
 

681 

 

MATLAB EXERCISES to “Fundamentals of rock physics” 

MATLAB Exercise 1. Plotting the grain size distribution function 

 
MATLAB code below uses xlsread operator to read data vectors from A, B, C columns in 

'exercise_9.xlsx' file.   A column contain the minimum values for bins, B column 

contain the maximum values of bins , and C column contains the mass factions in grams. In 

order to copare the measured PDF with the normal PDF the function normpdf is used.  

 
%%% Matlab example of plotting grain size distribution %function. 

The path to data file should be open in Matlab directory. The grain 

size data are in columns A (min of size bin) and in B the maximum of 

a size bin, and in C %the mass fraction in gramm. 

filename = 'exercise_9.xlsx';% specify file name 

sheet = 1;% specify a sheet number in an excell-file 

xlRange1 = 'a2:a16'; % specify a cell range for d min in %bins 

xlRange2 = 'b2:b16'; % specify a cell range for d max in %bins 

xlRange3 = 'c2:c16'; % specify cell range for mass in bins 

dmin = xlsread(filename,sheet,xlRange1); %read data set1 

dmax = xlsread(filename,sheet,xlRange2); %read data set2 

mass = xlsread(filename,sheet,xlRange3); %read data set3 

smass=sum(mass); mass100=mass/smass; % normalize mass %fraction in % 

each bin 

dmean=(dmax+dmin)/2;% calculate a mean grain size point in a bin 

fi=-log2(dmean); %conversion into fi-units 

figure; 

bar(fi, 100*mass100,1,'r')% plot a histogram 

xlabel(' \phi = log_2(d, mm)'); ylabel('mass, %') % axis %labelling 

xticks('auto'); yticks('auto'); hold on % plotting ticks 

 m=dot(mass100,fi);  

 dm=2^(-m)% mean average size in mm 

   v=dot(mass100,(fi-m).^2) %calculating variance 

 s=sqrt(v)% calculating standard deviation 

  Sk=dot(mass100,(fi-m).^3)/s^3 %skewness 

   Kurtosis=dot(mass100,(fi-m).^4)/v^2 % kurtosis 

 X = linspace(-log2(0.01),-log2(20));% define x-axe for %plot 

 norm = 100*normpdf(X,m,s);%calculate a normal PDF% 

plot(X,norm,'-.rd')% plot a normal PDF  

 legend('grain size hystogramm','normal distribution')% %define 

legend labels 

hold on 

pdfnrm = @(x,b) 1./(b(2)*sqrt(2*pi)) .* exp(-((x-

b(1)).^2./(2*b(2).^2))); % definition of a target function 

% b(1)= m; b(2)=s; %Initialisation of fitting %parameters 

SSECF = @(b) sum((mass100-pdfnrm(fi,b)).^2);% Sum-Squared-%Error 

Cost Function 

[B,SSE] = fminsearch(SSECF, [m, s]);% minimization of Sum-%Squared 

Error Function, B is the fitting parameter vector 

plot(X,100*pdfnrm(X,B),'bl') B % Plot fitted PDF 

hold off 

grid 
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Fig. ME1.1 The histogram of the grain size distribution function. Alternatively, the histogram can be 

fitted directly to the shape of the normal PDF using the least square procedure as follows: 

 

The results of fitting including empty bins could be slightly different, the mean size 0.46 mm, 

the standard deviation of the mean  is 1.87. 

 

MATLAB Exercise 2.1 Monte-Carlo simulation of rock density 

Monte-Carlo simulations are computer experimentation methods in which a random choice of 

input parameters is used in order to calculate statistics of output parameters. It is a very useful 

statistical tool and widely used both in non-engineering and engineering fields. In the base of 

computational experiments lies random sampling and large number of computer runs. Then, 

the mean value and standard deviation or PDF of model outputs are estimated. MATLAB 

provides random number generators for commonly used PDFs as follows:  

R = normrnd(MU,SIGMA) is the normal or Gaussian distribution 

R = lognrnd (MU,SIGMA) is the lognormal distribution, 

R = unifrnd (A,B) is the uniform probability distribution between A and B values  with zero 

outside probability (A,B), 

pd = makedist('Triangular','a',A,'b',B,'c',C); 

R = random(pd,Number of points), is the triangular probability distribution 

within the interval (A,C) having the maximum probability at B, and zero probability outside 

(A,C). (see Fig. ME2.1) 

 

MATLAB code below presents an example of Monte-Carlo simulation for rock density using 

volumetric % of modal mineral composition.  
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Fig. ME2.1 Illustration of different random PDF. The arguments for plotting normal PDF have been 

chosen by using differing random number generators. When the average and standard deviation of 

some mineral composition are known, the normal PDF random generator may be used. When only 

max and min vol. fractions of modal minerals have been estimated, then the uniform PDF random 

choice is applicable. Points on curves indicate how dense data are located to the mean value for these 

four PDFs. 

 
% Matlab Example 2 Monte-Carlo simulation  

%Density of crustal rocks 

clear all 

close all 

N_MC=10000 % Number of Monte-Carlo simulations 

% read the data from excell-file *.xlsx; 

[xlsfile,path2xls] = uigetfile('*.xlsx', 'Please, choose the data 

file'); %open the path to the file in PC 

[data,text] = xlsread(fullfile(path2xls,xlsfile)); % read the 

%excell file 

N_lines=length(data(:,1));%defines number of lines in the file 

for n=1:4:N_lines 

 n_end=length(data(n,:));% define the length of a line 

vol_fr = data(n,1:n_end);% read max/min vol% of minerals  

%in the line n from the 1-st to n_end-th column 

dens_miner=data(n+1,1:n_end); % read max/min density of %minerals % 

in the line n+1 from the column 1 to n_end-th %column  

for j=1:N_MC 

summe_comp=0;% initialization of summation 
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r_vol=unifrnd(0,1:1,n_end/2,1); %random n_end/2 numbers in the 

%interval 0,1 for vor_fr 

r_dens=unifrnd(0,1:1,n_end/2,1); %random n_end/2 numbers in %the 

interval 0,1 for dens_mine 

for i=1:n_end/2 

Rand_comp(i) = vol_fr(2*i)+(vol_fr(2*i-1)-vol_fr(2*i))*r_vol(i); 

%random chose of vol% in the range from %max vol% and min vol% 

Rand_dens(i)=dens_miner(2*i)+(dens_miner(2*i-1)-

dens_miner(2*i))*r_dens(i);%random chose of%vol% in the range %from 

max vol% and min vol% 

summe_comp=summe_comp+Rand_comp(i);%summation of random vol% %  

end 

Rand_comp=Rand_comp/summe_comp; %normalization of vol% in % 

%fraction von 0 bis 1 

dens(j)=dot(Rand_comp,Rand_dens);% calculate the average % density 

end 

rock_number=n 

dens_mean=mean(dens) 

dens_sigma=std(dens) 

end 

 

MATLAB Exercise 2.2 Expansion of functions in Taylor series 

Let f(x) be the function of argument x which is differentiated n + 1 times, i.e. the derivative 

f(x)(n+1) exists at point x which belongs to interval (x0-, x0 + ), where >0 is a small 

positive number. Then, for all x belonging to this interval, there is a unique Taylor expansion 

of f(x) in accordance with the formula: 

𝑓(𝑥) = ∑
𝑓(𝑥0)

(𝑘)

𝑘!

𝑛
𝑘=0 ∙ (𝑥 − 𝑥0)

𝑘 + 𝑅𝑛(𝑥)  (ME 2.2.1), 

where Rn(x) is the remaining n-th term of the series, which can be estimated trough the (n+1)-

th derivative of f(x0+(x-x0)∙)(n+1)  (0<<1) at any point belonging to the interval (x0, x): 

𝑅𝑛(𝑥) =
𝑓(𝑥0+(𝑥−𝑥0)∙𝜃)

(𝑛+1)

(𝑛+1)!
∙ (𝑥 − 𝑥0)

𝑛+1  (ME 2.2.2), 

the so called remaining term in the form of Lagrange. When lim
𝑛→∞

𝑅𝑛(𝑥) = 0, for any x 

belonging to the interval (x0-, x0 + ), then, the function f(x) can be approximated by a 

polynomial (ME 2.2.1) of the n-th degree.  

The graphical illustration of the Taylor expansion is rather simple. Using only the first term of 

the Taylor series one approximates the function f(x) with the tangential straight line to the 

function at x=x0. Using two terms in the series one approximates the function with a parabola 

tangential curve to f(x) at x0, and so on (see Fig. FB 2.2.1). When x0=0, the expansion series 

are called the Maclaurin series. 
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Fig. ME2.2 Approximation of  𝑓(𝑥) =
sin⁡(𝑥)

1−𝑥2
⁡ with the Taylor series. 

 

 
function sinx_1_x2_movie                  

%         SIN(x)/(1-x²)  

%MOVIE  Taylor polynomial approximations to y = sin x/(1-x²) %   are 

presented in a graphical form. Successive graphs 

%   of Taylor polynomials of degrees 1, 3, 5, 7, 9,  

%   11, 13, 15, 17, 19 are superimposed.   

%   As the degree increases the Taylor polynomials wrap 

%   themselves onto the sin(x)/(1-x²) curve over longer intervals.  

%   modified from David R. Hill, Math Dept, Temple     

%  University Philadelphia 

s0='   '; 

s1='Taylor Polynomial Approximation to f(x) = sin(x)/(1-x²)'; 

s2='Press enter to continue.'; 

%set colors for graphs 

colorch=['g' 'm' 'b' 'r' 'c'];colorch=[colorch colorch]; 

%The function definition: 

f='sin(x)./(1-x.^2)'; 

%The terms of the Tayor polynomial 

maxdeg=9; %max degree of Taylor poly is 2*maxdeg + 1 

timdelay=5; %time delay for pause in sec 

x=[-pi/2:pi/1000:pi/2]';fx=eval(f); 

clc 

disp([blanks(15) 'SIN(x)/(1-x²) MOVIE - Taylor Polynomial 

Approximation']); 

disp(s0),help sinx_1_x2_movie, disp(s1),disp(s2),pause 

for k = 0:maxdeg 

    d=0; 

    for i=0:k 

    d=d+(-1)^i/prod([1:(2*i+1)]);% Calculate Taylor series 

%coefficients 

    end 
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    g = 'd*x.^(2*k+1)'; z = eval(g); Calculate k-th term in %Taylor 

series 

    if k==0,y=z;else,[m,n]=size(y);y=[y y(:,n)+z];end 

end 

%Begin graphing 

hfig=figure('units','normal','position',[0 0 1 1],'color','white'); 

axis([-1 1 -10 10]),axis(axis), grid on, hold on 

hh=plot(x,fx,'--k',x,zeros(size(x)),'-k','linewidth',2) 

title(s1,'fontsize',18,'color','r') 

xlabel('x', 'FontSize',18) 

legend(hh,{'f(x)=sin(x)/(1-x²)', 'f(x)=0'},'Location', 

'northeast','FontSize',12) 

hold on, pause(timdelay) 

for j=0:maxdeg 

    k=2*j+1;cl=['-' colorch(j+1)]; 

    h=plot(x,y(:,j+1),cl,'linewidth',2) 

legend(h,{['Taylor series n=' 

int2str(k)]},'Location','southeast','Box','off','FontSize',12)     

    grid on, hold on, pause(timdelay) 

end 

pause 

end 

 

The example presented above dealing with the function f(x)=sin(x)/(1-x²). The function 

possesses two singularities at x=±1. The coefficients of the Taylor series at x0=0 may be 

calculated as follows: 

sin(𝑥) = 𝑥–
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
= ∑ (

(−1)𝑖

(2𝑖+1)!
∙ 𝑥2𝑖+1)∞

𝑖=0 ⁡   (ME2.2.3), 

and for f(x) at x close 0 there are two infinite series which should satisfy the equation: 

[∑ (𝑎𝑛 ∙ 𝑥
𝑘𝑛)∞

𝑛=0 )]∙(1 − 𝑥²) = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+…. (ME2.2.3). 

By equating the cofficients at the same power of two series in the left and right sides one gets 

the reccurent formula: 

𝑎0 = 0, 𝑎2𝑖 = 0;⁡𝑎2𝑖+1 − 𝑎2𝑖−1 =
(−1)𝑖

(2𝑖 + 1)!
, 𝑎2𝑖+1 =∑(

(−1)𝑖

(2𝑖 + 1)!
)

∞

𝑖=0

 

Thus, the Taylor series of sin(x)/(1-x²) at x0=0 is expanded as follows: 

𝑠𝑖𝑛(𝑥)

1 − 𝑥²
= ∑{

∞

𝑛=0

𝑥2𝑛+1 ∙∑(
(−1)𝑖

(2𝑖 + 1)!
)}

𝑛

𝑖=0

. 

With the increase of the Taylor series polynomial degree n, one can approximate f(x) in 

broader interval x, closer and closer to singularity points (Fig. ME2.2).  

 

MATLAB Exercise 3. Stress-strain curves: strength and yield stress  

The example data containing deformation of a rectangular bar specimen in mm, load F in N, 

and geometric parameters in mm, length L, width W and thickness h are inputs of the code 

and saved in the text-file ‘strength1.txt’. In order to read the file the function textscan is 

used. The empty cells in columns are filled with zeros. To find the maximum value on the 

function plot [max, indexmax]=max( ) is applied, which defines also the index of the 

function argument corresponding to the maximum value. The span of arguments between 0 

and indexmax is fitted to the linear regression having the intercept constant 0 by using the 

function dlm=fitlm(..,Intercept, ‘False’). The parameter dlm.Rsquared.Ordinary 

is the extracted from linear fit regression coefficient R and 
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coeffs=dlm.Coefficients.Estimate is the slope coefficient. The span of fitting 

arguments consequently decreases until the regression coefficient R is close to 1 within a 

given error (err=0.02 and desired R=0.98 in the code below) using while loop. The stress 

point corresponding to the right hand side limit value of the linear deformation span is the 

yield stress (Fig. ME3.1).  

