

681

MATLAB EXERCISES to “Fundamentals of rock physics”

MATLAB Exercise 1. Plotting the grain size distribution function

MATLAB code below uses xlsread operator to read data vectors from A, B, C columns in

'exercise_9.xlsx' file. A column contain the minimum values for bins, B column

contain the maximum values of bins , and C column contains the mass factions in grams. In

order to copare the measured PDF with the normal PDF the function normpdf is used.

%%% Matlab example of plotting grain size distribution %function.

The path to data file should be open in Matlab directory. The grain

size data are in columns A (min of size bin) and in B the maximum of

a size bin, and in C %the mass fraction in gramm.

filename = 'exercise_9.xlsx';% specify file name

sheet = 1;% specify a sheet number in an excell-file

xlRange1 = 'a2:a16'; % specify a cell range for d min in %bins

xlRange2 = 'b2:b16'; % specify a cell range for d max in %bins

xlRange3 = 'c2:c16'; % specify cell range for mass in bins

dmin = xlsread(filename,sheet,xlRange1); %read data set1

dmax = xlsread(filename,sheet,xlRange2); %read data set2

mass = xlsread(filename,sheet,xlRange3); %read data set3

smass=sum(mass); mass100=mass/smass; % normalize mass %fraction in %

each bin

dmean=(dmax+dmin)/2;% calculate a mean grain size point in a bin

fi=-log2(dmean); %conversion into fi-units

figure;

bar(fi, 100*mass100,1,'r')% plot a histogram

xlabel(' \phi = log_2(d, mm)'); ylabel('mass, %') % axis %labelling

xticks('auto'); yticks('auto'); hold on % plotting ticks

 m=dot(mass100,fi);

 dm=2^(-m)% mean average size in mm

 v=dot(mass100,(fi-m).^2) %calculating variance

 s=sqrt(v)% calculating standard deviation

 Sk=dot(mass100,(fi-m).^3)/s^3 %skewness

 Kurtosis=dot(mass100,(fi-m).^4)/v^2 % kurtosis

 X = linspace(-log2(0.01),-log2(20));% define x-axe for %plot

 norm = 100*normpdf(X,m,s);%calculate a normal PDF%

plot(X,norm,'-.rd')% plot a normal PDF

 legend('grain size hystogramm','normal distribution')% %define

legend labels

hold on

pdfnrm = @(x,b) 1./(b(2)*sqrt(2*pi)) .* exp(-((x-

b(1)).^2./(2*b(2).^2))); % definition of a target function

% b(1)= m; b(2)=s; %Initialisation of fitting %parameters

SSECF = @(b) sum((mass100-pdfnrm(fi,b)).^2);% Sum-Squared-%Error

Cost Function

[B,SSE] = fminsearch(SSECF, [m, s]);% minimization of Sum-%Squared

Error Function, B is the fitting parameter vector

plot(X,100*pdfnrm(X,B),'bl') B % Plot fitted PDF

hold off

grid

682

Fig. ME1.1 The histogram of the grain size distribution function. Alternatively, the histogram can be

fitted directly to the shape of the normal PDF using the least square procedure as follows:

The results of fitting including empty bins could be slightly different, the mean size 0.46 mm,

the standard deviation of the mean  is 1.87.

MATLAB Exercise 2.1 Monte-Carlo simulation of rock density

Monte-Carlo simulations are computer experimentation methods in which a random choice of

input parameters is used in order to calculate statistics of output parameters. It is a very useful

statistical tool and widely used both in non-engineering and engineering fields. In the base of

computational experiments lies random sampling and large number of computer runs. Then,

the mean value and standard deviation or PDF of model outputs are estimated. MATLAB

provides random number generators for commonly used PDFs as follows:

R = normrnd(MU,SIGMA) is the normal or Gaussian distribution

R = lognrnd (MU,SIGMA) is the lognormal distribution,

R = unifrnd (A,B) is the uniform probability distribution between A and B values with zero

outside probability (A,B),

pd = makedist('Triangular','a',A,'b',B,'c',C);

R = random(pd,Number of points), is the triangular probability distribution

within the interval (A,C) having the maximum probability at B, and zero probability outside

(A,C). (see Fig. ME2.1)

MATLAB code below presents an example of Monte-Carlo simulation for rock density using

volumetric % of modal mineral composition.

683

Fig. ME2.1 Illustration of different random PDF. The arguments for plotting normal PDF have been

chosen by using differing random number generators. When the average and standard deviation of

some mineral composition are known, the normal PDF random generator may be used. When only

max and min vol. fractions of modal minerals have been estimated, then the uniform PDF random

choice is applicable. Points on curves indicate how dense data are located to the mean value for these

four PDFs.

% Matlab Example 2 Monte-Carlo simulation

%Density of crustal rocks

clear all

close all

N_MC=10000 % Number of Monte-Carlo simulations

% read the data from excell-file *.xlsx;

[xlsfile,path2xls] = uigetfile('*.xlsx', 'Please, choose the data

file'); %open the path to the file in PC

[data,text] = xlsread(fullfile(path2xls,xlsfile)); % read the

%excell file

N_lines=length(data(:,1));%defines number of lines in the file

for n=1:4:N_lines

 n_end=length(data(n,:));% define the length of a line

vol_fr = data(n,1:n_end);% read max/min vol% of minerals

%in the line n from the 1-st to n_end-th column

dens_miner=data(n+1,1:n_end); % read max/min density of %minerals %

in the line n+1 from the column 1 to n_end-th %column

for j=1:N_MC

summe_comp=0;% initialization of summation

684

r_vol=unifrnd(0,1:1,n_end/2,1); %random n_end/2 numbers in the

%interval 0,1 for vor_fr

r_dens=unifrnd(0,1:1,n_end/2,1); %random n_end/2 numbers in %the

interval 0,1 for dens_mine

for i=1:n_end/2

Rand_comp(i) = vol_fr(2*i)+(vol_fr(2*i-1)-vol_fr(2*i))*r_vol(i);

%random chose of vol% in the range from %max vol% and min vol%

Rand_dens(i)=dens_miner(2*i)+(dens_miner(2*i-1)-

dens_miner(2*i))*r_dens(i);%random chose of%vol% in the range %from

max vol% and min vol%

summe_comp=summe_comp+Rand_comp(i);%summation of random vol% %

end

Rand_comp=Rand_comp/summe_comp; %normalization of vol% in %

%fraction von 0 bis 1

dens(j)=dot(Rand_comp,Rand_dens);% calculate the average % density

end

rock_number=n

dens_mean=mean(dens)

dens_sigma=std(dens)

end

MATLAB Exercise 2.2 Expansion of functions in Taylor series

Let f(x) be the function of argument x which is differentiated n + 1 times, i.e. the derivative

f(x)(n+1) exists at point x which belongs to interval (x0-, x0 + ), where >0 is a small

positive number. Then, for all x belonging to this interval, there is a unique Taylor expansion

of f(x) in accordance with the formula:

𝑓(𝑥) = ∑
𝑓(𝑥0)

(𝑘)

𝑘!

𝑛
𝑘=0 ∙ (𝑥 − 𝑥0)

𝑘 + 𝑅𝑛(𝑥) (ME 2.2.1),

where Rn(x) is the remaining n-th term of the series, which can be estimated trough the (n+1)-

th derivative of f(x0+(x-x0)∙)(n+1) (0<<1) at any point belonging to the interval (x0, x):

𝑅𝑛(𝑥) =
𝑓(𝑥0+(𝑥−𝑥0)∙𝜃)

(𝑛+1)

(𝑛+1)!
∙ (𝑥 − 𝑥0)

𝑛+1 (ME 2.2.2),

the so called remaining term in the form of Lagrange. When lim
𝑛→∞

𝑅𝑛(𝑥) = 0, for any x

belonging to the interval (x0-, x0 + ), then, the function f(x) can be approximated by a

polynomial (ME 2.2.1) of the n-th degree.

The graphical illustration of the Taylor expansion is rather simple. Using only the first term of

the Taylor series one approximates the function f(x) with the tangential straight line to the

function at x=x0. Using two terms in the series one approximates the function with a parabola

tangential curve to f(x) at x0, and so on (see Fig. FB 2.2.1). When x0=0, the expansion series

are called the Maclaurin series.

685

Fig. ME2.2 Approximation of 𝑓(𝑥) =
sin⁡(𝑥)

1−𝑥2
⁡ with the Taylor series.

function sinx_1_x2_movie

% SIN(x)/(1-x²)

%MOVIE Taylor polynomial approximations to y = sin x/(1-x²) % are

presented in a graphical form. Successive graphs

% of Taylor polynomials of degrees 1, 3, 5, 7, 9,

% 11, 13, 15, 17, 19 are superimposed.

% As the degree increases the Taylor polynomials wrap

% themselves onto the sin(x)/(1-x²) curve over longer intervals.

% modified from David R. Hill, Math Dept, Temple

% University Philadelphia

s0=' ';

s1='Taylor Polynomial Approximation to f(x) = sin(x)/(1-x²)';

s2='Press enter to continue.';

%set colors for graphs

colorch=['g' 'm' 'b' 'r' 'c'];colorch=[colorch colorch];

%The function definition:

f='sin(x)./(1-x.^2)';

%The terms of the Tayor polynomial

maxdeg=9; %max degree of Taylor poly is 2*maxdeg + 1

timdelay=5; %time delay for pause in sec

x=[-pi/2:pi/1000:pi/2]';fx=eval(f);

clc

disp([blanks(15) 'SIN(x)/(1-x²) MOVIE - Taylor Polynomial

Approximation']);

disp(s0),help sinx_1_x2_movie, disp(s1),disp(s2),pause

for k = 0:maxdeg

 d=0;

 for i=0:k

 d=d+(-1)^i/prod([1:(2*i+1)]);% Calculate Taylor series

%coefficients

 end

686

 g = 'd*x.^(2*k+1)'; z = eval(g); Calculate k-th term in %Taylor

series

 if k==0,y=z;else,[m,n]=size(y);y=[y y(:,n)+z];end

end

%Begin graphing

hfig=figure('units','normal','position',[0 0 1 1],'color','white');

axis([-1 1 -10 10]),axis(axis), grid on, hold on

hh=plot(x,fx,'--k',x,zeros(size(x)),'-k','linewidth',2)

title(s1,'fontsize',18,'color','r')

xlabel('x', 'FontSize',18)

legend(hh,{'f(x)=sin(x)/(1-x²)', 'f(x)=0'},'Location',

'northeast','FontSize',12)

hold on, pause(timdelay)

for j=0:maxdeg

 k=2*j+1;cl=['-' colorch(j+1)];

 h=plot(x,y(:,j+1),cl,'linewidth',2)

legend(h,{['Taylor series n='

int2str(k)]},'Location','southeast','Box','off','FontSize',12)

 grid on, hold on, pause(timdelay)

end

pause

end

The example presented above dealing with the function f(x)=sin(x)/(1-x²). The function

possesses two singularities at x=±1. The coefficients of the Taylor series at x0=0 may be

calculated as follows:

sin(𝑥) = 𝑥–
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
= ∑ (

(−1)𝑖

(2𝑖+1)!
∙ 𝑥2𝑖+1)∞

𝑖=0 ⁡ (ME2.2.3),

and for f(x) at x close 0 there are two infinite series which should satisfy the equation:

[∑ (𝑎𝑛 ∙ 𝑥
𝑘𝑛)∞

𝑛=0)]∙(1 − 𝑥²) = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+…. (ME2.2.3).

By equating the cofficients at the same power of two series in the left and right sides one gets

the reccurent formula:

𝑎0 = 0, 𝑎2𝑖 = 0;⁡𝑎2𝑖+1 − 𝑎2𝑖−1 =
(−1)𝑖

(2𝑖 + 1)!
, 𝑎2𝑖+1 =∑(

(−1)𝑖

(2𝑖 + 1)!
)

∞

𝑖=0

Thus, the Taylor series of sin(x)/(1-x²) at x0=0 is expanded as follows:

𝑠𝑖𝑛(𝑥)

1 − 𝑥²
= ∑{

∞

𝑛=0

𝑥2𝑛+1 ∙∑(
(−1)𝑖

(2𝑖 + 1)!
)}

𝑛

𝑖=0

.

With the increase of the Taylor series polynomial degree n, one can approximate f(x) in

broader interval x, closer and closer to singularity points (Fig. ME2.2).

MATLAB Exercise 3. Stress-strain curves: strength and yield stress

The example data containing deformation of a rectangular bar specimen in mm, load F in N,

and geometric parameters in mm, length L, width W and thickness h are inputs of the code

and saved in the text-file ‘strength1.txt’. In order to read the file the function textscan is

used. The empty cells in columns are filled with zeros. To find the maximum value on the

function plot [max, indexmax]=max() is applied, which defines also the index of the

function argument corresponding to the maximum value. The span of arguments between 0

and indexmax is fitted to the linear regression having the intercept constant 0 by using the

function dlm=fitlm(..,Intercept, ‘False’). The parameter dlm.Rsquared.Ordinary

is the extracted from linear fit regression coefficient R and

687

coeffs=dlm.Coefficients.Estimate is the slope coefficient. The span of fitting

arguments consequently decreases until the regression coefficient R is close to 1 within a

given error (err=0.02 and desired R=0.98 in the code below) using while loop. The stress

point corresponding to the right hand side limit value of the linear deformation span is the

yield stress (Fig. ME3.1).

%The MATLAB file with the data of deformation in mm, load in N, length,
%wide and thickness of a bar sample is processed to obtain:
%Proportional Limit of Deformation; Ultimate Strength; Yield Stress;
clc; clear all
fid=fopen('strength1.txt');%Load and open text file
s=textscan(fid,'%f %f %f %f %f','emptyValue', 0);

%read 5 columns in txt-file
fclose(fid);
L=s{3}; %read L, input length in mm from the third column
L=dot(ones(1,length(L)),L); %making a scalar value of L
W=s{4}; %read W, input width in mm from the fourth column
h=s{5}; %read h, input thickness in mm from the fifth column
A=dot(W,h) %calculating cross-section area in mm^2
F = s{2};% input load in N from the second column
delta = s{1}; % input deformation in mm from the first column
%Calculation of deformation in % and stress in MPa
stress=F./A; % in MPa
eps=100*delta./L; % deformation in %
%Plotting Load-Deformation Curve
subplot(2,1,1)
hold on; grid on; plot(delta,F,'--b'); title('Load versus Deformation')
xlabel('\Delta, mm'); ylabel('Load F, N')
%Plotting Stress-Deformation Curve
subplot(2,1,2)
hold on; grid on; plot(eps,stress,'-.r')
title('Stress Versus Deformation in %'); xlabel('\epsilon, %');
ylabel('\sigma, MPa')
hold on
%calculating strength and yield stress from the curve
[maxstrength, imaxstrength] = max(stress);%estimation of the index of max
maxeps = eps(imaxstrength); %estimation of eps corresponding to strength
plot(maxeps,maxstrength,'o-

','MarkerFaceColor','red','MarkerEdgeColor','black')
text(maxeps,maxstrength,' \leftarrow strength') %put the text on the graph
hold on
R=0;err=0.02;imaxstrength0=imaxstrength;

%err is a deviation error from linearity
while R<(1-err)
 imaxstrength=imaxstrength-1;% one step down in eps array index
dlm= fitlm(eps(1:imaxstrength),stress(1:imaxstrength),'Intercept',false);
R=dlm.Rsquared.Ordinary;%extracting correlation coefficient R
end
yieldstress=stress(imaxstrength;

% yield stress corresponds to deviation
%of linear fit from 1 with a given error
yieldeps=eps(imaxstrength)% estimation of eps corresponding to yield stress
coeffs=dlm.Coefficients.Estimate; % the coefficient of the linear fit
plot(yieldeps,yieldstress,'o-

','MarkerFaceColor','green','MarkerEdgeColor','black')
text(yieldeps,yieldstress,' \leftarrow yield stress'); hold on
plot(eps(1:imaxstrength0),coeffs(1).*eps(1:imaxstrength0),'g'); hold on
span=find(eps>=maxstrength/coeffs(1)& eps<=maxeps);
plot(eps(span),coeffs(1).*eps(span)-maxstrength,'b');
plot(eps(span(1)),0,'o-

..','MarkerFaceColor','blue','MarkerEdgeColor','black')

688

text(eps(span(1)),0,' \leftarrow plastic deformation');% place the text
hold on

Fig. ME 3.1 MATLAB generated curves of a specimen deformation plotted together with yield stress

and strength estimations: green line is the linear fit having the intercept =0 with e ordinate axis.

