵA + Aα = ϵα. 

11.6 Devise a rule for the proper stacking sequence in the construction of the extrinsic fault, 
Eq. 11.8. For example, the inserted layer EF cannot be put between C and D as to 
produce the sequence ABCEFDE. Explain why. 

As shown in Fig. 11.11, alternate layers are not aligned in the c direction. An added 
single layer would have a very large fault energy, similar to that with A-A stacking in fcc. 
Hence, all faults entail 2-layer changes. It may be of help to think of the hcp structure 
as base-centered hexagonal with a basis of 2. Faults and Burgers vectors are defined in 
this lattice. 

11.7✰ Apply Eq. 10.14 to the bcc dissociations of Figure 11.14. Develop explicit expressions 
for the equilibrium partial spacing re and determine the proper dissociation to form the 
fault I3. 

A polynomial can be developed to balance the Peach-Koehler force FPK/L on a 
dislocation arising from the stress field of all other dislocations with the force Fγ/L = −γ, 
where γ is the energy/area of the fault between the two dislocations bounding the 
fault. The negative sign denotes that Fγ/L acts to attract the bounding dislocations to 
one another. 

11.8✰ Which jogs in Figure 11.30 can be formed directly by an intersection process? 

Only the jog in Fig. a can be formed by intersection. The jog heights in Figs. b and c can 
only be formed by intersections with Aϵ type partials, which perforce are not 
translation vectors. 

11.9 Could a junction of four antiphase boundaries exist in β-brass? Could it dissociate; that 
is, would any two of the four domains be in phase? Are such junctions expected after 
deformation? After annealing, which junction allows atom regrouping? 

Boundaries have either AA or BB disregistry. The only possible four-fold node would 
have alternating boundaries: AA, BB, AA, BB. It could dissociate to form either a 
continuous AA or BB phase. This could occur during annealing since it would require 
local diffusion jumps to convert the site occupancy. 

11.10 Discuss the likelihood of dissociations to form ⅙1 1 1 partials on {1 1 2} in ordered β-
brass. 

The stacking of {1 1 1} planes in bcc is abcdefa. In the ordered structure, these planes 
alternate in containing all A or all B atoms, ab'cd'ef'a. Formation of a ⅙<1 1 1> partial as 
in Fig. 11.10 would not be favorable because faults with unfavorable AA or BB 
neighbors would result: for example, ab'd'ef'a. In contrast, superpartials with vectors 
⅓<1 1 1> are more likely and are observed. For example, the corresponding fault could 
be ab'ef'a. 

11.11✰ Figure 11.38a shows a superdislocation containing dislocations with collinear Burgers 
vectors. It contains a jog and a stepped antiphase boundary (APB). The jogs in each 
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component dislocation lie in the same (yz) glide plane, so if the dislocation moves in 
the y direction, the trailing dislocation annihilates the antiphase boundary created by 
the leading dislocation. The superdislocation in Figure 11.38b is composed of 
dislocations with jogs that are misaligned in the x direction. Show that motion of this 
superdislocation creates a rectangular tube of antiphase boundary (Vidoz and Brown 
1972). 

The cited reference (see the text. p. 686) details the solution. 

CHAPTER 12: DISLOCATIONS IN IONIC CRYSTALS 

Description: These problems consider for ionic crystals the effective charge along edge and 
screw dislocations as well as at jogs and kinks, and implications for mobility and cross slip. 

Unless otherwise stated, the problems refer to the NaCl structure. 

12.1 Suppose that a square prismatic loop with Burgers vector b = [1̅ 0 1] and edges along 
[0 1 0] and [1 0 1] forms by vacancy condensation. What is the magnitude of the 
effective charge of the corners? 

Charges can be only added as unit charges and, if assigned to corners or edges, they are 
fractions of a unit charge. Charge-wise, the inserted loop is equivalent to a planar disc 
that has been inserted into the crystal. Ions on the edge of the disc have charges ±e/2 
and corners have charges ±e/4. These fractional charges add to a net charge of ±e or 0. 

12.2✰ Suppose that the jog in the screw in Figure 12.19 has an effective charge qc − e, but this 
changes to qc + e after moving one step forward. How is the charge balanced during 
such motion? 

The crystal is divalent, e.g., MgO. The jog carries a unit charge. If it is negative, it could 
convert to a positive change either by the addition of a doubly-charged Mg cation 
(cation vacancy emission) or by the emission of a doubly-charged Cl anion (anion 
vacancy absorption). 

12.3 If screws with Burgers vector b = [1 0 0] existed, would kinks and jogs in such screws be 
charged? 

No. The ends of the kinks and jogs would have charges that differ in sign and the net 
charge would be 0. 

12.4✰ Consider an edge dislocation with b = [1 0 1] moving through a monatomic surface 
ledge lying along [0 0 1] on (0 1 0). Determine the charge of the kink in the ledge and 
derive the charge balance for the process. 

Sites along the ledge have charges ±e/2. The dislocation cuts the ledge and leaves a 
surface kink in it. The charge on the kink is ±e/2 and it oscillates in sign if it propagates 
along the ledge. 

12.5 Should the accumulation of jogs of one sign of charge affect the tendency of a screw 
dislocation gliding on (1 1 0) to cross slip onto (0 0 1)? Why? 
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Yes. The jogs on the screw correspond to kinks on the cross-slip plane. Thus, cross-slip 
would be favored since the net charge could be dissipated by the glide of charged kinks 
once the dislocation lies on the cross-slip plane. 

12.6 A NaCl single crystal is bounded by {1 0 0} faces and compressed along [0 0 1]. Suppose 
that slip occurs by the motion of only pure edge and pure screw dislocations. 

a. What predominant type of intersection jog should be formed? 

A glissile jog would be formed on the edge and a sessile jog would be formed on the 
screw. 

b. Which set of dislocations is more mobile: screws or edges? 

Hence, the edges should be more mobile. 

c. Which set of dislocations, screws or edges, can produce transient electrical currents 
during glide? 

Only the glissile edges would produce charge transport. Jogs are immobile and kinks 
on screws carry no charge. 

12.7✰ Consider a CsCl or β-brass type of ionic crystal that slips on the systems 1 0 0{1 1 0}. 
Determine whether or not the following defects are charged: screw jogs, screw kinks, 
edge jogs, edge kinks. 

Consider the case of monovalent CsCl analogous 
to NaCl in Fig. 12.1, where Na+ is replaced by Cs+. 
The structure is an interpenetrating simple cubic 
structure instead of interpenetrating fcc. The 
accompanying figure (reproduced from Fig. 
12.14) shows that if a screw dislocation with b 
and ξ out of the paper were to glide on path BE - 
ED - DE - CB, a closed path would result and the 
column of material inside the loop would shift out of the paper, producing charge 
transport. The Cs+ atom at the top of the column signifies a transport of charge of +e in 
the direction out of the plane of the paper. Motion of the screw along each leg of the 
circuit would contribute to the charge transport: qg along the primary glide planes ED 
and CB and qc along the cross slip planes BE and CD (see Sec. 12.4a). The simplest 
approximation is that qc = qg = +e/4. If instead the path enclosed a Cl- atom, then qc = qg 
= −e/4. More likely, because of the symmetry, qc ≠ qg but still qc + qg = e/2. 

Consider a pure screw dislocation that is gliding along the path BE. 

• The glide of a kink BE on the screw gliding on the primary slip plane, transports 
charge qc in the [1 1 0] direction, eventually emerging at the surface and propagating a 
surface step (see Sec. 12.4b) 

• The glide of a kink on the screw gliding on the cross-slip plane, transports charge qg in 
the [0 0 1] direction. 

• The kink on the cross-slip plane is a jog relative to motion on the primary glide plane. 
If the screw moves in the [1 1̅ 0] plane, the jog will be sessile and can only move by 

 
Problem 12.7. 
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absorbing/emitting a vacancy or interstitial. If it moves, it changes sign. Therefore, the 
screw jog has charge ±e/2. 

Motion of a kink on an edge dislocation does not change or transport any charge so 
q = 0 (slip occurs in the plane of the surface and thus there is no charge transport to the 
surface. See Fig. 12.13). 

• Formation of a jog on an edge: ±e/2 (this requires diffusion of atoms or vacancies to 
the dislocation. Transport of a Cs+ ion to the dislocation core or a vacancy to replace a 
Cs- ion at the core transports a charge of +e to the dislocation. See Sec. 12.3d. In the 
case of a jog pair, the charge of e is proportioned between the two jogs. 

12.8 Should superjogs tend to form in MgO? In PbS? Discuss the role of polarizability in 
superjog formation. 

Yes, for MgO. A jog with an even number of planes high is neutral. In PbS, the much 
greater polarizability means that the effective charges are smaller. The energy penalty 
for forming unit height jogs is therefore smaller. 

12.9✰ What is the charge on the (0 0 1) surface at the point of emergence of a screw 
dislocation along [1 0 1]? The surface ledge lies along [0 1 0] and is shown in Fig. 12.19. 

The exact geometry differs from that in Fig. 12.19 in that Burgers vector and dislocation 
line are not perpendicular to the surface. Along the ledge, the ions alternate in sign. If 
the ledge moved all the way across the crystal, two new corners, each with charge ±e/8 
would be created. Therefore, the point of emergence has charge ±e/8. 

Another way to rationalize the answer is to modify the figure for Prob. 12.7 to 
represent a (0 0 1) surface. In that case the Na+ and Cl– ions would form a square 
instead of rectangular pattern, and motion of a screw dislocation with Burgers vector 
along [1 0 1] around the path BEDCB would shift a Na+ ion out of the surface, 
equivalent to charge transport e along the dislocation. Thus, slip along the portion BE 
only would be ¼ of the total circuit and a charge transport of e/4 would result. The slip 
along BE could be accomplished by inserting two oppositely signed screw dislocations 
at the midpoint of BE and expanding the dipole so that one dislocation resides at B and 
the other at E. A charge transport of e/4 would result, equivalent to a charge of e/8 at 
the point of emergence of each screw dislocation. If the dipole were expanded further, 
e.g., by moving the dislocation at E one unit distance to the right, a negative ion would 
be displaced out of the surface, equivalent to a charge transport of −e/4 along the 
moving dislocation. The charge at the point of emergence of the displaced dislocation 
would be −e/8 (= e/8  − e/4). Thus, the charge at the point of emergence would 
fluctuate from +e/8 to −e/8 during glide along a cube direction. 

CHAPTER 13: DISLOCATIONS IN ANISOTROPIC ELASTIC MEDIA 

Description: These problems involve the computational of elastic constants along directions 
relevant to slip systems and examples of anisotropic elastic effects on the interaction between 
partials. 
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13.1✰ Compute the components sij of the compliance matrix for a cubic crystal, referred to 

the coordinates of Figure 13.2. Verify that {s} is the inverse of {c} for this case. 

The 9x9 compliance matrix {s′}9x9 with components referred to the coordinates of 
Figure 13.2 satisfies the same form as Eq. 13.35 so that {s′}9x9 = {Q}T

9x9 {s}9x9 {Q}9x9, 
where the structures of {s}9x9 and {c}9x9 referred to the cubic crystal basis are given by 
Eq. 13.38 and the values of {Q} for the transformation from the cubic crystal basis to 
that in Figure 13.2 are provided by Eq. 13.37. This provides the necessary information 
to determine all of the components of {s′}9x9 in terms of the components of {s}9x9. 

To verify that {s}9x9 is the inverse of {c}9x9, the above relations can be used to state 
{s′}9x9 {c′}9x9 = {Q}T

9x9 {s}9x9 {Q}9x9 {Q}T
9x9 {c}9x9 {Q}9x9. One can show that {Q}9x9 {Q}T

9x9 = 
{I}9x9 and thus the previous relation can be simplified to {s′}9x9 {c′}9x9 = {Q}T

9x9 {s}9x9 {c}9x9 
{Q}9x9. Finally, {s}9x9 {c}9x9 = {I}9x9 and therefore the previous relation can be simplified to 
{s′}9x9 {c′}9x9 = {Q}T

9x9 {Q}9x9 = {I}9x9. {s′}9x9 is therefore the inverse of {c′}9x9. 

13.2✰ Find the elastic-constant matrix appropriate to determine the energy of a 

1 1 2̅ 3{1 1 2̅ 2} screw dislocation in an hcp crystal. What class of solution for pn 
applies in this case? 

See Teutonico LJ (1970) Mater. Sci. Eng. 6: 2747. The elastic constants are such that 
there is no simple solution in this case. 

13.3✰ Produce a polar plot of σxx and σxy for an edge dislocation with b = ½[1 0 1] and ξ = 
[0 1 0] in NaCl. Compare the result with the isotropic results of Figure 3.12. 

As in Exercise 13.9 (p. 361), σe = Kebe/2πr. The elastic constants are in Eq. 13.42 and the 
stresses are given in Eq. 13.118 and 13.107. Polar plots with the x-axis ∥ b can be made. 

13.4 The following hcp elastic constants (Huntington 1958) are given in units of 10 GPa. 

Metal c11 c33 c12 c13 c44 Ke(x) Ks 

Cd 12.10 5.13 4.81 4.42 1.85 3.43 2.60 

Co 30.70 35.85 16.50 10.3 7.53 12.5 7.31 

Mg 5.97 6.17 2.62 2.17 1.64 2.47 1.66 

Zn 16.10 6.10 3.42 5.01 3.83 5.50 4.93 

 Compute the energy coefficients Ks and Ke for 1 1 2̅ 0(0 0 0 1) dislocations in these 
metals. 