 
%The MATLAB file with the data of deformation in mm, load in N, length,  
%wide and thickness of a bar sample is processed to obtain: 
%Proportional Limit of Deformation; Ultimate Strength; Yield Stress; 
clc; clear all 
fid=fopen('strength1.txt');%Load and open text file 
s=textscan(fid,'%f %f %f %f %f','emptyValue', 0); 

%read 5 columns in txt-file 
fclose(fid); 
L=s{3}; %read L, input length in mm from the third column 
L=dot(ones(1,length(L)),L); %making a scalar value of L 
W=s{4}; %read W, input width in mm from the fourth column 
h=s{5}; %read h, input thickness in mm from the fifth column 
A=dot(W,h) %calculating cross-section area in mm^2  
F = s{2};% input load in N from the second column 
delta = s{1}; % input deformation in mm from the first column 
%Calculation of deformation in % and stress in MPa 
stress=F./A; % in MPa 
eps=100*delta./L; % deformation in % 
%Plotting Load-Deformation Curve 
subplot(2,1,1) 
hold on; grid on; plot(delta,F,'--b'); title('Load versus Deformation') 
xlabel('\Delta, mm'); ylabel('Load F, N') 
%Plotting Stress-Deformation Curve  
subplot(2,1,2) 
hold on; grid on; plot(eps,stress,'-.r') 
title('Stress Versus Deformation in %'); xlabel('\epsilon, %');  
ylabel('\sigma, MPa') 
hold on 
%calculating strength and yield stress from the curve 
[maxstrength, imaxstrength] = max(stress);%estimation of the index of max  
maxeps = eps(imaxstrength); %estimation of eps corresponding to strength 
plot(maxeps,maxstrength,'o-

','MarkerFaceColor','red','MarkerEdgeColor','black') 
text(maxeps,maxstrength,'  \leftarrow strength') %put the text on the graph 
hold on 
R=0;err=0.02;imaxstrength0=imaxstrength; 

%err is a deviation error from linearity 
while R<(1-err) 
   imaxstrength=imaxstrength-1;% one step down in eps array index  
dlm= fitlm(eps(1:imaxstrength),stress(1:imaxstrength),'Intercept',false); 
R=dlm.Rsquared.Ordinary;%extracting correlation coefficient R 
end 
yieldstress=stress(imaxstrength; 

% yield stress corresponds to deviation  
%of linear fit from 1 with a given error 
yieldeps=eps(imaxstrength)% estimation of eps corresponding to yield stress 
coeffs=dlm.Coefficients.Estimate;  % the coefficient of the linear fit 
plot(yieldeps,yieldstress,'o-

','MarkerFaceColor','green','MarkerEdgeColor','black') 
text(yieldeps,yieldstress,'  \leftarrow yield stress'); hold on 
plot(eps(1:imaxstrength0),coeffs(1).*eps(1:imaxstrength0),'g'); hold on 
span=find(eps>=maxstrength/coeffs(1)& eps<=maxeps); 
plot(eps(span),coeffs(1).*eps(span)-maxstrength,'b'); 
plot(eps(span(1)),0,'o-  

..','MarkerFaceColor','blue','MarkerEdgeColor','black') 
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text(eps(span(1)),0,'  \leftarrow plastic deformation');% place the text 
hold on 

 

 
Fig. ME 3.1 MATLAB generated curves of a specimen deformation plotted together with yield stress 

and strength estimations: green line is the linear fit having the intercept =0 with e ordinate axis. 

 

 

MATLAB Exercise 4. Differential effective medium approach: Eshelby 

tensor 

The differential effective medium (DEM) approach is the evolution scheme to calculate 

effective elastic parameters of a medium by introducing incrementally of spherical pore 

volume (i. e. through the incremental increase of porosity 𝜑 ), and computing the 

corresponding incremental change in effective elastic moduli. The procedure is repeated until 

the target porosity is reached (Brantut&David, 2019). In this MATLAB exercise this 

approach will be illustrated by calculations of the Poisson’s ratio as a function of porosity. 

The solid matrix material and the resulted effective medium are assumed isotropic and 

spheroidal inclusions (with half axis 𝛼̆ = [𝑎1, 𝑎2, 𝑎3]⁡)⁡are uniformly distributed and oriented 

parallel to their largest half axis in matrix. For the effective bulk (𝐾̅) and shear (𝜇̅) moduli 

there are two coupled ordinary differential equations (e.g. David, 2012): 
𝑑𝐾̅

𝐾̅
= −

𝑑𝜑

1−𝜑
∙ 𝑃(𝛼̆. 𝜈) and 

𝑑𝜇̅

𝜇̅
= −

𝑑𝜑

1−𝜑
∙ 𝑄(𝛼̆. 𝜈)  (ME 4.1), 

where 𝑃(𝛼. 𝜈) and 𝑄(𝛼. 𝜈) are the bulk and shear compliances of spheroidal voids, indicated 

in Chapter (4.40a&b), respectively. They depend on the Poisson’s ratio ν of solid matrix, and 

the aspect ratio α of spheroids. The Poisson’s ratio  is given by the relationship: 

2 ∙ 𝜈 =
3𝐾̅−2𝜇̅

3𝐾̅+𝜇̅
 or ⁡2 ∙ 𝑑𝜈 = 𝑑 (

3𝐾̅−2𝜇̅

3𝐾̅+𝜇̅
) =

9𝐾̅∙𝜇̅∙

(3𝐾̅+𝜇̅)2
∙ [
𝑑𝐾̅

𝐾̅
−
𝑑𝜇̅

𝜇̅
]⁡,  and  

𝑑𝜈 = ⁡−
(1+𝜈)·(1−2𝜈)

3
∙
𝑑𝜑

1−𝜑
∙ [𝑃(𝑎̆. 𝜈) − 𝑄(𝑎̆. 𝜈)]    (ME 4.2). 
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In the case when inclusions are filled with compressible fluid 𝜇2 = 0 and 
𝐾2

𝐾1
= 𝜁 

𝑃(𝛼̆. 𝜈, 𝜁) = 
𝐾1−𝜁∙𝐾1

𝐾1
∙

1

1−
𝐾1−𝜁∙𝐾1

𝐾1
∙∑ 𝑠1𝑖
3
𝑖=1

⁡= 
1−𝜁

1−(1−𝜁)∑ 𝑠1𝑖
3
𝑖=1 ∙

   

𝑄(𝛼̆. 𝜈) =
1

1−2∙𝑠44
       (ME 4.3). 

where ∑ 𝑠1𝑖
3
𝑖=1  is the bulk compliance and 2 ∙ 𝑠44⁡is the shear compliance of inclusions, and 

𝑠𝑖𝑗 are the elements of the compliance Eshelby tensor matrix (i.e. Meng et al., 2012): 

𝑠11 =
𝑎1∙𝑎2∙𝑎3

4∙(1−𝜈)
∙ [3𝑎1

2 ∙ 𝐽11 + (1 − 2𝜈) ∙ 𝐽1]

𝑠12 =
𝑎1∙𝑎2∙𝑎3

4∙(1−𝜈)
∙ [𝑎2

2 ∙ 𝐽12 − (1 − 2𝜈) ∙ 𝐽1]

𝑠13 =
𝑎1∙𝑎2∙𝑎3

4∙(1−𝜈)
∙ [𝑎3

2 ∙ 𝐽13 − (1 − 2𝜈) ∙ 𝐽1]

2 ∙ 𝑠44 =
𝑎1∙𝑎2∙𝑎3

4∙(1−𝜈)
∙ [(𝑎1

2 + 𝑎2
2) ∙ 𝐽12 + (1 − 2𝜈) ∙ (𝐽1 + 𝐽2)]

  (ME 4.4). 

More sophisticated than (ME4.3) dependence of 𝑃(𝛼̆. 𝜈, 𝜁) on ζ has been considered in 

(Brantut & David, 2019). The constants Jj and Jij depend only on inclusion geometry and for 

ellipsoidal cavities are given by the integrals. 

𝐽𝑗 = ∫
𝑑𝜉

(𝑎𝑗
2+𝜉)∙∏ (𝑎𝑗

2+𝜉)
1
2⁄3

𝑗=1

⁡ ,
∞

0
  

𝐽1𝑗 = ∫
𝑑𝜉

(𝑎1
2+𝜉)∙(𝑎𝑗

2+𝜉)∙∏ (𝑎𝑗
2+𝜉)

1
2⁄3

𝑗=1

⁡ ,
∞

0
      (ME 4.5). 

In the case of spherical inclusions 𝛼̆ = [1, 1, 1], the results of integration are 𝐽𝑗 =

−
2

3∙(1+𝜉)
3
2

]
0

∞

=
2

3
 and 𝐽1𝑗 = −

2

5∙(1+𝜉)
5
2

]
0

∞

=
2

5
.⁡⁡Finally for the spherical case one obtains 𝑠11 =

7−5𝜈

15∙(1−𝜈)
,  𝑠12 = 𝑠13 =

5𝜈−1

15∙(1−𝜈)
, 2𝑠44 =

2∙(4−5𝜈)

15∙(1−𝜈)
, ∑ 𝑠1𝑖

3
𝑖=1 =

1+𝜈

3∙(1−𝜈)
, and for the dry 

compressibility and shear compliances are:  𝑃(1̆. 𝜈, 0) =
3∙(1−𝜈)

2∙(1−2𝜈)
, 𝑄(1̆. 𝜈) =

15∙(1−𝜈)

7−5𝜈
.  

Here below is MATLAB code to calculate J-integrals (ME 4.5) and use them for calculation 

of P and Q for arbitrary  and v. The evolution scheme starts with the initial value of the 

Poisson’s ratio 𝜈0 at zero porosity 𝜑 = 0, and for each small step of 𝜑⁡the increment of n is 

given by (ME 4.2).  

The loop while end, marked by grey colour, defines the evolution scheme of calculations, 

from the previously calculated point a new point is determined.  
%Calculations of Poisson's ratio after Brantut%David, 2019 using Eshelby  
%tensor components 
nu0=0.2;%input initial Poisson's ratio at zero porosity 
zeta=0.001; %input zeta=k2/k1 
alpha=[10,5,1];%input half axis of ellipsoid, first element is the maximum  
an=alpha(1); alpha=alpha./an;% normalization to the maximum axis 
fi0=0; dfi=0.001;% define initial porosity and porosity step 
fi=fi0; nu=nu0;%initialization of the evolution scheme 
while fi<0.55 %maximum porosity 55% 
    delta=(Q(alpha,nu)-P(alpha,nu,zeta))*(1+nu)*(1-2*nu)/3; 
    dnu=delta/(1-fi)*dfi;%calculate increament of Poisson's ratio 
        plot(fi,nu,'r.')%put the data point on a graph 
        grid on 
        hold on 
        xlabel('\phi') %put label on horizontaö axis 
ylabel('\nu')%put label on vertical axis 
set(gca,'fontsize', 18);%define the font size 
nu= nu+dnu;fi=fi+dfi; % Poisson's ratio and porosity at the next step  
end 
hold on 
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grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function p=P(a,nu,z)% function to calculate bulk compliance 
S11=3*a(1)^2*Jot(a, 2,0,0)+(1-2*nu)*Jot(a, 1,0,0); 
S12=a(2)^2*Jot(a, 1,1,0)-(1-2*nu)*Jot(a, 1,0,0); 
S13=a(3)^2*Jot(a, 1,0,1)-(1-2*nu)*Jot(a, 1,0,0); 
S1j=a(1)*a(2)*a(3)/4/(1-nu)*(S11+S12+S13); 
p=(1-z)/(1-(1-z)*S1j); 
end 
function q=Q(a,nu)% function to calculate bulk compliance 
S44=(a(1)^2+a(2)^2)*Jot(a,1,1,0)+(1-2*nu)*(Jot(a,1,0,0)+Jot(a,0,1,0)); 
S44=a(1)*a(2)*a(3)/4/(1-nu)*S44; 
q=1/(1-S44); 
end 
function Jij=Jot(alpha,j,k,l) 
a=alpha(1); b=alpha(2); c=alpha(3); 
fun = @(x,a,b,c,j,k,l) 

……   1./(a.^2+x).^(j+1/2)./(b.^2+x).^(k+1/2)./(c.^2+x).^(l+1/2); 
Jij=integral(@(x)fun(x,a,b,c,j,k,l),0,Inf, 'RelTol',1e-8,'AbsTol',1e-13); 
end 

 

 

MATLAB Exercise 5. Plotting velocity profile of fluid flow in elliptic and 

triangular channels 

The MATLAB code below used formulas for viscous flow in an elliptic, triangular and four 

sided cusped pipes explained in Focus Box 5. These 3 situation are arranged in the “case” 

menu structure. For the input of parameter X the operator X=input('test appears on screen') is 

used. The velocity field v(x,y) is calculated for  [–a<x<+a, –b<y<+b] in the elliptic pipe 

case, but velocity v-values outside the ellipse are declared as non-a-number (NaN). Two 

vectors x and y consisting of N points are used to form the matrix meshgrid. The results of 

calculations are presented in 3 figures shown below. The stem3 plot presents the data in the 

discrete form, contourf plots are 2D maps of velocity field with isoclines of velocity v, and 

meshc graph presents the velocity field in 3D (Fig. ME 5.1). 
 

%********************************************************************************

****************** 
%-------------------------------------------------------------------

----- 

          %Calculation of velocity Vmean,Vmax and volumetric flow 

rate Q 

       %adapted from Hatem Ali (2020). Fluid Mechanics: Flow in 

Straight %  %          Pipes and its Extensions 

              %MATLAB Central File Exchange.   

              disp('Flow in a non-circular pipe ')    

column={'Elliptic-cross section';'Equilateral triangular pipe';'4-

sided cusped pipe'}; 

Symbols=[1;2;3]; 

inputs={'pressure between two points, viscosity and two half axis of 

the pipe';... 

    'pressure between two points, viscosity, and the size of the 

triangle pipe';... 

    'pressure between two point, viscosity, size  of the cusped 

pipe'}; 

Outputs={'velocity profile';'Q flow rate';'flow mean velocity'}; 

Information={'You can calculate elliptic geometry by pressing 1';... 
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    'You can calculate triangular geometry by pressing 2';... 

    'You can calculate 4-sided cusped geometry by pressing 3'}; 

Start=table(Symbols,'RowNames',column) 

inputs_Outputs=table(inputs,Outputs,'RowNames',column) 

Informations=table(Information,'RowNames',column)  

    s=input('what do you want to calculate (1,2,3)?  '); 

    N=201; 

    switch s 

        case 1              % Elliptic geometry 

   %---------------------Input of paramets of elleptic flow:            

        Pa=input('Pressure at point a in Pa    '); 

        Pb=input('Pressure at point b in Pb   '); 

        mu=input('Viscosity of liquid in Pa.sec   '); 

        a=input('Half axis x of ellptic pipe in m   '); 

        b=input('Half axis y of ellptic pipe in m   '); 

        l=input('Length of pipe in m   '); 

        %------------------------Print Table 

        Value=[Pa;Pb;mu;a; b;l]; 

        Units=char({'Pa';'Pa';'Pa.sec';;'m';'m';'m'}); 

Information=table(Value,Units,'RowNames',{'Pa';'Pb';'Viscosity';'a';

'b';… 

…'Length'}) 

        %------------Define vectors x and y, calculate velocity 

                if  Pa==Pb % exclude zero pressure gradient 

            disp('There is No Pressure Drop in the Pipe') 

        else 

            x=linspace(-a,a,N);y=linspace(-b,b,N);S= pi*a*b; 

            [X,Y]=meshgrid(x,y); 

            Vmax=(abs(Pa-Pb))*(a^2)*(b^2)/(a^2+b^2)/(4*mu*l); 

            V=Vmax*(1-(X.^2)/a^2-(Y.^2)/b^2);V(V<0)=NaN;  

            % outside of ellipse velocity is not a number 

            Q=Vmax/2*S; Vmean=Vmax/2; 

                end 

            %-------------------------------------------------------

----- 

        case 2     %triangular geometry 

         Pa=input('Pressure at point a in Pa    '); 

        Pb=input('Pressure at point b in Pb   '); 

        mu=input('Viscosity of liquid in Pa.sec   '); 

        a=input('Side length of triangular pipe in m   '); 

                l=input('Length of pipe in m   '); 

                if  Pa==Pb 

            disp('There is No Pressure Drop in the Pipe') 

                else 

        x=linspace(-a/2,a/2,N);y=linspace(0,sqrt(3)/2*a,N); 

        S=sqrt(3)/4*a^2; [X,Y]=meshgrid(x,y); 

        Vmax=abs(Pa-Pb)/mu/l*a^2/36; 

        V=Vmax*18*sqrt(3)/a^3*Y.*((a/2-Y./sqrt(3)).^2-

X.^2);V(V<0)=NaN; 

        Q=Vmax*9/80*sqrt(3)*a^2; Vmean=Q/S;  

                end 

                %---------------------------------------------------

------ 

        case 3 %four-sided cusped geometry after Lenker, 2007 

            Pa=input('Pressure at point a in Pa    '); 

        Pb=input('Pressure at point b in Pb   '); 
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        mu=input('Viscosity of liquid in Pa.sec   '); 

        a=input('Size of cusped pipe in m  '); 

        l=input('Length of pipe in m   '); 

        if  Pa==Pb 

            disp('There is No Pressure Drop in the Pipe!') 