MATLAB Exercise 4. Differential effective medium approach: Eshelby

tensor

The differential effective medium (DEM) approach is the evolution scheme to calculate

effective elastic parameters of a medium by introducing incrementally of spherical pore

volume (i. e. through the incremental increase of porosity 𝜑), and computing the

corresponding incremental change in effective elastic moduli. The procedure is repeated until

the target porosity is reached (Brantut&David, 2019). In this MATLAB exercise this

approach will be illustrated by calculations of the Poisson’s ratio as a function of porosity.

The solid matrix material and the resulted effective medium are assumed isotropic and

spheroidal inclusions (with half axis 𝛼̆ = [𝑎1, 𝑎2, 𝑎3]⁡)⁡are uniformly distributed and oriented

parallel to their largest half axis in matrix. For the effective bulk (𝐾̅) and shear (𝜇̅) moduli

there are two coupled ordinary differential equations (e.g. David, 2012):
𝑑𝐾̅

𝐾̅
= −

𝑑𝜑

1−𝜑
∙ 𝑃(𝛼̆. 𝜈) and

𝑑𝜇̅

𝜇̅
= −

𝑑𝜑

1−𝜑
∙ 𝑄(𝛼̆. 𝜈) (ME 4.1),

where 𝑃(𝛼. 𝜈) and 𝑄(𝛼. 𝜈) are the bulk and shear compliances of spheroidal voids, indicated

in Chapter (4.40a&b), respectively. They depend on the Poisson’s ratio ν of solid matrix, and

the aspect ratio α of spheroids. The Poisson’s ratio  is given by the relationship:

2 ∙ 𝜈 =
3𝐾̅−2𝜇̅

3𝐾̅+𝜇̅
 or ⁡2 ∙ 𝑑𝜈 = 𝑑 (

3𝐾̅−2𝜇̅

3𝐾̅+𝜇̅
) =

9𝐾̅∙𝜇̅∙

(3𝐾̅+𝜇̅)2
∙ [
𝑑𝐾̅

𝐾̅
−
𝑑𝜇̅

𝜇̅
]⁡, and

𝑑𝜈 = ⁡−
(1+𝜈)·(1−2𝜈)

3
∙
𝑑𝜑

1−𝜑
∙ [𝑃(𝑎̆. 𝜈) − 𝑄(𝑎̆. 𝜈)] (ME 4.2).

689

In the case when inclusions are filled with compressible fluid 𝜇2 = 0 and
𝐾2

𝐾1
= 𝜁

𝑃(𝛼̆. 𝜈, 𝜁) =
𝐾1−𝜁∙𝐾1

𝐾1
∙

1

1−
𝐾1−𝜁∙𝐾1

𝐾1
∙∑ 𝑠1𝑖
3
𝑖=1

⁡=
1−𝜁

1−(1−𝜁)∑ 𝑠1𝑖
3
𝑖=1 ∙

𝑄(𝛼̆. 𝜈) =
1

1−2∙𝑠44
 (ME 4.3).

where ∑ 𝑠1𝑖
3
𝑖=1 is the bulk compliance and 2 ∙ 𝑠44⁡is the shear compliance of inclusions, and

𝑠𝑖𝑗 are the elements of the compliance Eshelby tensor matrix (i.e. Meng et al., 2012):

𝑠11 =
𝑎1∙𝑎2∙𝑎3

4∙(1−𝜈)
∙ [3𝑎1

2 ∙ 𝐽11 + (1 − 2𝜈) ∙ 𝐽1]

𝑠12 =
𝑎1∙𝑎2∙𝑎3

4∙(1−𝜈)
∙ [𝑎2

2 ∙ 𝐽12 − (1 − 2𝜈) ∙ 𝐽1]

𝑠13 =
𝑎1∙𝑎2∙𝑎3

4∙(1−𝜈)
∙ [𝑎3

2 ∙ 𝐽13 − (1 − 2𝜈) ∙ 𝐽1]

2 ∙ 𝑠44 =
𝑎1∙𝑎2∙𝑎3

4∙(1−𝜈)
∙ [(𝑎1

2 + 𝑎2
2) ∙ 𝐽12 + (1 − 2𝜈) ∙ (𝐽1 + 𝐽2)]

 (ME 4.4).

More sophisticated than (ME4.3) dependence of 𝑃(𝛼̆. 𝜈, 𝜁) on ζ has been considered in

(Brantut & David, 2019). The constants Jj and Jij depend only on inclusion geometry and for

ellipsoidal cavities are given by the integrals.

𝐽𝑗 = ∫
𝑑𝜉

(𝑎𝑗
2+𝜉)∙∏ (𝑎𝑗

2+𝜉)
1
2⁄3

𝑗=1

⁡ ,
∞

0

𝐽1𝑗 = ∫
𝑑𝜉

(𝑎1
2+𝜉)∙(𝑎𝑗

2+𝜉)∙∏ (𝑎𝑗
2+𝜉)

1
2⁄3

𝑗=1

⁡ ,
∞

0
 (ME 4.5).

In the case of spherical inclusions 𝛼̆ = [1, 1, 1], the results of integration are 𝐽𝑗 =

−
2

3∙(1+𝜉)
3
2

]
0

∞

=
2

3
 and 𝐽1𝑗 = −

2

5∙(1+𝜉)
5
2

]
0

∞

=
2

5
.⁡⁡Finally for the spherical case one obtains 𝑠11 =

7−5𝜈

15∙(1−𝜈)
, 𝑠12 = 𝑠13 =

5𝜈−1

15∙(1−𝜈)
, 2𝑠44 =

2∙(4−5𝜈)

15∙(1−𝜈)
, ∑ 𝑠1𝑖

3
𝑖=1 =

1+𝜈

3∙(1−𝜈)
, and for the dry

compressibility and shear compliances are: 𝑃(1̆. 𝜈, 0) =
3∙(1−𝜈)

2∙(1−2𝜈)
, 𝑄(1̆. 𝜈) =

15∙(1−𝜈)

7−5𝜈
.

Here below is MATLAB code to calculate J-integrals (ME 4.5) and use them for calculation

of P and Q for arbitrary  and v. The evolution scheme starts with the initial value of the

Poisson’s ratio 𝜈0 at zero porosity 𝜑 = 0, and for each small step of 𝜑⁡the increment of n is

given by (ME 4.2).

The loop while end, marked by grey colour, defines the evolution scheme of calculations,

from the previously calculated point a new point is determined.
%Calculations of Poisson's ratio after Brantut%David, 2019 using Eshelby
%tensor components
nu0=0.2;%input initial Poisson's ratio at zero porosity
zeta=0.001; %input zeta=k2/k1
alpha=[10,5,1];%input half axis of ellipsoid, first element is the maximum
an=alpha(1); alpha=alpha./an;% normalization to the maximum axis
fi0=0; dfi=0.001;% define initial porosity and porosity step
fi=fi0; nu=nu0;%initialization of the evolution scheme
while fi<0.55 %maximum porosity 55%
 delta=(Q(alpha,nu)-P(alpha,nu,zeta))*(1+nu)*(1-2*nu)/3;
 dnu=delta/(1-fi)*dfi;%calculate increament of Poisson's ratio
 plot(fi,nu,'r.')%put the data point on a graph
 grid on
 hold on
 xlabel('\phi') %put label on horizontaö axis
ylabel('\nu')%put label on vertical axis
set(gca,'fontsize', 18);%define the font size
nu= nu+dnu;fi=fi+dfi; % Poisson's ratio and porosity at the next step
end
hold on

690

grid on
%%%
function p=P(a,nu,z)% function to calculate bulk compliance
S11=3*a(1)^2*Jot(a, 2,0,0)+(1-2*nu)*Jot(a, 1,0,0);
S12=a(2)^2*Jot(a, 1,1,0)-(1-2*nu)*Jot(a, 1,0,0);
S13=a(3)^2*Jot(a, 1,0,1)-(1-2*nu)*Jot(a, 1,0,0);
S1j=a(1)*a(2)*a(3)/4/(1-nu)*(S11+S12+S13);
p=(1-z)/(1-(1-z)*S1j);
end
function q=Q(a,nu)% function to calculate bulk compliance
S44=(a(1)^2+a(2)^2)*Jot(a,1,1,0)+(1-2*nu)*(Jot(a,1,0,0)+Jot(a,0,1,0));
S44=a(1)*a(2)*a(3)/4/(1-nu)*S44;
q=1/(1-S44);
end
function Jij=Jot(alpha,j,k,l)
a=alpha(1); b=alpha(2); c=alpha(3);
fun = @(x,a,b,c,j,k,l)

…… 1./(a.^2+x).^(j+1/2)./(b.^2+x).^(k+1/2)./(c.^2+x).^(l+1/2);
Jij=integral(@(x)fun(x,a,b,c,j,k,l),0,Inf, 'RelTol',1e-8,'AbsTol',1e-13);
end

MATLAB Exercise 5. Plotting velocity profile of fluid flow in elliptic and

triangular channels

The MATLAB code below used formulas for viscous flow in an elliptic, triangular and four

sided cusped pipes explained in Focus Box 5. These 3 situation are arranged in the “case”

menu structure. For the input of parameter X the operator X=input('test appears on screen') is

used. The velocity field v(x,y) is calculated for [–a<x<+a, –b<y<+b] in the elliptic pipe

case, but velocity v-values outside the ellipse are declared as non-a-number (NaN). Two

vectors x and y consisting of N points are used to form the matrix meshgrid. The results of

calculations are presented in 3 figures shown below. The stem3 plot presents the data in the

discrete form, contourf plots are 2D maps of velocity field with isoclines of velocity v, and

meshc graph presents the velocity field in 3D (Fig. ME 5.1).

%**

%---

 %Calculation of velocity Vmean,Vmax and volumetric flow

rate Q

 %adapted from Hatem Ali (2020). Fluid Mechanics: Flow in

Straight % % Pipes and its Extensions

 %MATLAB Central File Exchange.

 disp('Flow in a non-circular pipe ')

column={'Elliptic-cross section';'Equilateral triangular pipe';'4-

sided cusped pipe'};

Symbols=[1;2;3];

inputs={'pressure between two points, viscosity and two half axis of

the pipe';...

 'pressure between two points, viscosity, and the size of the

triangle pipe';...

 'pressure between two point, viscosity, size of the cusped

pipe'};

Outputs={'velocity profile';'Q flow rate';'flow mean velocity'};

Information={'You can calculate elliptic geometry by pressing 1';...

691

 'You can calculate triangular geometry by pressing 2';...

 'You can calculate 4-sided cusped geometry by pressing 3'};

Start=table(Symbols,'RowNames',column)

inputs_Outputs=table(inputs,Outputs,'RowNames',column)

Informations=table(Information,'RowNames',column)

 s=input('what do you want to calculate (1,2,3)? ');

 N=201;

 switch s

 case 1 % Elliptic geometry

 %---------------------Input of paramets of elleptic flow:

 Pa=input('Pressure at point a in Pa ');

 Pb=input('Pressure at point b in Pb ');

 mu=input('Viscosity of liquid in Pa.sec ');

 a=input('Half axis x of ellptic pipe in m ');

 b=input('Half axis y of ellptic pipe in m ');

 l=input('Length of pipe in m ');

 %------------------------Print Table

 Value=[Pa;Pb;mu;a; b;l];

 Units=char({'Pa';'Pa';'Pa.sec';;'m';'m';'m'});

Information=table(Value,Units,'RowNames',{'Pa';'Pb';'Viscosity';'a';

'b';…

…'Length'})

 %------------Define vectors x and y, calculate velocity

 if Pa==Pb % exclude zero pressure gradient

 disp('There is No Pressure Drop in the Pipe')

 else

 x=linspace(-a,a,N);y=linspace(-b,b,N);S= pi*a*b;

 [X,Y]=meshgrid(x,y);

 Vmax=(abs(Pa-Pb))*(a^2)*(b^2)/(a^2+b^2)/(4*mu*l);

 V=Vmax*(1-(X.^2)/a^2-(Y.^2)/b^2);V(V<0)=NaN;

 % outside of ellipse velocity is not a number

 Q=Vmax/2*S; Vmean=Vmax/2;

 end

 %---

 case 2 %triangular geometry

 Pa=input('Pressure at point a in Pa ');

 Pb=input('Pressure at point b in Pb ');

 mu=input('Viscosity of liquid in Pa.sec ');

 a=input('Side length of triangular pipe in m ');

 l=input('Length of pipe in m ');

 if Pa==Pb

 disp('There is No Pressure Drop in the Pipe')

 else

 x=linspace(-a/2,a/2,N);y=linspace(0,sqrt(3)/2*a,N);

 S=sqrt(3)/4*a^2; [X,Y]=meshgrid(x,y);

 Vmax=abs(Pa-Pb)/mu/l*a^2/36;

 V=Vmax*18*sqrt(3)/a^3*Y.*((a/2-Y./sqrt(3)).^2-

X.^2);V(V<0)=NaN;

 Q=Vmax*9/80*sqrt(3)*a^2; Vmean=Q/S;

 end

 %---

 case 3 %four-sided cusped geometry after Lenker, 2007

 Pa=input('Pressure at point a in Pa ');

 Pb=input('Pressure at point b in Pb ');

692

 mu=input('Viscosity of liquid in Pa.sec ');

 a=input('Size of cusped pipe in m ');

 l=input('Length of pipe in m ');

 if Pa==Pb

 disp('There is No Pressure Drop in the Pipe!')

 else

 x=linspace(-a,a,N); y=x;[X,Y]=meshgrid(x,y);

 Vmax=abs(Pa-Pb)/l/mu*a^2/8;