MATLAB. The components of the matrix {c′} are given in Eq. 13.131 and the energy 
coefficients are given in Eqs. 13.133 and 13.135. The values of c′ij are defined in terms 
of cij in the expressions following Eq. 13.131, 𝑐̅′11 is defined in Eq. 13.107, and c66 in Eq. 
13.44b. The values of the energy coefficients are shown in the right-hand columns of 
the table above. 

13.5 a. Show that the separation widths between the partials of a 60° mixed dislocation in 
fcc crystals is r = Keb2/12πγ. 

Figure 10.6 can be used with β = 60° so that the partial dislocations have angles 
β1 = 90° and β2 = 30°. By analogy to Eq. 10.14, only the edge term contributes so 

re = (μbp
2/2πγI)Ke sin β1 sin β2 and substitution of bp = b/√3 and the values of angles 
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yields the final answer. A more rigorous approach is to consider the interaction 
between a parallel edge and 30° mixed pair of dislocations, where only the edge 
components interact. Eq. 13.118 provides the stress component σxy from the pure 
edge dislocation and the Peach-Koehler force FR/L = σxy(90°)be(30°). 

b. Use this result to verify the results of Table 13.1 for the 60° dislocation. 

Figure 10.6 can be used with β = 0° so that the partial dislocations have angles β1 = 30° 
and β2 = −30°. Like-sign screw components and oppositely-signed edge components 
interact and re(0°) = (μb2/6πγI)(0.75Ks − 0.25Ke). This is the same result as in Exercise 
13.9. The ratio re(60°)/re(0°) = Ke/(1.5Ks – 0.5Ke).  

c. Compare the relative widths given in Table 13.1 to those given by Eq. 10.15. Do this 
for Al, Cu, Au, and Pb using the Voigt averages for μ and ν. 

The relative width re(edge)/re(screw) can be calculated using Eq. 10.15, with β = 0 to 
determine re(screw) and β = π/2 to determine re(edge). The Voigt averages for μ and ν 
are provided in Table A.2 of the Appendix.  

d. Compare the above results with those obtained using the Reuss averages for μ and ν. 

The same procedure as in (c) is used except that the Reuss averages for μ and ν in 
Table A.1 of the Appendix are used. 

e. Compare the above results with those obtained using the crude approximation μ = c44 
and ν = 1/3. 

Again, the same procedure as in (c) is used with μ = c44 and ν = ⅓. This problem is 
important in revealing the order of approximation when using isotropic elasticity and 
constant line tension. 

13.6 Derive the formula for the equilibrium width of a ½1 1 1 screw dislocation that 

dissociates into partials ⅓1 1 1 and ⅙1 1 1 bounding an intrinsic stacking fault in a 
bcc crystal. 

The equilibrium condition is (Fr/L)PK + (Fr/L)γ = 0, where (Fr/L)PK = σrz(A) bB is the Peach-

Koehler force exerted by dislocation A (⅓1 1 1) on dislocation B (⅙1 1 1) and 
(Fr/L)γ = −γI. The stress component σrz(A) from A is given in Eq. 13.157 and is ∝ 1/r and γI 
is the intrinsic stacking fault energy. The Burgers vector magnitudes are bA = a/√3 and 
bB = bA/2. The equilibrium separation distance is then re = KsbB/2πγI, where Ks and the 
dependent quantities M, Sij, and c′ij are given by Eqs. 13.151 to 13.156.  

13.7✰ Show that the solution for pn does not reduce to a third order equation in p2 if the 
dislocation lies along the threefold axis of a trigonal crystal. Why not? 

For trigonal crystals, c14 ≠ 0. Thus, the reduction to the simple form of Eq. 13.97 is not 
possible. 

13.8✰ A screw dislocation in a cubic crystal lies along a 1 1 0 direction parallel to a free 
surface. Discuss whether a simple image construction yields the correct force acting on 

the screw. Does the same reasoning apply for a 1 1 1 screw dislocation? 

https://www.cambridge.org/us/academic/subjects/engineering/materials-science/theory-dislocations-3rd-edition?format=HB&isbn=9780521864367


Student Version – Solutions to Problems, Theory of Dislocations, 3rd Ed. 
Cambridge University Press (2017). Publisher website 

45/74 

The relevant stresses are those of Eqs. 3.3 and 13.129. In both cases, x is zero at the 
surface and the stresses are odd in y. Thus, the mirror image construction satisfies the 
free surface boundary condition. For a <1 1 1>screw, σrz given in Eq. 13.158 does not 
vanish when the image stress is added and the simple image construction does not give 
the correct answer. 

13.9✰ A ⅓[1 1 1] partial dislocation lies along [1 1̅ 0] in a Cu crystal. Use a force balance to 
assess the likelihood of dissociation into the two partials ⅙[1 1 2] and ⅙[1 1 0]. 

The mixed ⅙[1 1 1] partial splits into a ⅙[1 1 0] screw partial and a ⅙[1 1 2] edge partial. 
Thus, as in Sec. 13.6, the stress fields are such that the two partials do not interact, at 
least based on the linear-elastic fields. Probably splitting would not occur, because the 
single core likely has a lower core energy than two cores. However, if the two partials 
were separated, they would not interact and would remain separated. 

CHAPTER 14: EQUILIBRIUM DEFECT CONCENTRATIONS 

Description: These problems compute the entropy, effective mass, widths, concentrations, 
and interaction energies of kinks and the concentrations of vacancies and different solutes in 
the vicinity of dislocations, including the effects of elastic modulus mismatch between solutes 
and solvents. 

14.1✰ a. For  = 1011 and 1012 s−1, compute the T at which the entropy of the vibrational 
mode approaches the high T limit. 

MATLAB. The expression for kT ≫ ℏω that follows Eq. 14.2 is rearranged to provide an 
equation for T through expansion of the exponential factor in high T limit : [1 − 
exp(−ℏω/kT)] ≈ (ℏω/kT) – (ℏω/kT)2. Setting this equal to 0.95 (ℏω/kT) provides an 
estimate, T = 20ℏω/k = 1.5E1 and 1.5E2 for ω = 1011 and 1012 s−1, respectively. 

b. If p = 1012 s−1 and k = 1011 s−1, compute the kink entropy Sk. Compare the entropy 
contribution to Fk and the energy contribution at room T if 2Wk = 0.3 eV. At what T are 
the two contributions equal? 

Sk = 8.2E-23 J/K, based on Eq. 14.4 with Troom = 293 K and the prescribed values. The 
entropy contribution to Fk is TSk, which equals 2.4E-20 J = 0.15 eV. Thus, TSk is 
approximately ½ of 2Wk at room T. The two contributions are comparable at about 
T = 600 K. 

c. Compare the result of Eq. 14.6 to that of (b) at room T, assuming an effective mass m* 
= Wk/Ct

2 of the kink and a typical value Ct ~ 105 cm/s. 

Sk = 3.1E-23 J/K based on Eq. 14.6 with a = 1E-8 m, h = 6.63E-34 kg m2/s, T = 293 K, Ct = 
1E3 m/s, and Wk = 0.15 eV. The resulting effective mass of the kink is m* = 0.15 eV/106 
m2/s2 = 2.4E-26 kg. 

14.2 Use Eqs. 8.40 and 8.80 to compute the approximate kink widths in copper, silver, and 
gold. Show the range of orientations for which a discrete kink model should apply for 
these metals, in terms of a polar plot of orientations in the slip plane. 
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MATLAB. The kink widths are approximately 5a for all cases considered. In particular, 
Eq. 8.80 provides an expression for the kink width w where the relevant geometry is 
shown in Figure 8.17. The Peierls barrier is obtained from Eq. 8.40, WP = 
μb2/(π(1 − ν)) exp(−4πζ/b), where ζ = d/2(1 – ν), the interplanar spacing for {1 1 1} 

planes is d = a0/√3, and b = a0/√2 for a ½<110> dislocation. For copper, d = 2.1E-10 m 
and ζ = 1.5E-10 m. From Eq. 8.40, WP = 8.4E-13 J/m. 

More generally, Eq. 8.80 can be arranged into an implicit equation for ψ. It takes the 
form exp(1/Cψ2) − 1/4.5ψ = 0 with ρ = b/2. For copper, silver, and gold, C = 688, 908, 
and 1810, respectively. Solving the equation gives ψ = 0.21, 0.21, and 0.22 respectively. 
Therefore, the kink widths w are approximately 5a for all cases considered (See Fig. 
8.17 for the relation between Ψ and a/w). The critical angle is that where the kink 
width equals the kink-kink spacing. Beyond that angle, the dislocation line is essentially 
a continuous curve. 

14.3 Compute the concentrations of thermal kinks and thermal jogs in an otherwise straight 
dislocation line, for copper at 100, 300, and 900 K. 

MATLAB. Eq. 14.24 is used to estimate the concentration. The the discussion after Eq. 
14.22 indicates that Gj can be approximated by the jog formation energy Wf provided 
by Eq. 8.96. Approximating the jog height using a = b and using values of elastic shear 
modulus μ = 5.46E10 Pa, Poisson’s ratio ν = 0.327, and b = 2.54E-10 m for a perfect ½ 
<110> dislocation in copper, then Wf = 1.0E-20 J. Eq. 14.24 predicts c+

j = c-
j = 2.0E-24/m, 

3.0E-2/m, and 7.9E5/m at 100, 300, and 900 K, respectively. 

14.4✰ a. Include the kink-kink interaction energy in the free energy of formation of a kink 
pair, using the results of Chapter 8. Plot the equilibrium concentration of kink pairs as a 
function of separation distance h, for copper at 200 K. Over what distance does the 
interaction energy appreciably affect the kink pair concentration? 

MATLAB. For copper, ν = 0.327, μ = 5.46E10 
Pa, and b = 2.54E-10 m for a ½ <110> 
dislocation. The approximation a = b is used to 
estimate the interaction energy Wint (Eq. 8.51) 
and energy of formation 2Wf (Eq. 8.50). The 
former is for a kink pair and thus it is negative. 
As noted in the discussion of Eq. 8.50, the 
small length of kinks introduces significant 
uncertainty in the estimate of 2Wf. In the 
logarithmic factor, a/ρ = 6 is used for the ratio 
of the kink height to cutoff, to ensure 2Wf > 0. 
In the accompanying figure for Prob. 14.4a, 
the plot shows the kink concentration without 

the interaction energy (blue) and with the interaction energy (red). The negative 
interaction energy increases the concentration as the kink separation distance, h, 
diminishes. The concentration is affected appreciably over the range shown here. 

 
Problem 14.4a. 
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b. Repeat the steps in (a) for jog pairs. 

MATLAB. For the jog pair, the relevant 
relations are Eqs. 8.95 and 8.97. The 
accompanying figure shows a similar trend to 
that for kinks except that the concentrations 
are orders of magnitude smaller. The results 
are very sensitive to the choice of cutoff ρ. 
For example, changing a/ρ from 6 to 5 to 4 
changes the concentration from 1E-17 to 1E-
11 to 1E-3 m-1. 

14.5✰ Consider two solute atoms that are near the 
center of a large spherical crystal and 
separated by distance h. Let vs > va. Use the 
results of Sec. 2.7 to show that there is no isostatic interaction between the two atoms 
in the absence of image stresses. Compute the isostatic interaction when image terms 
are present. 

For an elastically deforming body, Eq 2.91 expresses the components of stress in terms 
of the radial displacement ur and ∂ur/∂r, where ur for a source of expansion in an 
infinite body is given by the first term in Eq. 2.90. Combining these, one finds that p = 
−(σxx + σyy + σzz)/3 = 0. Therefore, if a solute atom is approximated as a point source of 
expansion in an infinite body, then the stress field generated by the solute atom 
involves shear components of stress but the internal pressure p is zero. If insertion of 
the second atom is modeled by a second point source of dilatation of magnitude δv, 
there is no p δv interaction between the two atoms. With an external surface at R, 
p = −α. The image term ur = αr and from Eq. 2.91 the pressure is p = −(3λ + 2μ)α and 
therefore a finite solute-solute interaction energy occurs. However, p and therefore the 
interaction energy is position independent, so there is no interaction force between 
the solute atoms. Eqs. 2.90 and 2.91 are written for a point source of expansion and 
thus the conclusions are valid in the limit where the separation distance between the 
atoms is much greater than the radius of the atoms. 

14.6✰ Assume the isotropic continuum model result, Vv = vv + vc, for the external volume 
contraction associated with a given vacancy. Identify which volume terms would be 
measured in the following experiments and whether these terms would all be in 
agreement. Note the modification to the question statement (red text). 

a. Dilatometric determination of the lattice contraction accompanying the annealing out 
of vacancies at room T under zero external stress (Fraikor and Hirth 1967). 

This measures the external volume change Vv. 

b. Pressure dependence of the quenched-in resistivity following quenching from 
elevated T under various pressures (Huebener and Homan 1963). 

This is sensitive to only vv. 

 
Problem 14.4b. 
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c. High-T dilatometric measurements, subtracting out the effect of thermal expansion of 
the bulk lattice (Simmons and Balluffi 1962). 

This measures the external volume change Vv. 

Thus, the three measurements do not all measure the same quantity. 

14.7✰ Consider a cylindrical crystal under uniform simple tension σxx parallel to the cylinder 
axis. Assume local vacancy equilibrium at the crystal surfaces. Compute the local 
equilibrium concentration at the surfaces where σxx is applied and at the lateral free 
surfaces where σxx is not applied. 