        else   

                x=linspace(-a,a,N); y=x;[X,Y]=meshgrid(x,y); 

                Vmax=abs(Pa-Pb)/l/mu*a^2/8;  

        V=Vmax*((X.^2+Y.^2-a^2).^2-

8*(X.^2).*(Y.^2))./a^4;V(V<0)=NaN; 

                 R=@(theta,r) r; 

Vpolar = @(theta,r) Vmax*(r.^4.*cos(4*theta)-

2.*a^2.*r.^2+a^4)./a^4.*r; 

   rmax = @(theta) a./sqrt(1+sqrt(2)*sin(2*theta)); 

   S= 4*quad2d(R,0,pi/2,0,rmax,'AbsTol',1e-6,'MaxFunEvals', 5000) 

   Q = 4*quad2d(Vpolar,0,pi/2,0,rmax,'AbsTol',1e-6,'MaxFunEvals', 

5000); 

   Vmean=Q/S; 

            end 

    end 

            %---------Presents results as Table 

            Value=[Vmax;Vmean;Q]; 

            Units=char({'m/sec';'m/sec';'m^3/sec'}); 

            

Sumarry=table(Value,Units,'RowNames',{'Vmax';'Vmean';'Q'}) 

            v=Vmax*linspace(0,1,5);v=round(v,3);%define isoline 

vector 

            %-----------Plot using stem3 (digital presentation of 

velocity 

            figure(1) 

            stem3(X,Y,V,':or','MarkerSize',1);hold on;grid on; 

xlabel('x-distance (m)'), ylabel(' y-distance (m)'), 

zlabel(' Velocity (m/s)');  

title(' Velocity 

profile');legend({'V(x,y)'},'Location','southeast'); 

            %-------Presents results as a contour map 

            figure(2) 

            [C,h]=contourf(X,Y,V,v,'-y'); colormap copper; 

            clabel(C,h,v,'FontSize',8,'Color','white');  

            c=colorbar; c.Label.String = 'Velocity in m/sec'; 

            grid on; xlabel('D-X(m)'); 

            ylabel('D-Y(m)'); 

            title(' Velocity cross-sectional profile (m/s)'); 

            %--------Presents results in 3D 

            figure(3) 

            meshc(V,X,Y) 

            title('3-D of flow');zlabel('X-Diameter in m'); 

            ylabel('Y-Diameter in m'); xlabel('Velocity in m/s') 

            %--------------------------------------------------- 
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Fig. ME 5.1 Example of viscous flow by MATLAB calculations for pressure gradient=0.17 P/m , 

viscosity =1 Pa s. (upper panels) Elliptic pipe a=5 m, b=1 m;. (middle panels) Equilateral triangular 

tube with side length a=5 m; (lower panels) Four sided cusped duct with side length a=10 m.  

 

 

MATLAB Exercise 6.1 Subsidence and consolidation of soils and 
rocks 

 

Subsidence of topographic surfaces may occur in differing ways. When it happens in a 

relative slow way, then it is known as settlement.  Subsidence is distinctly observed in former 

mined areas, where significant volumes of underground material has been extracted.  

Removal of porous fluid phase and reduction of pore pressure are also responsible for 

consolidation of soils and rocks and the consequent collapse of their intergranular space. The 

processes like sediment deposition or building of thick ice covers due to glaciation as well as 

man-made constructions are typical causes of soils and rocks consolidation. Subsidence and 

consolidation processes are very often connected with the variations of ground water table.  

Subsidence may be subdivided into three stages: (1) immediate consolidation due to elastic 

deformation of matrix material; (2) primary consolidation due to fluid phase (water) outflow 

from pore space; and (3) secondary consolidation due to creep and plastic modifications of 

material texture. In this exercise the second stage will be considered and numerically 

modelled. The vertical stress acting on solid phase is z, the pore pressure is u, and the 
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effective stress isz’= z –u (in sense of the Terzaghi definition). The relationship between 

the change of void fraction ∆𝑒 and the vertical strain is: 𝜀𝑧 =
∆𝑒

1+𝑒0
 (Fig. ME 6.1.1). By 

applying the vertical stress z  the pore pressure becomes instantaneously equal the stress 

z and the initial effective stress z,0’ =0 is zero. When the drainage path for fluid escape 

is open pore pressure u will decrease and the total external load is transferred now to the solid 

matrix.     

   
Fig. ME 6.1.1 Principle of consolidation: an element of rock or soil consists (solid phase) and porous 

space (voids). The initial void fraction is defined trough the ratio of volumes e0=V(voids)/V(solid phase) . 

(A). After applying the vertical stress z the volume of porous space is e1 . (B) The vertical 

deformation of volume is given by 𝜀𝑧 =
∆ℎ

ℎ
=
∆ℎ∙𝐴

ℎ∙𝐴
=
(𝑒0−𝑒1)∙𝑉𝑠
(1+𝑒0)∙𝑉𝑠

=
∆𝑒

1+𝑒0
, where e is the change of void 

volume fraction. So during the consolidation process z remains constant but the pore fluid pressure 

u decreases due to drainage, and the load transferred continuously from water to the matrix resulting in 

the effective stress z’ increase.  

 

Consider the small element of consolidating soil having base area A at depth z, the hydraulic 

conductivity of the solid matrix is k. The excess of pore pressure over the hydrostatic pressure 

·g⸱z  is denoted by 𝑢̅. During time dt the amount of fluid which flows in the small volume 

having the height z is q=A· k·
𝑑𝑢

𝜌∙𝑔∙𝑑𝑧
 and the fluid amount flowing out of this volume is: 

q+q= A· k·
𝑑(𝑢+𝛿𝑢)

𝜌∙𝑔∙𝑑𝑧
= 𝑞 + 𝐴 · ⁡k ·

𝑑²𝑢

𝜌∙𝑔∙𝑑𝑧²
∙ 𝛿𝑧

⏞          
𝛿𝑞

. The increase of fluid flux is due to the volume 

contraction and extraction of some fluid amount having volume decrement: -A·h per unit of 

time (Fig. ME 6.1.2), i.e. q=−𝐴 ∙
(
𝛿ℎ

𝛿𝑧
)

𝑑𝑡
∙ 𝛿𝑧 = −𝐴 ∙

𝑑𝜀𝑧

𝑑𝑡
∙ 𝛿𝑧. 

  
Fig. ME 6.1.2 Principle of consolidation.  

 

Finally, one may write the consolidation equation as follows: 
𝛿𝜀𝑧

𝛿𝑡
= −

k⁡·⁡⁡⁡𝑑²𝑢

𝜌∙𝑔∙𝑑𝑧²
      (ME 6.1.1). 
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The relationship between vertical strain 𝜀𝑧 ⁡and effective vertical stress z’ is assumed to be 

linear, and this proportionality defines the coefficient of compressibility or the so called 

coefficient of volume change mv through the relationship: 𝑚𝑣 =
𝜀𝑧

∆σ𝑧⁡–𝑢̅
. In the present case the 

external load is considered to be time independent, and the final form of the consolidation 

equation is as follows: 

 
𝜕𝑢

𝜕𝑡
=
k⁡∙⁡⁡⁡𝜕2𝑢

𝜌∙𝑔∙𝜕𝑧2
= 𝑐𝑣 ∙

𝜕²𝑢

𝜕𝑧²
      (ME 6.1.2), 

where Cv is called the coefficient of consolidation. The analytical solutions of the diffusion 

type of partial differential equation (ME 6.1.1) may be taken from the textbooks on thermal 

conductivity (i.e. Carslaw& Jaeger, 1959). Degree of consolidation at depth z is defined as the 

ratio⁡𝑈̅ =
𝑢0−𝑢̅

𝑢0
, where 𝑢̅0 is the initial excess of pore pressure. If one introduces the 

dimensionless time 𝑇𝑣 =
𝑐𝑣∙𝑡

ℎ2
, and the dimensionless drainage path ratio Z=z/h, where h is the 

total depth of drainage, then (ME 6.1.2) may rewritten in the dimensionless form:  
𝜕𝑈̅

𝜕𝑇𝑣
=
𝜕²𝑈̅

𝜕𝑍²
. 

For the initial conditions at t=0 the pressure excess is constant through the depth z = 𝑢̅0,⁡ 
and at the top boundary z=0 there is a drainage condition 𝑢̅=0, and at the bottom z=h there is 

no influx condition 
𝜕𝑢

𝜕𝑧
=0. Then, the analytical solution is given by the series (Carslaw& 

Jaeger, 1959): 

𝑈̅ = 1 − ∑
2

𝑀
∞
𝑚=0 ∙ 𝑠𝑖𝑛(𝑀 ∙ 𝑍) ∙ 𝑒−𝑀²∙𝑇𝑣   (ME 6.1.3),   

where M= 
𝜋

2
∙ (2𝑚 + 1). Here below is the MATLAB code to calculate 𝑈̅ as a function of 

depth z and time t: 
clear all; 
cv = 2e-3; % consolidation coefficient 
H = 4.;% drainage depth in m 
zstep=51; Z = linspace(0,1,zstep); % normalized depth 
% discretize time domain  
duration = 10000; dt =250;nstep = round(duration/dt);   
time = [0:dt:duration]; 
T = cv/H/H.*time % normalized time 
zv = H*linspace(1,0, zstep); %depth in m 
U = zeros(zstep,nstep); % normalized pore pressure 
for i=1:zstep 
    for j=1:nstep 
        for m = 0:5000 
U(i,j) = U(i,j) + … 

4/pi()/(2*m+1).*exp(-(pi()/2)^2*((2*m+1)^2).*T(j))* 

…sin(pi()/2*(2*m+1).*Z(i)); 
        end 
    end 
end 
% plot consolidation vs. depth at the end  
pore_pressure = 1-U; 
figure (1) 
for i = 1:nstep 
    plot(pore_pressure(:,i),zv,'r-'); hold on; 
    grid on; xlabel('consolidation U');  
    ylabel('z position, m'); 
end 
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Fig. ME 6.1.3 (left panel) Consolidation U versus depth position z. The initially zero consolidation 

changes with time from the stepwise shape to zero. (right panel) Average consolidation 𝑈̅𝑚𝑒𝑎𝑛 as a 

function of dimensionless time 𝑇𝑣. 

 

The mean value of consolidation calculated by integration of (ME 6.1.4) over entire depth 

from 0 to h (0≤Z≤1) is: 

𝑈̅𝑚𝑒𝑎𝑛 = 1 − ∑
2

𝑀
∞
𝑚=0 ∙ 𝑒−𝑀

2∙𝑇𝑣 ∙ ∫ sin⁡(𝑀 ∙ 𝑍) ∙ 𝑑𝑍⁡
1

0

⏞            

−
1

𝑀
𝑐𝑜𝑠

𝜋

2

= 1 − ∑
2

𝑀2
∞
𝑚=0 ∙ 𝑒−𝑀²∙𝑇𝑣   

           (ME 6.1.4). 

The time 𝑇𝑣,𝑐 by which the bottom boundary excess pore pressure 𝑈̅(𝑍 = 1) is affected by the 

drainage at the upper boundary 𝑈̅(𝑍 = 0) = 0⁡may be estimated from (ME 6.1.3) by inserting 

Z=1 and leaving only the first term in the series: ∑
2

𝑀
∞
𝑚=0 ∙ (−1)𝑚 ∙ 𝑒−𝑀²∙𝑇𝑣=1→

{
4

𝜋
∙ 𝑒−

𝜋2

4
∙𝑇𝑣,𝑐 +⋯} = 1, which provides the relationship: 𝑇𝑣,𝑐 ≈

4

𝜋2
ln⁡(

4

𝜋
) ≈ 0.098. The exact 

solution at  𝑈̅(𝑍 = 1)⁡and the first term in the series of this solution are shown in Fig. ME 

6.1.4. 

 
Fig. ME 6.1.4 (left panel) Consolidation 𝑈̅(𝑍 = 1) versus dimensionless time 𝑇𝑣:  red curve is the full 

series solution, black line is the first term of the series solution.  

 

The analysis based on 𝑈̅𝑚𝑒𝑎𝑛 (Fig. ME 6.1.3 right panel) results in 𝑇𝑣,𝑐 ≈
1

12
= 0.083,⁡and at 

this time the average consolidation is 𝑈̅𝑚𝑒𝑎𝑛 =1/3. At 𝑇𝑣 < 𝑇𝑣,𝑐⁡the evolution of average 
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consolidation may be approximated as 𝑈̅𝑚𝑒𝑎𝑛 =
2

√3
∙ √𝑇𝑣 , and at 𝑇𝑣 > 𝑇𝑣,𝑐 the time 

dependence of average consolidation is:  𝑈̅𝑚𝑒𝑎𝑛 = 1 −
2

3
∙ exp (

1

4
− 3 ∙ 𝑇𝑣).  

 

MATLAB Exercise 6.2. Pore compressibility and shear compliances 

The exercise deals with calculations of compressibility and shear compliances used in  

The Mori-Tanaka differential scheme: 𝑃̌, 𝑄̌ as a function of the Poisson ratio  of matrix with 

spheroidal pores having aspect ratio : 𝑃̌(𝛼)&⁡𝑄̌(𝛼) are shown in normalized form Fig. 

ME6.2.1. 

 

 

Fig. ME6.2.1 Normalized pore compressibility 𝑃̅ =
𝑃̌

𝑃̌𝑠
 and shear compliance 𝑄̅ =

𝑄̌

𝑄̌𝑠
 of spheroidal 

pores, as a function of  shape aspect ratio, for two values  of the matrix Poisson’s ratio. Thick line 

=0.5, dashed-dotted line =0. Expressions for the pore compressibility compliance 𝑃̌, and the shear 

compliance, 𝑄̌, for 2 limiting cases (=0 and =∞) are given in Table ME6.2.1. In Fig.  𝑃̌⁡&⁡𝑄̌⁡have 

been normalized respectively to 𝑃̌s and 𝑄̌s, compressibility and shear compliances of  spherical pores, 

=1 (replotted from David & Zimmerman, 2011). 

 

The normalization factors  𝑃̆𝑠,  𝑄̆𝑠  and the limit expressions of  𝑃̌, 𝑄̌ are shown in Table ME6.2.1. 
  

 

Table ME6.2.1 Limit values of compressibility 𝑷̌⁡and shear 𝑸̌ compliances of pores 

having aspect ratio from David & Zimmerman  

 

Pore geometry 𝑷̌ 𝑸̌ Comments, 
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𝟒

𝟑𝝅𝜶
∙
𝟏 − 𝝂²

𝟏 − 𝟐𝝂
 𝟒

𝟑𝝅𝜶
∙
(𝟏 −

𝝂
𝟓
)

(𝟏 −
𝝂
𝟐)

 

Oblate 

spheroid or 

penny shape 

pore with 

a𝑠𝑝𝑒𝑐𝑡⁡𝑟𝑎𝑡𝑖𝑜: 
⁡𝛼 → 0 

 

⁡𝑃̆𝑠 =
𝟑

𝟐
∙
𝟏 − 𝝂

𝟏 − 𝟐𝝂
 𝑄̆𝑠 =

𝟏𝟓

𝟕
∙
𝟏 − 𝝂

𝟕 − 𝟓𝝂
 

Sphere 

A𝑠𝑝𝑒𝑐𝑡⁡𝑟𝑎𝑡𝑖𝑜: 
⁡𝛼 = 1 

 

𝟓 − 𝟒𝝂

𝟑 ∙ (𝟏 − 𝟐𝝂)
 

𝟖

𝟏𝟓
∙ (𝟓 − 𝟑𝝂) 

Prolate 

spheroid or 

needle-shape 

pore with 

a𝑠𝑝𝑒𝑐𝑡⁡𝑟𝑎𝑡𝑖𝑜: 
⁡𝛼 → ∞ 

 

To calculate  𝑃̌⁡&⁡⁡𝑄̌one uses the aspect ratio of two half axis , the matrix Poisson’s ratio n, and the 

aspect ratio function 𝑔(𝛼): 
 

𝑔(𝛼) =
𝛼

(1−𝛼²)
∙ [
𝑎𝑟𝑐𝑐𝑜𝑠𝛼

√1−𝛼²
− 𝛼]      for <1, 

and  

𝑔(𝛼) =
𝛼

(𝛼2−1)
∙ [𝛼 −

𝑎𝑟𝑐𝑐𝑜𝑠ℎ𝛼

√𝛼2−1
]      for >1  (ME6.2.1). 