 V=Vmax*((X.^2+Y.^2-a^2).^2-

8*(X.^2).*(Y.^2))./a^4;V(V<0)=NaN;

 R=@(theta,r) r;

Vpolar = @(theta,r) Vmax*(r.^4.*cos(4*theta)-

2.*a^2.*r.^2+a^4)./a^4.*r;

 rmax = @(theta) a./sqrt(1+sqrt(2)*sin(2*theta));

 S= 4*quad2d(R,0,pi/2,0,rmax,'AbsTol',1e-6,'MaxFunEvals', 5000)

 Q = 4*quad2d(Vpolar,0,pi/2,0,rmax,'AbsTol',1e-6,'MaxFunEvals',

5000);

 Vmean=Q/S;

 end

 end

 %---------Presents results as Table

 Value=[Vmax;Vmean;Q];

 Units=char({'m/sec';'m/sec';'m^3/sec'});

Sumarry=table(Value,Units,'RowNames',{'Vmax';'Vmean';'Q'})

 v=Vmax*linspace(0,1,5);v=round(v,3);%define isoline

vector

 %-----------Plot using stem3 (digital presentation of

velocity

 figure(1)

 stem3(X,Y,V,':or','MarkerSize',1);hold on;grid on;

xlabel('x-distance (m)'), ylabel(' y-distance (m)'),

zlabel(' Velocity (m/s)');

title(' Velocity

profile');legend({'V(x,y)'},'Location','southeast');

 %-------Presents results as a contour map

 figure(2)

 [C,h]=contourf(X,Y,V,v,'-y'); colormap copper;

 clabel(C,h,v,'FontSize',8,'Color','white');

 c=colorbar; c.Label.String = 'Velocity in m/sec';

 grid on; xlabel('D-X(m)');

 ylabel('D-Y(m)');

 title(' Velocity cross-sectional profile (m/s)');

 %--------Presents results in 3D

 figure(3)

 meshc(V,X,Y)

 title('3-D of flow');zlabel('X-Diameter in m');

 ylabel('Y-Diameter in m'); xlabel('Velocity in m/s')

 %---

693

Fig. ME 5.1 Example of viscous flow by MATLAB calculations for pressure gradient=0.17 P/m ,

viscosity =1 Pa s. (upper panels) Elliptic pipe a=5 m, b=1 m;. (middle panels) Equilateral triangular

tube with side length a=5 m; (lower panels) Four sided cusped duct with side length a=10 m.

MATLAB Exercise 6.1 Subsidence and consolidation of soils and
rocks

Subsidence of topographic surfaces may occur in differing ways. When it happens in a

relative slow way, then it is known as settlement. Subsidence is distinctly observed in former

mined areas, where significant volumes of underground material has been extracted.

Removal of porous fluid phase and reduction of pore pressure are also responsible for

consolidation of soils and rocks and the consequent collapse of their intergranular space. The

processes like sediment deposition or building of thick ice covers due to glaciation as well as

man-made constructions are typical causes of soils and rocks consolidation. Subsidence and

consolidation processes are very often connected with the variations of ground water table.

Subsidence may be subdivided into three stages: (1) immediate consolidation due to elastic

deformation of matrix material; (2) primary consolidation due to fluid phase (water) outflow

from pore space; and (3) secondary consolidation due to creep and plastic modifications of

material texture. In this exercise the second stage will be considered and numerically

modelled. The vertical stress acting on solid phase is z, the pore pressure is u, and the

694

effective stress isz’= z –u (in sense of the Terzaghi definition). The relationship between

the change of void fraction ∆𝑒 and the vertical strain is: 𝜀𝑧 =
∆𝑒

1+𝑒0
 (Fig. ME 6.1.1). By

applying the vertical stress z the pore pressure becomes instantaneously equal the stress

z and the initial effective stress z,0’ =0 is zero. When the drainage path for fluid escape

is open pore pressure u will decrease and the total external load is transferred now to the solid

matrix.

Fig. ME 6.1.1 Principle of consolidation: an element of rock or soil consists (solid phase) and porous

space (voids). The initial void fraction is defined trough the ratio of volumes e0=V(voids)/V(solid phase) .

(A). After applying the vertical stress z the volume of porous space is e1 . (B) The vertical

deformation of volume is given by 𝜀𝑧 =
∆ℎ

ℎ
=
∆ℎ∙𝐴

ℎ∙𝐴
=
(𝑒0−𝑒1)∙𝑉𝑠
(1+𝑒0)∙𝑉𝑠

=
∆𝑒

1+𝑒0
, where e is the change of void

volume fraction. So during the consolidation process z remains constant but the pore fluid pressure

u decreases due to drainage, and the load transferred continuously from water to the matrix resulting in

the effective stress z’ increase.

Consider the small element of consolidating soil having base area A at depth z, the hydraulic

conductivity of the solid matrix is k. The excess of pore pressure over the hydrostatic pressure

·g⸱z is denoted by 𝑢̅. During time dt the amount of fluid which flows in the small volume

having the height z is q=A· k·
𝑑𝑢

𝜌∙𝑔∙𝑑𝑧
 and the fluid amount flowing out of this volume is:

q+q= A· k·
𝑑(𝑢+𝛿𝑢)

𝜌∙𝑔∙𝑑𝑧
= 𝑞 + 𝐴 · ⁡k ·

𝑑²𝑢

𝜌∙𝑔∙𝑑𝑧²
∙ 𝛿𝑧

⏞
𝛿𝑞

. The increase of fluid flux is due to the volume

contraction and extraction of some fluid amount having volume decrement: -A·h per unit of

time (Fig. ME 6.1.2), i.e. q=−𝐴 ∙
(
𝛿ℎ

𝛿𝑧
)

𝑑𝑡
∙ 𝛿𝑧 = −𝐴 ∙

𝑑𝜀𝑧

𝑑𝑡
∙ 𝛿𝑧.

Fig. ME 6.1.2 Principle of consolidation.

Finally, one may write the consolidation equation as follows:
𝛿𝜀𝑧

𝛿𝑡
= −

k⁡·⁡⁡⁡𝑑²𝑢

𝜌∙𝑔∙𝑑𝑧²
 (ME 6.1.1).

695

The relationship between vertical strain 𝜀𝑧 ⁡and effective vertical stress z’ is assumed to be

linear, and this proportionality defines the coefficient of compressibility or the so called

coefficient of volume change mv through the relationship: 𝑚𝑣 =
𝜀𝑧

∆σ𝑧⁡–𝑢̅
. In the present case the

external load is considered to be time independent, and the final form of the consolidation

equation is as follows:

𝜕𝑢

𝜕𝑡
=
k⁡∙⁡⁡⁡𝜕2𝑢

𝜌∙𝑔∙𝜕𝑧2
= 𝑐𝑣 ∙

𝜕²𝑢

𝜕𝑧²
 (ME 6.1.2),

where Cv is called the coefficient of consolidation. The analytical solutions of the diffusion

type of partial differential equation (ME 6.1.1) may be taken from the textbooks on thermal

conductivity (i.e. Carslaw& Jaeger, 1959). Degree of consolidation at depth z is defined as the

ratio⁡𝑈̅ =
𝑢0−𝑢̅

𝑢0
, where 𝑢̅0 is the initial excess of pore pressure. If one introduces the

dimensionless time 𝑇𝑣 =
𝑐𝑣∙𝑡

ℎ2
, and the dimensionless drainage path ratio Z=z/h, where h is the

total depth of drainage, then (ME 6.1.2) may rewritten in the dimensionless form:
𝜕𝑈̅

𝜕𝑇𝑣
=
𝜕²𝑈̅

𝜕𝑍²
.

For the initial conditions at t=0 the pressure excess is constant through the depth z = 𝑢̅0,⁡
and at the top boundary z=0 there is a drainage condition 𝑢̅=0, and at the bottom z=h there is

no influx condition
𝜕𝑢

𝜕𝑧
=0. Then, the analytical solution is given by the series (Carslaw&

Jaeger, 1959):

𝑈̅ = 1 − ∑
2

𝑀
∞
𝑚=0 ∙ 𝑠𝑖𝑛(𝑀 ∙ 𝑍) ∙ 𝑒−𝑀²∙𝑇𝑣 (ME 6.1.3),

where M=
𝜋

2
∙ (2𝑚 + 1). Here below is the MATLAB code to calculate 𝑈̅ as a function of

depth z and time t:
clear all;
cv = 2e-3; % consolidation coefficient
H = 4.;% drainage depth in m
zstep=51; Z = linspace(0,1,zstep); % normalized depth
% discretize time domain
duration = 10000; dt =250;nstep = round(duration/dt);
time = [0:dt:duration];
T = cv/H/H.*time % normalized time
zv = H*linspace(1,0, zstep); %depth in m
U = zeros(zstep,nstep); % normalized pore pressure
for i=1:zstep
 for j=1:nstep
 for m = 0:5000
U(i,j) = U(i,j) + …

4/pi()/(2*m+1).*exp(-(pi()/2)^2*((2*m+1)^2).*T(j))*

…sin(pi()/2*(2*m+1).*Z(i));
 end
 end
end
% plot consolidation vs. depth at the end
pore_pressure = 1-U;
figure (1)
for i = 1:nstep
 plot(pore_pressure(:,i),zv,'r-'); hold on;
 grid on; xlabel('consolidation U');
 ylabel('z position, m');
end

696

Fig. ME 6.1.3 (left panel) Consolidation U versus depth position z. The initially zero consolidation

changes with time from the stepwise shape to zero. (right panel) Average consolidation 𝑈̅𝑚𝑒𝑎𝑛 as a

function of dimensionless time 𝑇𝑣.

The mean value of consolidation calculated by integration of (ME 6.1.4) over entire depth

from 0 to h (0≤Z≤1) is:

𝑈̅𝑚𝑒𝑎𝑛 = 1 − ∑
2

𝑀
∞
𝑚=0 ∙ 𝑒−𝑀

2∙𝑇𝑣 ∙ ∫ sin⁡(𝑀 ∙ 𝑍) ∙ 𝑑𝑍⁡
1

0

⏞

−
1

𝑀
𝑐𝑜𝑠

𝜋

2

= 1 − ∑
2

𝑀2
∞
𝑚=0 ∙ 𝑒−𝑀²∙𝑇𝑣

 (ME 6.1.4).

The time 𝑇𝑣,𝑐 by which the bottom boundary excess pore pressure 𝑈̅(𝑍 = 1) is affected by the

drainage at the upper boundary 𝑈̅(𝑍 = 0) = 0⁡may be estimated from (ME 6.1.3) by inserting

Z=1 and leaving only the first term in the series: ∑
2

𝑀
∞
𝑚=0 ∙ (−1)𝑚 ∙ 𝑒−𝑀²∙𝑇𝑣=1→

{
4

𝜋
∙ 𝑒−

𝜋2

4
∙𝑇𝑣,𝑐 +⋯} = 1, which provides the relationship: 𝑇𝑣,𝑐 ≈

4

𝜋2
ln⁡(

4

𝜋
) ≈ 0.098. The exact

solution at 𝑈̅(𝑍 = 1)⁡and the first term in the series of this solution are shown in Fig. ME

6.1.4.

Fig. ME 6.1.4 (left panel) Consolidation 𝑈̅(𝑍 = 1) versus dimensionless time 𝑇𝑣: red curve is the full

series solution, black line is the first term of the series solution.

The analysis based on 𝑈̅𝑚𝑒𝑎𝑛 (Fig. ME 6.1.3 right panel) results in 𝑇𝑣,𝑐 ≈
1

12
= 0.083,⁡and at

this time the average consolidation is 𝑈̅𝑚𝑒𝑎𝑛 =1/3. At 𝑇𝑣 < 𝑇𝑣,𝑐⁡the evolution of average

697

consolidation may be approximated as 𝑈̅𝑚𝑒𝑎𝑛 =
2

√3
∙ √𝑇𝑣 , and at 𝑇𝑣 > 𝑇𝑣,𝑐 the time

dependence of average consolidation is: 𝑈̅𝑚𝑒𝑎𝑛 = 1 −
2

3
∙ exp (

1

4
− 3 ∙ 𝑇𝑣).

MATLAB Exercise 6.2. Pore compressibility and shear compliances

The exercise deals with calculations of compressibility and shear compliances used in

The Mori-Tanaka differential scheme: 𝑃̌, 𝑄̌ as a function of the Poisson ratio  of matrix with

spheroidal pores having aspect ratio : 𝑃̌(𝛼)&⁡𝑄̌(𝛼) are shown in normalized form Fig.

ME6.2.1.

Fig. ME6.2.1 Normalized pore compressibility 𝑃̅ =
𝑃̌

𝑃̌𝑠
 and shear compliance 𝑄̅ =

𝑄̌

𝑄̌𝑠
 of spheroidal

pores, as a function of  shape aspect ratio, for two values  of the matrix Poisson’s ratio. Thick line

=0.5, dashed-dotted line =0. Expressions for the pore compressibility compliance 𝑃̌, and the shear

compliance, 𝑄̌, for 2 limiting cases (=0 and =∞) are given in Table ME6.2.1. In Fig. 𝑃̌⁡&⁡𝑄̌⁡have

been normalized respectively to 𝑃̌s and 𝑄̌s, compressibility and shear compliances of spherical pores,

=1 (replotted from David & Zimmerman, 2011).

The normalization factors 𝑃̆𝑠, 𝑄̆𝑠 and the limit expressions of 𝑃̌, 𝑄̌ are shown in Table ME6.2.1.

Table ME6.2.1 Limit values of compressibility 𝑷̌⁡and shear 𝑸̌ compliances of pores

having aspect ratio from David & Zimmerman

Pore geometry 𝑷̌ 𝑸̌ Comments,

698

𝟒

𝟑𝝅𝜶
∙
𝟏 − 𝝂²

𝟏 − 𝟐𝝂
 𝟒

𝟑𝝅𝜶
∙
(𝟏 −

𝝂
𝟓
)

(𝟏 −
𝝂
𝟐)

Oblate

spheroid or

penny shape

pore with

a𝑠𝑝𝑒𝑐𝑡⁡𝑟𝑎𝑡𝑖𝑜:
⁡𝛼 → 0

⁡𝑃̆𝑠 =
𝟑

𝟐
∙
𝟏 − 𝝂

𝟏 − 𝟐𝝂
 𝑄̆𝑠 =

𝟏𝟓

𝟕
∙
𝟏 − 𝝂

𝟕 − 𝟓𝝂

Sphere

A𝑠𝑝𝑒𝑐𝑡⁡𝑟𝑎𝑡𝑖𝑜:
⁡𝛼 = 1

𝟓 − 𝟒𝝂

𝟑 ∙ (𝟏 − 𝟐𝝂)

𝟖

𝟏𝟓
∙ (𝟓 − 𝟑𝝂)

Prolate

spheroid or

needle-shape

pore with

a𝑠𝑝𝑒𝑐𝑡⁡𝑟𝑎𝑡𝑖𝑜:
⁡𝛼 → ∞

To calculate 𝑃̌⁡&⁡⁡𝑄̌one uses the aspect ratio of two half axis , the matrix Poisson’s ratio n, and the

aspect ratio function 𝑔(𝛼):

𝑔(𝛼) =
𝛼

(1−𝛼²)
∙ [
𝑎𝑟𝑐𝑐𝑜𝑠𝛼

√1−𝛼²
− 𝛼] for <1,

and

𝑔(𝛼) =
𝛼

(𝛼2−1)
∙ [𝛼 −

𝑎𝑟𝑐𝑐𝑜𝑠ℎ𝛼

√𝛼2−1
] for >1 (ME6.2.1).