At the lateral free surfaces where σxx = 0, there is no external work term when a solute 
atom moves to a surface kink and thereby creates a vacancy. At this surface cv = cv

0. At 
the surface where σxx is applied, the addition of an atom at the surface kink entails 
external work σxx Ax a, where Ax is the surface area of the atom and a is the 
displacement normal to the surface. Then, from Eq. 14.38, c = cv

0 exp(σxx Ax a/kT). The 
vacancy concentration is increased if σxx > 0 (tension) and decreased if σxx < 0 
(compression). 

14.8 For the case of gold, compare the vacancy concentrations as a function of distance 
from a pure edge dislocation, as given by Eq. 14.39 vs. Eq. 14.45. 

Eq. 14.39 predicts an equilibrium vacancy concentration cv that varies with distance r 
from the dislocation because the pressure near an edge dislocation scales as p ∝ 
(μb sin θ)/r (Eq. 14.44). This leads to an increase in vacancy concentration in the vicinity 
of the extra half-plane that defines the edge dislocation (0 < θ < π) and a decrease in 
vacancy concentration below the extra half plane (π < θ < 2π), as shown in Fig. 14.11. 
Eq. 14.45 includes the term −2wva so that cv

0
(Eq. 14.45)/cv

0
(Eq. 14.39) = exp(2wva/kT), where 

the elastic strain energy is positive and scales as 1/r2. This term tends to increase the 
equilibrium vacancy concentration near the dislocation for all values of θ. The specific 
results for gold are obtained by substituting values of elastic modulus, Poisson’s ratio, 
va, and b for gold. 

14.9 Compare the magnitudes of the energy terms in Eqs. 14.48 and 14.71 for Al dissolved in 
Cu, and also for Zn in Cu, Ag in Au, and Cu in Ni. 

Eq. 14.48 captures the ratio of the solute concentration c in the vicinity of a dislocation 
to the far-field value c0, due to the difference, vs − va, in atomic volume between the 
solute and matrix. The respective atomic radii for Al, Zn, and Cu are 0.143, 0.139, and 
0.128 nm and thus vs − va > 0 for Al in Cu and Zn in Cu. Since p ∝ (μb sin θ)/r (Eq. 14.44), 
the product p(vs − va) > 0 in the vicinity of the extra half-plane that defines the edge 
dislocation (0 < θ < π) and therefore Eq. 14.48 predicts that the solute concentration c 
in this region is less than the concentration c0 far away from the dislocation. The 
opposite is true in the region below the extra half plane (π < θ < 2π). For the other 
cases, the atomic radii of Ag, Au, Ni, and Cu are 0.172, 0.166, 0.163, and 0.128 nm so 
that the trend for Ag in Au is similar to the scenarios above. The reverse is true for Cu in 
Ni. 
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The prediction c/c0 from Eq. 14.48 can be modified to include the contribution arising 
from a difference in the elastic modulus of the solute relative to that of the matrix. The 
contribution ΔW in Eq. 14.71 is second-order and smaller than the contribution 
p(vs − va). The sign of ΔW in Eq. 14.71 is obtained by comparing the bulk moduli K′ and 
K for the solute and solvent, respectively. These values are obtained by using K = 
λ + 2μ/3 (Appendix A1.3), where the values of λ and μ are provided in Table A.2 
(p. 654). 

14.10✰ Determine from Eq. 14.77 the integral concentration of free lengths between l′ and 
some value l′′ representing the average length of dislocation segments in a crystal. 
Compute the concentration of all lengths between l′ = 10−6 cm and l′′ = 10−3 cm at 100, 
300, and 700 K. Assume bcc iron with one carbon atom per 104 possible bulk interstitial 
sites and the reasonable value FB ~ 1.0 eV. (Note the corrections shown in red text. The 
binding energy should be 1.0 eV, as discussed in a footnote in Sec. 18.5.) 

MATLAB. Eq. 14.77 gives the number of clean segments of length l per unit length of 
dislocation, where a = b =2.866E-10 m is used for BCC iron, 𝐺̅ ≈ 0.8 eV, and GB = 1.0 eV 
(see the discussion in Sec. 18.5 related to Wreidt, HA, Darken, LS (1965), Trans. Metall. 
Soc. AIME 233:122). The integral C = ∫cl dl from l′ to l′′ gives C = 
[exp(−ql′) − exp(−ql′′)]/qb, where q = (GB + 𝐺̅)/kTa with a = 1E4 b. The result is C = 2.3E-
3, 1.1E-2, and 3E-2 for the cases T = 100, 300, and 700 K. 

14.11 Determine the divalent impurity concentration that would give T0 = 300 °C in NaCl. 

Take va = 4.4  10−23 cm3 and Wv = 1.01 eV (Etzel and Maurer 1950) and assume ∆ = 
0.20 eV. 

MATLAB. Use Eq. 14.105 to obtain c++ = 1.5E21/m3 with T0 = 573 K. 

14.12✰ Eq. 14.89 applies to the Debye-Hückel radius in the intrinsic range. Consider an 
extrinsic range with a divalent impurity concentration c++ and suppose all cation 
vacancies are quenched out. Estimate the Debye-Hückel radius if both divalent 
impurities and anion vacancies can rearrange themselves to provide an atmosphere. 

MATLAB. Eq. 14.89 can be used to estimate λ in the absence of impurities, when cation 
vacancies are dominant. There, n is the concentration of ions, equal to 1/Ω, where Ω is 
the volume per ion. Typical values for alkali halides such as NaCl are Ω = 8.21E-30 m3 
and ϵ = 8. The fraction of vacancy sites, α, is given by Eq. 14.85 with only Fc in the 
exponent, where Fc = 9.648E4 J/mol is representative for alkali halides such as NaCl. At 
T = 400 K, α = 3.98E12 and λ = 0.209 nm. This provides very efficient screening. At 
T = 700 K, λ = 180 nm. The screening is less efficient because of the greater vacancy 
concentration and entropic spreading. 

If the anion vacancy concentration is fixed by the divalent impurity fraction X = c++/n, 
(see Eq. 14.104), then α in Eq. 14.89 is replaced by X. As an example, if X = 0.001, then λ 
= 0.139 nm and the screening is considerably greater. The intrinsic screening lengths 
increase with increasing temperature while the extrinsic lengths decrease weakly, in 
proportion to T. 
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14.13 Substitute a host atom with an incompressible atom having a volume v larger than 
that of the host atom. 

a. Calculate the external expansion V. 

MATLAB. Eq. 14.46 is used and since the atom is incompressible, K' is infinite so δV = 
(vs − va)(1 + 4μ/3K). From Appendix A1.3, 4μ/3K = 2(1 – 2ν)/(1 + ν) = 0.53 for Cu for 
which ν = 0.324. Thus, δV = 1.5(vs – va) for Cu. 

b. If an external pressure P is present, show that an extra amount of work P V is 

required to insert the atom. Hint: If the crystal is compressed initially, a volume v + 
Pva/B must be opened up to accommodate the inserted atom. 

If an external pressure P is present prior to insertion of the atom, then when the atom 
is inserted, an additional amount of work P δV must be performed as the external 
surface expands against the external pressure. Thus, to first order, the external work is 
P δV with δV determined as in Part a. However, a higher order term can be identified 
by observing that application of the external pressure reduces the volume per host 
atom by an amount Δva/va = P/K, where K (Eq. 2.62) is the bulk modulus (denoted by B 
in the hint). Thus, the difference in volume between the solute atom and host atom is 
altered by the effect of pressure on va. To conclude, the extra volume mentioned in 
the hint is present and there is an extra work term P2va/K. 

14.14✰ Consider the situation in Prob. 14.13 but assume a compressible substitutional atom 

with bulk modulus K  K. Show that if an external pressure P acts, then the extra 

amount of work to insert the atom is again P V. 

Eq. 14.46 is used with K′ ≠ 0 to provide a first-order estimate of δV. More formally, the 
higher order work term would include Δva/va = P/Ka and Δvs/vs = P/Ks so that the higher 
order term is P(Δva − Δvs). 

CHAPTER 15: DIFFUSIVE GLIDE AND CLIMB PROCESSES 

Description: These problems explore length scales for diffusion of vacancies, velocities of kinks 
and dislocations, the effect of stress on kink activation energy and vacancy concentration, and 
the collapse or expansion of vacancy loops. 

15.1 Verify by direct substitution that the solution for concentration, 

c = (4πDt)-1/2 exp(=x2/4Dt) 

 satisfies the 1D diffusion equation ∂c/∂t = D ∂2c/∂x2 for all particles concentrated at 
x = 0 at t = 0. 

The direct substitution process is straightforward and involves two terms. One is 
proportional to t-3/2exp(-x2/4Dt) and the other is proportional to x2t-3/2exp(-x2/4Dt). 

15.2 Discuss the time dependence of the solution in Prob. 15.1. Show that ⟨x2⟩ = 2Dt. 

The solution is given in diffusion texts, e.g, see Shewmon PG (1963) Diffusion in Solids, 
McGraw-Hill (New York). 
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15.3 Assume for a metal that Dv ≅ b2ν exp(−Wv/kT) (see Eq. 15.7), ν = 1013 s−1, b = 

2  10−8 cm, Wv = 0.2 μb3, and the melting point Tm = (2  10−2) b3/k. How far will a 
vacancy diffuse in 1 s at T just below the melting point? 

MATLAB. Substitution of values gives Tm = 633 K, Wv/kT = 10, Dv = 9E-3 m2/s, and 

√〈𝑥2〉 = √2𝐷𝑣𝑡 = 6.0E-6 m for t = 1 s. If instead T = Tm – 200 K, then the diffusion 

distance is about an order of magnitude smaller. 

15.4✰ Suppose that Dk is given by Eq. 15.11. How fast will the kink move relative to Ct at room 

T when acted upon by a force F  10−4 b2, corresponding to a stress σ ~ 10−4 ? Use 

the Einstein mobility relation and assume b3 = 5 eV. 

MATLAB. Eq. 15.9a is used to estimate vk and Ct ≈ νDb, so that vk/Ct = σb2h/kT. The 
result, vk/Ct ≈ 0.02, is obtained by taking σ = 1E-4 μ, the kink height h = b, Troom = 293 K, 

and b3 = 5 eV. 

15.5 Find the velocity of a screw dislocation under the conditions of Prob. 15.4, with one 

kink per 30 kink sites in the dislocation. Assume a = h = b = 2  10−8 cm. 

Eq. 15.12 can be used with h ≈ b, 𝓁 = 30 b, vk ≈ 0.02 Ct, and Ct ≈ νDb = 
(1012 to 1013)s−1 (2E-10 m) = (102 to 103) m/s. The resulting kink velocity is v = 
(3 to 30) m/s. 

15.6✰ Consider a straight dislocation segment of length L lying in a Peierls valley. Suppose it 
can move to a kink pair configuration with kink separation ~ L. How large a resolved 
shear stress is required to change the energy of the kinked configuration by kT relative 
to the unkinked configuration? How large is this stress for L = 103 b? For L = 102 b? 

Assume kT ~ b3/400 ~ 0.012 eV and h = b. 

MATLAB. Eq. 8.49 indicates that the change in energy to form a kink pair on a screw 
dislocation is W = 2Wf + Wint, where Wf is given by Eq. 8.50 and Wint by Eq. 8.51. If a 
shear stress σ acting on the slip plane in the direction of slip is present, then the energy 
change is W − σbhL and this is equated to kT. The required shear stress is σ = 
(W − kT)/bhL. This can be normalized so that (σ/μ)(L/b) = [1/2π(1−ν)][ln(a/eρ)−(1−ν)] − 
[1/8π(L/b)][(1+ν)/(1−ν)] − (kT/μb3), where a is the kink height as shown in Fig. 8.11. 
Taking a/ρ = 6, ν = ν (copper) = 0.324, and kT/μb3 = 1/400, then σ/μ = 2.5E-5 for L/b = 
1E3 and 2.5E-4 for L/b = 1E2. 

15.7✰ Discuss the significance of the inception of amplitude dependence in a Bordoni peak 
experiment, in terms of the results of Prob. 15.6. 

There is no amplitude dependence provided there is only one kink pair formed in the 
interval during one cycle. An amplitude dependence arises when more than one pair 
forms because there is a pair-pair interaction that influences the nucleation rate. 

15.8✰ a. Consider a crystal that suddenly is subjected to an isostatic compressive stress P 
under isothermal conditions. Before the vacancy concentration changes, is there a 
super- or under-saturation c/c0 of vacancies according to the definition of c0 in Eq. 
14.39? 
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Undersaturation. The pressure aids in the lattice contraction at the vacancy site and 
thus lowers the energy of formation. 

b. Will an edge dislocation in the crystal move transiently before a new equilibrium 
concentration is established? 

Yes, there will be a transient climb driving force that vanishes when the vacancy 
concentration equilibrates. 

c. Derive the expression for the initial total force on the dislocation. 

The dislocation moves up in Fig. 15.15a, thereby creating vacancies within the 
dislocation core. The climb force is given by Eq. 15.74, where c is given by the second 
equation after Eq. 15.76. c < c0, in accord with example (a) above. 

15.9 Consider a region of crystal with a pressure P + p and a vacancy concentration that is in 
equilibrium with local internal sources and sinks in that region. Is there a super- or 
under-saturation of vacancies in the region? 

By definition the concentration is at local equilibrium, but it differs from the stress-free 
cv

0 of Eq. 14.39. For a vacancy, vv is negative, so there will be an undersaturation. 