 

The code below calculates 𝑃̌, 𝑄̌ as a function of the aspect ratio of pores according to Eqs. (29-

30) from David & Zimmerman 

 
clc; nui=[0,0.25,0.35];%input initial Poisson's ratio at zero prorosity 
alpha=logspace(-1,1,100);%input aspect ratio 

  
figure (1) 
for i=1:3 
           plot(log10(alpha),Q(alpha,nui(i),G(alpha)),'LineWidth',2);%put 

data poin on a graph 
        hold on 
    Ymx =  max(Q(alpha,nui(i),G(alpha))); 
titlemn = strcat('\nu = ',num2str(nui(i))); 
        text(min(log10(alpha)),Ymx, titlemn,'FontSize', 14, 'Color', 'b', 

'FontWeight', 'bold')     
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end 
xlabel('log(\alpha)') %put label on horizontaö axis 
ylabel('Q(\alpha)')%put label on vertical axis 
set(gca,'fontsize', 18);%define the font size 
   hold on 
grid on 

     
figure(2) 
for i=1:3 
           plot(log10(alpha),P(alpha,nui(i),G(alpha)),'LineWidth',2);%put 

data poin on a graph 
        hold on 
        Ymx =  max(P(alpha,nui(i),G(alpha))); 
titlemn = strcat('\nu = ',num2str(nui(i))); 
        text(min(log10(alpha)),Ymx, titlemn,'FontSize', 14, 'Color', 'b', 

'FontWeight', 'bold') 
end 
        xlabel('log(\alpha)') %put label on horizontaö axis 
ylabel('P(\alpha)')%put label on vertical axis 
set(gca,'fontsize', 18);%define the font size 
hold on 
grid on 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function p=P(a,nu,g)% function to calculate bulk compleance 
if g==NaN 
  p=3.*(1-nu)./2./(1-2.*nu);   
else 
nr=4.*(1+nu)+2*a.^2.*(7-2.*nu)-(3.*(1+4.*nu)+12.*a.^2.*(2-nu)).*g; 
br=2.*a.^2+(1-4.*a.^2).*g+(a.^2-1).*(1+nu).*g.^2; 
p=(1-nu)./6./(1-2.*nu).*nr./br; 
end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function q=Q(a,nu,g)% function to calculate shear compleance 
if g==NaN 
  q=15./7.*(1-nu)./(7-5.*nu); 
else 
nr1=4.*(a.^2-1).*(1-nu)./15; 
br1=8*(nu-1)+2.*a.^2.*(3-4.*nu)+((7-8.*nu)-4.*a.^2.*(1-2.*nu)).*g; 

  
nr2=8.*(1-nu)+2.*a.^2.*(3+4.*nu)+((8.*nu-1)-

4.*a.^2.*(5+2.*nu)).*g+6.*(a.^2-1).*(1+nu).*g.^2; 
br2=2.*a.^2+(1-4.*a.^2).*g+(a.^2-1).*(1+nu).*g.^2; 

  
nr3=8.*(nu-1)+2.*a.^2.*(5-4.*nu)+(3.*(1-2.*nu)+6.*a.^2.*(nu-1)).*g; 
br3=-2.*a.^2+((2-nu)+a.^2.*(1+nu)).*g; 

  
q=nr1./br1.*(nr2./br2-3.*nr3./br3); 
end 

  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function g=G(a)% aspect ratio function 
if a==1 
    g=NaN; 
elseif a<1 
    g=a./(1-a.^2).^(1.5).*(acos(a)-a.*sqrt(1-a.^2)); 
else a>1 
    g=a./(a.^2-1).^(1.5).*(a.*sqrt(a.^2-1)-acosh(a)); 
    end 
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end 

MATLAB Exercise 7.1 Density - Vp – 𝒎̅ multivariant regression 

The background of (7.18) formalism follows from the empirical relationship 
𝜕(𝜌∙𝑉𝑃)

𝜕𝑉𝑃
≈ 𝑐𝑜𝑛𝑠𝑡       (ME 7.1.1). 

Using (7.6) this derivative may be expressed as follows: 

𝜌 ∙ 𝑉𝑃 = √𝜌 ∙ (𝐾 +
4

3
𝜇) and 

𝜕(𝜌∙𝑉𝑃)

𝜕𝑉𝑃
=
1

2
∙ 𝑉𝑃 ∙

𝜕(𝜌)

𝜕𝑉𝑃
≈ 𝑐𝑜𝑛𝑠𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(ME⁡7.1.2).  

This relationship may be reformulated as the differential equation: 
𝑑𝑉𝑃

𝑉𝑃
~𝑑𝜌, the solution of 

which is given by the relationship ln(𝑉𝑃)~⁡𝜌.  

Here, the dataset of  ln(Vp), 𝑚̅, and density 𝜌 of rocks are adapted from Birch (1961). It 

consists of three vectors: ln(Vp) values (x1), mean atomic weight (x2) and rock density (y). 

The multivariant regression is given by y=b(1)+b(2)ln(Vp)+b(3)m+b(4)ln(Vp)𝑚̅. The 

fitting coefficients are 3 elements of vector b. MATLAB procedure to find vector b elements 

is: b = regress(y,X). The results of the multivariant linear regression are plotted in 3D 

space as the plane (Fig. ME 7.1). The last cross-correlation term results in a negligible 

contribution, because b(4)10-3. The color indicated on plane corresponds to the relative 

contribution of cross-correlation term of regression in %.  

 
%Database of rocks from Birch, F., 1961.  

%Velocity of compressional waves in rocks to 10 kilobars, Part 2, J. 

geophys. Res., 66, 2199-2224 

% loading dataset 

x1 = [2.36 2.19 2.14 2.17 1.89 2.05 1.97 1.95 2.08 1.82 2.12 1.97 

1.98 1.91 1.91 1.91 1.92 1.84 2.06 1.92 1.85]';  

% ln(Vp, km/s) 

x2 = [20.4 22.8 22.6 20.4 30.9 31.9 33.1 30.9 24.1 20.9 20.4 21.3 

24.3 21.8 21.8 21.8 22 20.8 21.7 21.1 20.7]';  

% mean atomic weight of a rock 

y = [3.8 3.57 3.85 3.32 4.55 4.97 4.65 4.5 3.95 2.61 3.2 2.76 3.75 

2.9 3.09 2.87 2.9 2.75 3.4 2.7 2.72]';  

% density in g/cm³ 

X = [ones(size(x1)) x1 x2 x1.*x2]; 

%generate the matrix of 3 columns ln(Vp), m, and a cross 

%correlation term Ln(Vp)*m 

b = regress(y,X)    % applied multivariant regression to the 

%dataset %vector b consists of 4 coefficients 

scatter3(x1,x2,y,'filled') 

hold on 

x1fit = min(x1):0.1:max(x1);%generate a grid-vector of ln(Vp)  

x2fit = min(x2):2:max(x2);% generate a grid-vector of m 

[X1FIT,X2FIT] = meshgrid(x1fit,x2fit); 

% generate a meshgrid ln(Vp) x m 

YFIT = b(1) + b(2).*X1FIT + b(3).*X2FIT + b(4).*X1FIT.*X2FIT; % 

calculate density using vector b(i) of the regression %coefficients  

C=abs(b(4).*X1FIT.*X2FIT./YFIT*100);% create a matrix of the 

%relative cross correlation contributions ~ln(Vp)*𝑚̅/ 
surf(X1FIT,X2FIT,YFIT,C) 

colorbar 

hold on 

xlabel('ln(V_p, km/s)') 

ylabel('mean atomic weight m') 
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zlabel('density g/cm³') 

set(gca,'FontSize',15) 

view(50,10) 

hold off 

 

 
Fig. ME 7.1 Representation of the multivariant regression as the plane 𝜌 = 𝑏(1) + 𝑏(2) ∗ ln(𝑉𝑃) +
𝑏(3) ∗ 𝑚̅ + 𝑏(4) ∗ ln(𝑉𝑃) ∗ 𝑚̅⁡in 3D. Blue phe points are the dataset of density vs. velocity and atomic 

weight from (Birch, 1961b). The color bar indicate the contribution of cross-correlation term of 

regression, ~ b(4)*ln(Vp)*𝑚̅/𝜌 in %.  

 

MATLAB Exercise 7.2 Pole diagrams 

To represent vector characteristics of an object, for example acoustic velocities in anisotropic 

crystals or positions of fault planes, one frequently uses pole diagrams. The idea of such a 

representation is to indicate a 3D vector by a point in 2D plane by using the interception point 

of vector with the equatorial plane of unity sphere (see  Fig. ME 7.2.1 A). The vector is 

plotted starting from South pole of sphere with azimuth angle  and altitude angle 2.  

(Alternatively, it may be plotted starting from point (0 0 0) using altitude angle  indicated in 

Fig. ME 7.2.1A, then, the interception point of vector with unity sphere will be projected on 

the equatorial plane). Interception point in the equatorial plane is characterised by polar angle 

 and radius vector = |𝑠𝑖𝑛
𝛽

2
|. In the case of a crystal the orientations of crystallographic 

planes with the help of pole diagrams are illustrated in Fig. ME7.2.1 C&D. 

 



 

702 

 

 

 
Fig. ME 7.2.1 Construction of pole diagrams. A. Vectors having an angle with the axe [0 01] are 

represented in plane (0 0 1) by their interception point (small open circle) of the line connecting the 

point {0 0 1̅} with the end of the vector on the unity sphere (black star). B. The interception point on 

the (0 0 1) plane in polar coordinates is characterized by azimuth angle () and radial distance from 

coordinate centre =|𝑠𝑖𝑛(𝛽/2|.  C & D: Projections (0 1 0) of cubic crystal. C. P [1 0 0] and P’  [1̅⁡0⁡0] 
directions are the poles of anisotropy along [1 0 0] axis. D: Q [0 0 1] and Q’ [0 0  1̅]  are the poles of 

anisotropy along [0 0 1] axis. 

 

The MATLAB program below plots and illustrates the construction of vector representation 

in equatorial plane on unit sphere.  
% representation of a pole figure using a unit sphere 
lat = 0:(pi/19):pi; long = 0:(2*pi/37):2*pi;%calculate the grid points 

% of latitude and longitude 
[LAT,LONG] = meshgrid(lat, long);% assamble the grid point in a meshgrid  
X = sin(LONG).*sin(LAT); Y = sin(LAT).*cos(LONG); Z = cos(LAT);  
figure, mesh(X,Y,Z), axis equal %plot longitude and latitude lines 
set(gca,'fontweight','bold','FontSize',14, 'FontName', 'Times New Roman') 
alpha 0.3 % set the transparency of the sphere surface 
hold on 
plot(sin(long),cos(long), 'r-','LineWidth', 2)% plot equatorial plane 
h=fill(sin(long),cos(long),'r')% fill equatorial plane 
set(h,'facealpha',.5) % set the transparency of the equatorial plane 
hold on 
plot3(0,0,0,'ko') %plot ponit [0 0 0] 
hold on 
latr=30/180*pi; longr=120/180*pi; %calculate coordinates of the vector with 

% a given lattitude 30° % and longuitude 120° 
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xr = sin(longr)*sin(latr);  
yr = sin(latr)*cos(longr);  
zr = cos(latr);%calculate coordinates on the unit sphere 
plot3(xr,yr,zr,'r*') %plot point [x y z] 
p1 = [0 0 0]; % centre of the sphere 
p2 = [xr yr zr]; % point on a unit sphere with the given coordinates 
dp = p2-p1; % vector of a distance between two points 
p3=[xr yr 0]; % point projection in the equatorial plane 
dpp=p3-p1;% vector of a distance between two points  
quiver3(p1(1),p1(2),p1(3),dp(1),dp(2), dp(3),1.5,'LineWidth', 2) 

% plot a vector connecting two points 
quiver3(p1(1),p1(2),p1(3),dpp(1),dpp(2),dpp(3), 2.5,'LineWidth', 2) 

% plot a vector connecting two points 
plot3(sin(longr)*sin(latr/2), cos(longr)*sin(latr/2), 0, 'ko') 

%plot a point in the equatorial plane 
text(p1(1),p1(2),p1(3), sprintf('(%.0f,%.0f,%.0f)',p1)) 

%put the text on the graph 
h=line([0 xr],[0 yr],[-1 zr],'LineWidth', 2)%plot a line between two points 
s = h.LineStyle; h.LineStyle = ':';%set the line style 
hold on 

 

 

 
Fig. ME 7.2.2 MATLAB plot of unity sphere illustrating the construction of pole diagram. 

 

The Cartesian coordinate system ise related to the spherical coordinates (for unity sphere 

radius r = 1) as: 

𝑋 = cos(𝜆) ∙ sin(𝜑) ,⁡⁡⁡𝑌 = sin(𝜆) ∙ sin(𝜑) ,⁡⁡⁡𝑍 = cos⁡(𝜑)   (ME 7.2.1), 

where 𝜆 is the longitude angle and 𝜑 is the latitude angle. The projection of lines having equal 

latitudes and longitudes on the equatorial slice of sphere is called the equal-angle stereonet. In 

structural geology the use of this type of stereonet is common for representation of planar and 

linear structural elements (Pollard & Fletcher, 2005). 

.   
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Fig. ME 7.2.3 Characteristics of planar and linear elements in 3D. The planar element is defined by 

the strike direction s (the interception planar element line with the surface) and the dip angle d (the 

angle built in the vertical cross section normal to the strike direction between the planar element 

surface and the horizontal surface). The linear element can be defined additionally through the rake 

angle r of the planar  element, the angle  between the strike direction and the linear element direction. 

Another characterization of linear elements may be given by using the azimuth of plunge direction p  

(projection azimuth of the linear element on the surface) and the dip plunge angle p (the angle built in 

the vertical plane between the plunge direction and the linear element).   

 

MATLAB program below plots planar element orientations using the given strike 

(als=120°) and dip (phid =60°) angles, and calculate coordinates of the normal vector to 

this plane on unity sphere. For the given rake angle (thr =60°) the plunge direction and the 

plunge angle will be calculatedas follows:  

𝛼𝑝 = 𝛼𝑠 + arctan⁡(tan𝜃𝑟 ∙ 𝑐𝑜𝑠𝛽𝑑),   𝛽𝑝 = arcsin⁡(
𝑠𝑖𝑛𝜃𝑟

𝑠𝑖𝑛𝛽𝑑
)  (ME 7.2.2), 

(Pollard & Fletcher, 2005). 