The code below calculates 𝑃̌, 𝑄̌ as a function of the aspect ratio of pores according to Eqs. (29-

30) from David & Zimmerman

clc; nui=[0,0.25,0.35];%input initial Poisson's ratio at zero prorosity
alpha=logspace(-1,1,100);%input aspect ratio

figure (1)
for i=1:3
 plot(log10(alpha),Q(alpha,nui(i),G(alpha)),'LineWidth',2);%put

data poin on a graph
 hold on
 Ymx = max(Q(alpha,nui(i),G(alpha)));
titlemn = strcat('\nu = ',num2str(nui(i)));
 text(min(log10(alpha)),Ymx, titlemn,'FontSize', 14, 'Color', 'b',

'FontWeight', 'bold')

699

end
xlabel('log(\alpha)') %put label on horizontaö axis
ylabel('Q(\alpha)')%put label on vertical axis
set(gca,'fontsize', 18);%define the font size
 hold on
grid on

figure(2)
for i=1:3
 plot(log10(alpha),P(alpha,nui(i),G(alpha)),'LineWidth',2);%put

data poin on a graph
 hold on
 Ymx = max(P(alpha,nui(i),G(alpha)));
titlemn = strcat('\nu = ',num2str(nui(i)));
 text(min(log10(alpha)),Ymx, titlemn,'FontSize', 14, 'Color', 'b',

'FontWeight', 'bold')
end
 xlabel('log(\alpha)') %put label on horizontaö axis
ylabel('P(\alpha)')%put label on vertical axis
set(gca,'fontsize', 18);%define the font size
hold on
grid on

%%%
function p=P(a,nu,g)% function to calculate bulk compleance
if g==NaN
 p=3.*(1-nu)./2./(1-2.*nu);
else
nr=4.*(1+nu)+2*a.^2.*(7-2.*nu)-(3.*(1+4.*nu)+12.*a.^2.*(2-nu)).*g;
br=2.*a.^2+(1-4.*a.^2).*g+(a.^2-1).*(1+nu).*g.^2;
p=(1-nu)./6./(1-2.*nu).*nr./br;
end
end
%%
function q=Q(a,nu,g)% function to calculate shear compleance
if g==NaN
 q=15./7.*(1-nu)./(7-5.*nu);
else
nr1=4.*(a.^2-1).*(1-nu)./15;
br1=8*(nu-1)+2.*a.^2.*(3-4.*nu)+((7-8.*nu)-4.*a.^2.*(1-2.*nu)).*g;

nr2=8.*(1-nu)+2.*a.^2.*(3+4.*nu)+((8.*nu-1)-

4.*a.^2.*(5+2.*nu)).*g+6.*(a.^2-1).*(1+nu).*g.^2;
br2=2.*a.^2+(1-4.*a.^2).*g+(a.^2-1).*(1+nu).*g.^2;

nr3=8.*(nu-1)+2.*a.^2.*(5-4.*nu)+(3.*(1-2.*nu)+6.*a.^2.*(nu-1)).*g;
br3=-2.*a.^2+((2-nu)+a.^2.*(1+nu)).*g;

q=nr1./br1.*(nr2./br2-3.*nr3./br3);
end

end
%%
function g=G(a)% aspect ratio function
if a==1
 g=NaN;
elseif a<1
 g=a./(1-a.^2).^(1.5).*(acos(a)-a.*sqrt(1-a.^2));
else a>1
 g=a./(a.^2-1).^(1.5).*(a.*sqrt(a.^2-1)-acosh(a));
 end

700

end

MATLAB Exercise 7.1 Density - Vp – 𝒎̅ multivariant regression

The background of (7.18) formalism follows from the empirical relationship
𝜕(𝜌∙𝑉𝑃)

𝜕𝑉𝑃
≈ 𝑐𝑜𝑛𝑠𝑡 (ME 7.1.1).

Using (7.6) this derivative may be expressed as follows:

𝜌 ∙ 𝑉𝑃 = √𝜌 ∙ (𝐾 +
4

3
𝜇) and

𝜕(𝜌∙𝑉𝑃)

𝜕𝑉𝑃
=
1

2
∙ 𝑉𝑃 ∙

𝜕(𝜌)

𝜕𝑉𝑃
≈ 𝑐𝑜𝑛𝑠𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(ME⁡7.1.2).

This relationship may be reformulated as the differential equation:
𝑑𝑉𝑃

𝑉𝑃
~𝑑𝜌, the solution of

which is given by the relationship ln(𝑉𝑃)~⁡𝜌.

Here, the dataset of ln(Vp), 𝑚̅, and density 𝜌 of rocks are adapted from Birch (1961). It

consists of three vectors: ln(Vp) values (x1), mean atomic weight (x2) and rock density (y).

The multivariant regression is given by y=b(1)+b(2)ln(Vp)+b(3)m+b(4)ln(Vp)𝑚̅. The

fitting coefficients are 3 elements of vector b. MATLAB procedure to find vector b elements

is: b = regress(y,X). The results of the multivariant linear regression are plotted in 3D

space as the plane (Fig. ME 7.1). The last cross-correlation term results in a negligible

contribution, because b(4)10-3. The color indicated on plane corresponds to the relative

contribution of cross-correlation term of regression in %.

%Database of rocks from Birch, F., 1961.

%Velocity of compressional waves in rocks to 10 kilobars, Part 2, J.

geophys. Res., 66, 2199-2224

% loading dataset

x1 = [2.36 2.19 2.14 2.17 1.89 2.05 1.97 1.95 2.08 1.82 2.12 1.97

1.98 1.91 1.91 1.91 1.92 1.84 2.06 1.92 1.85]';

% ln(Vp, km/s)

x2 = [20.4 22.8 22.6 20.4 30.9 31.9 33.1 30.9 24.1 20.9 20.4 21.3

24.3 21.8 21.8 21.8 22 20.8 21.7 21.1 20.7]';

% mean atomic weight of a rock

y = [3.8 3.57 3.85 3.32 4.55 4.97 4.65 4.5 3.95 2.61 3.2 2.76 3.75

2.9 3.09 2.87 2.9 2.75 3.4 2.7 2.72]';

% density in g/cm³

X = [ones(size(x1)) x1 x2 x1.*x2];

%generate the matrix of 3 columns ln(Vp), m, and a cross

%correlation term Ln(Vp)*m

b = regress(y,X) % applied multivariant regression to the

%dataset %vector b consists of 4 coefficients

scatter3(x1,x2,y,'filled')

hold on

x1fit = min(x1):0.1:max(x1);%generate a grid-vector of ln(Vp)

x2fit = min(x2):2:max(x2);% generate a grid-vector of m

[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);

% generate a meshgrid ln(Vp) x m

YFIT = b(1) + b(2).*X1FIT + b(3).*X2FIT + b(4).*X1FIT.*X2FIT; %

calculate density using vector b(i) of the regression %coefficients

C=abs(b(4).*X1FIT.*X2FIT./YFIT*100);% create a matrix of the

%relative cross correlation contributions ~ln(Vp)*𝑚̅/
surf(X1FIT,X2FIT,YFIT,C)

colorbar

hold on

xlabel('ln(V_p, km/s)')

ylabel('mean atomic weight m')

701

zlabel('density g/cm³')

set(gca,'FontSize',15)

view(50,10)

hold off

Fig. ME 7.1 Representation of the multivariant regression as the plane 𝜌 = 𝑏(1) + 𝑏(2) ∗ ln(𝑉𝑃) +
𝑏(3) ∗ 𝑚̅ + 𝑏(4) ∗ ln(𝑉𝑃) ∗ 𝑚̅⁡in 3D. Blue phe points are the dataset of density vs. velocity and atomic

weight from (Birch, 1961b). The color bar indicate the contribution of cross-correlation term of

regression, ~ b(4)*ln(Vp)*𝑚̅/𝜌 in %.

MATLAB Exercise 7.2 Pole diagrams

To represent vector characteristics of an object, for example acoustic velocities in anisotropic

crystals or positions of fault planes, one frequently uses pole diagrams. The idea of such a

representation is to indicate a 3D vector by a point in 2D plane by using the interception point

of vector with the equatorial plane of unity sphere (see Fig. ME 7.2.1 A). The vector is

plotted starting from South pole of sphere with azimuth angle  and altitude angle 2.

(Alternatively, it may be plotted starting from point (0 0 0) using altitude angle  indicated in

Fig. ME 7.2.1A, then, the interception point of vector with unity sphere will be projected on

the equatorial plane). Interception point in the equatorial plane is characterised by polar angle

 and radius vector = |𝑠𝑖𝑛
𝛽

2
|. In the case of a crystal the orientations of crystallographic

planes with the help of pole diagrams are illustrated in Fig. ME7.2.1 C&D.

702

Fig. ME 7.2.1 Construction of pole diagrams. A. Vectors having an angle with the axe [0 01] are

represented in plane (0 0 1) by their interception point (small open circle) of the line connecting the

point {0 0 1̅} with the end of the vector on the unity sphere (black star). B. The interception point on

the (0 0 1) plane in polar coordinates is characterized by azimuth angle () and radial distance from

coordinate centre =|𝑠𝑖𝑛(𝛽/2|. C & D: Projections (0 1 0) of cubic crystal. C. P [1 0 0] and P’ [1̅⁡0⁡0]
directions are the poles of anisotropy along [1 0 0] axis. D: Q [0 0 1] and Q’ [0 0 1̅] are the poles of

anisotropy along [0 0 1] axis.

The MATLAB program below plots and illustrates the construction of vector representation

in equatorial plane on unit sphere.
% representation of a pole figure using a unit sphere
lat = 0:(pi/19):pi; long = 0:(2*pi/37):2*pi;%calculate the grid points

% of latitude and longitude
[LAT,LONG] = meshgrid(lat, long);% assamble the grid point in a meshgrid
X = sin(LONG).*sin(LAT); Y = sin(LAT).*cos(LONG); Z = cos(LAT);
figure, mesh(X,Y,Z), axis equal %plot longitude and latitude lines
set(gca,'fontweight','bold','FontSize',14, 'FontName', 'Times New Roman')
alpha 0.3 % set the transparency of the sphere surface
hold on
plot(sin(long),cos(long), 'r-','LineWidth', 2)% plot equatorial plane
h=fill(sin(long),cos(long),'r')% fill equatorial plane
set(h,'facealpha',.5) % set the transparency of the equatorial plane
hold on
plot3(0,0,0,'ko') %plot ponit [0 0 0]
hold on
latr=30/180*pi; longr=120/180*pi; %calculate coordinates of the vector with

% a given lattitude 30° % and longuitude 120°

703

xr = sin(longr)*sin(latr);
yr = sin(latr)*cos(longr);
zr = cos(latr);%calculate coordinates on the unit sphere
plot3(xr,yr,zr,'r*') %plot point [x y z]
p1 = [0 0 0]; % centre of the sphere
p2 = [xr yr zr]; % point on a unit sphere with the given coordinates
dp = p2-p1; % vector of a distance between two points
p3=[xr yr 0]; % point projection in the equatorial plane
dpp=p3-p1;% vector of a distance between two points
quiver3(p1(1),p1(2),p1(3),dp(1),dp(2), dp(3),1.5,'LineWidth', 2)

% plot a vector connecting two points
quiver3(p1(1),p1(2),p1(3),dpp(1),dpp(2),dpp(3), 2.5,'LineWidth', 2)

% plot a vector connecting two points
plot3(sin(longr)*sin(latr/2), cos(longr)*sin(latr/2), 0, 'ko')

%plot a point in the equatorial plane
text(p1(1),p1(2),p1(3), sprintf('(%.0f,%.0f,%.0f)',p1))

%put the text on the graph
h=line([0 xr],[0 yr],[-1 zr],'LineWidth', 2)%plot a line between two points
s = h.LineStyle; h.LineStyle = ':';%set the line style
hold on

Fig. ME 7.2.2 MATLAB plot of unity sphere illustrating the construction of pole diagram.

The Cartesian coordinate system ise related to the spherical coordinates (for unity sphere

radius r = 1) as:

𝑋 = cos(𝜆) ∙ sin(𝜑) ,⁡⁡⁡𝑌 = sin(𝜆) ∙ sin(𝜑) ,⁡⁡⁡𝑍 = cos⁡(𝜑) (ME 7.2.1),

where 𝜆 is the longitude angle and 𝜑 is the latitude angle. The projection of lines having equal

latitudes and longitudes on the equatorial slice of sphere is called the equal-angle stereonet. In

structural geology the use of this type of stereonet is common for representation of planar and

linear structural elements (Pollard & Fletcher, 2005).

.

704

Fig. ME 7.2.3 Characteristics of planar and linear elements in 3D. The planar element is defined by

the strike direction s (the interception planar element line with the surface) and the dip angle d (the

angle built in the vertical cross section normal to the strike direction between the planar element

surface and the horizontal surface). The linear element can be defined additionally through the rake

angle r of the planar element, the angle between the strike direction and the linear element direction.

Another characterization of linear elements may be given by using the azimuth of plunge direction p

(projection azimuth of the linear element on the surface) and the dip plunge angle p (the angle built in

the vertical plane between the plunge direction and the linear element).

MATLAB program below plots planar element orientations using the given strike

(als=120°) and dip (phid =60°) angles, and calculate coordinates of the normal vector to

this plane on unity sphere. For the given rake angle (thr =60°) the plunge direction and the

plunge angle will be calculatedas follows:

𝛼𝑝 = 𝛼𝑠 + arctan⁡(tan𝜃𝑟 ∙ 𝑐𝑜𝑠𝛽𝑑), 𝛽𝑝 = arcsin⁡(
𝑠𝑖𝑛𝜃𝑟

𝑠𝑖𝑛𝛽𝑑
) (ME 7.2.2),

(Pollard & Fletcher, 2005).