15.10 If internal sources and sinks are present, discuss the mechanism by which vacancy 
diffusion tends to diminish internal stresses. 

Repulsive interactions between dislocations can be relieved by climb because it can 
extend the separation distance between the defects. Attractive interactions lead to 
dislocation annihilation. Both effects decrease internal stresses. 

15.11 Derive an expression for the time for a circular prismatic dislocation loop, formed by 
collapse of a vacancy disc, to shrink to one-half the original radius R. 

Eq. 15.108 provides an expression for the climb velocity, v = C1𝒮0/C′R, where C1 = 
μDsva/2(1−ν)kT and C′ = μb2/4π(1−ν). The line tension is defined in Eq. 6.75 as 𝒮0 = 
∂W/∂ℒ, the variation in energy with respect to a change in length of dislocation loop. 
The result, 𝒮0 = C′ ln(8R/z0), is obtained by replacing W with Ws, the self energy of a 
prismatic loop (Eq. 5.29), and ℒ with 2πR. Insertion into Eq. 15.108 gives the climb 
velocity −dR/dt = C1 ln(8R/z0)/R, where the negative sign is inserted to indicate 
shrinkage of the loop. The resulting integration can be expressed in terms of 
exponential integrals. A simplification is to approximate ln(8R/z0) by the constant, 
ln(6R0/z0), which is the value of ln(8R/z0) at the midpoint of the integral from R0 to R0/2. 
Then the time increment to go from R0 to R0/2 is Δt = 3R0

2/8C2, where C2 = C1 ln(6R0/z0). 

An alternative is to use the energy of a loop (Eq. 5.27), which one can write as 
W = C[ln(a/z0) – 1] with C containing material constants. The climb force is F = ∂W/∂a 
= ln(a/z0). This force produces a climb velocity given by Eq. 15.108, where v = ∂R/∂t = 
C′/R, with C' dependent on material constants. The integral with respect to time is 
t = R2/C′t and therefore the time interval for the radius to halve is Δt = 3R2/8 C′. 

15.12✰ Express Eqs. 15.135 and 15.136 in a general vector notation for v in terms of a force 
produced by the stress tensor σ. 
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In both equations, replace F/L by Eq. 3.95. The climb motion is in the (b × ξ)/|b × ξ| 
direction. 

15.13✰ a. Derive the growth velocity analogous to Eq. 15.108 for a square prismatic loop 
formed by vacancy disc collapse. Assume quasi-equilibrium with jogs everywhere on 
the dislocation line. 

The exact solution is very difficult to obtain but the process is similar to that in Prob. 
15.11. Eq. 15.108 provides an expression for the climb velocity, v = 2πC1𝒮0/4C′L, where 
C1 = μDsva/2(1−ν)kT, C′ = μb2/4π(1−ν), and 2πR is replaced by 4L to equate the 
circumferences of the square and circular loops. The line tension is defined in Eq. 6.75 
as 𝒮0 = ∂W/∂ℒ, the variation in energy with respect to a change in length of 
dislocation loop. W for a square prismatic loop of edge length L is obtained using the 
procedure outlined in Prob. 6.3 and it takes the form: 

𝑊𝑛=4 prismatic loop = 𝐶′𝐿 [4ln
𝐿

𝑒𝜌
+ 𝐶] 

The ln term represents the contribution from the self energy of the four edges and C 
captures the interaction energies between the four edges; it is not calculated in this 
example. The result is 𝒮0 = C′ ln[(L/eρ) + 1 + C/4].  

The line tension therefore takes the form 𝒮0 ≈ C′ ln(L/eρ) ≈ C′ln(L/b). The energy of the 
square is then 4L𝒮0. Here, ∂N/∂L = 𝒮0va/2bL. The diffusion solution is the same and Eq. 
15.106 becomes C′ln(L/b). Eq. 15.108 is then replaced by v ≈ πDv𝒮0vaC′ln(L/b)/LkT. This 
is quite similar to Eq. 15.108. 

b. Note that the square shape of the loop suggests that geometric jogs are absent in 
growth because they grow out to the corners of the square and vanish. Discuss the 
mechanism of loop growth. What condition must occur for the quasi-equilibrium 
assumption of (a) to be valid? 

The mechanism is kink pair nucleation and growth, the jog equivalent of Eq. 15.45. 
kink pair annihilation distance, pertinent to the mechanism of Eq. 15.43, must be close 
to L in order that quasi-equilibrium of vacancies along the line is approximately 
established. In the limit of a long waiting time between nucleation events, the vacancy 
concentration would drop below the local equilibrium value. 

c. When such a loop shrinks, the shape tends to be circular in contrast to a square (or 
more generally polygonal) growth shape. Discuss the reason for this difference in 
shape. There is a direct analog to this shape difference in the topography of crystal 
growth and dissolution (Frank and Ives 1960). 

As the loop shrinks the interaction forces, ∝ 1/L, become very large so that the 
nucleation barrier becomes quite small and the nucleation rate is quite large. The kink 
spacing is then so small that the line becomes essentially a circular shape. The circle, 
as opposed to other curves shapes, is stabilized kinematically by the diffusion process. 
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15.14✰ Discuss the situations analogous to that in Figure 15.29b where a vacancy is absorbed 
in the middle of the jog line and where a vacancy is absorbed at each end of the jog line 
at the same time.  

The absorption in the middle is more difficult because it results in twice the number of 
jogs. Adsorption at one end when there is already a vacancy absorbed at the other end 
is more favorable because there is an elastic attraction force between the two jogs. 

CHAPTER 16: GLIDE OF JOGGED DISLOCATIONS 

Description: These problems discuss the velocity of screw dislocations with jogs, creep rates, 
motion of superjogs, and the formation of jogs from intersection of dislocations. 

16.1 a. Compute the value of  for which Eq. 16.5 approximates Eq. 16.4 within 5% and 
also 1%. Assume silver at 800 °C with l = 100 b. 

MATLAB. The screw velocity with vacancy-producing jogs as predicted by Eq. 16.5 
divided by that predicted by Eq. 16.4 has the form f(X) = X/(eX – 1), where X = σbla/kT. 
f(X) = 0.95 when X = 0.10, which corresponds to σ/μ = 10-3kT/μb3 when l = 100 b. For 
silver, b = 2.89E-10 m for a ½ <110> dislocation and μ = 3.38E10 Pa (Appendix A1). 
Thus, σ/μ = 1.8E−5 for the 5% case. f(X) = 0.99 at X = 0.02, which corresponds to σ/μ = 
3.6E−6. This problem demonstrates that the linearized Eq. 16.5 is accurate in many 
cases. 

b. Compute v for  = 10−3  at 800 °C. Assume Ds = a0
2ν exp(−Ws/kT), ν = 1013 s−1, and Ws 

= 1.9 eV. What creep strain rate does this v correspond to if the active dislocation 
density ρ = 108 cm/cm3? 

Insertion of the provided values gives Ds = 1.7E-15 m2/s, and substitution into Eq. 16.4 
with h = a = b = 2.89E−10 m and σ = 1E-3 μ gives v = 1.9E-2 m/s. The resulting creep 
rate ∝ ρ b v = 5.3E0/s. See the paragraph following Eq. 16.9. The creep rate is 

extraordinarily large at σ = 10−3  and T = 800 °C. 

16.2✰ Assume an energy-displacement curve of the form of Figure 16.5 for vacancy formation 

at a jog. Compute W* and a* using 

2

v v

10
( , ) 1.5( ) 1 sin

x
W x W W

a

   
 = + −   

     

 Compare the magnitudes of the various terms in Eq. 16.10 for this case. 

Eq. 16.9 provides the definition for a*. Set C(σ) = 1.5(Wv + W′v)(1 – 10σ/μ) so that W = 
C sin2(πx/a). The result is sin(2πa*/a) = σbla/πC. If a*/a is small, then a* = σbla2/2π2C. 
The terms in Eq. 16.10 are la*, la*, −la*. Here, the terms ∂C/∂σ are assumed to be small 
compared to ∂a*/∂σ. The conclusion is that all three terms are comparable in 
magnitude. 

16.3✰ a. How are the point forces at jogs in screw dislocations affected if the jogs are 
superjogs? 
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The point forces scale with the jog height if the superjog moves uniformly. The point 
forces would change little if the superjog advanced by a mechanism wherein unit jogs 
traverse the superjog. 

b. Derive the equation analogous to Eq. 16.7 for the superjog case. 

If the jog height is na where n is an integer and a is an atomic distance along the 
superjog, then Eq. 16.7 is modified by a factor n in the denominator. 

c. Describe a mechanism whereby superjogs can advance by single-vacancy emission. 
Draw the appropriate jog configurations. 

Unit jogs traverse the superjog as discussed in Sec. 15.6 and as illustrated in Fig. 15.29. 

16.4 Compute the critical stress for motion of vacancy-forming jogs without thermal 
activation, for silver with Wv ~ 1.0 eV and Wi ~ 4 eV. Do the same for interstitial-
forming jogs. Compare these stresses with the that required to move a dislocation at a 
velocity of 106 cm/s (Eq. 16.18). Use l = 102 b and T = 800 °C. 

MATLAB. Eq. 16.8 is used and for the case without thermal activation, Wv = σbla* for 
vacancy-forming jogs and Wi = σbla* for interstitial-forming jogs. This leads to 
σcrit,v = Wv/bla* and σcrit,i = Wi/bla* for the respective cases. Substitution of a* = a = b 
(see Eq. 16.16), l = 102 b, and b =  2.89E-10 m (for Ag) yields σcrit,v = 6.7E1 MPa and 
σcrit,i = 2.8E2 MPa. At very large stress, Eq. 16.18 predicts that the limiting dislocation 
velocity for diffusion-controlled motion of a screw with interstitial-producing jogs is 
vlimit = 4πDs/h = 7E-5 m/s when h = b and Ds = 1.7E-15 m2/s (see Prob. 16.1b). A velocity 
of 104 m/s is therefore unattainable in a diffusion-controlled mode. The comparison 
shows that values of stress for motion without thermal activation (i.e., the athermal 
case) are more feasible. This is interesting since the athermal option is often neglected 
and probably occurs often for high stresses (high strain rates). 

16.5✰ In a fcc material, consider an extended screw dislocation that intersects a random array 
of dislocations. 

a. What are the probabilities of forming acute and interstitial jogs? 

For intersections with a random array, there would be equal numbers of acute or 
obtuse jogs as well as equal numbers of interstitial-forming and vacancy-forming jogs. 

b. Describe a mechanism by which an acute extended jog can become an obtuse 
extended jog. 

The conversion can occur when the dislocation line rotates as in the sequence 
(a)→(c)→(b) in Fig. 10.19. 

c. Which type of jog is expected to predominate in an equilibrium array? 

Acute jogs should dominate because of their smaller stair-rod Burgers vectors. 

16.6✰ Along a screw dislocation, suppose that an acute extended jog is a superjog. Show 
mechanistically how such a jog can climb by single-vacancy absorption. 
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In Fig. 10.20a, a vacancy would form at the partial αA. Since the jog-line is equivalent to 
a row of 1/3 vacancies, the dislocation advances by a distance 3a, where a is the atomic 
spacing along the jog-line. 

CHAPTER 17: DISLOCATION MOTION IN VACANCY SUPERSATURATIONS 

Description: These problems address the climb of dislocations upon up quenching, nucleation 
of vacancy loops upon quenching, operation of Bardeen-Herring sources with interacting arms, 
the formation of helical dislocations, the formation of jogs on stacking fault tetrahedra, and 
the interaction of concentric partial dislocation loops. 

17.1 Consider a silver crystal with an edge dislocation along the axis of a right circular 
cylinder of radius R = 104b. If the cylinder is rapidly up-quenched from room T to near 
the melting point, compute the maximum possible climb rate and the initial quasi-

steady-state climb rate of the dislocation. Assume Wv = 1.0 eV and Wv = 0.9 eV. 

MATLAB. Eqs. 17.15 and 17.16 provide the initial and steady-state climb velocities, vinit 
and vSS. vSS/vinit = [π/4 ln(R/b)][1 – (c/c0)]. Eq. 17.2 provides an estimate of c0 so the 
ratio c0(Troom)/c0(Tmelt) = 6E-14, based on Troom = 293 K, Tmelt = 1235 K, and Wv = 1.0 eV. 
vSS/vinit = [π/4 ln(R/b)] = 8.5E-2. Absolute values of velocity can be obtained by 
estimating Ds using Eq. 17.13 and substituting into Eqs. 17.15 and 17.16. 

17.2✰ For an aluminum crystal quenched from 650 to 300 °C, compute the nucleation rate of 

circular prismatic ½1 1 0 loops in the presence of normal stresses  = 10−6E, 10−4E, 

10−2E, and 10−1 E. Note the correction in the question statement (red text). 