  
% Plot stereonet, point, and great circle (Goodman and Shi, 1985, p. 75) 

% modified from Pollard, David D./Fletcher, Raymond % C. 2005 
axis equal, axis off, box off % equal scaling in x and y,  

no axes or box 
axis ([-1 1 -1 1]) % sets scaling for x- and y-axes 
 plot([-1 1],[0 0],'k:',[0 0],[-1 1],'k:') % plot x- and y-axes 
hold on 
set(gca,'fontweight','bold','FontSize',14, 'FontName', 'Times New Roman') 
r = 1; % radius of reference circle 
TH = linspace(0,2*pi,3601); % polar angle, range 2 pi, 1/10 degree 

increment 
[X,Y] = pol2cart(TH,r); % Cartesian coordinates of reference circle 
plot(X,Y,'k','LineWidth', 2) % plot reference circle 
 hold on 
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for j = 1:8 % loop to plot great circles at 10 degree increments 
phid = j*(10*pi/180); % dip angle, phid 
h = -r*tan(phid); rp = r/cos(phid); % x-coord of center, h, and radius, rp 
X = -h + rp*cos(TH); Y = rp*sin(TH); % coordinates of points on great 

circle 
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet 
plot(X,Y,'k:',-X,Y,'k:','LineWidth', 1) % plot two sets of great circles 
hold on 
end 
 for j = 1:8 % loop to plot small circles at 10 degree increments 
gam = j*(10*pi/180); % cone angle, gam 
k = r/cos(gam); rp = r*tan(gam); % y-coord of center, k, and radius, rp 
X = rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points on small circle 
Y(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet 
plot(X,Y,'k:',X,-Y,'k:','LineWidth', 1) % plot two sets of small circles 
hold on 
end 
 als = 120*pi/180; ald = als+pi/2; % strike 120° 
phid = 60*pi/180; % dip angle 60° 
h = -r*tan(phid)*sin(ald); % x-coord of center  
k = -r*tan(phid)*cos(ald); % y-coord of center 
rp = r/cos(phid); % radius 
X = h + rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points 
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet 
X1 = -h + rp*cos(TH); Y1 = -k + rp*sin(TH); % coordinates of points 
X1(find(X1.^2+Y1.^2>r)) = nan; % eliminate points outside stereonet 
plot(X,Y,'b',X1,Y1,'b:','LineWidth', 2) % plot planar element as great 

%circle 
aln = ald + pi;  % plunge direction of normal to planar element 
phin = (pi/2) - phid; % plunge angle of normal 
x = r*tan(pi/4 - phin/2)*sin(aln); 
y = r*tan(pi/4 - phin/2)*cos(aln); 
plot(x,y,'ko') %plot pole to planar element as a point 
thr = 60*pi/180; % rake angle =60° 
alp = als + atan2(sin(thr)*cos(phid),cos(thr)); % plunge direction 
phip = asin(sin(thr)*sin(phid)); % plunge angle 
xr = r*tan(pi/4 - phip/2)*sin(alp); 
yr = r*tan(pi/4 - phip/2)*cos(alp); 
plot(xr,yr,'bo', 0,0,'k*') %plot linear element as point on great circle 
hold on 
p1 = [0 0]; % centre of the plane 
p2 = [xr yr]; %Linear element direction 
p3=[x,y]; % pole direction 
dp = p2-p1; dpp=p3-p1;% Difference between points  
quiver(p1(1),p1(2),dp(1),dp(2),0,'LineWidth', 2);  

%plot an arrow between two points 
quiver(p1(1),p1(2),dpp(1),dpp(2),0,'LineWidth', 2) 
text(p1(1),p1(2), sprintf('(%.0f,%.0f)',p1)); 

% put the text of a point coordinates (0,0)  
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Fig. ME 7.2.4 MATLAB construction of the plane pole using the strike and dip angles of planar 

element. The intercept of normal vector (red arrow) of the planar element (blue circle) with the unity 

sphere defines the plane pole position on 2D projection of unity sphere.   

 

In order to represent a set of pole locations corresponding to a family of planar elements one 

may use the mean position of normal vector (Fig. ME 7.2.5 upper panel). The mean position 

can be calculated as the vector sum of normal vectors for the group planar elements (red star 

in Fig. ME 7.2.5 upper panel), or by calculating the average density of pole points per square 

unit of projection.     

In the MATLAB program below the set of 100 planes with the strike and dip angles is 

randomly generated by two Gaussian distributions: st(ni)=normrnd(100,20) and 

di(ni)=normrnd(50,10), where the mean strike angle is 100° an the dispersion 20° in one 

group of planes, and the dip angle is 50° and the dispersion 10° in another group. The 

deviation angle from the mean value of pole positions is estimated through the arc lengths:    
 

∆𝑋𝑖 = cos(𝜆̅) ∙ cos(𝜑̅) − cos(𝜆𝑖) ∙ cos(𝜑𝑖),  

⁡∆𝑌𝑖 = cos(𝜆̅) ∙ sin(𝜑̅) − cos(𝜆𝑖) ∙ sin(𝜑𝑖),⁡⁡⁡  

∆𝑍 = sin(𝜑̅) − sin⁡(𝜑𝑖)      (ME 7.2.3), 

and  

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛⁡𝑎𝑛𝑔𝑙𝑒𝑖 = √∆𝑋𝑖
2 + ∆𝑌𝑖

2 + ∆𝑍𝑖²  (ME 7.2.4). 

 
function stereo_plane 
% modified from Pollard, David D./Fletcher, Raymond % C. 2005 
% Plot stereonet, and poles to planar elements 
axis equal, axis off, box off % equal scaling in x and y, axis ([-1 1 -1 

1]) % sets scaling for x- and y-axes 
 plot([-1 1],[0 0],'k:',[0 0],[-1 1],'k:','LineWidth',2) % plot x- % and y-

axes 
r = 1; % radius of reference circle 
TH = linspace(0,2*pi,3601); % polar angle, range 2 pi, 1/10 degree 

%increment 
[X,Y] = pol2cart(TH,r); % Cartesian coordinates of reference circle 
plot(X,Y,'k') % plot reference circle 
 for j = 1:8 % loop to plot great circles at 10 degree increments 
phid = j*(10*pi/180); % dip angle, phid 
h = -r*tan(phid); rp = r/cos(phid); % x-coord of center, h, and %radius, rp 
X = -h + rp*cos(TH); Y = rp*sin(TH); % coordinates of points on great 

circle 
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet 
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plot(X,Y,'k:',-X,Y,'k:') % plot two sets of great circles 
 end 
for j = 1:8 % loop to plot small circles at 10 degree increments 
gam = j*(10*pi/180); % cone angle, gam 
k = r/cos(gam); rp = r*tan(gam); % y-coord of center, k, and %radius, rp 
X = rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points on %small 

circle 
Y(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet 
plot(X,Y,'k:',X,-Y,'k:') % plot two sets of small circles 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%create two random vectors of strike and dip angles  
ndp=100; %length of vectors 
mu1=100;sigma1=20;mu2=50;sigma2=10;% define mean and dispersions  
for ni=1:ndp 
    st(ni)=normrnd(mu1,sigma1); 
    di(ni)=normrnd(mu2,sigma2); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
UX=0;UY=0;UZ=0; 
for j = 1:length(st) 
aln = (st(j)+270)*pi/180; 
phin = (90 - di(j))*pi/180; 
alx(j) = atan2(sin(aln)*cos(phin),cos(aln)*cos(phin)); 
alx(j)=alx(j)+(alx(j)<0)*2*pi; 
aly(j) =asin(-cos(phin+pi/2)); 
x(j) = r*tan(pi/4 - phin/2)*sin(aln);  
y(j) = r*tan(pi/4 - phin/2)*cos(aln); 
UX = UX + sin(aln)*cos(phin); UY = UY + cos(aln)*cos(phin);  
UZ = UZ + cos(phin+pi/2); % components of resultant vector 
end 
U = sqrt(UX^2 + UY^2 + UZ^2) % magnitude of resultant vector 
alU = atan2(UX/U,UY/U); alU = alU + (alU<0)*2*pi; 
phiU = asin(-UZ/U); % azimuth and inclination of resultant vector 
xU = r*tan(pi/4 - phiU/2)*sin(alU); %x ccordinate of resultant %vector on 

2D 
yU = r*tan(pi/4 - phiU/2)*cos(alU);%y ccordinate of resultant %vector on 2D 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
DX=cos(phiU)*cos(alU)-cos(alx).*cos(aly);%calculated X-length of arc in a 

unit sphere  
DY=cos(alU)*sin(phiU)-cos(alx).*sin(aly);% Y-length 
DZ=sin(alU)-sin(alx);% Z length 
alc=180/pi*(sqrt(DX.^2+DY.^2+DZ.^2));% deviation angle in 3D 
scatter(x,y,[],alc,'filled') %scatter plot of poles to planar %elements     
        g=colorbar; 
w = g.LineWidth; 
g.LineWidth = 1.5; 
g.Label 
g.Label.String = 'deviation angle°'; 
g.Label.FontSize = 14; 
 plot(xU,yU,'r*','MarkerSize',12,'LineWidth',2) 
 end 

 

In Fig. ME 7.2.5 (right panel) pole positions of the same set of planar elements have been 

represent by using the density map. For estimations of point density the function 

datadensity(x,y) is used. The set of points has been divided into the Voronoi cells on the 

surface. The area of each Voronoi cell has been calculated. For each point on the pole 

diagram the inverse of specific area per point used to plot the counter map. For an open area 

containing no points the density is set to 0.    
%modified from Pollard, David D./Fletcher, Raymond % C. 2005 
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clear all, clf, hold on % clear variables, current figure, hold plot 
axis equal, axis off, box off % equal scaling in x and y, no axes or box 
axis ([-1 1 -1 1]) % sets scaling for x- and y-axes 
 plot([-1 1],[0 0],'k:',[0 0],[-1 1],'k:','LineWidth',2)  

% plot x- and y-axes 
r = 1; % radius of reference circle 
TH = linspace(0,2*pi,3601); % polar angle, range 2 pi, 1/10 degree 

increment 
[X,Y] = pol2cart(TH,r); % Cartesian coordinates of reference circle 
plot(X,Y,'k') % plot reference circle 
 for j = 1:8 % loop to plot great circles at 10 degree increments 
phid = j*(10*pi/180); % dip angle, phid 
h = -r*tan(phid); rp = r/cos(phid); % x-coord of center, h, and radius, rp 
X = -h + rp*cos(TH); Y = rp*sin(TH); % coordinates of points on great 

circle 
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet 
plot(X,Y,'k:',-X,Y,'k:') % plot two sets of great circles 
end 
for j = 1:8 % loop to plot small circles at 10 degree increments 
gam = j*(10*pi/180); % cone angle, gam 
k = r/cos(gam); rp = r*tan(gam); % y-coord of center, k, and radius, rp 
X = rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points on small circle 
Y(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet 
plot(X,Y,'k:',X,-Y,'k:') % plot two sets of small circles 
end 
hold on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%create two random vectors of strike and dip angles  
ndp=100; %length of vectors 
mu1=100;sigma1=20;mu2=50;sigma2=10;% define mean and dispersions  
for ni=1:ndp 
    st(ni)=normrnd(mu1,sigma1); 
    di(ni)=normrnd(mu2,sigma2); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
aln = (st+270).*pi/180; % normal direction 
phin = (90 - di).*pi/180; % plunge of normal 
x = r*tan(pi/4 - phin./2).*sin(aln); 
y = r*tan(pi/4 - phin./2).*cos(aln); 
dd=datadensity(x,y);%density data calculations 
N = 30; %length of grid 
%------------- Gridding ------------------- 
xi = repmat(linspace(min(x),max(x),N),N,1); 
yi = repmat(linspace(min(y),max(y),N)',1,N); 
zi = griddata(x,y,dd,xi,yi); 
%plotting data        
ms=8; % define the size of symbol 
             [c,h] = contour(xi,yi,zi); 
            out.c = c; 
                hs = gsp(x,y,dd,ms); 
        out.hs = hs; 
        g=colorbar; 
w = g.LineWidth; 
g.LineWidth = 1.5; 
g.Label 
g.Label.String = 'Density = poles per area unit'; 
g.Label.FontSize = 14; 
        hold on 

end 
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Fig. ME 7.2.5 MATLAB plot of the set of pole positions (n=100) corresponding to two Gaussian 

distributions havin (1) the mean value of strike angle 110° and dispersion 20°, and (2) the mean value 

of dip angle 50° and dispersion 10°. (left panel) Pole positions and the mean value (red star). The 

mean position corresponds to the normalized sum of normal vectors for the planar elements set. (right 

panel) Density plot of pole positions (number of poles per square unit of circle area) estimated by 

using the Voronoi cell formalism. 

 
function dd = datadensity(x,y) 
%Copy-Left, Alejandro Sanchez-Barba, 2005 
%Computes the data density (points/area) of scattered points 
% USAGE:    dd = datadensity(x,y) 
% INPUT:    (x,y) -  coordinates of points 
 x = x(:); y = y(:); 
%Asuming x and y match 
idat = isfinite(x); x = x(idat); y = y(idat); 
holdstate = ishold; 
if holdstate==0 
    cla 
end 
hold on 

  
Ld = length(x); 
dd = zeros(Ld,1); 
%----- Using Voronoi cells ------ 
        [v,c] = voronoin([x,y]);      
        for k=1:length(c)  
 %If at least one of the indices is 1, then it is an open region, its area 
 %is infinity and the data density is 0 
            if all(c{k}>1)    
                a = polyarea(v(c{k},1),v(c{k},2)); 
                dd(k) = 1/a;%density of points estimated by an %inverse of 

Voronoi cell area per point 
            end %if 
        end %for 
        dd=dd.*pi/length(x); 
end 
function varargout = gsp(x,y,c,ms)% 
%Graphs scattered points instead of MATLAB scatter-function  
map = colormap; 
ind = fix((c-min(c))/(max(c)-min(c))*(size(map,1)-1))+1; 
h = [];%much more efficient than matlab's scatter plot 
for k=1:size(map,1)  
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    if any(ind==k) 
        h(end+1) = line('Xdata',x(ind==k),'Ydata',y(ind==k), ... 
            'LineStyle','none','Color',map(k,:), ... 
            'Marker','.','MarkerSize',ms); 
    end 
end 
if nargout==1 
    varargout{1} = h;  
end 
end 

 

MATLAB Exercise 8.1 Generation and plotting of a square lattice of 
network resistors 

MATLAB program below generates the square lattice with N² nodes connected with the 

resistors (conductance=1) having the concentration conc. Each resistor corresponds to the 

third index of the matrix element: netMat. The size of  netMat. matrix is 2*N*(N-1) x 3: 

2*N*(N-1) is the total number of all possible resistors connecting nearest nodes of lattice. The 

first matrix index is the starting node and the second index is the end node of resistor. The 

generation of resistors in lattice is provided by the random choice function: 

R(randperm(numel(R), n)) = 1. The results of lattice generation are shown in 

Fig. ME 8.1  for the square lattice 12 x 12. 

 
global conc 

N=12;%number of nodes N x N 

conc=0.66; % concentration of conductances =1, the rest is 0 

resistivity=Res(N);% random generation of conductances between %the 

nearest nodes 

k=randi([1 N*(N-1)/2]); l= k+1; terminals = [k,l];% k<=N*(N-1)/2 and 

l<N*(N-1)/2+1 are coordinates of two terminals nodes between nearest 

nodes 

[netMat] = lattice_gen(N); % resistor network lattice generation  

lattice_plot(N,netMat,terminals)% plot of results 

%*******************************************************************

***************** 

function [netMat] = lattice_gen(N) 

% https://de.mathworks.com/matlabcentral/fileexchange/42521-
%resistance-calculator 