% Plot stereonet, point, and great circle (Goodman and Shi, 1985, p. 75)

% modified from Pollard, David D./Fletcher, Raymond % C. 2005
axis equal, axis off, box off % equal scaling in x and y,

no axes or box
axis ([-1 1 -1 1]) % sets scaling for x- and y-axes
 plot([-1 1],[0 0],'k:',[0 0],[-1 1],'k:') % plot x- and y-axes
hold on
set(gca,'fontweight','bold','FontSize',14, 'FontName', 'Times New Roman')
r = 1; % radius of reference circle
TH = linspace(0,2*pi,3601); % polar angle, range 2 pi, 1/10 degree

increment
[X,Y] = pol2cart(TH,r); % Cartesian coordinates of reference circle
plot(X,Y,'k','LineWidth', 2) % plot reference circle
 hold on

705

for j = 1:8 % loop to plot great circles at 10 degree increments
phid = j*(10*pi/180); % dip angle, phid
h = -r*tan(phid); rp = r/cos(phid); % x-coord of center, h, and radius, rp
X = -h + rp*cos(TH); Y = rp*sin(TH); % coordinates of points on great

circle
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',-X,Y,'k:','LineWidth', 1) % plot two sets of great circles
hold on
end
 for j = 1:8 % loop to plot small circles at 10 degree increments
gam = j*(10*pi/180); % cone angle, gam
k = r/cos(gam); rp = r*tan(gam); % y-coord of center, k, and radius, rp
X = rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points on small circle
Y(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',X,-Y,'k:','LineWidth', 1) % plot two sets of small circles
hold on
end
 als = 120*pi/180; ald = als+pi/2; % strike 120°
phid = 60*pi/180; % dip angle 60°
h = -r*tan(phid)*sin(ald); % x-coord of center
k = -r*tan(phid)*cos(ald); % y-coord of center
rp = r/cos(phid); % radius
X = h + rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
X1 = -h + rp*cos(TH); Y1 = -k + rp*sin(TH); % coordinates of points
X1(find(X1.^2+Y1.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'b',X1,Y1,'b:','LineWidth', 2) % plot planar element as great

%circle
aln = ald + pi; % plunge direction of normal to planar element
phin = (pi/2) - phid; % plunge angle of normal
x = r*tan(pi/4 - phin/2)*sin(aln);
y = r*tan(pi/4 - phin/2)*cos(aln);
plot(x,y,'ko') %plot pole to planar element as a point
thr = 60*pi/180; % rake angle =60°
alp = als + atan2(sin(thr)*cos(phid),cos(thr)); % plunge direction
phip = asin(sin(thr)*sin(phid)); % plunge angle
xr = r*tan(pi/4 - phip/2)*sin(alp);
yr = r*tan(pi/4 - phip/2)*cos(alp);
plot(xr,yr,'bo', 0,0,'k*') %plot linear element as point on great circle
hold on
p1 = [0 0]; % centre of the plane
p2 = [xr yr]; %Linear element direction
p3=[x,y]; % pole direction
dp = p2-p1; dpp=p3-p1;% Difference between points
quiver(p1(1),p1(2),dp(1),dp(2),0,'LineWidth', 2);

%plot an arrow between two points
quiver(p1(1),p1(2),dpp(1),dpp(2),0,'LineWidth', 2)
text(p1(1),p1(2), sprintf('(%.0f,%.0f)',p1));

% put the text of a point coordinates (0,0)

706

Fig. ME 7.2.4 MATLAB construction of the plane pole using the strike and dip angles of planar

element. The intercept of normal vector (red arrow) of the planar element (blue circle) with the unity

sphere defines the plane pole position on 2D projection of unity sphere.

In order to represent a set of pole locations corresponding to a family of planar elements one

may use the mean position of normal vector (Fig. ME 7.2.5 upper panel). The mean position

can be calculated as the vector sum of normal vectors for the group planar elements (red star

in Fig. ME 7.2.5 upper panel), or by calculating the average density of pole points per square

unit of projection.

In the MATLAB program below the set of 100 planes with the strike and dip angles is

randomly generated by two Gaussian distributions: st(ni)=normrnd(100,20) and

di(ni)=normrnd(50,10), where the mean strike angle is 100° an the dispersion 20° in one

group of planes, and the dip angle is 50° and the dispersion 10° in another group. The

deviation angle from the mean value of pole positions is estimated through the arc lengths:

∆𝑋𝑖 = cos(𝜆̅) ∙ cos(𝜑̅) − cos(𝜆𝑖) ∙ cos(𝜑𝑖),

⁡∆𝑌𝑖 = cos(𝜆̅) ∙ sin(𝜑̅) − cos(𝜆𝑖) ∙ sin(𝜑𝑖),⁡⁡⁡

∆𝑍 = sin(𝜑̅) − sin⁡(𝜑𝑖) (ME 7.2.3),

and

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛⁡𝑎𝑛𝑔𝑙𝑒𝑖 = √∆𝑋𝑖
2 + ∆𝑌𝑖

2 + ∆𝑍𝑖² (ME 7.2.4).

function stereo_plane
% modified from Pollard, David D./Fletcher, Raymond % C. 2005
% Plot stereonet, and poles to planar elements
axis equal, axis off, box off % equal scaling in x and y, axis ([-1 1 -1

1]) % sets scaling for x- and y-axes
 plot([-1 1],[0 0],'k:',[0 0],[-1 1],'k:','LineWidth',2) % plot x- % and y-

axes
r = 1; % radius of reference circle
TH = linspace(0,2*pi,3601); % polar angle, range 2 pi, 1/10 degree

%increment
[X,Y] = pol2cart(TH,r); % Cartesian coordinates of reference circle
plot(X,Y,'k') % plot reference circle
 for j = 1:8 % loop to plot great circles at 10 degree increments
phid = j*(10*pi/180); % dip angle, phid
h = -r*tan(phid); rp = r/cos(phid); % x-coord of center, h, and %radius, rp
X = -h + rp*cos(TH); Y = rp*sin(TH); % coordinates of points on great

circle
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet

707

plot(X,Y,'k:',-X,Y,'k:') % plot two sets of great circles
 end
for j = 1:8 % loop to plot small circles at 10 degree increments
gam = j*(10*pi/180); % cone angle, gam
k = r/cos(gam); rp = r*tan(gam); % y-coord of center, k, and %radius, rp
X = rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points on %small

circle
Y(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',X,-Y,'k:') % plot two sets of small circles
end
%%%
%create two random vectors of strike and dip angles
ndp=100; %length of vectors
mu1=100;sigma1=20;mu2=50;sigma2=10;% define mean and dispersions
for ni=1:ndp
 st(ni)=normrnd(mu1,sigma1);
 di(ni)=normrnd(mu2,sigma2);
end
%%%
UX=0;UY=0;UZ=0;
for j = 1:length(st)
aln = (st(j)+270)*pi/180;
phin = (90 - di(j))*pi/180;
alx(j) = atan2(sin(aln)*cos(phin),cos(aln)*cos(phin));
alx(j)=alx(j)+(alx(j)<0)*2*pi;
aly(j) =asin(-cos(phin+pi/2));
x(j) = r*tan(pi/4 - phin/2)*sin(aln);
y(j) = r*tan(pi/4 - phin/2)*cos(aln);
UX = UX + sin(aln)*cos(phin); UY = UY + cos(aln)*cos(phin);
UZ = UZ + cos(phin+pi/2); % components of resultant vector
end
U = sqrt(UX^2 + UY^2 + UZ^2) % magnitude of resultant vector
alU = atan2(UX/U,UY/U); alU = alU + (alU<0)*2*pi;
phiU = asin(-UZ/U); % azimuth and inclination of resultant vector
xU = r*tan(pi/4 - phiU/2)*sin(alU); %x ccordinate of resultant %vector on

2D
yU = r*tan(pi/4 - phiU/2)*cos(alU);%y ccordinate of resultant %vector on 2D
%%
DX=cos(phiU)*cos(alU)-cos(alx).*cos(aly);%calculated X-length of arc in a

unit sphere
DY=cos(alU)*sin(phiU)-cos(alx).*sin(aly);% Y-length
DZ=sin(alU)-sin(alx);% Z length
alc=180/pi*(sqrt(DX.^2+DY.^2+DZ.^2));% deviation angle in 3D
scatter(x,y,[],alc,'filled') %scatter plot of poles to planar %elements
 g=colorbar;
w = g.LineWidth;
g.LineWidth = 1.5;
g.Label
g.Label.String = 'deviation angle°';
g.Label.FontSize = 14;
 plot(xU,yU,'r*','MarkerSize',12,'LineWidth',2)
 end

In Fig. ME 7.2.5 (right panel) pole positions of the same set of planar elements have been

represent by using the density map. For estimations of point density the function

datadensity(x,y) is used. The set of points has been divided into the Voronoi cells on the

surface. The area of each Voronoi cell has been calculated. For each point on the pole

diagram the inverse of specific area per point used to plot the counter map. For an open area

containing no points the density is set to 0.
%modified from Pollard, David D./Fletcher, Raymond % C. 2005

708

clear all, clf, hold on % clear variables, current figure, hold plot
axis equal, axis off, box off % equal scaling in x and y, no axes or box
axis ([-1 1 -1 1]) % sets scaling for x- and y-axes
 plot([-1 1],[0 0],'k:',[0 0],[-1 1],'k:','LineWidth',2)

% plot x- and y-axes
r = 1; % radius of reference circle
TH = linspace(0,2*pi,3601); % polar angle, range 2 pi, 1/10 degree

increment
[X,Y] = pol2cart(TH,r); % Cartesian coordinates of reference circle
plot(X,Y,'k') % plot reference circle
 for j = 1:8 % loop to plot great circles at 10 degree increments
phid = j*(10*pi/180); % dip angle, phid
h = -r*tan(phid); rp = r/cos(phid); % x-coord of center, h, and radius, rp
X = -h + rp*cos(TH); Y = rp*sin(TH); % coordinates of points on great

circle
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',-X,Y,'k:') % plot two sets of great circles
end
for j = 1:8 % loop to plot small circles at 10 degree increments
gam = j*(10*pi/180); % cone angle, gam
k = r/cos(gam); rp = r*tan(gam); % y-coord of center, k, and radius, rp
X = rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points on small circle
Y(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',X,-Y,'k:') % plot two sets of small circles
end
hold on
%%
%create two random vectors of strike and dip angles
ndp=100; %length of vectors
mu1=100;sigma1=20;mu2=50;sigma2=10;% define mean and dispersions
for ni=1:ndp
 st(ni)=normrnd(mu1,sigma1);
 di(ni)=normrnd(mu2,sigma2);
end
%%%
aln = (st+270).*pi/180; % normal direction
phin = (90 - di).*pi/180; % plunge of normal
x = r*tan(pi/4 - phin./2).*sin(aln);
y = r*tan(pi/4 - phin./2).*cos(aln);
dd=datadensity(x,y);%density data calculations
N = 30; %length of grid
%------------- Gridding -------------------
xi = repmat(linspace(min(x),max(x),N),N,1);
yi = repmat(linspace(min(y),max(y),N)',1,N);
zi = griddata(x,y,dd,xi,yi);
%plotting data
ms=8; % define the size of symbol
 [c,h] = contour(xi,yi,zi);
 out.c = c;
 hs = gsp(x,y,dd,ms);
 out.hs = hs;
 g=colorbar;
w = g.LineWidth;
g.LineWidth = 1.5;
g.Label
g.Label.String = 'Density = poles per area unit';
g.Label.FontSize = 14;
 hold on

end

709

Fig. ME 7.2.5 MATLAB plot of the set of pole positions (n=100) corresponding to two Gaussian

distributions havin (1) the mean value of strike angle 110° and dispersion 20°, and (2) the mean value

of dip angle 50° and dispersion 10°. (left panel) Pole positions and the mean value (red star). The

mean position corresponds to the normalized sum of normal vectors for the planar elements set. (right

panel) Density plot of pole positions (number of poles per square unit of circle area) estimated by

using the Voronoi cell formalism.

function dd = datadensity(x,y)
%Copy-Left, Alejandro Sanchez-Barba, 2005
%Computes the data density (points/area) of scattered points
% USAGE: dd = datadensity(x,y)
% INPUT: (x,y) - coordinates of points
 x = x(:); y = y(:);
%Asuming x and y match
idat = isfinite(x); x = x(idat); y = y(idat);
holdstate = ishold;
if holdstate==0
 cla
end
hold on

Ld = length(x);
dd = zeros(Ld,1);
%----- Using Voronoi cells ------
 [v,c] = voronoin([x,y]);
 for k=1:length(c)
 %If at least one of the indices is 1, then it is an open region, its area
 %is infinity and the data density is 0
 if all(c{k}>1)
 a = polyarea(v(c{k},1),v(c{k},2));
 dd(k) = 1/a;%density of points estimated by an %inverse of

Voronoi cell area per point
 end %if
 end %for
 dd=dd.*pi/length(x);
end
function varargout = gsp(x,y,c,ms)%
%Graphs scattered points instead of MATLAB scatter-function
map = colormap;
ind = fix((c-min(c))/(max(c)-min(c))*(size(map,1)-1))+1;
h = [];%much more efficient than matlab's scatter plot
for k=1:size(map,1)

710

 if any(ind==k)
 h(end+1) = line('Xdata',x(ind==k),'Ydata',y(ind==k), ...
 'LineStyle','none','Color',map(k,:), ...
 'Marker','.','MarkerSize',ms);
 end
end
if nargout==1
 varargout{1} = h;
end
end

MATLAB Exercise 8.1 Generation and plotting of a square lattice of
network resistors

MATLAB program below generates the square lattice with N² nodes connected with the

resistors (conductance=1) having the concentration conc. Each resistor corresponds to the

third index of the matrix element: netMat. The size of netMat. matrix is 2*N*(N-1) x 3:

2*N*(N-1) is the total number of all possible resistors connecting nearest nodes of lattice. The

first matrix index is the starting node and the second index is the end node of resistor. The

generation of resistors in lattice is provided by the random choice function:

R(randperm(numel(R), n)) = 1. The results of lattice generation are shown in

Fig. ME 8.1 for the square lattice 12 x 12.

global conc

N=12;%number of nodes N x N

conc=0.66; % concentration of conductances =1, the rest is 0

resistivity=Res(N);% random generation of conductances between %the

nearest nodes

k=randi([1 N*(N-1)/2]); l= k+1; terminals = [k,l];% k<=N*(N-1)/2 and

l<N*(N-1)/2+1 are coordinates of two terminals nodes between nearest

nodes

[netMat] = lattice_gen(N); % resistor network lattice generation

lattice_plot(N,netMat,terminals)% plot of results

%***

function [netMat] = lattice_gen(N)

% https://de.mathworks.com/matlabcentral/fileexchange/42521-
%resistance-calculator

% Generate a square lattice of resistor network

% N is the number of nodes on each side, N must be even

if rem(N,2) == 1

 N = N+1;

end

R = 1.*Res(N);%conductance values

netMat = zeros(2*(N-1)*N,3); %number of conductances 2*N*(N-1)

cnt = 0;% count of conductances

% Horizontal conductances between nearest nodes

for k = 1:N:N^2

 for kk = k+1:k+N-1

 cnt = cnt+1;

 netMat(cnt,:) = [kk-1,kk,R(cnt)];

 end

end

% Vertical conductances

for k = 1:N

711

 for kk = k+N:N:k+(N-1)*N

 cnt = cnt+1;

 netMat(cnt,:) = [kk-N,kk,R(cnt)];

 end

end

end

%***

function lattice_plot(N,netMat,terminals)

[x,y] = meshgrid(1:N,1:N);

x = rot90(x,3); y = rot90(y,3);

figure('name','Resistance Lattice')

axes('xlim',[1,N],'ylim',[1,N],'dataaspectratio',[1,1,1])

hold on

for k = 1:N^2

 text(x(k),y(k),num2str(k));

end

for k = 1:size(netMat,1)

 if netMat(k,3)==1

line([x(netMat(k,1)),x(netMat(k,2))],[y(netMat(k,1)),y(netMat(k,2))]

,'linestyle','-','color', 'red','linewidth',2); %plotting of

conductances=1

 else

line([x(netMat(k,1)),x(netMat(k,2))],[y(netMat(k,1)),y(netMat(k,2))]

,'linestyle','--','color', 'blue','linewidth',1);

% plotting of conductances=0

 end

end

if nargin > 2

 for k = 1:size(terminals,1)

 a = terminals(k,1);

 b = terminals(k,2);

line([x(a),x(b)],[y(a),y(b)],'marker','o','linestyle','none',

'markersize',10,'linewidth',2,'color',rand(1,3));

 end

end

axis off

end

%***

*

function R=Res(N)

global conc

R=zeros((2*N*N-2*N),1); % generation of zero R-array of

%conductances

n=round(conc*(2*N*N-2*N)); % number of 1 in the R array

R(randperm(numel(R), n)) = 1;% randomly chosen positions of n

conductances =1

R=R(:);% reshaping the array

end

712

Fig. ME 8.1 Generation of square lattice 12 x 12 = 144 nodes and 264 sites of randomly distributed

conductances: solid line– conductance = 1, dotted line – conductance = 0: (left panel) concentration

=10% of conductances, (right panel) concentration = 66% of conductances.