MATLAB. Use Eq. 17.6 to estimate the steady-state nucleation rate J = Zωnc, where Z ≈ 
0.1 (see text following Eq. 17.6) and ω and nc are given by Eqs. 17.7 and 17.8, 
respectively. The discussion in Sec. 17.3b cites ΔG* = 3.25 eV and this is lowered by 
σbπr*2, where the discussion provides an estimate, r* = 4E-10 m. Thus, ΔG* is lowered 
by 3.2E-5, 3.2E-3, 3.2E-1, and 3.2 eV for the four values of stress, assuming that the 
resolved shear stress = ½ applied normal stress and b = 2.89E-10 m and E = 7.1E10 Pa 
for aluminum. Eq. 17.8 predicts the equilibrium concentration of critical size loops to 
be nc = 6.9E-1, 7.4E-1, 4.6E2, and 1.1E28 m-3 for the four values of stress. Eq. 17.7 
estimates the frequency at which vacancies join the loop, ω = 2.6E2/s, based on an 
attempt frequency ν = 1E13/s as adopted in Prob. 16.1b, a concentration c = 
1.1E28/m3, and Wv = 0.76 eV and Wv′ = 0.62 eV from the discussion in Sec. 17.3b. The 
steady-state nucleation rate, J = Zωnc, has values of 1.8E1, 1.9E1, 1.2E4, and 3.0E29 m-3 
s-1 for the four values of normal stress. The results are consistent with the conclusion in 
the discussion that appreciable densities of loops (e.g., in Figure 17.1) require values of 
applied stress approaching the theoretical strength. 

17.3 Compute the nucleation rate of circular, Frank partial, prismatic ⅓1 1 1 loops after 

quenching from 650 to 300 °C, assuming 1 = 200 mJ/m2. Compare the results to those 

of Prob. 17.2. Discuss the experimental observation of ⅓111 faulted loops in high-

purity quenched aluminum. 
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MATLAB. The magnitude of the Burgers vector for the partial is bp = a0/√3 = 2.34E-10 m 
instead of 2.89E-10 m for ½<110> loops. The same procedure in Prob. 17.2 is used, but 
with a revised value, ΔG* = 3.25 eV (bp/b)2 + γ1πr*2 = 2.2 eV assuming the critical radius 
is proportionally smaller for the partial loop by an amount, r* = 4E-10 m (bp/b) = 
3.3E−10 m. Eq. 17.8 predicts the equilibrium concentration of critical size loops to be nc 
= 2.7E9, 2.8E-9, 9.4E10, and 6.3E24 m-3 for the four values of stress, so that it is 10 
orders of magnitude larger for the smaller applied stress values. The frequency at 
which vacancies join the loop, ω = 2.6E2/s, is similar, based on an attempt frequency 
ν = 1E13/s as adopted in Prob. 16.1b, and a concentration c = 7.9E21/m3 based on Wv = 
0.76 eV and Wv′ = 0.62 eV from the discussion in Sec. 17.3b. The steady-state 
nucleation rate, J = Zωnc, has values of 7.1E10, 7.4E10, 2.5E12, and 1.6E26 m-3 s-1 for 
the four values of normal stress. Thus, partials require significantly lower applied stress 
to achieve appreciable nucleation rates ~ 1011 m-3 s-1, compared to ½<110> loops. 

17.4✰ Suppose that one arm of an operative Bardeen-Herring source swings around several 
screw dislocations so that it passes over the opposite arm by three interplanar 
distances. Consider the likelihood of annihilation in such a case and also the resultant 
dislocation configuration. 

The attractive interaction force is μb2/6πa, where a is the atomic spacing normal to the 
plane of Fig. 17.5. The dislocations would annihilate under such a stress. The Bardeen-
Herring mechanism applies only to planar arrays. 

17.5✰ What forces act on a helical dislocation formed from a screw and lying normal to a free 
surface? What results when the helix glides into the surface? Assess the likelihood of 
such glide quantitatively. 

The helix is of mixed screw-edge character. Image forces attract the helix, which moves 
by climb. However, the climb is conservative since opposite segments have opposite 
edge components. Hence, the overall process is glide of the helix to the surface by a 
conservative climb mechanism. The overall (thermodynamic) image force is the same 
as that for a straight screw parallel to the surface. The surface is locally sheared but its 
topography is unchanged when the helix glides out, just as for a straight screw. The 
likelihood of such glide is greater when the removal of dislocation energy, μb2 ln 2, 
near the surface is greater in magnitude than the energy, γb, of the step, where γ is the 
energy/area of the step riser. 

17.6 Consider a straight mixed dislocation line in an unstressed crystal. If an external 
isostatic pressure is applied to the crystal, show that the dislocation will initially tend to 
transform into a helical shape but will eventually straighten out. Discuss the forces 
acting on the dislocation at each stage. 

The application of pressure changes the bulk equilibrium concentration of vacancies 
cv

0, Eq. 14.39. Thus, the screw dislocations initially climb into a helix in order to supply 
the equilibrium vacancy concentration, differing relative to that before the pressure 
was applied. However, there are interaction forces between segments of the helix and 
the local vacancy concentration is that of Eq. 14.42. During a long anneal, the vacancy 
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gradient from cv to cv
0 will dissipate by diffusion and the helix will shrink back to a 

straight screw dislocation. 

17.7✰ Suppose a mixed dislocation transforms into a helical dislocation in the absence of net 
mass transport to or from the dislocation. Show that the helix formation requires both 
local core diffusion and net climb of the dislocation, i.e., the axis of the helix is 
displaced from the original position of the straight dislocation. Compute the distance of 
climb as a function of λ, r, and be. 

As in Fig. 17.8, the helix is topologically equivalent to a straight dislocation and a set of 
prismatic loops. The latter can only correspond to an aggregate of either vacancies or 
interstitials. These can only be supplied by climb of the mixed dislocation. The number 
of loops per unit length of line is λ and the number point defects needed is πR2/λva. For 
climb by a distance L, the number of point defects produced is beL/va. Equating these 
results gives the answer. 

17.8 Construct a sequence of diagrams showing the stages of the following: 

a. Formation of an acute jog line at a tetrahedron corner by vacancy emission. 

In Fig. 17.20 vacancy emission creates the configuration at A. 

b. Annihilation of an interstitial at an obtuse jog line on a tetrahedron. 

Interstitial absorption moves the obtuse jog-line upward. 

17.9✰ Use the method of Chapter 6 to verify that a positive interaction energy results for a 
hexagonal Frank partial and a smaller, concentric triangular Frank partial. This means 
that the nucleation of such triangles is unfavorable and it indicates the possibility of 
heterogeneous nucleation. 

The stable form of a Frank loop is a circle, 
approximated as a hexagon in Chap. 6. Single Frank 
loops form by vacancy condensation under 
irradiation. The question is whether the nucleation 
of a second loop is more favorable than the 
formation of another single Frank loop. 

The accompanying figure shows the geometry and 
interaction energy between the loops involves the 
paired terms: W71 and W74; W72 and W75; W73 and 
W76. W71 involves the interaction of parallel, like-
signed segments and therefore it is positive. W74 is 
negative but the segments are more separated 

than for W71. Therefore, the sum W71 + W74 is positive. Likewise, the other pairs involve 
pairs with oppositely signed Burgers vector when the coordinate system of Figure 6.4 is 
imposed. The net result is a positive interaction energy between the hexagonal and 
triangular loops. Thus, a second loop at the same site is unfavorable and single loops 
should be favored, consistent with experimental observations. 

 
Problem 17.9. 
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CHAPTER 18: EFFECTS OF SOLUTE ATOMS ON DISLOCATION MOTION 

Description: These problems consider forces to move excess atoms in a potential well, creep 
velocities with interstitial carbon present, estimates of breakaway stress when dislocation 
cores are not fully saturated with solute, binding of a second phase to a dislocation core, and 
the effect of supersaturation of solutes on dislocation nucleation. 

18.1 Show that Eq. 18.35 follows from Eqs. 18.11 and 18.36. 

Eq. 18.11 can be restated c ∂W/∂x = −(kT/Dc) [v(c – c0) + D ∂c/∂x] and insertion into Eq. 
18.36 gives F = −(kT/D) ∫ [v(c – c0) + D ∂c/∂x] dx. Integration of the first integrand from x 
= −∞ to +∞ gives N and the second integrand gives 0 since c(+∞) = c(−∞). The latter is 
confirmed in Figure 18.2 showing c(x) for a square well potential. 

18.2 Compute the creep velocity in mild steel for  ~ 10−4  at T = 600 K, according to Eq. 
18.108. Assume that carbon equilibrates with cementite. 

MATLAB. The Peach-Koehler formula (Eq. 3.93) provides the thermodynamic force unit 
length, F/L = σb on a dislocation arising from the applied stress. This is equated to the 
drag force/unit length provided in Eq. 18.108. The solution for the dislocation velocity 
is v = 3σbω/2πc∞kT. 

For BCC iron, b = √3a0/2 for a ½<1 1 1> dislocation, where a0 = 2.87E-10 m at room 
temperature. The mean jump frequency ω = ν exp(-G/kT), where the activation energy 
for diffusion of carbon in BCC iron is 1.6 eV/atom (Wells et al. AIME 188, 553 (1950)) 
and ν = 1013/s as used in previous problems. The exponential form is similar in nature 
to the jump frequency for kinks (Eq. 18.119). Finally, the concentration of carbon at 
infinity, when in equilibrium with cementite, is provided by Eq. 18.114, where the 
discussion prior to this equation indicates Ws ≈ 0.8 eV. Eq. 18.114 also requires the 
number n of available octahedral sites per unit volume, equal to 6 sites per unit 
cell/a0

3. Substitution into the above equation for dislocation velocity gives the answer, 
v = 8.7E-16 m/s. This answer is relevant to the case of a Snoek atmosphere, where drag 
is associated with the local rearrangement of solute atoms around the dislocation, as it 
moves. 

18.3✰ Use Eq. 18.72 to compute the creep velocity in mild steel for  ~ 10−4  at T = 600 K. 
Assume that carbon equilibrates with cementite. 

MATLAB. Similar to Prob. 18.2, the Peach-Koehler formula (Eq. 3.93) provides the 
thermodynamic force unit length, F/L = σb on a dislocation arising from the applied 
stress. This is equated to the drag force/unit length provided in Eq. 18.72. The solution 
for the dislocation velocity is  

v = σ b D kT/c0 β2 I(z0) = σ b ω/kT c0 z0
2 (r0/b)2 I(z0) 

The second equality is obtained by substituting D ≈ b2 ω and β = kT r0 z0. The mean 
jump frequency ω = ν exp(-G/kT), where the activation energy for diffusion of carbon in 
BCC iron is 1.6 eV/atom (Wells et al. AIME 188, 553 (1950)) and ν = 1013/s as used in 
previous problems. c0 is approximated by c∞ for carbon in equilibrium with cementite, 
as described in Prob. 18.2. z0 = Wmax/kT (Eq. 18.74) defines the maximum binding 
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energy of a solute atom to a dislocation, relative to kT, and I(z0) is defined in Eq. 18.75. 
Substitution z0 = 2, r0 = b, and the other quantities into the above equation for velocity 
gives the answer, v = 1.5E-16 m/s. This answer is relevant to a Cottrell atmosphere, 
where drag is associated with the translation of solute atoms with the dislocation, as it 
moves. 

18.4✰ Assume that WB » kT but c0 is low so that the core is not saturated. Generalize the 
theory of Sec. 18.5 to describe such conditions. In particular, derive the equations 
equivalent to Eqs. 18.124, 18.129, and 18.130. 

The equations are the same but WB is replaced by XWB, where X is the fraction of core 
sites occupied by solute. 

18.5✰ Discuss the possibility of using the results of Prob. 18.4 to construct a theory for 
amplitude-dependent internal friction in very dilute substitutional alloys. 

The value of L in Fig. 15.12 is limited by solute pinning to the spacing between solute 
atoms in the core, which can be appreciable in the dilute limit. There is then a 
spectrum of values of L for the kink-pair model of Sec. 15.3b. As the stress increases, 
larger lengths have the configuration of Fig. 15.12 at the critical frequency, leading to 
an amplitude dependent internal friction. 

18.6 The stress field of a dissociated pure screw dislocation interacts with impurities. Will 
logarithmic divergence arise as discussed in Sec. 18.3? Derive an approximate formula 
for the Cottrell drag in this case. 

No, it will not. The edge components are equal and opposite, so the elastic field is 
limited to a radius ≅ d, the spacing between partials. The logarithmic dependence in 
Eq. 18.63 does not appear. Instead R is replaced by the constant d. 

18.7✰ Consider Cottrell drag for an edge dislocation in an AB alloy that is not dilute. Discuss 
what diffusion coefficient should be used in this case. 

The diffusivity is that of the solute B alone. The bulk diffusivity depends on the diffusion 
coefficient for both A and B, but here only the diffusivity of the solute B is relevant. The 
Cottrell model is inapplicable once the atom fraction of B exceeds ~0.20. A new theory 
is needed for greater B concentrations. 

18.8✰ Discuss qualitatively how binding between core impurities might affect the critical 
stress for dislocation breakaway from the core solute. 

For a fixed bulk concentration of solute, such binding would increase the number of 
empty sites on the core, make it easier to create solute free lengths, and decrease the 
breakaway stress. 

18.9 Vacancies can form a Cottrell atmosphere about a dislocation according to Eq. 14.45. 
Compute the drag force produced by such an atmosphere on a screw dislocation and 
compare the results to Eq. 16.4. Is it justified to neglect the second-order Cottrell 
atmosphere effect in this case? 