% Generate a square lattice of resistor network 

% N is the number of nodes on each side, N must be even 

if rem(N,2) == 1 

    N = N+1; 

end 

R = 1.*Res(N);%conductance values 

netMat = zeros(2*(N-1)*N,3); %number of conductances 2*N*(N-1) 

cnt = 0;% count of conductances 

% Horizontal conductances between nearest nodes 

for k = 1:N:N^2 

    for kk = k+1:k+N-1 

        cnt = cnt+1; 

        netMat(cnt,:) = [kk-1,kk,R(cnt)]; 

    end 

end 

% Vertical conductances 

for k = 1:N 
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    for kk = k+N:N:k+(N-1)*N 

        cnt = cnt+1; 

        netMat(cnt,:) = [kk-N,kk,R(cnt)]; 

    end 

end 

end 

%************************************************************* 

function lattice_plot(N,netMat,terminals) 

[x,y] = meshgrid(1:N,1:N); 

x = rot90(x,3); y = rot90(y,3); 

figure('name','Resistance Lattice') 

axes('xlim',[1,N],'ylim',[1,N],'dataaspectratio',[1,1,1]) 

hold on 

for k = 1:N^2 

    text(x(k),y(k),num2str(k)); 

end 

for k = 1:size(netMat,1) 

    if netMat(k,3)==1 

line([x(netMat(k,1)),x(netMat(k,2))],[y(netMat(k,1)),y(netMat(k,2))]

,'linestyle','-','color', 'red','linewidth',2); %plotting of 

conductances=1 

    else 

     

line([x(netMat(k,1)),x(netMat(k,2))],[y(netMat(k,1)),y(netMat(k,2))]

,'linestyle','--','color', 'blue','linewidth',1); 

% plotting of conductances=0 

    end 

end 

if nargin > 2 

    for k = 1:size(terminals,1) 

        a = terminals(k,1); 

        b = terminals(k,2); 

line([x(a),x(b)],[y(a),y(b)],'marker','o','linestyle','none', 

'markersize',10,'linewidth',2,'color',rand(1,3)); 

    end 

end 

axis off 

end 

%*******************************************************************

* 

function R=Res(N) 

global conc 

R=zeros((2*N*N-2*N),1); % generation of zero R-array of 

%conductances 

n=round(conc*(2*N*N-2*N));   % number of 1 in the R array 

R(randperm(numel(R), n)) = 1;%  randomly chosen positions of n 

conductances =1  

R=R(:);% reshaping the array 

end 
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Fig. ME 8.1 Generation of square lattice 12 x 12 = 144 nodes and 264 sites of randomly distributed 

conductances: solid line– conductance = 1, dotted line – conductance = 0: (left panel) concentration 

=10% of conductances, (right panel) concentration = 66% of conductances.  

MATLAB Exercise 8.2 Calculations of electric potential in a grid of electrical 

resistances 

Consider finite a 2D square grid of resistors. The neighbor nodes of resistor grid are 

connected via electrical resistive elements. The case will be considered where the 

nodes are connected or disconnected with a certain probability. It may be related with 

a situation when there are two sorts of resistors with finite small values and infinite 

large values of resistivity. In general each interior node is connected with its four 

neighbors by means of conductance bonds, which may be finite and positive or zero. 
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Each boundary node is connected only to three nodes and four corner nodes are 

connected with two nodes (Fig. ME 8.2.1). 

 

Fig. ME 8.2.1 Indexing of electric potential vector u and resistance matrix R at 

resistor grid nodes. 

The size of a grid is defined as the number of columns and rows, size = nx∙ 𝑛𝑦 . The 

bonds between nodes representing resistors are the R-matrix elements of size (𝑛𝑥 −
1) ∙ 𝑛𝑦 + (𝑛𝑦 − 1) ∙ 𝑛𝑥 = 2 ∙ 𝑛𝑥 ∙ 𝑛𝑦 − 𝑛𝑥 − 𝑛𝑦. The electric potential of the node lying 

in the i-th row and the j-th column is denoted by U[i j]. One denotes the resistance connecting 

nodes (i,j) and (k,l) nodes by R(ij kl) . The total current flowing in/out the node (i,j) is B(ij). 

The sum of all currents for each node of the grid is equal to zero, which follows from the 

Kirchhoff’s current law: 

1

𝑅𝑖𝑗,𝑖+1𝑗
∙ (𝑈[𝑖⁡𝑗] − 𝑈[𝑖 + 1⁡𝑗]) +

1

𝑅𝑖𝑗,𝑖−1𝑗
∙ (𝑈[𝑖⁡𝑗] − 𝑈[𝑖 − 1⁡𝑗]) +

1

𝑅𝑖𝑗,𝑗+1𝑗
∙ (𝑈[𝑖⁡𝑗] −

𝑈[𝑖⁡𝑗 + 1]) +
1

𝑅𝑖𝑗,𝑗𝑗−1
∙ (𝑈[𝑖⁡𝑗] − 𝑈[𝑖⁡𝑗 − 1]) = 𝐵(𝑖𝑗)    (ME 8.2.1) 

The linear system of equations (ME 8.2.1) corresponds to the Kirckhoff matrix A which 

elements, when 𝑖 ≠ 𝑗⁡are conductances with sign minus and equal the negative reciprocals of 

the resistor R-matrix elements −
1

𝑅𝑖𝑗,𝑖𝑗
. When 𝑖 = 𝑗 the diagonal element  of A are ∑

1

𝑅𝑖𝑗,𝑖𝑗
𝑖≠𝑗  

(Curtis E.& J. Morrow, 2000. Inverse problems for electrical networks, vol. 13. 

World Scientific Publishing Co. Pte. Ltd. ). Only in two points 𝐵(𝑖𝑗) where the external 

electric potential is applied, the current is +I (source) and –I (sink), all other elements of 

vector B(ij) are zeros. The mathematical formulation of the problem is reduced to the solution 

of the linear system of equations for the potentials at nodes U[ij] for the given values of 
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resistance matrix R(ij kl) and electric currents B(ij). The matrix R contains the information of 

nodes and the resistance of bonds between them, and have a format: [Index node 1, Index 

node 2, conductivity between nodes 1 and 2]. The two index potential at nodes U[ij]  is 

converted into the array vector u(k) of length, 𝑛𝑥 ∙ 𝑛𝑦  by the scheme indicated by arrows in 

Fig. ME8.2.1. In matrix form, the set of equations (ME8.2.1) can be written as: 𝐴 ∙ 𝑢 = 𝐵. 

When all resistances in the grid has the value 1 the system of equations looks like as follows: 

⁡

1
2
3
⋮
𝑛𝑦

𝑛𝑦 + 1

⋮
⋮
⋮
⋮

[
 
 
 
 
 
 
 
 
 
 
 2 −1 ⁡⁡⁡⁡⁡0 …⁡⁡⁡⁡0
−1 3 −1 …⁡⁡⁡⁡⁡0
0 −1 ⁡3 …⁡⁡⁡⁡⁡0

⏞              
𝑛𝑥

−1 0 0 … 0
0 −1 0 … 0
0 0 −1 … …

⏞              
𝑛𝑥

⋱
⋱
⋱

⋮ ⋮ ⁡⁡−1 3⁡⁡⁡⁡− 1
0 0 0 −1⁡⁡⁡⁡⁡2
−1 0 0 0⁡⁡⁡⁡⁡⁡⁡0

0 0 0 … 0
0 0 0 … 0
3 −1 0 … 0

⋱
⋱
⋱

0 −1 0 0⁡⁡⁡⁡⁡⁡⁡0
0 0 −1 ⋱⁡⁡⁡⁡0
0
0
…

0
0
…

0
0
…

⋱
⋱
…
⁡⁡⁡
⁡⋱
⋱
…

−1 4 ⋱ 0 0
0 −1 ⋱ −1 0
⋱
⋱
…

0
0
…

⋱
⋱
…

4
−1
…

−1
3
…

⋱
⋱
⋱
⋱
⋱]
 
 
 
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
 
 
 
𝑈[1⁡1]
⋮

𝑈[1⁡𝑛]
𝑈[2⁡1]
⋮

𝑈[2⁡𝑛]
⋮
⋮
⋮

𝑈[𝑚 − 1⁡𝑛]
𝑈[𝑚⁡𝑛] ]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
0
0
0
0
⋮
+𝐼
⋮
−𝐼
⋮
0
0
0 ]
 
 
 
 
 
 
 
 
 
 

  

, where ±I is non-zero at nodes with applied potential. The matrix A is five diagonal matrix of 

size (nx∙ 𝑛𝑦)× (nx∙ 𝑛𝑦) and in the code it is defined as a sparse matrix.  In each row there are at 

least 5 non-zero elements. The sum of elements in a row is 0:  

The next situation is when the nodes of the grid are connected by resistances 1 and 106, i.e. 

the conductance between adjacent nodes with a certain probability is 1 or 0. The input of the 

code is the percentage of zero conductivity bonds in the grid.  

When the determinant of the A matrix is 0, the Kirckhoff matrix is singular, then the special 

procedure of the matrix inversion is applied (see the code below). The MATLAB code is as 

follows: 

 
% Author: Viktor NAWA(R) University Frankfurt am Main 
clc; clear all; close all; 
nx = 25;         % number of grid nodes in X-direction 
ny = 25;         % number of grid nodes in Y-direction 
k1 = [2,2];      % location of 1-st electrode (+) [x,y] 
k2 = [nx-1,ny-1];     % location of 2-d electrode (-) [x,y] 
current=1; % impose the electric current between electrodes 
% Initialisation of electric field 
k=0; 
for j=1:1:ny 
    for i=1:1:nx 
        k=k+1; 
        I(i,j) = k; 
        P(k).n = zeros(1,nx*ny); 
        Ir(k,:) = [i,j]; 
    end 
end 
k=0; 
% finding adjacent grid nodes and give an idex to them  
% define matrix R which contains the information of resistivity between 
% two adjacent grid nodes, its format is: [Index Point 1, Index Point 2, 

bond resistivity  
for j=1:1:ny 
    for i=1:1:nx-1 
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        k=k+1; 
        R(k,:) = [I(i,j),I(i+1,j),1]; 
        P(I(i,j)).n(I(i,j)) = k; 
        P(I(i,j)).n(I(i+1,j)) = k; 
        P(I(i+1,j)).n(I(i,j)) = k; 
        P(I(i+1,j)).n(I(i+1,j)) = k; 
    end 
end 
for i=1:1:nx 
    for j=1:1:ny-1 
        k=k+1; 
        R(k,:) = [I(i,j),I(i,j+1),1]; 
        P(I(i,j)).n(I(i,j)) = k; 
        P(I(i,j)).n(I(i,j+1)) = k; 
        P(I(i,j+1)).n(I(i,j)) = k; 
        P(I(i,j+1)).n(I(i,j+1)) = k; 
    end 
end 
prompt = 'What is the percentage of ~0 conductivity bonds? '; 
%input percentage of zero conductance elements 
percent = input(prompt) 
prompt = 'What is the relative resitivity of ~0 conductivity bonds? '; 
%input percentage of zero conductance elements 
Rmax = input(prompt) 
[num, dem] = rat(percent/100);% convert percentage into fraction 
K=num*length(R)/dem; N= (dem-num)*length(R)/dem;  
vec=ones(N+K,1);%initialize vector of R=1 of length(R)  
 positions=[1:K]; vec(positions)=Rmax;%insert ~zero conductivity in vec 
 shuffle = @(v)v(randperm(numel(v)));%shuffle function of array elements 
 vec=shuffle(vec);% shuffle K 1e6 and N ones among K+N positions of vec 
 R(:,3)=vec; % set random in (percentage) grid points of conductance ~0, 
 % and in the rest grid points the conductance set to 1 
% compose the system of the Kirchhoff electric current equations, finding 
% solution by keeping balance of electric currents at nodes: +1 in sorce -1 
% in sink and everywhere else is 0. Vector of electric currents is b. 
for i=1:1:nx*ny 
    v = P(i).n~=0; 
    l = 1:1:nx*ny; 
    p = P(i).n(v); 
    l = l(v); 
    P(i).n = l; 
end 
ni=i; 
A = sparse(i,i); %use sparce matrix 
for i=1:1:nx 
    for j=1:1:ny 
        p = P(I(i,j)).n; 
        a=0; 
        for k=1:1:length(p) 
            if R(p(k),3)~=0 
                A(I(i,j),p) = -1/R(p(k),3);% set in connected nodes the 

conductnace -1/R 
                a = a+1/R(p(k),3);% sum of conductances in the matrix row 
            end 
        end 
        A(I(i,j),I(i,j)) = A(I(i,j),I(i,j))+a;% sum of conductances in the 

matrix row 
        %excluding the the node i=j 
    end 
end 
det(A) 
B = zeros(nx*ny,1); 
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B(I(k1(1),k1(2))) = current;% source of electric current =+1 
B(I(k2(1),k2(2))) = -current;% sink of electric current =-1 
if det(A)~=0 
u = A\B; %if matrix A is not singular 
else 
 %If matrix A is singular : Perform SVDS on A 
[W,S,V] = svds(A);%perform singular value decomposition 
% A == W*S*V' returns the left singular vectors W,  
%diagonal matrix S of singular values, and right singular vectors V.  
% Calc number of singular values 
sing = diag(S);   % vector of singular values 
tolerance = max(size(A))*eps(max(sing));% eps(sing)returns the positive  
%distance from abs(sing) to the next larger floating-point number of the 
%same precision as sing 
m = sum(sing>tolerance); 
% Define spaces 
Up = W(:,1:m); 
Vp = V(:,1:m); 
SpInv = spdiags( 1.0./sing(1:m), 0, m, m );%extracts all nonzero diagonals  
%from the matrix A 
% Calc AInv such that u = AInv * b 
AInv = Vp * SpInv * Up'; 
u = AInv * B;   % calculation of potential vector 
end 
% convert the vector u(i) into the matrix U(i,j) 
for i=1:1:nx*ny 
    U(Ir(i,1),Ir(i,2))=u(i); 
end 
% plotting of electric potential U 
subplot(1,2,1) 
    colormap(jet(256)) 
        imagesc((log10(abs(U)))') 
    axis equal tight 
    caxis([-6,1]) 
    hold on 
   mx=max(U(:));mn=min(U(:)); %find maximum and minimum of electric 

potential 
   [xmax ymax]=find(U==mx); [xmin ymin]=find(U==mn);% ccordinates of max 

and min 
       t1=num2str(mx); t1=strcat('\rightarrow U_m_a_x= ',t1); 
    t3=num2str(mn); t3=strcat('\rightarrow U_m_i_n= ',t3); 
%calculation of the resistance between two electrodes 
deltaU=U(I(k1(1),k1(2)))-U(I(k2(1),k2(2))); 
%calculate the resistance between two points with applied electric current  
    Resistance=abs(deltaU/current); 
    t2=num2str(Resistance);t2=strcat('\leftarrow R= ',t2); 
    k3(1)=round((k1(1)+k2(1))/2); k3(2)=round((k1(2)+k2(2))/2); 
    xt=[xmax xmin k3(1)]; yt=[ymax ymin k3(2)]; str={t1,t3,t2};  
    t=text(xt,yt,str); 
     t(1).Color='red'; t(2).Color='blue'; t(3).Color='magenta'; 
     t(1).FontSize=14;t(2).FontSize=14; t(3).FontSize=12;  
     t(1).FontWeight='bold';t(2).FontWeight='bold'; t(3).FontWeight='bold'; 
    q=quiver(k2(1),k2(2),k1(1)-k2(1),k1(2)-k2(2),1); q.Color='magenta'; 
    hold on 
% plotting electric circuit of grid resistors    
subplot(1,2,2) 
    colormap(pink) 
    imagesc((log10(abs(U)))') 
    hold on; 
    for i=1:1:size(R,1) 
        q='k'; 
        s=1; 
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        if R(i,3)==Rmax 
            q='r'; 
            s=0; 
        end 
        if s==1 
            

plot([Ir(R(i,1),1),Ir(R(i,2),1)],[Ir(R(i,1),2),Ir(R(i,2),2)],q,'linewidth',

3); 
        end 
          k = [k1;k2];sz=350; 
        scatter(k(:,1),k(:,2),'r*') 
    end 
% checking the solution conversion 
ff = A*u; ff(B~=0)=0; 
ff = ff'*ff 
caxis([-6,1]) 
hold off; 
axis equal tight 
colorbar 

The results of the simulation are shown in Fig. ME8.2.2 for 100 of R=1 (upper panel) and for 

65% of R=1 (lower panel. The coordinates of k1 und k2 are the points where the electrical 

potential is applied, i.e. the source and the sink of electric current.  Left plot represents the 

magnitude of electric potentials U in log10(abs(U)) units throughout the grid.  Right plot is the 

network of resistors: black stretches connect the nodes with the electrical conductivity =1, the 

absence of black stretches indicate on the infinite resistance or zero conductivity. The solution 

conversion of is estimated by ff, the norm of the solution vector.  
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Fig. ME9.1 MATLAB calculations of electrical potential in 2D grid of resistors having conductivities: 

upper panels stand for 100% of R=1. Lower panels stand for 65% of R=1 and 35% of R=106. The 

electric field applied to the nodes marked by two red stars.  