MATLAB Exercise 8.2 Calculations of electric potential in a grid of electrical

resistances

Consider finite a 2D square grid of resistors. The neighbor nodes of resistor grid are

connected via electrical resistive elements. The case will be considered where the

nodes are connected or disconnected with a certain probability. It may be related with

a situation when there are two sorts of resistors with finite small values and infinite

large values of resistivity. In general each interior node is connected with its four

neighbors by means of conductance bonds, which may be finite and positive or zero.

713

Each boundary node is connected only to three nodes and four corner nodes are

connected with two nodes (Fig. ME 8.2.1).

Fig. ME 8.2.1 Indexing of electric potential vector u and resistance matrix R at

resistor grid nodes.

The size of a grid is defined as the number of columns and rows, size = nx∙ 𝑛𝑦 . The

bonds between nodes representing resistors are the R-matrix elements of size (𝑛𝑥 −
1) ∙ 𝑛𝑦 + (𝑛𝑦 − 1) ∙ 𝑛𝑥 = 2 ∙ 𝑛𝑥 ∙ 𝑛𝑦 − 𝑛𝑥 − 𝑛𝑦. The electric potential of the node lying

in the i-th row and the j-th column is denoted by U[i j]. One denotes the resistance connecting

nodes (i,j) and (k,l) nodes by R(ij kl) . The total current flowing in/out the node (i,j) is B(ij).

The sum of all currents for each node of the grid is equal to zero, which follows from the

Kirchhoff’s current law:

1

𝑅𝑖𝑗,𝑖+1𝑗
∙ (𝑈[𝑖⁡𝑗] − 𝑈[𝑖 + 1⁡𝑗]) +

1

𝑅𝑖𝑗,𝑖−1𝑗
∙ (𝑈[𝑖⁡𝑗] − 𝑈[𝑖 − 1⁡𝑗]) +

1

𝑅𝑖𝑗,𝑗+1𝑗
∙ (𝑈[𝑖⁡𝑗] −

𝑈[𝑖⁡𝑗 + 1]) +
1

𝑅𝑖𝑗,𝑗𝑗−1
∙ (𝑈[𝑖⁡𝑗] − 𝑈[𝑖⁡𝑗 − 1]) = 𝐵(𝑖𝑗) (ME 8.2.1)

The linear system of equations (ME 8.2.1) corresponds to the Kirckhoff matrix A which

elements, when 𝑖 ≠ 𝑗⁡are conductances with sign minus and equal the negative reciprocals of

the resistor R-matrix elements −
1

𝑅𝑖𝑗,𝑖𝑗
. When 𝑖 = 𝑗 the diagonal element of A are ∑

1

𝑅𝑖𝑗,𝑖𝑗
𝑖≠𝑗

(Curtis E.& J. Morrow, 2000. Inverse problems for electrical networks, vol. 13.

World Scientific Publishing Co. Pte. Ltd.). Only in two points 𝐵(𝑖𝑗) where the external

electric potential is applied, the current is +I (source) and –I (sink), all other elements of

vector B(ij) are zeros. The mathematical formulation of the problem is reduced to the solution

of the linear system of equations for the potentials at nodes U[ij] for the given values of

714

resistance matrix R(ij kl) and electric currents B(ij). The matrix R contains the information of

nodes and the resistance of bonds between them, and have a format: [Index node 1, Index

node 2, conductivity between nodes 1 and 2]. The two index potential at nodes U[ij] is

converted into the array vector u(k) of length, 𝑛𝑥 ∙ 𝑛𝑦 by the scheme indicated by arrows in

Fig. ME8.2.1. In matrix form, the set of equations (ME8.2.1) can be written as: 𝐴 ∙ 𝑢 = 𝐵.

When all resistances in the grid has the value 1 the system of equations looks like as follows:

⁡

1
2
3
⋮
𝑛𝑦

𝑛𝑦 + 1

⋮
⋮
⋮
⋮

[

 2 −1 ⁡⁡⁡⁡⁡0 …⁡⁡⁡⁡0
−1 3 −1 …⁡⁡⁡⁡⁡0
0 −1 ⁡3 …⁡⁡⁡⁡⁡0

⏞
𝑛𝑥

−1 0 0 … 0
0 −1 0 … 0
0 0 −1 … …

⏞
𝑛𝑥

⋱
⋱
⋱

⋮ ⋮ ⁡⁡−1 3⁡⁡⁡⁡− 1
0 0 0 −1⁡⁡⁡⁡⁡2
−1 0 0 0⁡⁡⁡⁡⁡⁡⁡0

0 0 0 … 0
0 0 0 … 0
3 −1 0 … 0

⋱
⋱
⋱

0 −1 0 0⁡⁡⁡⁡⁡⁡⁡0
0 0 −1 ⋱⁡⁡⁡⁡0
0
0
…

0
0
…

0
0
…

⋱
⋱
…
⁡⁡⁡
⁡⋱
⋱
…

−1 4 ⋱ 0 0
0 −1 ⋱ −1 0
⋱
⋱
…

0
0
…

⋱
⋱
…

4
−1
…

−1
3
…

⋱
⋱
⋱
⋱
⋱]

∙

[

𝑈[1⁡1]
⋮

𝑈[1⁡𝑛]
𝑈[2⁡1]
⋮

𝑈[2⁡𝑛]
⋮
⋮
⋮

𝑈[𝑚 − 1⁡𝑛]
𝑈[𝑚⁡𝑛]]

=

[

0
0
0
0
⋮
+𝐼
⋮
−𝐼
⋮
0
0
0]

, where ±I is non-zero at nodes with applied potential. The matrix A is five diagonal matrix of

size (nx∙ 𝑛𝑦)× (nx∙ 𝑛𝑦) and in the code it is defined as a sparse matrix. In each row there are at

least 5 non-zero elements. The sum of elements in a row is 0:

The next situation is when the nodes of the grid are connected by resistances 1 and 106, i.e.

the conductance between adjacent nodes with a certain probability is 1 or 0. The input of the

code is the percentage of zero conductivity bonds in the grid.

When the determinant of the A matrix is 0, the Kirckhoff matrix is singular, then the special

procedure of the matrix inversion is applied (see the code below). The MATLAB code is as

follows:

% Author: Viktor NAWA(R) University Frankfurt am Main
clc; clear all; close all;
nx = 25; % number of grid nodes in X-direction
ny = 25; % number of grid nodes in Y-direction
k1 = [2,2]; % location of 1-st electrode (+) [x,y]
k2 = [nx-1,ny-1]; % location of 2-d electrode (-) [x,y]
current=1; % impose the electric current between electrodes
% Initialisation of electric field
k=0;
for j=1:1:ny
 for i=1:1:nx
 k=k+1;
 I(i,j) = k;
 P(k).n = zeros(1,nx*ny);
 Ir(k,:) = [i,j];
 end
end
k=0;
% finding adjacent grid nodes and give an idex to them
% define matrix R which contains the information of resistivity between
% two adjacent grid nodes, its format is: [Index Point 1, Index Point 2,

bond resistivity
for j=1:1:ny
 for i=1:1:nx-1

715

 k=k+1;
 R(k,:) = [I(i,j),I(i+1,j),1];
 P(I(i,j)).n(I(i,j)) = k;
 P(I(i,j)).n(I(i+1,j)) = k;
 P(I(i+1,j)).n(I(i,j)) = k;
 P(I(i+1,j)).n(I(i+1,j)) = k;
 end
end
for i=1:1:nx
 for j=1:1:ny-1
 k=k+1;
 R(k,:) = [I(i,j),I(i,j+1),1];
 P(I(i,j)).n(I(i,j)) = k;
 P(I(i,j)).n(I(i,j+1)) = k;
 P(I(i,j+1)).n(I(i,j)) = k;
 P(I(i,j+1)).n(I(i,j+1)) = k;
 end
end
prompt = 'What is the percentage of ~0 conductivity bonds? ';
%input percentage of zero conductance elements
percent = input(prompt)
prompt = 'What is the relative resitivity of ~0 conductivity bonds? ';
%input percentage of zero conductance elements
Rmax = input(prompt)
[num, dem] = rat(percent/100);% convert percentage into fraction
K=num*length(R)/dem; N= (dem-num)*length(R)/dem;
vec=ones(N+K,1);%initialize vector of R=1 of length(R)
 positions=[1:K]; vec(positions)=Rmax;%insert ~zero conductivity in vec
 shuffle = @(v)v(randperm(numel(v)));%shuffle function of array elements
 vec=shuffle(vec);% shuffle K 1e6 and N ones among K+N positions of vec
 R(:,3)=vec; % set random in (percentage) grid points of conductance ~0,
 % and in the rest grid points the conductance set to 1
% compose the system of the Kirchhoff electric current equations, finding
% solution by keeping balance of electric currents at nodes: +1 in sorce -1
% in sink and everywhere else is 0. Vector of electric currents is b.
for i=1:1:nx*ny
 v = P(i).n~=0;
 l = 1:1:nx*ny;
 p = P(i).n(v);
 l = l(v);
 P(i).n = l;
end
ni=i;
A = sparse(i,i); %use sparce matrix
for i=1:1:nx
 for j=1:1:ny
 p = P(I(i,j)).n;
 a=0;
 for k=1:1:length(p)
 if R(p(k),3)~=0
 A(I(i,j),p) = -1/R(p(k),3);% set in connected nodes the

conductnace -1/R
 a = a+1/R(p(k),3);% sum of conductances in the matrix row
 end
 end
 A(I(i,j),I(i,j)) = A(I(i,j),I(i,j))+a;% sum of conductances in the

matrix row
 %excluding the the node i=j
 end
end
det(A)
B = zeros(nx*ny,1);

716

B(I(k1(1),k1(2))) = current;% source of electric current =+1
B(I(k2(1),k2(2))) = -current;% sink of electric current =-1
if det(A)~=0
u = A\B; %if matrix A is not singular
else
 %If matrix A is singular : Perform SVDS on A
[W,S,V] = svds(A);%perform singular value decomposition
% A == W*S*V' returns the left singular vectors W,
%diagonal matrix S of singular values, and right singular vectors V.
% Calc number of singular values
sing = diag(S); % vector of singular values
tolerance = max(size(A))*eps(max(sing));% eps(sing)returns the positive
%distance from abs(sing) to the next larger floating-point number of the
%same precision as sing
m = sum(sing>tolerance);
% Define spaces
Up = W(:,1:m);
Vp = V(:,1:m);
SpInv = spdiags(1.0./sing(1:m), 0, m, m);%extracts all nonzero diagonals
%from the matrix A
% Calc AInv such that u = AInv * b
AInv = Vp * SpInv * Up';
u = AInv * B; % calculation of potential vector
end
% convert the vector u(i) into the matrix U(i,j)
for i=1:1:nx*ny
 U(Ir(i,1),Ir(i,2))=u(i);
end
% plotting of electric potential U
subplot(1,2,1)
 colormap(jet(256))
 imagesc((log10(abs(U)))')
 axis equal tight
 caxis([-6,1])
 hold on
 mx=max(U(:));mn=min(U(:)); %find maximum and minimum of electric

potential
 [xmax ymax]=find(U==mx); [xmin ymin]=find(U==mn);% ccordinates of max

and min
 t1=num2str(mx); t1=strcat('\rightarrow U_m_a_x= ',t1);
 t3=num2str(mn); t3=strcat('\rightarrow U_m_i_n= ',t3);
%calculation of the resistance between two electrodes
deltaU=U(I(k1(1),k1(2)))-U(I(k2(1),k2(2)));
%calculate the resistance between two points with applied electric current
 Resistance=abs(deltaU/current);
 t2=num2str(Resistance);t2=strcat('\leftarrow R= ',t2);
 k3(1)=round((k1(1)+k2(1))/2); k3(2)=round((k1(2)+k2(2))/2);
 xt=[xmax xmin k3(1)]; yt=[ymax ymin k3(2)]; str={t1,t3,t2};
 t=text(xt,yt,str);
 t(1).Color='red'; t(2).Color='blue'; t(3).Color='magenta';
 t(1).FontSize=14;t(2).FontSize=14; t(3).FontSize=12;
 t(1).FontWeight='bold';t(2).FontWeight='bold'; t(3).FontWeight='bold';
 q=quiver(k2(1),k2(2),k1(1)-k2(1),k1(2)-k2(2),1); q.Color='magenta';
 hold on
% plotting electric circuit of grid resistors
subplot(1,2,2)
 colormap(pink)
 imagesc((log10(abs(U)))')
 hold on;
 for i=1:1:size(R,1)
 q='k';
 s=1;

717

 if R(i,3)==Rmax
 q='r';
 s=0;
 end
 if s==1

plot([Ir(R(i,1),1),Ir(R(i,2),1)],[Ir(R(i,1),2),Ir(R(i,2),2)],q,'linewidth',

3);
 end
 k = [k1;k2];sz=350;
 scatter(k(:,1),k(:,2),'r*')
 end
% checking the solution conversion
ff = A*u; ff(B~=0)=0;
ff = ff'*ff
caxis([-6,1])
hold off;
axis equal tight
colorbar

The results of the simulation are shown in Fig. ME8.2.2 for 100 of R=1 (upper panel) and for

65% of R=1 (lower panel. The coordinates of k1 und k2 are the points where the electrical

potential is applied, i.e. the source and the sink of electric current. Left plot represents the

magnitude of electric potentials U in log10(abs(U)) units throughout the grid. Right plot is the

network of resistors: black stretches connect the nodes with the electrical conductivity =1, the

absence of black stretches indicate on the infinite resistance or zero conductivity. The solution

conversion of is estimated by ff, the norm of the solution vector.

718

Fig. ME9.1 MATLAB calculations of electrical potential in 2D grid of resistors having conductivities:

upper panels stand for 100% of R=1. Lower panels stand for 65% of R=1 and 35% of R=106. The

electric field applied to the nodes marked by two red stars.