MATLAB. The discussion following indicates that the concentration of vacancies within 
2.5 b of the core can be modeled by an interaction energy equal to 2wva, where w is 
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the strain energy per unit volume and va is the volume of a host atom. Thus, the 
interaction energy per atom is ≈ 2wva ≈ μb5/4π2r2 when the stress field of a screw 
dislocation (Eq. 3.4) is used. Substitution of μ = 3.38E10 Pa and b = 2.89E-10 m for silver 
yields (1.2E−1)/(r/b)2 eV/atom. This interaction potential ∝ 1/r2 and therefore decays 
more rapidly than the 1/r interaction energy for solute interaction with an edge 
dislocation (Eq. 18.69). An approximation for the screw dislocation velocity, vvac, 
subject to drag by vacancies, is to use Eq. 18.72 for the drag force/unit length, similar 
to Prob. 18.3. In this case, β ≈ Wint r0 = μb3/4π2(r/b)2 associated with the strain 
relaxation from vacancies. The ratio, vvac/vjog ≈ (4π3/c0ℓb2)/(μb3/kT)2, in the limit of 
small stress (Eq. 16.5). For T = 600 C, μb3/kT = 1.7 and vvac/vjog ≈ c0ℓb2. Typically, c0ℓb2 
≪ 1 and therefore vvac ≫ vjog. Thus, drag of screw dislocations by the vacancy 
atmosphere is expected to be negligible compared to drag by vacancy-producing jogs, 
at least in the regime where σ b ℓ a/kT ≪ 1. The second order effect can be neglected 
in this case. 

18.10✰ Discuss the various factors that contribute to the binding of a dislocation to a tube of 
second phase precipitated on the dislocation. Calculate the binding energy as a 
function of displacement for the case of the hollow dislocation core (Prob. 3.9). 

Consider the screw case. There is a modulus effect, giving an interaction energy: 
(Δμ b2/4π) ln(Rp/r0), where Δμ is the mismatch in elastic shear modulus and Rp is the 
radius of the cylindrical precipitate. Δμ = μ for a void (a second phase of zero modulus). 
The dislocation is smeared into a continuous distribution of infinitesimal dislocations 
on the interface and the self-energy is reduced to (μ b2/4π) ln(R/Rp). The results for the 
edge are analogous with Δ[μ/(1 – ν)] replacing Δμ and with a factor (1 – ν) added to the 
self-energy. 

18.11 Consider the possibility that Suzuki type locking is caused by vacancies at an extended 
dislocation in a pure metal. 

This is possible since vacancies can be adsorbed to the stacking fault. 

18.12✰ Estimate the order of magnitude binding energy between a solute and dislocation to 

achieve spontaneous dislocation generation in a supersaturated solid solution. 

If a dislocation loop of radius R formed, the energy would be Ws = μ b2 R ln(R/r0) and 
the amount of solute would be reduced by the number of solutes in the core, N = 
πR2a/Ω, where a is the atomic spacing normal to the loop and Ω is the atomic volume. 
For a saturated core, this process lowers the energy by W = 2πRWBN(1 – X), where X is 
the solute volume fraction in the matrix. When W ⩾ Ws, spontaneous generation of 
dislocations is possible. 

18.13 Compute the drag force for the glide motion of the 
configuration in Figure 18.24a. 

If the dipole moves together, each dislocation 
creates an APB with interfacial energy γ as shown 
by the faulted regions (shaded blue) in the 
accompanying figure. Thus, Eq. 18.152 becomes σ = 2γ/b. 
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CHAPTER 19: GRAIN BOUNDARIES AND INTERFACES 

Description: These problems consider dislocation descriptions of simple tilt, twist boundaries 
as well as boundaries formed by specific slip systems, stress fields from grain boundaries, 
interactions between dislocations and boundaries, and forces on boundaries generated by an 
applied stress. 

19.1 Derive N1 for a simple tilt boundary consisting of one set of edge dislocations. 

Figure 19.18b can be used where the sense ξ points out of the page and the vector B is 
defined as shown. As noted in the discussion, the geometry in Figure 19.18b can be 
arranged into an equilibrium version of the boundary shown in Figure 19.18c. For the 
case of a pure rotation, B is perpendicular to the probe vector V and parallel to the 
normal n to the boundary. Eq. 19.20 applies where N1 = N1 (n ⨯ ξ), where n ⨯ ξ is a unit 
vector in the −V direction in Figure 19.18c. Eq. 19.19 provides N1 = 1/[2 D1 sin(θ/2)], 
where θ is the angle of relative tilt (see Fig. 19.9 and Eq. 19.12). 

19.2 Determine N1 and N2 for a simple twist boundary consisting of two sets of orthogonal 
screw dislocations. 

Figure 19.15b can be used along with Eqs. 19.19 and 19.20, where Burgers vectors b1g 
and b2g and senses ξ1 and ξ2 are defined for an orthogonal grid of screw dislocations. In 
this case, N1 = −N1 ξ2 and N2 = N2 ξ1, where N1 = 1/[2 D1 sin(θ/2)] and 
N2 = 1/[2 D2 sin(θ/2)]. For the simple twist case, b1g/D1 = b2g/D2, consistent with no 
long-range stress field. 

19.3✰ Consider two sets of dislocations with Burgers vectors that are inclined to one another 
at 45°. Determine N1 and N2 for a pure twist boundary in their common glide plane. 
What is the dislocation density in the two sets for an angle of rotation θ? 

The two sets of dislocations are drawn as pure 
screw dislocations as shown in the accompanying 
figure, with reference axes i, j, k, and Burgers 
vectors b1 and b2 rotated by 22.5° so that the angle 
subtended by the Burgers vectors is 45°. Eq. 19.43 
applies, consistent with the case of two sets of 
dislocations where the rotation axis a ∥ (b1 × b2). 
Also, n ⋅ b1 = n ⋅ b2 = 0 so that the result is: N1 = 
(sin  22.5° i + cos 22.5° j)/b1(cos 45°) and N2 = 
(sin  22.5° i + cos 22.5° j)/b2(cos 45°). Using Eq. 

19.20, N1 = √2/b1 and N2 = √2/b2 and Eq. 19.19 
furnishes the dislocation densities 1/D1 = 

N1 2 sin(θ/2) and 1/D2 = N2 2 sin(θ/2), where θ is the angle of twist (Figure 19.15a). In 
any equilibrium boundary with fixed Burgers vectors, the lines of dislocations can be 
rotated in this manner. 

19.4✰ A grain boundary in a simple cubic crystal system is composed of the dislocations 
b1 = [1 0 0], b2 = [0 1 0], and b3 = [0 0 1]. Determine N1, N2, and N3 when 
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 

a =
1

14
[123], n= [100]

 

 What are the directions of the dislocations? What are the dislocation densities when 
θ = 5°? 

This is an interesting problem in that it entails the inadequacy of the independent slip 
system concept when interfaces with significant rotations are present. The 
independent slip system concept is exact when the dislocations have a nominally 
uniform distribution (see UF Kocks, CN Tomé, HR Wenk, Texture and Anisotropy, 
Academic Press, New York, 2000). Additional systems may be required when rotations 
are involved, as at grain boundaries, twins, or shear bands. This is the case here: the 
methods of Chapter 9 would imply that they are only two independent systems. 
However, for the present case, only b1 can contribute to tilt rotation since b2 and b3 lie 
in the boundary and only b2 and b3 can contribute to twist since b1 is normal to the 
boundary. Hence, the boundary is special in that it is a superposition of a tilt boundary 
with a single Burgers vector and a twist boundary requiring two Burgers vectors, even 
though they would be classified as independent in the Chapter 9 methodology. 

The rotation of 5° can be split into a twist rotation about the x-axis of α = 2.67°, a tilt 
rotation about the y-axis of β = 4.00°, and a tilt rotation about the z-axis of γ = 1.33°. 

For the twist contribution about the x-axis, the screw dislocations are orthogonal with 
ξ ∥ b3 and b2, and rotated by 1.34° with respect to each grain, giving the relative twist 
of α = 2.67°. For the tilt about the y-axis, ξ ∥ ey, the Burgers vector is b1, and the tilt 
angle is β = 4.00°. For the tilt about the z-axis, ξ ∥ ez, the Burgers vector is b1, and the 
tilt angle is γ = 1.33°. 

The dislocation densities are given by Eq. 19.5 as follows. For the twist boundary, both 
screw sets have N1 = 0.0465/b. For the tilt about the y-axis, the result is N2 = 0.0349/b. 
For the tilt about the z-axis, N3 = 0.016/b. 

There are two features here that are of general interest. First, the intersecting 
(dependent) edge sets would react at nodes and combine into one slant set of edges, 
since they have the same Burgers vector. The formalism of grain boundary theory 
yields a possible solution. There are always possible reactions of this combining type or 
the formation of a three-fold network as for twist boundaries on {1 1 1} planes in fcc. 
Second, while a twist boundary of the above type probably has minimum energy, the 
twist could also comprise edge or mixed dislocations (see J. P. Hirth (1993) 
“Stabilization of Strained Multilayers by Thin Films” J Materials Research 8: 1572-77). 
With some elastic anisotropy cases, the edge or mixed configurations could have lower 
symmetry. Also, they could exist as metastable arrays as a consequence of the 
formation process. 

19.5✰ What boundaries in a NaCl-type structure can form by glide if the only active slip 
systems are [1 0 1](1 0 1̅) and [1 0 1̅](1 0 1)? 
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Eq. 19.40 applies for the case since p1 × p2 and b1 × b2 are collinear. In such cases, the 
discussion following Eq. 19.39 indicates that any boundary plane parallel to b1 × b2 (= 
[0 1 0]) is possible. 

19.6 What boundaries in a NaCl-type structure can form by glide if the only active slip 
systems are [1 0 1] (1 0 1̅) and [1 1 0] (1 1̅ 0)? Is this a realistic case? 

The two Burgers vectors are coplanar. Eq. 19.39 applies because p1 × p2 (= [1̅1̅1̅]) and 

b1 × b2 (= [1̅ 1 1]) are not collinear. The result is n =[0 1 1̅]/√2. The boundary is not very 
likely. The array would be a tilt boundary with alternating Burgers vectors which would 
be difficult to form mechanistically. 

19.7✰ Generalize the example of Figure 19.34 to fcc tilt boundaries formed by glide on 
intersecting slip planes. 

A simple example would be BA(d) + DB(a) → δA(d) + Dα(a) + αδ. The long-range field is 
that of a tilt wall of DA dislocations. The αδ stair-rods have tilt character. The other 
partials have components parallel to the tilt plane but they are equal and opposite. The 
product is a Lomer-Cottrell barrier. See Chap. 22. 

19.8 Derive the stress distribution around the boundary of Prob. 19.3. Show explicitly that 
no long-range stresses exist. 

For the array, the edge component of one set has its extra plane up and the other has it 
down. Then, the long-range stresses from Sec. 19.5 cancel as they must for a grain 
boundary. The screw components form a twist boundary. The long-range field is a pure 
rotation. One way to envision this is to draw 
Burgers circuits around a dislocation in each of sets 
1 and 2 to determine the relative slip of material 
above the slip plane relative to the material below. 
The accompanying figure shows the orientation of 
orthogonal lines below the plane (dashed) and lines 
above the plane (solid). For set 1, tan θ1 = 
b1s/(D1 − b1e) and for set 2, tan θ2 = b2s/(D2 + b2e), 
where the subscripts “s” and “e” denote the screw 
and edge components. For a pure twist boundary, 
θ1 = θ2. This condition specifies the ratio of b1/b2 in 
terms of the angle of rotation θ. 

19.9✰ Demonstrate that the general theory for grain boundary energies (Sec. 19.7) agrees 

with the results of Prob. 19.8. Calculate the values of Fj and Fj for that example and 
discuss the limiting behavior as Xj → 0. 

The interaction force between grain boundary A and a segment of length ℓ1 in grain 
boundary B is depicted in Figure 19.40. For the grain boundary in Prob. 19.8, the stress 
field for each set of screw dislocations is given by Eqs. 19.85, where X = x/D and Y = y/D 
are reduced coordinates parallel and perpendicular to an array. The force/unit length 
on a segment is given by the Peach-Koehler formula (Eq. 3.93) and in general it does 
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not decay with increasing normalized distance, Y, from the boundary. However, the 
superposition of the stress fields from sets 1 and 2 does decay with increasing Y 
provided b1/D1 = b2/D2. That is the case for Prob. 19.8. An approximate form for the 
decay, Eq. 19.94, explicitly shows that the interaction force drops rapidly 
(exponentially) for distance larger than the dislocation spacing in the boundary. This 
result demonstrates St. Venant's principle. 

19.10 What type of applied stress tensor could cause a pure twist boundary to glide 

a. In the most general case? 

Glide is most unlikely except for a tilt boundary, the superposition of a tilt and twist 
boundary or a pure twist boundary, provided the proper shear stresses are present. 
For the first two, the glide would be in a direction normal to the boundary. For the 
twist boundary, glide could occur in any direction. Other boundaries could only move 
with some climb. 

The Peach Koehler expression (Eq. 3.93) can be used to identify components of stress 
that generate force on individual segments. For tilt boundaries, the axis a of relative 
twist of crystal B relative to crystal A (Eq. 19.12) is parallel to the normal n to the grain 
boundary (Eq. 19.15a). In such cases, a moment about n (or a) generates a driving 
force to increase the twist deformation. For a general case, this could occur through 
deformation that increases the density of grain boundary dislocations. 

b. When the sets of dislocations in the boundary are pure screw. 

For this case, the twist boundary can move along a direction parallel to n, imparting 
relative twist to material as it sweeps through the sample. The mechanism in part a is 
also available. 

19.11✰ Consider the interaction of a single dislocation DC(a) when it intersects the pure twist 
boundary composed of the pure screws AB, BC, and CA on glide plane (d) in an fcc 
crystal. 