 

 

MATLAB Exercise 9. Dielectric sphere in uniform electric field 

Consider a uncharged dielectric sphere of radius a having the dielectric constant ε1, 

surrounded by a medium of dielectric constant 𝜀2 , and the uniform electric field E0 is applied 

The origin of coordinate system is taken to be at the sphere center and z-axis is along E0. Let 

𝛷1 and 𝛷2 be two potential functions inside and outside the sphere, respectively. At far 

distances from the sphere, the electric field is uniform and equal to: 𝐸2 = 𝐸0 ∙ 𝑒𝑧⃗⃗  ⃗ , which 

corresponds to the potential: 𝚽2(∞) = −𝐸0 ∙ 𝑟 ∙ 𝑐𝑜𝑠𝜃. The solution of this problem must 

satisfy the following boundary conditions: 

(i) ∇2𝚽1 = 0 and ∇2𝚽2 = 0, both inside and outside respectively, since there is no space 

charges inside and outside the sphere.  

(ii)  𝚽1 must remain finite for all r < a, and 𝚽2 must also remain finite at infinity. 

(iii)  𝚽1 = 𝚽2 for r = a at all angles θ. 

(iv) The normal component of displacement vector D must be continuous at r = a, i.e., D1n = 

D2n. 

The potentials outside and inside the sphere can be written as: 

𝚽2 = - E0 ∙r∙ cos θ + (
𝐴

𝑟²
)∙ cos θ for r ≥ a,  (ME 9.1.1) 

𝚽1 = B·r∙ cos θ + (
𝐶

𝑟²
) ∙cos θ  r<  a    (ME 9.1.2). 

The potential would be finite at the origin (r = 0), therefore, C=0, hence  

𝚽1 = B·r∙ cos θ  (ME 9.1.3) 

According to the boundary condition (iii), 𝚽1 = 𝚽2, for r = a 

B·a cos θ = -E0·a cosθ + (
𝐴

𝑎²
) cos θ or B = -E0 + 

𝐴

𝑎³
  (MB 9.1.4) 

According to the boundary condition (iv), 

D1n = D2n or ε1∙ε0 E1n = ε2∙ε0 ∙E2n 

According to the definition, En = -∂𝚽/∂r, and hence:  - ε1 (∂𝚽1/∂r)r = a = -ε2 (∂𝚽2/∂r)r = a, then,  

it follows: - ε1∙B cos = -ε2 [-E0 cosθ – (
2𝐴

𝑎³
) cos θ], or 
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 ε1∙B = -ε2 ∙(E0 + 
2𝐴

𝑎³
)   …   (ME 9.1.5) 

Solving (ME 9.1.4) and (ME 9.1.5), one gets: A = 
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙ E0∙a3 and B =−

3𝜀2

𝜀1+2𝜀2
 ∙E0. Thus the 

potential functions inside and outside the spheres are: 

𝚽1 = −
3𝜀2

𝜀1+2𝜀2
 ∙E0 ∙r∙ cos θ     (ME 9.1.6), 

𝚽2 = - [1 – 
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙
𝑎3

𝑟3
] ∙E0 ∙r∙ cos θ     (ME 9.1.7), 

The electric field at any point is given by: 

inside the sphere r<a:  E1 = - ∂𝚽1/∂z = 3ε2/(ε1 + 2ε2) E0=[1 −
(𝜀1−𝜀2)

𝜀1+2𝜀2
] ∙ 𝐸0,  

and 

outside the sphere  r>a: E2 =- ∂𝚽1/∂z= [1 + 2 ∙
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙
𝑎3

𝑟3
] ∙ 𝐸0⁡ (ME  9.1.8). 

The electric field outside the sphere is equivalent to the applied field E0 plus the field of 

electric dipole at the sphere center having the dipole moment:  

𝑝  = 4πε0·ε2 
(𝜀1−𝜀2)

𝜀1+2𝜀2
 E0·a

3  …    (ME 9.1.9), 

which is oriented in the direction of applied field. The electric field of dipole p is: 𝐸⃗ 𝑑𝑖𝑝𝑜𝑙𝑒 =
1

4𝜋𝜀0
∙
2𝑝 

𝑟³
. When a dielectric sphere acquires the dipole moment in electric field, it is polarized. 

The polarization is defined as the dipole moment per unit volume i.e.,  

𝑃⃗  =𝑝 /(4/3)πa3 = 3∙ε0 ∙ε2 
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙E0    (ME 9.1.10), 

or 
𝑃⃗ 

3𝜀0∙𝜀2
=
(𝜀1−𝜀2)

𝜀1+2𝜀2
∙ 𝐸0     (ME 9.1.11). 

Thus, the electric field inside the sphere is reduced relative to the applied field E0 by:  

𝐸𝑑⃗⃗ ⃗⃗ ⁡= −
𝑃⃗ 

3𝜀0∙𝜀2
       (ME 9.1.12), 

where 𝐸𝑑⃗⃗ ⃗⃗ ⁡ is the field due to dielectrics 𝜀2⁡inside the sphere. 

Here below is MATLAB program to calculate the electric field inside and outside the 

polarized sphere under a uniform external electric field. 
    global  eps1 eps2 a E0       

       eps2=25.0;      % dielectric comstant inside the sphere 

    eps1=2.;      % dielectric constant outside the sphere 

    E0=1.0;%external field 

    a=1.0;% radius of the sphere 

    n=3; %scale factor of the plot   

    xmin=-n*a; xmax= n*a; ymin=-n*a; ymax= n*a; 

    x = linspace(xmin,xmax,200); y=x; 

        [X,Y] = meshgrid(x,y);   

    R=@(x,y) sqrt(x.^2+y.^2);% Radius vector calculatios 

       V=voltage(X,Y,R);%function to calculate the electric 

potential 

    [Ex,Ey] = gradient(-V); % components of electric field 

    figure; 

        contour(X,Y,V,[-n*a:a/n:n*a]);  

      colormap('jet'); 

       axis tight; caxis([-n*a,n*a]); 

    hold on 

    streamslice(X,Y,Ex,Ey); 

m = 100; %number of points to draw a circle 

angle = 0:2*pi/m:2*pi;% vector of angles at which points are drawn 

x = a*cos(angle); y = a*sin(angle);   % Coordinates of the circle 
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plot(x,y,'r', 'LineWidth',2); 

    hold off 

    end 

function v = voltage(x,y,R)% to calculate the electric potential 

    global  eps1 eps2 a E0    

v=-E0.*x.*(1-(eps1-

eps2)./(2.*eps2+eps1).*(a^3)./R(x,y).^3).*heaviside(R(x,y)-a) 

-E0.*x.*(1-(eps1-eps2)./(2.*eps2+eps1)).*heaviside(-(R(x,y)-a)); 

% calculation of the potential inside and outside the sphere 

end 

 
Fig. ME9.1 MATLAB calculations of 2D electric field of polarized sphere in uniform external 

electric field, 1 is the dielectric constant of medium outside sphere, 2 is the dielectric constant of 

medium inside sphere:  A. 1=25 >2=5; B. 1=5 <2=25. The vertical lines are equipotential 

surfaces, horizontal arrow lines are electric field lines. The density of arrow lines inside the sphere 

is proportional to the electric field strength. In the case (A) the dielectric field 𝐸𝑑⃗⃗ ⃗⃗ = −
𝑃⃗ 

3𝜀0∙𝜀2
=

−
(𝜀1−𝜀2)

⁡𝜀1+2𝜀2
∙ 𝐸0 is negative and is subtracted from the applied field E0. In the case (B) it is positive 

and added to the field E0. 

 

In order to program the electric potential 𝚽1,2 (ME 9.1.6) and (ME 9.1.7) consisting of two 

functions the Heaviside piecewise constant function H(x) has been used: 

𝐻(𝑥) = {

0⁡𝑎𝑡⁡𝑥 < 0
1

2
⁡𝑎𝑡⁡𝑥 = 0

1⁡𝑎𝑡⁡𝑥 > 0

} . The derivative of the step function H(x) is the Dirac delta function 

(x). The electric potentials in two regions 𝚽1(x<a) and 𝚽2(x>a) may be expressed with the 

help of the Heaviside function as follows: 𝚽(x)= 𝚽1(x)∙H(-(x-a))+ 𝚽2(x)∙H(x-a). 

*************************************************************************** 

MATLAB Exercise 10. Computation of electric current loop magnetic field 

Electric charges interact with the electric field that they produce. Since moving charges, i. e. 

electric current, interact with the magnetic field, so it also creates its own magnetic field. The 

equation used to calculate the magnetic field produced by electric currents is the well-known 

Biot-Savart law, which enables to calculate the magnitude and direction of the magnetic field 
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produced by current in a wire. The Biot-Savart law states that at any point P (Fig. ME10.1.1), 

the magnetic field 𝑑𝐵⃗ ⁡due to the length element⁡⁡𝐼 ∙ 𝑑𝑙 of current-carrying wire is given by 

𝑑𝐵⃗ = 𝜇0 ∙ 𝜇𝑟 ∙
[𝐼 𝑥𝑟 ]

4𝜋𝑟³
∙ 𝑑𝑙, where 𝜇0 = 1.257 ∙ 10

−6⁡𝐻/𝑚 is the vacuum magnetic permeability 

and  𝜇𝑟 is the relative magnetic permeability of medium. A current loop produces the 

magnetic field produced by a current loop at point P is given by the Biot-Savart law: 𝑑𝐵⃗ =

𝜇0 ∙ 𝜇𝑟 ∙ ∮
[𝐼 𝑥𝑟 ]

4𝜋𝑟³
∙ 𝑑𝑙=𝜇0 ∙ 𝜇𝑟 ∙ 𝐼 ∙ ∮

𝑠𝑖𝑛𝜃

4𝜋𝑟²
∙ 𝑑𝑙.  

 

  
Fig. ME 10.1.1 Electric loop wire segment 𝑑𝑙 carrying electric current 𝐼 . Loop length element 

dl, radial direction 𝑟⁡⃗⃗ , and angle   between them are indicated. 

 

If point P lies on the symmetry axis of loop, then the integration of current elements in polar 

coordinates dl=R∙ 𝑑𝜑 gives: 

𝐵⃗ = 𝐵𝑧 = 𝜇0 ∙ 𝜇𝑟 ∙
𝐼

2
∙

𝑅2

(𝑅2+𝑧2)
3
2⁄
= 𝐵0 ∙

𝑅3

(𝑅2+𝑧2)
3
2⁄
⁡  (ME10.1.1), 

where B0 = 𝜇0 ∙ 𝜇𝑟 ∙
𝐼

2𝑅
⁡is the magnetic field in the centre of electric current loop (at z=0) 

If one denotes the distances PP’=OZ=z, and PZ=P’O=, then 

MP’=√𝑅2 + 𝜌2 − 2𝑅 ∙ 𝜌 ∙ cos 𝜑.⁡⁡ From the geometry in Fig. ME10.1.1 it follows that in the 

Cartesian coordinate system  𝑑𝑙⃗⃗  ⃗ = 𝑅 ∙ ⁡𝑑𝜑 ∙ {− sin 𝜑, cos𝜑⁡},⁡and 𝑟 = {𝜌 − 𝑅 ∙

cos𝜑,−𝑅 ∙ sin 𝜑, 𝑧}. The vector product of them is given by [𝑑𝑙⃗⃗  ⃗𝑥𝑟 ] = 𝑅 ∙ 𝑑𝜑 ∙
{𝑧 ∙ cos 𝜑, 𝑧 ∙ sin𝜑, 𝑅 − 𝜌 ∙ 𝑐𝑜𝑠𝜑}.⁡The magnetic field in axisymmetric cylindrical coordinate 

system is: 𝑑𝐵⃗ = {𝑑𝐵𝑧 , ⁡𝑑𝐵𝑟} =
𝐵0

2
∙ 𝑅2 ∙

{𝑧,⁡⁡⁡𝑅−𝜌∙cos𝜑}

(√𝑅2+𝜌2+𝑧2−2𝑅∙𝜌∙cos𝜑)
3 ∙ 𝑑𝜑. After integration of 

current elements in the loop plane the following identity may be written for 𝐵⃗  in cylindrical 

coordinates: 
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𝐵⃗ (𝜌, 𝑧)⁡=⁡{𝐵𝑧, ⁡𝐵𝑟} = {
𝐵𝑧 =⁡

𝐵0∙𝑅

𝜋∙√(𝑅+𝜌)²+𝑧²
∙ [𝐸(𝑘) ∙

𝑅2−𝜌2−𝑧2

(𝑅−𝜌)2+𝑧2
+ 𝐾(𝑘)]

𝐵𝑟 =
𝐵0∙𝑧∙𝑅

𝜋∙𝜌∙√(𝑅+𝜌)²+𝑧²
∙ [𝐸(𝑘) ∙

𝑅2+𝜌2+𝑧2

(𝑅−𝜌)2+𝑧2
−𝐾(𝑘)]

 (ME10.1.2), 

where K(k²)=∫
𝑑𝜃

√1−𝑘²∙sin²𝜃

𝜋

2
0

 is the complete elliptic integral function of the first kind, 

E(k²)=⁡∫ √1 − 𝑘² ∙ sin² 𝜃
𝜋

2
0

∙ 𝑑𝜃 is the complete elliptic integral function of the second kind, 

and  the modulus 𝑘 = 2 ∙ √
𝑅∙𝜌

(𝑅+𝜌)2+𝑧²
 .  