MATLAB Exercise 9. Dielectric sphere in uniform electric field

Consider a uncharged dielectric sphere of radius a having the dielectric constant ε1,

surrounded by a medium of dielectric constant 𝜀2 , and the uniform electric field E0 is applied

The origin of coordinate system is taken to be at the sphere center and z-axis is along E0. Let

𝛷1 and 𝛷2 be two potential functions inside and outside the sphere, respectively. At far

distances from the sphere, the electric field is uniform and equal to: 𝐸2 = 𝐸0 ∙ 𝑒𝑧⃗⃗ ⃗ , which

corresponds to the potential: 𝚽2(∞) = −𝐸0 ∙ 𝑟 ∙ 𝑐𝑜𝑠𝜃. The solution of this problem must

satisfy the following boundary conditions:

(i) ∇2𝚽1 = 0 and ∇2𝚽2 = 0, both inside and outside respectively, since there is no space

charges inside and outside the sphere.

(ii) 𝚽1 must remain finite for all r < a, and 𝚽2 must also remain finite at infinity.

(iii) 𝚽1 = 𝚽2 for r = a at all angles θ.

(iv) The normal component of displacement vector D must be continuous at r = a, i.e., D1n =

D2n.

The potentials outside and inside the sphere can be written as:

𝚽2 = - E0 ∙r∙ cos θ + (
𝐴

𝑟²
)∙ cos θ for r ≥ a, (ME 9.1.1)

𝚽1 = B·r∙ cos θ + (
𝐶

𝑟²
) ∙cos θ r< a (ME 9.1.2).

The potential would be finite at the origin (r = 0), therefore, C=0, hence

𝚽1 = B·r∙ cos θ (ME 9.1.3)

According to the boundary condition (iii), 𝚽1 = 𝚽2, for r = a

B·a cos θ = -E0·a cosθ + (
𝐴

𝑎²
) cos θ or B = -E0 +

𝐴

𝑎³
 (MB 9.1.4)

According to the boundary condition (iv),

D1n = D2n or ε1∙ε0 E1n = ε2∙ε0 ∙E2n

According to the definition, En = -∂𝚽/∂r, and hence: - ε1 (∂𝚽1/∂r)r = a = -ε2 (∂𝚽2/∂r)r = a, then,

it follows: - ε1∙B cos = -ε2 [-E0 cosθ – (
2𝐴

𝑎³
) cos θ], or

719

 ε1∙B = -ε2 ∙(E0 +
2𝐴

𝑎³
) … (ME 9.1.5)

Solving (ME 9.1.4) and (ME 9.1.5), one gets: A =
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙ E0∙a3 and B =−

3𝜀2

𝜀1+2𝜀2
 ∙E0. Thus the

potential functions inside and outside the spheres are:

𝚽1 = −
3𝜀2

𝜀1+2𝜀2
 ∙E0 ∙r∙ cos θ (ME 9.1.6),

𝚽2 = - [1 –
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙
𝑎3

𝑟3
] ∙E0 ∙r∙ cos θ (ME 9.1.7),

The electric field at any point is given by:

inside the sphere r<a: E1 = - ∂𝚽1/∂z = 3ε2/(ε1 + 2ε2) E0=[1 −
(𝜀1−𝜀2)

𝜀1+2𝜀2
] ∙ 𝐸0,

and

outside the sphere r>a: E2 =- ∂𝚽1/∂z= [1 + 2 ∙
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙
𝑎3

𝑟3
] ∙ 𝐸0⁡ (ME 9.1.8).

The electric field outside the sphere is equivalent to the applied field E0 plus the field of

electric dipole at the sphere center having the dipole moment:

𝑝 = 4πε0·ε2
(𝜀1−𝜀2)

𝜀1+2𝜀2
 E0·a

3 … (ME 9.1.9),

which is oriented in the direction of applied field. The electric field of dipole p is: 𝐸⃗ 𝑑𝑖𝑝𝑜𝑙𝑒 =
1

4𝜋𝜀0
∙
2𝑝

𝑟³
. When a dielectric sphere acquires the dipole moment in electric field, it is polarized.

The polarization is defined as the dipole moment per unit volume i.e.,

𝑃⃗ =𝑝 /(4/3)πa3 = 3∙ε0 ∙ε2
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙E0 (ME 9.1.10),

or
𝑃⃗

3𝜀0∙𝜀2
=
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙ 𝐸0 (ME 9.1.11).

Thus, the electric field inside the sphere is reduced relative to the applied field E0 by:

𝐸𝑑⃗⃗ ⃗⃗ ⁡= −
𝑃⃗

3𝜀0∙𝜀2
 (ME 9.1.12),

where 𝐸𝑑⃗⃗ ⃗⃗ ⁡ is the field due to dielectrics 𝜀2⁡inside the sphere.

Here below is MATLAB program to calculate the electric field inside and outside the

polarized sphere under a uniform external electric field.
 global eps1 eps2 a E0

 eps2=25.0; % dielectric comstant inside the sphere

 eps1=2.; % dielectric constant outside the sphere

 E0=1.0;%external field

 a=1.0;% radius of the sphere

 n=3; %scale factor of the plot

 xmin=-n*a; xmax= n*a; ymin=-n*a; ymax= n*a;

 x = linspace(xmin,xmax,200); y=x;

 [X,Y] = meshgrid(x,y);

 R=@(x,y) sqrt(x.^2+y.^2);% Radius vector calculatios

 V=voltage(X,Y,R);%function to calculate the electric

potential

 [Ex,Ey] = gradient(-V); % components of electric field

 figure;

 contour(X,Y,V,[-n*a:a/n:n*a]);

 colormap('jet');

 axis tight; caxis([-n*a,n*a]);

 hold on

 streamslice(X,Y,Ex,Ey);

m = 100; %number of points to draw a circle

angle = 0:2*pi/m:2*pi;% vector of angles at which points are drawn

x = a*cos(angle); y = a*sin(angle); % Coordinates of the circle

720

plot(x,y,'r', 'LineWidth',2);

 hold off

 end

function v = voltage(x,y,R)% to calculate the electric potential

 global eps1 eps2 a E0

v=-E0.*x.*(1-(eps1-

eps2)./(2.*eps2+eps1).*(a^3)./R(x,y).^3).*heaviside(R(x,y)-a)

-E0.*x.*(1-(eps1-eps2)./(2.*eps2+eps1)).*heaviside(-(R(x,y)-a));

% calculation of the potential inside and outside the sphere

end

Fig. ME9.1 MATLAB calculations of 2D electric field of polarized sphere in uniform external

electric field, 1 is the dielectric constant of medium outside sphere, 2 is the dielectric constant of

medium inside sphere: A. 1=25 >2=5; B. 1=5 <2=25. The vertical lines are equipotential

surfaces, horizontal arrow lines are electric field lines. The density of arrow lines inside the sphere

is proportional to the electric field strength. In the case (A) the dielectric field 𝐸𝑑⃗⃗ ⃗⃗ = −
𝑃⃗

3𝜀0∙𝜀2
=

−
(𝜀1−𝜀2)

⁡𝜀1+2𝜀2
∙ 𝐸0 is negative and is subtracted from the applied field E0. In the case (B) it is positive

and added to the field E0.

In order to program the electric potential 𝚽1,2 (ME 9.1.6) and (ME 9.1.7) consisting of two

functions the Heaviside piecewise constant function H(x) has been used:

𝐻(𝑥) = {

0⁡𝑎𝑡⁡𝑥 < 0
1

2
⁡𝑎𝑡⁡𝑥 = 0

1⁡𝑎𝑡⁡𝑥 > 0

} . The derivative of the step function H(x) is the Dirac delta function

(x). The electric potentials in two regions 𝚽1(x<a) and 𝚽2(x>a) may be expressed with the

help of the Heaviside function as follows: 𝚽(x)= 𝚽1(x)∙H(-(x-a))+ 𝚽2(x)∙H(x-a).

MATLAB Exercise 10. Computation of electric current loop magnetic field

Electric charges interact with the electric field that they produce. Since moving charges, i. e.

electric current, interact with the magnetic field, so it also creates its own magnetic field. The

equation used to calculate the magnetic field produced by electric currents is the well-known

Biot-Savart law, which enables to calculate the magnitude and direction of the magnetic field

721

produced by current in a wire. The Biot-Savart law states that at any point P (Fig. ME10.1.1),

the magnetic field 𝑑𝐵⃗ ⁡due to the length element⁡⁡𝐼 ∙ 𝑑𝑙 of current-carrying wire is given by

𝑑𝐵⃗ = 𝜇0 ∙ 𝜇𝑟 ∙
[𝐼 𝑥𝑟]

4𝜋𝑟³
∙ 𝑑𝑙, where 𝜇0 = 1.257 ∙ 10

−6⁡𝐻/𝑚 is the vacuum magnetic permeability

and 𝜇𝑟 is the relative magnetic permeability of medium. A current loop produces the

magnetic field produced by a current loop at point P is given by the Biot-Savart law: 𝑑𝐵⃗ =

𝜇0 ∙ 𝜇𝑟 ∙ ∮
[𝐼 𝑥𝑟]

4𝜋𝑟³
∙ 𝑑𝑙=𝜇0 ∙ 𝜇𝑟 ∙ 𝐼 ∙ ∮

𝑠𝑖𝑛𝜃

4𝜋𝑟²
∙ 𝑑𝑙.

Fig. ME 10.1.1 Electric loop wire segment 𝑑𝑙 carrying electric current 𝐼 . Loop length element

dl, radial direction 𝑟⁡⃗⃗ , and angle  between them are indicated.

If point P lies on the symmetry axis of loop, then the integration of current elements in polar

coordinates dl=R∙ 𝑑𝜑 gives:

𝐵⃗ = 𝐵𝑧 = 𝜇0 ∙ 𝜇𝑟 ∙
𝐼

2
∙

𝑅2

(𝑅2+𝑧2)
3
2⁄
= 𝐵0 ∙

𝑅3

(𝑅2+𝑧2)
3
2⁄
⁡ (ME10.1.1),

where B0 = 𝜇0 ∙ 𝜇𝑟 ∙
𝐼

2𝑅
⁡is the magnetic field in the centre of electric current loop (at z=0)

If one denotes the distances PP’=OZ=z, and PZ=P’O=, then

MP’=√𝑅2 + 𝜌2 − 2𝑅 ∙ 𝜌 ∙ cos 𝜑.⁡⁡ From the geometry in Fig. ME10.1.1 it follows that in the

Cartesian coordinate system 𝑑𝑙⃗⃗ ⃗ = 𝑅 ∙ ⁡𝑑𝜑 ∙ {− sin 𝜑, cos𝜑⁡},⁡and 𝑟 = {𝜌 − 𝑅 ∙

cos𝜑,−𝑅 ∙ sin 𝜑, 𝑧}. The vector product of them is given by [𝑑𝑙⃗⃗ ⃗𝑥𝑟] = 𝑅 ∙ 𝑑𝜑 ∙
{𝑧 ∙ cos 𝜑, 𝑧 ∙ sin𝜑, 𝑅 − 𝜌 ∙ 𝑐𝑜𝑠𝜑}.⁡The magnetic field in axisymmetric cylindrical coordinate

system is: 𝑑𝐵⃗ = {𝑑𝐵𝑧 , ⁡𝑑𝐵𝑟} =
𝐵0

2
∙ 𝑅2 ∙

{𝑧,⁡⁡⁡𝑅−𝜌∙cos𝜑}

(√𝑅2+𝜌2+𝑧2−2𝑅∙𝜌∙cos𝜑)
3 ∙ 𝑑𝜑. After integration of

current elements in the loop plane the following identity may be written for 𝐵⃗ in cylindrical

coordinates:

722

𝐵⃗ (𝜌, 𝑧)⁡=⁡{𝐵𝑧, ⁡𝐵𝑟} = {
𝐵𝑧 =⁡

𝐵0∙𝑅

𝜋∙√(𝑅+𝜌)²+𝑧²
∙ [𝐸(𝑘) ∙

𝑅2−𝜌2−𝑧2

(𝑅−𝜌)2+𝑧2
+ 𝐾(𝑘)]

𝐵𝑟 =
𝐵0∙𝑧∙𝑅

𝜋∙𝜌∙√(𝑅+𝜌)²+𝑧²
∙ [𝐸(𝑘) ∙

𝑅2+𝜌2+𝑧2

(𝑅−𝜌)2+𝑧2
−𝐾(𝑘)]

 (ME10.1.2),

where K(k²)=∫
𝑑𝜃

√1−𝑘²∙sin²𝜃

𝜋

2
0

 is the complete elliptic integral function of the first kind,

E(k²)=⁡∫ √1 − 𝑘² ∙ sin² 𝜃
𝜋

2
0

∙ 𝑑𝜃 is the complete elliptic integral function of the second kind,

and the modulus 𝑘 = 2 ∙ √
𝑅∙𝜌

(𝑅+𝜌)2+𝑧²
 .