The dislocation could form attractive node reactions such as DC + CB = DB. It would 
interact only near the point of intersection with AB because the Burgers vectors are 
perpendicular. See Fig. 22.2. 

CHAPTER 20: DISLOCATION SOURCES 

Description: These problems consider estimates of yield 
strength, prismatic loops and hexagonal meshes as sources, 
the effect of stress on the activation energy of to operate a 
bowed loop as a source, the effect of interaction between 
bow outs and surface ledges on source operation. 

20.1 Estimate the critical resolved shear stress to yield a 
crystal with a dislocation network of average 
segment length l = 104 b.  

MATLAB. Use Eq. 20.1 with R = L/2, ν = 0.324 (copper, 
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Appendix A1), and cutoff ρ/b = 1. The result is in the accompanying figure. σ/μ ranges 
from about 1E-4 = 5.5 MPa for pure edge dislocations to about double this value for 
pure screw dislocations.  

20.2 Consider a prismatic loop that has formed by vacancy condensation on a (1 1 1) plane 
in a fcc structure and that has reacted so that no stacking fault is present in the plane 
of the loop. Can this loop be a source for slip? If so, specify the planes and slip 
directions. 

After fault annihilation, the loop would have, for example, a (1 1 1) plane and an 
inclined ½[1 1̅ 0] Burgers vector. The portions of the loop parallel to {1 0 1} could bow 
out on (1 1̅ 1) and create a pair of sources analogous to Fig. 20.6. 

20.3✰ A source consists of a pure twist boundary of screw segments in a hexagonal mesh on a 
(1 1 1) plane in an fcc crystal. Which slip systems can operate from it? 

Figure 10.9 and the accompanying Thompson tetrahedron (Fig. 10.10) show that the 
hexagonal mesh would be comprised of screw dislocations along <1 1 0> directions. 
Each screw dislocation could cross slip onto another {1 1 1} plane, e.g., a screw 
dislocation CB along [1̅ 0 1] could cross slip from plane (d) to plane (a). Likewise, CA 
could cross slip from (d) to (b) and BA from (d) to (c). Thus, three slip systems could 
operate by cross slip, in addition to the three slip systems on the parent (1 1 1) plane. 

20.4✰ For  < crit, compute the stable and metastable equilibrium positions of a bowed loop 
with the geometry in Figure 20.1. Determine the activation energy to achieve the latter 

from the former. Show that the process is unlikely under thermal activation unless  ~ 

crit. 

MATLAB. Consider a bowed loop of radius 
R as shown in Figure 20.1, where 2a is the 
distance between the ends of the bowed 
loop (i.e., the pinning sites), and dθ in the 
image is replaced by θ. If a resolved shear 
stress σ acting on the slip plane in the 
direction of slip is present, then the energy 
to introduce the loop into a stress-free 
body is Eloop = 2Rθ𝓢, where the line tension 
𝒮 is approximated by 
[μb2/4π(1−ν)]ln(2a/ρ). See Eq. 20.1. The 
work of the applied shear stress acting 
through the relative slip b and over the 

area that is sheared when the dislocation bows from a straight segment to one with 
radius R is Wapplied stress = σbR2[2θ – sin (2θ)]. The total energy is Etotal = Eloop – Wapplied 

stress. The variable R can be replaced by a/sin θ and Etotal, normalized by μb2a/4π(1 − ν) is 
Wtotal(norm) = (2θ/sin θ)ln(2a/ρ) – (σ/μ)2π(1−ν)(a/b)(2θ – sin(2θ))/sin2θ. 

The accompanying figure shows Wtotal(norm) as a function of θ for a/b = 1E3, ρ/b = 1, and 
the following values for copper: μ = 5.46E10 Pa, ν = 0.343, and b = 2.54E-10 m. For 
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reference, μb2a/4π(1 − ν)/kT = 2.6E4 at room temperature and σcrit = 𝒮/bR = 8.9E-4 μ. 
The accompanying plot shows the normalized total energy for σ/σcrit = 0.2, 0.5, 0.8, and 
0.9. Even at σ/σcrit = 0.9, the activation energy, which is the difference in Wtotal at the 
unstable equilibrium (in the vicinity of θ ~ 150°) and Wtotal at the stable equilibrium 
location (in the vicinity of θ = 60°) is ~ μb2a/4π(1−ν) ~ 3E4 kT. This activation energy is 
too large to be thermally accessible. At σcrit, the activation energy is zero. Thus, the 
activation energy is ~ kT only when σ ~ σcrit. 

20.5 Use the straight segment methods of Chapter 6 to compute the degree of bow out as a 

function of stress for a loop constrained to have its component segments in 1 1 0 
directions on a {1 1 1} plane in germanium, as in Figure 20.2. Compare the results with 
those of Eq. 20.1. Assume that the original unbowed segment is pure screw. 

Use the segment equations in Chap. 6. The 
accompanying diagram shows a succession of bow 
outs from a straight screw segment (2, blue dashed 
line) to a semi-hexagon (segments 1-2-3, orange, solid 
lines) to an inverted V (segments 1-3, green dashed 
lines). Thus, the energy Eloop = Ws(1) + Ws(2) + Ws(3) + 
2W12 + W13, where the detailed calculations for the 
self (Ws) and interaction (W12, etc.) energy terms are 
given in the answer to Prob. 6.1. The work Wapplied 

stress = σbAloop, where Aloop = L1
2 sin 60 cos 60 + L1L2 

sin 60. Finally, the constraint 2L1 cos 60 + L2 = 2a is 
imposed. The detailed calculation is not performed 
here. 

20.6✰ For pinned segments that are uniformly spaced along a screw dislocation, compute the 
contribution of interaction between adjacent loops to the bow out energy for the 
loops. Assume the loops are composed of straight segments, as in Prob. 20.5.  

It suffices to consider three adjacent semi-hexagonal bow-outs as shown in the 
accompanying figure. The middle loop would interact with the other two. A primary 
issue is whether the interaction would increase or decrease the energy Wloop of the 
center loop. The interaction energy between segments on opposite sides of “mirror 
plane 1” and “mirror plane 2” will be positive and negative, e.g., W11’ < 0 is expected 
since segments 1 and 1′ have the same b but the in-plane components of ξ1 and ξ1’ are 
oppositely signed. Conversely, W13’ > 0 since the segments are parallel and have the 

same b and ξ. W11’ is 
expected to have a 
larger magnitude than 
W13’ due to the smaller 
distance between 
interacting segments 
and thus the effect of 

 
Problem 20.5. 

 
Problem 20.6. 

https://www.cambridge.org/us/academic/subjects/engineering/materials-science/theory-dislocations-3rd-edition?format=HB&isbn=9780521864367


Student Version – Solutions to Problems, Theory of Dislocations, 3rd Ed. 
Cambridge University Press (2017). Publisher website 

68/74 

the neighboring segments is expected to decrease Wloop. This ought to decrease Wtotal, 
particularly as the loops extend toward the inverted “V” shape (green dashed lines 
shown in Prob. 20.5) and W11’ grows in magnitude relative to W13’. This is expected to 
decrease the applied stress and activation energy to expand a loop.  

20.7✰ Consider the formation of a closed dipole loop by the mechanism of Figure 20.5f. Show 
that the relative resolved shear stress makes formation less likely in a fcc crystal 
compared to a simple cubic crystal. For which other crystal systems is the process more 
likely? 

If the resolved shear stress favors the initial cross-slip, it 
disfavors the final cross slip. Thus, the final step is more 
favorable after unloading, whereupon the interaction 
energy would favor the final (secondary) cross-slip. Also, 
if the proper stress gradient were present, the final 
cross slip event might occur more easily. These effects 
would be exacerbated in the simple cubic case since the relative resolved shear stress 
on the cross slip plane is larger (equal to that on the primary plane). 

To demonstrate, the accompanying figure shows a primary slip plane with n1 ∥ y axis = 
[1 1 1] and n2 = [1 1 1̅]. A screw dislocation with b and ξ ∥ z axis = [1̅ 1 0] resides at the 
intersection of these planes. A shear stress σyz will favor glide of the screw dislocation 
to the right and a portion of σyz, of magnitude σyz (n1 ⋅ n2), will drive the first cross slip 
event. The portion, σyz (n1 ⋅ -n2) to drive the second cross slip event on the −n2 plane is 
therefore reversed and thus the second event would be disfavored by the applied 
stress. For the FCC geometry here, α ≈ 108° and thus σyz will have an asymmetric effect, 
favoring one cross slip event while disfavoring the other. For a cubic system, the 
applied σyz is symmetric; it produces no resolved component on the first and second 
events. For the fcc case, the asymmetric nature can make formation of the double 
cross slip more difficult. 

In systems such as hexagonal or monoclinic where the angle between the primary and 
cross-slip planes can be small, the process would be favored. 

20.8 Singular surfaces are perfect low-index surfaces while vicinal surfaces are near a low-
index orientation and contain surface ledges and surface kinks. On which type of 
surface is dislocation nucleation more likely? For which type of surface is edge 
dislocation reflection by the Frank mechanism more likely? Why? 

Nucleation is more likely on a vicinal surface because vicinal surfaces contain ledges 
that can be removed by the nucleation process, thereby lowering the energy for 
nucleation. For comparison, nucleation on a singular surface would create a ledge, 
thereby increasing the energy for nucleation. 

Dislocation reflection by the Frank mechanism is more likely on a singular surface 
because the accompanying double surface ledge is easier to form there. 
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CHAPTER 21: DISLOCATION PILEUPS 

Description: These problems examine the calculation of equilibrium positions in pile-ups and 
the length and number of dislocations in pile-ups. Applications are made to determine the 
stress field around cracks, including the effects of free surfaces, and also to precipitates. 

21.1 Consider a glide pileup of three edge dislocations that form against a barrier under an 

applied resolved shear stress . Assume the leading dislocation is fixed and calculate 
the positions of the second and third dislocations relative to it. 

Consider a barrier at x = 0 where dislocation C resides. Dislocation B is at x = −L2 and 
dislocation A is at x = −(L1 + L2). The sum of Peach-Koehler forces on dislocation A 
imposes that the net stress at A is zero. Likewise, the net stress at B is zero. These 
conditions yield the equations, σ* − b/L1 – b/(L1 + L2) = 0 and σ* + b/L1 – b/L2 = 0, where 
σ* = σ/[μ/2π(1−ν)]. Subtracting Eq. (1) from Eq. (2) eliminates σ* and the solution gives 

L1 = (1 + √3) L2. Substitution into the original equations gives L1/b = √3/σ* and L2/b = 

√3/[(1 + √3)σ*]. For σ* = 0.01, L1/b = 1.7E2 and L2/b = 6.3E1. 

21.2✰ Suppose that the frictional stress on the glide plane is f. Determine the length of a 
single-sign glide pileup of N edge dislocations if no applied stress is present. 

The formalism for the single-sign pile-up under an applied stress σ (Sec. 21.5) can be 
used except that σ is replaced by σ – σf when a frictional stress is present. Accordingly, 
Eq. 21.36 is used with σ – σf replacing σ. Upon unloading, σ – σf → 0 and then upon 
further unloading, σ takes on the value σf. Thus, the length of the pile-up is 
ℓ = μNb/[π(1 – ν)σf]. 

21.3✰ Use the preceding problem to estimate dislocation core widths. Assume that the 

critical shear stress for slip of a perfect crystal is /20. 

The resolved shear stress on the partials differs. The one with the larger shear stress σ 
will move first and must overcome the attractive force provided by the fault to break 
away. Thus, in Eq. 21.36, N = 2, σ is replaced by γ/b + μb/20, and b is the Burgers vector 
of the partial. 

21.4 The shear stress to operate a source of edge dislocations is *. A barrier exists at a 
distance L in front of the source but not in the rear. How many dislocations will pile up 

behind the barrier if a resolved shear stress  > * is applied? What is the resultant 
force on the barrier? 

A single-ended pileup forms at the barrier and the oppositely signed dislocations from 
the source glide away to a remote position. Again, Eq.21.36 is relevant. At the barrier, 
the force is Nσb, where the number of dislocations is provided by Eq. 21.36: N = 
(L/b)(π(1 – ν)σ/μ). Therefore, the force ∝ σ2L. 

21.5 A microcrack grows and fractures a brittle solid at a tensile stress  = 10−3 μ. Estimate 

the size of the microcrack if the surface energy γ = b/10 and Poisson’s ratio ν = 1/3. 

Set the force in Eq. 21.55 equal to 2γ as noted in Eq. 21.58 and the discussion that 
follows. Substituting γ = μb/10 and ν = 1/3 gives a critical microcrack size of 3.8E5 b. 
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21.6✰ A surface source of screw dislocations operates at a negligibly small stress and forms a 
pileup forms at a distance L below the source. Estimate the force on the obstacle under 
an applied stress σ. 

The force at the tip is that of a pile-up of length Lp plus that of the image pile-up. To 
first-order, the image stress is that of a superdislocation with Burgers vector Nb at 
position (−Lp, 2L) with the pileup tip at (0, 0). More precisely, the image field is given by 
Eqs. 21.51 and 21.52. 

The single pile-up in the vicinity of a free surface can be approximated by a double pile-
up in an infinite body, as shown in Figure 21.5. The position x = 0 in Figure 21.5b is the 
location of the free surface, with positive dislocations for x > 0 and negative (image) 
dislocations for x < 0 (see also Figure 3.16 for the image construction). The force per 
unit length in the double pile-up is given by Eq. 21.21 for a double pile-up of edge 
dislocations, except that the (1 – ν) factor is omitted, consistent with the different 
expressions for the stress field for edge and screw dislocations (Eqs. 3.3 and 3.45). The 
result is F/L = π σ2 ℓ/4μ. For comparison, F/L for a single pile-up from a source far from 
a free surface is obtained from F/L = Nσb, where N is given by Eq. 21.35. The result, 
F/L = π σ2 ℓ/μ, is larger than that for the surface source. 