In MATLAB code shown below the function [Bz,Br]= m_field_loop(i,R,ro,z) 

is calculated for two components of magnetic field, Br and Bz, using the build-in function 

[K,E] = ellipke(k²)  for  two elliptic integrals,  K(k²) and E(k²). The results of 

calculations are presented in Fig. Fig. ME 10.1.2. 
clc; close all; clear all; 

%-------------------------------------------------------------------

------ 

%---electric loop is in the z=0 plane and magnetic field B is 

evaluated  

%-------------at every point in the ro-Z plane----------------------

-- 

%-------------------------------------------------------------------

------ 

Nz=201;  % No. of grids in Z-axis 

Nro=51;  % No. of grids in Y-axis 

Ra=0.25;    % Radius of the coil in the X-Y plane 

I=10;    % current in the coil 

phi=-pi/2:2*pi/(Nro-1):3*pi/2; % For describing a circle (loop) 

Xc=Ra*cos(phi); % X-coordinates of the loop 

Yc=Ra*sin(phi); % Y-coordinates of the loop 

Zc=zeros(length(phi)); % Z-coordinate of the loop 

  

figure(1)%plot electric loop 

plot3(Xc,Yc,Zc,'linewidth',3) 

axis([-2*Ra 2*Ra -2*Ra 2*Ra -2*Ra 2*Ra]) 

daspect([1 1 1]); 

xlabel('X-axis','fontsize',14) 

ylabel('Y-axis','fontsize',14) 

zlabel('Z-axis','fontsize',14) 

hold on 

quiver3(0,0,-2*Ra,0,0,4*Ra,'linewidth',3); %plot the direction of  

dipole moment 

hold on 

title('electric loop co-ordinates','fontsize',14) 

h=gca; get(h,'FontSize')  

set(h,'FontSize',14) 

h = get(gca, 'ylabel');fh = figure(1);set(fh, 'color', 'white');  

grid on 

hold on 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ro=0:Ra/(Nro-1):2*Ra; %vector of ro 

z=-2*Ra:Ra/(Nz-1):2*Ra; %vector of z 

[RO,Z]=meshgrid(ro,z); 

[Bz,Br]=m_field_loop(I,Ra,RO,Z);%calculate 2 components of vector B 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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figure(2) 

lim1=min(min(Bz)); lim2=max(max(Bz)); 

steps=(lim2-lim1)/100; %defines number of contour lines 

contour(Z,RO,Bz,lim1:steps:lim2) 

axis([-2*Ra 2*Ra 0 2*Ra]) 

xlabel('Z-axis','fontsize',14) 

ylabel('\rho-axis','fontsize',14) 

title('Bz component','fontsize',14) 

colorbar('location','eastoutside','fontsize',14); 

h=gca; get(h,'FontSize')  

set(h,'FontSize',14) 

h = get(gca, 'ylabel');fh = figure(2);set(fh, 'color', 'yellow');  

grid on 

hold on 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(3) 

contour(Z,RO,Br,lim1:steps:lim2) 

axis([-2*Ra 2*Ra 0 2*Ra]) 

xlabel('Z-axis','fontsize',14) 

ylabel('\rho-axis','fontsize',14) 

title('Br component','fontsize',14) 

colorbar('location','eastoutside','fontsize',14); 

h=gca;get(h,'FontSize')  

set(h,'FontSize',14) 

h = get(gca, 'ylabel');fh = figure(3); set(fh, 'color', 'green');  

grid on 

hold on 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [Bz,Br]= m_field_loop(i,R,ro,z) 
%%%%%%%%%%%%%%%%%%%%%%% 
% [Bz,Br]=m_field(i,R,r0,z) 
% Bz - axial comp. of mag. field 
% Br - radial comp. of mag. field 
% i=coil current; 
% R=coil radius; 
%ro= distance of a point from Z-axis 
%z= vertical co-ordinate along Z-axis 
%%%%%%%%%%%%%%%%%%%%%%% 
mu0=4*pi*10^-7;% vacuum permeability 
B0=(i*mu0)/(2*R);% magnetic field Bo in the center of electric loop 
        if (ro==0) 
         Bz=B0.*R^3./((R.^2+z.^2).^(3./2)); 
            Br=0;             
        else           
            k=sqrt(4.*ro.*R./((R+ro).^2+z.^2)); 
            [K,E] = ellipke(k.^2); %calculate elliptic integrals  
 Bz=B0./pi./sqrt((R+ro).^2+z.^2).*(E.*(R.^2-ro.^2-z.^2)./((R-

ro).^2+z.^2)+K); 
 Br=B0.*z./ro./pi./sqrt((R+ro).^2+z.^2).*(E.*(R.^2+ro.^2+z.^2)./((R-

ro).^2+z.^2)-K);    
        end 
                      end 



 

724 

 

 
  

Fig. ME 10.1.2 Electric current loop in 3D (upper panel). Contour lines are the axial (middle 

panel) and radial (lower panel) 𝐵⃗  components.  

 

MATLAB Exercise 11.1 Thermal inertia of surface rocks  

When the surface heat flux is a harmonic function of time ∝ cos⁡(𝜔 ∙ 𝑡) , then the temperature 

in half space beneath the surface at depth x should satisfy 1D-heat transport equation 
𝜕𝑇

𝜕𝑡
=  ∙

𝜕²𝑇

𝜕𝑥²
  with the surface boundary condition at x=0:  (- 

𝜕𝑇

𝜕𝑥
+ ℎ ∙ 𝑇)𝑥=0 = (ℎ + 𝑐) ∙ cos⁡(𝜔 ∙ 𝑡).  

This relationship may be considered as the periodic temperature boundary condition, when the 

thermal conductivity of half space is low ( i.e. h>>c~1), or as the periodic heat flux boundary 

condition, when the thermal conductivity is high ( i.e. h<<c~1). The solution for the steady 
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state temperature distribution as a function of time and depth is also the periodic function of 

time but shifted by phase relative to the phase of boundary oscillating condition. After 

introducing the “thermal” wave length 1/𝜇 = √
2∙

𝜔
 , the temperature solution may be written in 

the form (Carslaw & Jaeger, 1959):  

𝑇(𝑥, 𝑡) = 𝑇0 ∙ cos⁡(𝜔 ∙ 𝑡 − 𝜇 ∙ 𝑥 + 𝛿) ∙ 𝑒
−𝜇∙𝑥 ∙ 𝐴(ℎ, 𝜇)    (ME 11.1),  

where 𝛿 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝜇

ℎ+𝜇
), and 𝐴(ℎ, 𝜇) =

1

√(1+
𝜇

ℎ
)
2
+(

𝜇

ℎ
)²

. In the case of periodic boundary 

temperature =0 and A=𝑇0, in the case of periodic boundary heat flux: =/4 and 𝐴 =
𝑞0

∙𝜇
, 

where 𝑞0⁡is the amplitude of flux on the surface. In the case when the surface boundary 

condition is of the mixed type, the phase shift  is between 0 and /4. The results are 

presented in Fig. ME11.1. 
lamda=5;q0=10; 

kappa=0.5;omega=0.5; 

mu=sqrt(omega/2/kappa); 

x=linspace(-5,0,100);% create a vector x 

t=linspace(0,pi*5,21);% create a vector t 

[X,Y]=meshgrid(x,t);% create a meshgrid of two vectors x and t 

Z=q0/lamda/mu/sqrt(2)*exp(X.*mu).*cos(Y.*omega-pi/4+X.*mu); 

figure 

waterfall(X,Y,Z) 

xlabel('depth','Fontsize',18)  

ylabel('time','Fontsize',18)  

zlabel ('Temperature','Fontsize',18) 

hold on 

 

 
Fig. ME11.1 Time dependent solution of 1D temperature distribution in half space with periodic time 

dependent heat flux on the surface.  

************************************************************************** 
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MATLAB Exercise 11.2 Solution of time dependent 1D thermal transport 
equation 

If one considers 1D-rod with perimeter  and cross section area A, then, the increment of heat 

in length element dx is given by  ∙ 𝐴 ∙
𝜕²𝑇

𝜕𝑥²
∙ 𝑑𝑥, and the amount of heat lost through the side 

surface is 𝛬 ∙ ∙ (𝑇 − 𝑇0) ∙ 𝑑𝑥, where T0 is the surrounding medium temperature and  is the 

heat exchange (transfer)  coefficient in W/m²/°K. The total increase of the heat in volume per 

unit of time is ∙ 𝐶𝑝 ∙
𝜕𝑇

𝜕𝑡
∙ 𝐴 ∙ 𝑑𝑥 . Thus, 1D-thermal transport equation with the lateral heat 

exchange in medium at temperature T0 is formulated as follows: 

𝜌 ∙ 𝐶𝑝 ∙
𝜕𝑇

𝜕𝑡
=  ∙

𝜕2𝑇

𝜕𝑥2
− 𝛬 ∙



𝐴
∙ (𝑇 − 𝑇0)  (ME 11.2.1). 

The following program is written using the semi-discretization method (method of lines). The 

time t and space coordinate x are discretized independently. For each line of x-vector the 

solution is obtained in respect with time by solving the ordinary differential equation using 

MATLAB solver ode15s (Driscoll, 2009). In the example below, the interval x = [-2,0] mm 

and the time span t = [0,10] sec are considered. 1D-thermal transport equation with the 

thermal exchange in medium at T=0 is taken in the form: 
𝜕𝑇

𝜕𝑡
=  ∙

𝜕²𝑇

𝜕𝑥²
−  ∙ 𝑇     (ME 11.2.2), 

where =


𝜌∙𝐶𝑝
 is the thermal diffusivity, and  =

𝛬

𝜌∙𝐶𝑝
∙


𝐴
. The rod is located in medium with 

T=0, and at the ends x=0 and x= -2 the temperature is maintained constant T=0. At t=0 the 

initial temperature is  T=50° in x range from [-0.1 0] mm and T=0 elsewhere. The right hand 

side of (ME 11.2.2) is replaced by the matrix-vector multiplication: 

 ∙
𝜕2𝑇

𝜕𝑥2
−  ∙ 𝑇 =  ∙

1

ℎ2
∙

[
 
 
 
 
−2 1 0
1 −2 1
0 1 ⋱

0 0

0 −2 1
0 1 −2]

 
 
 
 

∙ [𝑢𝑖] −  ∙ [𝑢𝑖]  (ME 11.2.3), 

where ui is the temperature vector. ME11.23 is integrated numerically in respect of time as an 

ordinary differential equation using the solver: ode15s. The sample calculation results are 

presented in Fig. ME 11.2.1.  
%MATLAB program adapted from [Driscoll, 2009].  

n=500; h=2/n;% n is the number of nodes, h is the interval length 

kappa=2.5e-3;nu=0.015; 

%thermal diffusivity and thermal exchange coefficient 

x=(-2+h*(1:n-1)).*1e-3;%generation of x-vector of nodes 

D2=toeplitz([-2 1 zeros(1,n-3)]/h^2); 

%generation of the three-diagonal matrix 

f=@(t,u) kappa*D2*u-nu*u;%differential equation in a matrix form 

u0=50*heaviside(x+1e-4);%initial temperature profile 

[t,u]= ode15s(f,[0 10],u0); 

%solving of the differential equation in respect to time 

figure 

waterfall(x,t,u) 

c.LineWidth = 1; box on 

xlabel('depth,m','Fontsize',18)  

ylabel('time, sec','Fontsize',18)  

zlabel ('Temperature,°K','Fontsize',18) 

hold on 
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Fig. ME11.2.1 Method of lines realized in 1D for the time dependent thermal transport equation. 

(upper panel) 3D plot in coordinates depth-time-temperature. (lower panel) Isoclines of temperature 

solution in log(depth)-log(time) coordinated.  .  
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 MATLAB Exercise 12.1 Radioactive decay 

This example of MATLAB program illustrates the stochastic character of radioactive decay 

process using the Monte-Carlo simulation. Starting from n nuclides at t=0 and using the time 

step dt, the program generates n random numbers between 0 and 1 using the uniform PDF. 

The probability of nuclide decay is ∙dt. So, if one counts how many numbers are less than 

∙dt among the set of n numbers, this will be the number of decayed nuclides during the time 

step dt. On the next time step the total number of nuclides is corrected for the number of 

decayed nuclides, and the MC-simulation is repeated.  

 % To simulate radio active decay by Monte Carlo method % % modified 
from Mahesha MG, MIT 

_______________INPUT___________________________________  

clc; clear;  

nmc=input('Enter number of Monte Carlo simulations (>10000): ');   

lambda=input('Enter decay constant \lambda in 1/sec: '); 

n=input('Enter number of nuclides at the beginning: '); 

dt=1/nmc/lambda;n0=n;%Defining a time-step nt=zeros(nmc,1); %nt 

holds MC result  

nta=zeros(nmc,1); %nta holds analytic result  

tmax=nmc*dt; t=(0:dt:tmax)'; %Define span of time 

nta=exp(-lambda*t); %Analytic solution  

nt(1)=n; % _Monte Carlo ethod_____________________________ 

 for i=2:nmc+1 

ran=rand(n,1); %random choice of n-numbers between 0 and 1 

count=length(ran(ran<=1/nmc));  

% count of numbers which are <= lambda*dt      

n=n-count;% a new count of nuclides     

 if(n<=0)  

        break;  

    end  

    nt(i)=n; end  

% _______________________________________________________ 

plot(t,nt/n0,'r',t,nta,'b'); 

 xlabel('\lambda*t, dimensionless time');  
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ylabel('Relative number of nuclides');  

grid on  

hold on  

legend('MC-simulation','e^{-\lambda*t}')   

When the starting number of nuclides is small the stochastic method to estimate the decayed 

number of nuclides deviates from the exact exponential solution (Eq. 12.3).  

  

Fig. ME12.1 Results of 105 MC simulations for starting 1000 nuclides at =1. At larger number of 

starting nuclides the difference between the stochastic solution and the analytical one is almost 

undistinguishable.    

MATLAB Exercise 12.2 Radioactive chain decay. 

In this example one considers the decay chain with n differing types of nuclides such that the 

ith nuclide type decays into the (i + 1)th nuclide type of chain. If Ni(t) is the number of ith 

nuclide at time t and λi is its decay constant, one may write the system of decay equations in 

the form:  

 (ME12.2.1). 
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In the matrix form the system of ordinary differential equation is as follows: , 

 where  is the triangular bidiagonal matrix 

   (ME12.2.2).  

For the more general case when the decay is with branching, the matrix Λ should be written 

as follows: 

   (ME12.2.3).  

The branching means that from the decay of one parent nuclide several daughter nuclides may 

be produced. For example, the number of disintegrated nuclides N1 over unit time λ11 may 

produce λ21 of the daughter nuclide N2 ,  31 of the daughter nuclide N3 , n1 of the daughter 

nuclide Nn, i.e. for the element of  matrix one can write n identities as follow:   

, which means the balance between the disintegrated number of 

the parent isotope and the produced number of daughter isotopes. The system of differential 

equations (12.2.1) may very stiff because of the wide range of ij constants in  matrix. In 

MATLAB program below the system composed of 3 isotopes is considered.   

function rad_decay     

clc;clear;    %Radioactive decay     

n=3; %Number of isotopes     

y0=zeros(n,1); y0(1)=10^6;  %Intial number of  parent isotope 

nuclides     

t = [0 25]; %Time of integration   

[T,Y] = ode23s(@(t,y) odefcn(t,y,n),t,y0); % integrates the system 

of stiff differential equations      

%y'=f(t,y) from t0 to tf with initial conditions y0.     

figure     

∑ 𝜆𝑗𝑖
𝑛
𝑗=𝑖+1 + 𝜆𝑖𝑖=0 

𝑖 + 𝜆𝑖𝑖=0-  
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plot(T,(Y(:,1)),'.',T,(Y(:,2)),'--', T,(Y(:,3)),'+');    

xlabel('Time'); ylabel('Number of nuclides'); 

    hold on;grid on; 

      legend('Isotope N_1','Isotope N_2','Isotope N_3')        end     

function dxdt = odefcn(t,x,n)     

dxdt = zeros(n,1);    

 lamda = [-1 0 0;0.5 -0.1 0;0.5 0.1 0]; % Matrix of isotope decay 

constants       

for i=1:n           

s=0;         

for j=1:i       

s = s+lamda(i,j)*x(j); %Isotope decay+gain mother isotope decay         

end         

dxdt(i)=s;         

end 

end 
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Fig. ME12.2 Branching decay of parent isotope N1 into unstable N2 and stable N3.  
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