In MATLAB code shown below the function [Bz,Br]= m_field_loop(i,R,ro,z)

is calculated for two components of magnetic field, Br and Bz, using the build-in function

[K,E] = ellipke(k²) for two elliptic integrals, K(k²) and E(k²). The results of

calculations are presented in Fig. Fig. ME 10.1.2.
clc; close all; clear all;

%---

%---electric loop is in the z=0 plane and magnetic field B is

evaluated

%-------------at every point in the ro-Z plane----------------------

--

%---

Nz=201; % No. of grids in Z-axis

Nro=51; % No. of grids in Y-axis

Ra=0.25; % Radius of the coil in the X-Y plane

I=10; % current in the coil

phi=-pi/2:2*pi/(Nro-1):3*pi/2; % For describing a circle (loop)

Xc=Ra*cos(phi); % X-coordinates of the loop

Yc=Ra*sin(phi); % Y-coordinates of the loop

Zc=zeros(length(phi)); % Z-coordinate of the loop

figure(1)%plot electric loop

plot3(Xc,Yc,Zc,'linewidth',3)

axis([-2*Ra 2*Ra -2*Ra 2*Ra -2*Ra 2*Ra])

daspect([1 1 1]);

xlabel('X-axis','fontsize',14)

ylabel('Y-axis','fontsize',14)

zlabel('Z-axis','fontsize',14)

hold on

quiver3(0,0,-2*Ra,0,0,4*Ra,'linewidth',3); %plot the direction of

dipole moment

hold on

title('electric loop co-ordinates','fontsize',14)

h=gca; get(h,'FontSize')

set(h,'FontSize',14)

h = get(gca, 'ylabel');fh = figure(1);set(fh, 'color', 'white');

grid on

hold on

%%

ro=0:Ra/(Nro-1):2*Ra; %vector of ro

z=-2*Ra:Ra/(Nz-1):2*Ra; %vector of z

[RO,Z]=meshgrid(ro,z);

[Bz,Br]=m_field_loop(I,Ra,RO,Z);%calculate 2 components of vector B

%%

723

figure(2)

lim1=min(min(Bz)); lim2=max(max(Bz));

steps=(lim2-lim1)/100; %defines number of contour lines

contour(Z,RO,Bz,lim1:steps:lim2)

axis([-2*Ra 2*Ra 0 2*Ra])

xlabel('Z-axis','fontsize',14)

ylabel('\rho-axis','fontsize',14)

title('Bz component','fontsize',14)

colorbar('location','eastoutside','fontsize',14);

h=gca; get(h,'FontSize')

set(h,'FontSize',14)

h = get(gca, 'ylabel');fh = figure(2);set(fh, 'color', 'yellow');

grid on

hold on

%%

figure(3)

contour(Z,RO,Br,lim1:steps:lim2)

axis([-2*Ra 2*Ra 0 2*Ra])

xlabel('Z-axis','fontsize',14)

ylabel('\rho-axis','fontsize',14)

title('Br component','fontsize',14)

colorbar('location','eastoutside','fontsize',14);

h=gca;get(h,'FontSize')

set(h,'FontSize',14)

h = get(gca, 'ylabel');fh = figure(3); set(fh, 'color', 'green');

grid on

hold on

%%

%%
function [Bz,Br]= m_field_loop(i,R,ro,z)
%%%%%%%%%%%%%%%%%%%%%%%
% [Bz,Br]=m_field(i,R,r0,z)
% Bz - axial comp. of mag. field
% Br - radial comp. of mag. field
% i=coil current;
% R=coil radius;
%ro= distance of a point from Z-axis
%z= vertical co-ordinate along Z-axis
%%%%%%%%%%%%%%%%%%%%%%%
mu0=4*pi*10^-7;% vacuum permeability
B0=(i*mu0)/(2*R);% magnetic field Bo in the center of electric loop
 if (ro==0)
 Bz=B0.*R^3./((R.^2+z.^2).^(3./2));
 Br=0;
 else
 k=sqrt(4.*ro.*R./((R+ro).^2+z.^2));
 [K,E] = ellipke(k.^2); %calculate elliptic integrals
 Bz=B0./pi./sqrt((R+ro).^2+z.^2).*(E.*(R.^2-ro.^2-z.^2)./((R-

ro).^2+z.^2)+K);
 Br=B0.*z./ro./pi./sqrt((R+ro).^2+z.^2).*(E.*(R.^2+ro.^2+z.^2)./((R-

ro).^2+z.^2)-K);
 end
 end

724

Fig. ME 10.1.2 Electric current loop in 3D (upper panel). Contour lines are the axial (middle

panel) and radial (lower panel) 𝐵⃗ components.

MATLAB Exercise 11.1 Thermal inertia of surface rocks

When the surface heat flux is a harmonic function of time ∝ cos⁡(𝜔 ∙ 𝑡) , then the temperature

in half space beneath the surface at depth x should satisfy 1D-heat transport equation
𝜕𝑇

𝜕𝑡
=  ∙

𝜕²𝑇

𝜕𝑥²
 with the surface boundary condition at x=0: (-

𝜕𝑇

𝜕𝑥
+ ℎ ∙ 𝑇)𝑥=0 = (ℎ + 𝑐) ∙ cos⁡(𝜔 ∙ 𝑡).

This relationship may be considered as the periodic temperature boundary condition, when the

thermal conductivity of half space is low (i.e. h>>c~1), or as the periodic heat flux boundary

condition, when the thermal conductivity is high (i.e. h<<c~1). The solution for the steady

725

state temperature distribution as a function of time and depth is also the periodic function of

time but shifted by phase relative to the phase of boundary oscillating condition. After

introducing the “thermal” wave length 1/𝜇 = √
2∙

𝜔
 , the temperature solution may be written in

the form (Carslaw & Jaeger, 1959):

𝑇(𝑥, 𝑡) = 𝑇0 ∙ cos⁡(𝜔 ∙ 𝑡 − 𝜇 ∙ 𝑥 + 𝛿) ∙ 𝑒
−𝜇∙𝑥 ∙ 𝐴(ℎ, 𝜇) (ME 11.1),

where 𝛿 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝜇

ℎ+𝜇
), and 𝐴(ℎ, 𝜇) =

1

√(1+
𝜇

ℎ
)
2
+(

𝜇

ℎ
)²

. In the case of periodic boundary

temperature =0 and A=𝑇0, in the case of periodic boundary heat flux: =/4 and 𝐴 =
𝑞0

∙𝜇
,

where 𝑞0⁡is the amplitude of flux on the surface. In the case when the surface boundary

condition is of the mixed type, the phase shift  is between 0 and /4. The results are

presented in Fig. ME11.1.
lamda=5;q0=10;

kappa=0.5;omega=0.5;

mu=sqrt(omega/2/kappa);

x=linspace(-5,0,100);% create a vector x

t=linspace(0,pi*5,21);% create a vector t

[X,Y]=meshgrid(x,t);% create a meshgrid of two vectors x and t

Z=q0/lamda/mu/sqrt(2)*exp(X.*mu).*cos(Y.*omega-pi/4+X.*mu);

figure

waterfall(X,Y,Z)

xlabel('depth','Fontsize',18)

ylabel('time','Fontsize',18)

zlabel ('Temperature','Fontsize',18)

hold on

Fig. ME11.1 Time dependent solution of 1D temperature distribution in half space with periodic time

dependent heat flux on the surface.

**

726

MATLAB Exercise 11.2 Solution of time dependent 1D thermal transport
equation

If one considers 1D-rod with perimeter  and cross section area A, then, the increment of heat

in length element dx is given by  ∙ 𝐴 ∙
𝜕²𝑇

𝜕𝑥²
∙ 𝑑𝑥, and the amount of heat lost through the side

surface is 𝛬 ∙ ∙ (𝑇 − 𝑇0) ∙ 𝑑𝑥, where T0 is the surrounding medium temperature and  is the

heat exchange (transfer) coefficient in W/m²/°K. The total increase of the heat in volume per

unit of time is ∙ 𝐶𝑝 ∙
𝜕𝑇

𝜕𝑡
∙ 𝐴 ∙ 𝑑𝑥 . Thus, 1D-thermal transport equation with the lateral heat

exchange in medium at temperature T0 is formulated as follows:

𝜌 ∙ 𝐶𝑝 ∙
𝜕𝑇

𝜕𝑡
=  ∙

𝜕2𝑇

𝜕𝑥2
− 𝛬 ∙



𝐴
∙ (𝑇 − 𝑇0) (ME 11.2.1).

The following program is written using the semi-discretization method (method of lines). The

time t and space coordinate x are discretized independently. For each line of x-vector the

solution is obtained in respect with time by solving the ordinary differential equation using

MATLAB solver ode15s (Driscoll, 2009). In the example below, the interval x = [-2,0] mm

and the time span t = [0,10] sec are considered. 1D-thermal transport equation with the

thermal exchange in medium at T=0 is taken in the form:
𝜕𝑇

𝜕𝑡
=  ∙

𝜕²𝑇

𝜕𝑥²
−  ∙ 𝑇 (ME 11.2.2),

where =


𝜌∙𝐶𝑝
 is the thermal diffusivity, and  =

𝛬

𝜌∙𝐶𝑝
∙


𝐴
. The rod is located in medium with

T=0, and at the ends x=0 and x= -2 the temperature is maintained constant T=0. At t=0 the

initial temperature is T=50° in x range from [-0.1 0] mm and T=0 elsewhere. The right hand

side of (ME 11.2.2) is replaced by the matrix-vector multiplication:

 ∙
𝜕2𝑇

𝜕𝑥2
−  ∙ 𝑇 =  ∙

1

ℎ2
∙

[

−2 1 0
1 −2 1
0 1 ⋱

0 0

0 −2 1
0 1 −2]

∙ [𝑢𝑖] −  ∙ [𝑢𝑖] (ME 11.2.3),

where ui is the temperature vector. ME11.23 is integrated numerically in respect of time as an

ordinary differential equation using the solver: ode15s. The sample calculation results are

presented in Fig. ME 11.2.1.
%MATLAB program adapted from [Driscoll, 2009].

n=500; h=2/n;% n is the number of nodes, h is the interval length

kappa=2.5e-3;nu=0.015;

%thermal diffusivity and thermal exchange coefficient

x=(-2+h*(1:n-1)).*1e-3;%generation of x-vector of nodes

D2=toeplitz([-2 1 zeros(1,n-3)]/h^2);

%generation of the three-diagonal matrix

f=@(t,u) kappa*D2*u-nu*u;%differential equation in a matrix form

u0=50*heaviside(x+1e-4);%initial temperature profile

[t,u]= ode15s(f,[0 10],u0);

%solving of the differential equation in respect to time

figure

waterfall(x,t,u)

c.LineWidth = 1; box on

xlabel('depth,m','Fontsize',18)

ylabel('time, sec','Fontsize',18)

zlabel ('Temperature,°K','Fontsize',18)

hold on

727

Fig. ME11.2.1 Method of lines realized in 1D for the time dependent thermal transport equation.

(upper panel) 3D plot in coordinates depth-time-temperature. (lower panel) Isoclines of temperature

solution in log(depth)-log(time) coordinated. .

728

 MATLAB Exercise 12.1 Radioactive decay

This example of MATLAB program illustrates the stochastic character of radioactive decay

process using the Monte-Carlo simulation. Starting from n nuclides at t=0 and using the time

step dt, the program generates n random numbers between 0 and 1 using the uniform PDF.

The probability of nuclide decay is ∙dt. So, if one counts how many numbers are less than

∙dt among the set of n numbers, this will be the number of decayed nuclides during the time

step dt. On the next time step the total number of nuclides is corrected for the number of

decayed nuclides, and the MC-simulation is repeated.

 % To simulate radio active decay by Monte Carlo method % % modified
from Mahesha MG, MIT

_______________INPUT___________________________________

clc; clear;

nmc=input('Enter number of Monte Carlo simulations (>10000): ');

lambda=input('Enter decay constant \lambda in 1/sec: ');

n=input('Enter number of nuclides at the beginning: ');

dt=1/nmc/lambda;n0=n;%Defining a time-step nt=zeros(nmc,1); %nt

holds MC result

nta=zeros(nmc,1); %nta holds analytic result

tmax=nmc*dt; t=(0:dt:tmax)'; %Define span of time

nta=exp(-lambda*t); %Analytic solution

nt(1)=n; % _Monte Carlo ethod_____________________________

 for i=2:nmc+1

ran=rand(n,1); %random choice of n-numbers between 0 and 1

count=length(ran(ran<=1/nmc));

% count of numbers which are <= lambda*dt

n=n-count;% a new count of nuclides

 if(n<=0)

 break;

 end

 nt(i)=n; end

% ___

plot(t,nt/n0,'r',t,nta,'b');

 xlabel('\lambda*t, dimensionless time');

729

ylabel('Relative number of nuclides');

grid on

hold on

legend('MC-simulation','e^{-\lambda*t}')

When the starting number of nuclides is small the stochastic method to estimate the decayed

number of nuclides deviates from the exact exponential solution (Eq. 12.3).

Fig. ME12.1 Results of 105 MC simulations for starting 1000 nuclides at =1. At larger number of

starting nuclides the difference between the stochastic solution and the analytical one is almost

undistinguishable.

MATLAB Exercise 12.2 Radioactive chain decay.

In this example one considers the decay chain with n differing types of nuclides such that the

ith nuclide type decays into the (i + 1)th nuclide type of chain. If Ni(t) is the number of ith

nuclide at time t and λi is its decay constant, one may write the system of decay equations in

the form:

 (ME12.2.1).

730

In the matrix form the system of ordinary differential equation is as follows: ,

 where  is the triangular bidiagonal matrix

 (ME12.2.2).

For the more general case when the decay is with branching, the matrix Λ should be written

as follows:

 (ME12.2.3).

The branching means that from the decay of one parent nuclide several daughter nuclides may

be produced. For example, the number of disintegrated nuclides N1 over unit time λ11 may

produce λ21 of the daughter nuclide N2 , 31 of the daughter nuclide N3 , n1 of the daughter

nuclide Nn, i.e. for the element of  matrix one can write n identities as follow:

, which means the balance between the disintegrated number of

the parent isotope and the produced number of daughter isotopes. The system of differential

equations (12.2.1) may very stiff because of the wide range of ij constants in  matrix. In

MATLAB program below the system composed of 3 isotopes is considered.

function rad_decay

clc;clear; %Radioactive decay

n=3; %Number of isotopes

y0=zeros(n,1); y0(1)=10^6; %Intial number of parent isotope

nuclides

t = [0 25]; %Time of integration

[T,Y] = ode23s(@(t,y) odefcn(t,y,n),t,y0); % integrates the system

of stiff differential equations

%y'=f(t,y) from t0 to tf with initial conditions y0.

figure

∑ 𝜆𝑗𝑖
𝑛
𝑗=𝑖+1 + 𝜆𝑖𝑖=0

𝑖 + 𝜆𝑖𝑖=0-

731

plot(T,(Y(:,1)),'.',T,(Y(:,2)),'--', T,(Y(:,3)),'+');

xlabel('Time'); ylabel('Number of nuclides');

 hold on;grid on;

 legend('Isotope N_1','Isotope N_2','Isotope N_3') end

function dxdt = odefcn(t,x,n)

dxdt = zeros(n,1);

 lamda = [-1 0 0;0.5 -0.1 0;0.5 0.1 0]; % Matrix of isotope decay

constants

for i=1:n

s=0;

for j=1:i

s = s+lamda(i,j)*x(j); %Isotope decay+gain mother isotope decay

end

dxdt(i)=s;

end

end

732

Fig. ME12.2 Branching decay of parent isotope N1 into unstable N2 and stable N3.

 Literature:

Birch, F. (1961). Velocity of compressional waves in rocks to 10 kilobars, Part 2. J. Geophys.

Res. 66, 2199-2224.
Brantut, N.&E. C. David (2019). Influence of fluids on VP/VS ratio: increase or decrease? Geophys

Journ Int 216, 2037–2043.

Carslaw, H. S. & J. C. Jaeger 1959. Conduction of heat in solids. Oxford: Clarendon Press.
David, E. C. (2012). The effect of stress, pore fluid and pore structure on elastic wave velocities in

sandstones, PhD thesis, Imperial College London, London.

David, E. C.&R. W. Zimmerman (2011). Compressibility and shear compliance of spheroidal pores:

Exact derivation via the Eshelby tensor, and asymptotic expressions in limiting cases. Intern

Journ of Solids and Structures 48, 680–686 https://doi.org/10.1016/j.ijsolstr.2010.11.001

Goodman, R. & G.-h. Shi (1985). Block Theory and its Application to Rock Engineering. Prentice-

Hall, 352 pp .

Meng, C., Heltsley, W.&D. D. Pollard (2012). Evaluation of the Eshelby solution for the ellipsoidal

inclusion and heterogeneity. Computers &Geosciences 40, 40–48.

Pollard, D. D. & R. C. Fletcher (2005). Fundamentals of structural geology. Cambridge

University Press. Exercise Solutions.

Driscoll, T. A. (2009). Learning MATLAB, SIAM, Philadelphia.

https://doi.org/10.1016/j.ijsolstr.2010.11.001