21.7✰ Derive the equivalent of the Griffith criterion for a tensile crack whose surface is 

normal to a free surface. Use the analogy with Prob. 21.6. 

Now the image tip position is at (0, 2L) and the procedure is the same as that in the 
previous problem. 

21.8 Determine the plane of maximum normal stress ahead of an edge dislocation glide 
pileup. 

MATLAB. Eqs. 21.62 and 21.63 provide the 
Cartesian components of stress as a function 
of polar coordinates (r, θ). The components 
of stress referred to a polar coordinate 
system can be calculated using the methods 
of Sec. 2.3: Transformation of Tensorial 
Components. The results for the polar 
components at the tip of a Mode II crack are 
(e.g., see Wikipedia, stress intensity factors): 

σrr = (KII/2πr) sin(θ/2)(1 − 3 sin2(θ/2) 

σθθ = (KII/2πr) sin(θ/2)(−3 sin(θ/2) cos2(θ/2) 

σrθ = (KII/2πr) cos(θ/2)(1 − 3 sin2(θ/2) 

The accompanying plot shows that the normalized stress, σθθ/(KII/2πr), reaches a 
maximum of ≈1.15 at θ ≈ −70°; σrr/(KII/2πr) achieves a maximum of ≈2.0 at θ = −180°. At 
both of these maxima, σrθ = 0 and thus these locations identify the maximum principal 
stress values for the rr and θθ components of stress. Restricting consideration to 
locations ahead of the pileup, the plane of maximum normal stress is a radial plane at θ 
≈ −70°, where the normal stress is σθθ/(KII/2πr) ≈ 1.15. 

 
Problem 21.8. 

https://www.cambridge.org/us/academic/subjects/engineering/materials-science/theory-dislocations-3rd-edition?format=HB&isbn=9780521864367


Student Version – Solutions to Problems, Theory of Dislocations, 3rd Ed. 
Cambridge University Press (2017). Publisher website 

71/74 

21.9 Use a continuum theory to verify that a pure tilt boundary composed of a single set of 
uniformly spaced edge dislocations has no long-range stress field. Do long-range 
stresses occur if the dislocations are not uniformly spaced? 

The largest value of the stress in Eq. 21.53 is at y = D/2. In the infinitesimal, continuous 
distribution limit, b → 0 while b/D remains constant. The stress reduces to 
μbx/[2π(1 − ν)(x2 + y2)], which vanishes as b → 0. 

21.10✰ Show how the results of this chapter can be used to determine the stress field around a 

coherent, plate-shaped precipitate. 

Suppose the precipitate is a circular disc of radius r and thickness d in the z-direction. 
The atomic spacing differs in the z-direction so part of the field is that of a prismatic 
dislocation loop at the disc periphery with b = (0, 0, bz) and a magnitude equal to the 
difference in z spacing. The coherency stress involving differences in atomic spacing 
parallel to the plane of the disc must be computed separately. In special cases, line 
force fields may be needed, see Hirth et al (2016a) with corrections in (2017). 

CHAPTER 22: DISLOCATION INTERSECTIONS AND BARRIERS 

Description: These problems consider: the interaction forces between dislocations and their 
relaxations under glide and climb; dislocations and jogs associated with reactions, cross slip, 
and dissociation; and the extension of barriers. 

22.1✰ Compute the distribution of interaction force between two orthogonal edge 
dislocations, separated by a distance h, each with its Burgers vector parallel to the line 
of the other dislocation. 

Consider the geometry in Fig. 22.3, where the line directions for dislocations A and B 
are along the x and y directions, respectively. However, there are two edge 
dislocations, with bA oriented along the y-direction and bB oriented along the −x 
direction. Dislocation A will experience a glide force, Fy/L = σzy

B→A(x, z = h)bA, and a 
climb force, Fz/L = −σyy

B→A(x, z = h)bA, where the notation B → A denotes the stress 
generated by dislocation B at the site of dislocation A. The stress components 
σzy

B→A(x, z = h) and σyy
B→A(x, z = h) can be expressed as σy’z’(−x’, y = h) and σz’z’(−x’, y = h), 

where the x’, y’, z’ coordinate system is that used in Figure 3.10. According to Eqs. 3.45, 
σy’z’ = 0 and thus no glide force is exerted by B on A. However, σz’z’(−x, y = h) = 
−C h/(x2 + h2), where C = μbν /π(1 – ν). Therefore, a climb force Fz/L = Cb h/(x2 + h2) is 
exerted on A. This is largest at x = 0. Likewise, dislocation B has a climb force 
Fz/L = −σxx

A→B(y, z = −h) = −Cb h/(x2 + h2). 

22.2 Indicate how the two dislocations in Prob. 22.1 would relax if (a) only glide is allowed 
and (b) both climb and glide are allowed. 

(a) The dislocations do not exert glide forces on each other and therefore no relaxation 
by glide would occur. (b) The climb forces are repulsive and largest where the 
dislocations cross one another (as viewed along the z axis). Thus, dislocations A and B 
would bulge so that the separation distance h is largest where they cross. 
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22.3✰ Consider interactions in bcc crystals that yield dislocations of the 1 0 0 type. Classify 
these interactions in terms of the screw-edge character of the reacting dislocations and 
the line direction of the product dislocation. If the [0 0 1] dislocation is glissile on (1 1 0) 
and (1 1̅ 0) but sessile on other planes, which reactions yield sessile [0 0 1] dislocations? 

Attractive junctions would be of the type ½[1 1 1] + ½[1 1̅ 1̅] = [1 0 0]. Unlike the fcc 
case, the attractive junction forms for all screw-edge characters. All other combinations 
of ½<1 1 1> Burgers vectors are unstable. 

22.4✰ Consider the possibility that an intrinsically dissociated screw dislocation cross slips into 
an extrinsically dissociated screw through an intermediate state analogous to that in 

Figure 22.18d. Would this be an easier cross-slip process than that in Figure 22.18d if E 

were only slightly larger than I? Use the Frank b2 criterion for the energy of the 
partials. What reservations exist concerning the application of the Frank criterion? 

The partial loop would bulge downward with the Burgers vector now being δA and the 
fault being extrinsic. The smaller stair-rod would energetically favor this reaction 
according to the Frank criterion but nucleation might still be less favorable because of 
the larger core. A more accurate analysis would treat the screw-edge character using 
an expanded Frank criterion. The screw-edge character differs for the trailing partials in 
the two cases. 

22.5✰ Derive the extrinsically faulted barriers corresponding to barriers (1) to (4) in Figure 
22.12. 

The equivalent for barrier 1 would be the configuration of Fig. 22.10 rotated by π in the 
page. The trailing partials would be Dα, upper left, and δA, upper right. A similar 
procedure, with shape inversion, works for the other barriers. 

22.6 Assume a tensile stress acts along [0 0 1] in a NaCl-type crystal. Verify that the 
dislocation jogs formed by intersections between the [1̅ 0 1](1 0 1) and [0 1̅ 1](0 1 1) 
slip systems are interstitial-forming. 

Construct a diagram like that in Fig. 22.8 and either reason physically or use Eq. 12.9. 

22.7 Assume that the operation of a slip system is proportional to the resolved shear stress 
on it. For fcc tensile tests, show that barriers (1) and (4) are favored to form when the 
tensile axis is near [2 1 1], while barriers (2) and (3) are favored for orientations near 
[1 2 0]. In both cases, the axes lie within the unit stereographic triangle [1 0 0], [1 1 0], 
[1 1 1]. 

Eq. 22.6 lists the various barriers. For the different orientations, use Eq. 9.6 to 
determine the resolved shear stresses for the various second reactant dislocations. The 
barriers with the largest resolved shear stresses are expected to be favored. 

22.8✰ Verify that the equilibrium configuration of barrier (5) in Eq. 22.6 should be 
asymmetric. Note the correction in the question statement (red text). 

The equilibrium configuration is asymmetric because αC and Bγ are mixed. Hence, 
compared to symmetric barriers, they have smaller forces that depend only on their 
edge components.  
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22.9 Which barriers in Table 22.1 can be considered extended in a meaningful sense? How 

does this result affect the pileup size that a barrier can sustain if 1 1 0{0 0 1} slip easily 
occurs in fcc? 

As in Table 10.2, the value of b2 is 12 in the units of Eq. 22.6. Thus, for small values of 
the stacking fault energy γ, barrier 3 and to some extent barrier 1 are meaningfully 
extended. Reactions 2 and 4 are marginally extended. The products for mechanisms 5 
and 6 are of core dimensions and not significantly extended for pure metals. For small 
extensions, the use of the equilibrium fault energy is questionable (Henager and 
Hoagland, 2004). Barriers that are meaningfully extended are expected to be stronger 
and therefore are expected to sustain larger pileup sizes. 

22.10✰ Draw the product barrier of Eq. 22.5 if it extends to form an obtuse angle barrier. 
Identify the types of faults in the barrier. Note the correction in the question statement 
(red text). 

The dislocation DB now enters from the top. See Fig. 22.10 (right). The partial δA 
remains the same but the trailing partial αB is at the upper left, the stair-rod is BD/αδ, 
and the upper fault is extrinsic. 

CHAPTER 23: DEFORMATION TWINNING 

Description: These problems consider: candidate twin planes; estimates of the stress in the 
vicinity of a twin; influence of stress components on twinning, growth or shrinkage of twins; 
and dislocation interaction with twins. 

23.1✰ In principle, could (1 1̅ 0) be a twin plane in a fcc crystal? 

No. The (1  1̅ 0) plane already has mirror symmetry. 

23.2 Consider a twin lamella of thickness h formed by ⅙[1 1 1] glide on (1 1 2̅), the K1 plane. 
What is the superdislocation at the spearhead of the twin? Estimate the stress at a 
distance ~ h ahead of the spearhead, assuming no emissary glide has occurred. 

The configuration of Figure 21.15a applies where the spacing D = d111.Therefore, the 
superdislocation is an edge with Burgers vector Nb, where N = h/d111. The stress σxx is 
given by Eq. 21.54 with h replacing l and the value at a distance ~h ahead of the 
spearhead is given by setting x = h. 

23.3✰ Consider the same twin as in Prob. 23.2, but it is formed by Bullough’s mechanism. Are 
the stresses at the spearhead different in this case? 

The Bullough case is depicted in Figure 23.3b, where the twin is formed by slip on 
planes K2 in a direction parallel to η2. The difference is highly localized, only within a 
distance equal to the dislocation spacing in the Bullough case. If the shear is imparted 
but the local rotation is suppressed, there will be small differences in the local strain. 
See the reference for Hirth, Pond, and Lothe (2006) in the textbook. 

23.4 Do compressive stresses normal to K1 influence twinning if it proceeds as assumed in 
Prob. 23.2? As in Prob. 23.3? 
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The influence is second-order, provided the mechanism is kink motion. A stress normal 
to the glide plane has a second-order effect on the Peierls barrier and therefore small 
changes in the Peierls shear stress can result. This rationale applies to both cases in 
Prob. 23.2 and 23.3. 

23.5 Are shear stresses other than that resolved on the twinning plane and in the twinning 
direction important for twin nucleation in the models of Figures 23.7a and 23.7b? 

For Fig. a, the shear stress on both the primary and cross-slip glide planes influences 
the nucleation because cross slip of the partial ⅙[1̅ 1̅ 1] is involved. For Fig. b, only the 
shear stress on (1 2̅ 1̅) is important. 

23.6 Discuss why the concept of a critical resolved shear stress for twinning might be 
inadequate. Problems 23.4 and 23.5 are relevant to this question. 

Nucleation barriers exist for all mechanisms. These barriers can be influenced by 
pressure (Prob. 23.3) and resolved shear on more than one plane (Prob. 23.4). Thus, 
the resolved shear stress on a single plane may be inadequate. Also, the nucleation 
rate is temperature dependent at constant stress, so there should be some 
temperature dependence of the twinning stress. 

23.7✰ Consider Figure 23.16. During annealing, should the twin shrink or grow to consume 
the entire slipped zone? Why? 

The twin should slowly grow or shrink until it is bounded on the top and bottom by 
{1 1 2} twin planes. The weak driving force for this slow process is the decrease in 
surface area of the twin, reflected locally by an attraction of twinning disconnections 
with oppositely signed steps. 

23.8✰ Derive the possible reactions for ½1 1 0 type dislocations that glide through coherent 
twin interfaces in fcc crystals and leave partials in the boundary. 

Consider a (1 1 1) twin plane. For all such reactions, the product and reactant Burgers 
vectors have a component ⅓[1 1 1] normal to the twin plane and an in-plane 
component of the type ⅙<1 1 2>. Thus, all residual vectors are sums of two ⅙<1 1 2> 
vectors. One class is of the form ⅙[1̅ 2 1̅] + ⅙[1 1 2̅] = ½[0 1 1̅]. All other combinations 
result in products that are partials. Also, the defect could remain in the boundary. An 
example would be a ½[1 1 0] reacting to form a sessile ⅓[1 1 1] partial dislocation or a 
disconnection and a glissile partial ⅙[1 1 2̅]. 
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