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Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

Definition of Derivative

A function f : I → R, where I is an open interval, has derivative
m at a point a ∈ I if for each ϵ > 0 there is a δ > 0 such that
|x − a| < δ implies |f (x)− f (a)−m(x − a)| ≤ ϵ|x − a|.

• If f has a derivative at a we say that f is differentiable at a.
The act of finding the derivative is called differentiation.

• If f has derivative m at a, the line y = f (a) +m(x − a) is
called the tangent line to the graph of f at (a, f (a)).

• If f has derivative m at a, we use the notation f ′(a) or
df

dx
(a)

or
df

dx

∣∣∣
x=a

for m.
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Example

The sequence of graphs illustrates this definition for y = x2, a = 1,
m = 2 and ϵ = 0.1. We see that δ = 0.05 works for these values,
and brings the curve inside the shaded zone.
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Caratheodory’s Characterization of Derivative

Theorem 1

A function f has derivative f ′(a) at a if and only if there is a
function φ such that f (x)− f (a)− f ′(a)(x − a) = φ(x)(x − a) and
lim
x→a

φ(x) = φ(a) = 0.

Proof. Suppose the derivative f ′(a) exists. Define

φ(x) =


f (x)− f (a)

x − a
− f ′(a) if x ̸= a.

0 if x = a.

Consider any ϵ > 0. The definition of derivative gives δ > 0 such
that |x − a| < δ implies |f (x)− f (a)− f ′(a)(x − a)| ≤ ϵ|x − a|.
Then 0 < |x − a| < δ implies |φ(x)| ≤ ϵ, which corresponds to the
desired lim

x→a
φ(x) = 0.

The steps can be reversed to obtain the converse. □
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Differentiability implies Continuity

Theorem 2

If a function is differentiable at a point, then it is continuous at
that point.

Proof. Suppose f has derivative f ′(a) at x = a.
There is a function φ such that
f (x)− f (a)− f ′(a)(x − a) = φ(x)(x − a) and lim

x→a
φ(x) = 0.

Hence,

lim
x→a

f (x) = lim
x→a

(
f (a) + f ′(a)(x − a) + φ(x)(x − a)

)
= f (a).

□
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Higher Derivatives

Differentiating f : D → R creates a new function f ′ : D ′ → R
where D ′ consists of all the points where f is differentiable.

We can further differentiate f ′ to get f ′′ = (f ′)′, called the second
derivative of f , and so on.
Other choices of notation are:

f (0)(x) = f (x),

f (1)(x) = f ′(x) =
df

dx
(x),

...

f (n)(x) =
dnf

dxn
(x).

The function f (n), obtained by differentiating f successively n
times, is called the nth derivative of f .
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Derivative via Limits

Theorem 3

Let f : I → R where I is an open interval. Then f has derivative
f ′(a) at a ∈ I if and only if

f ′(a) = lim
x→a

f (x)− f (a)

x − a
= lim

h→0

f (a+ h)− f (a)

h
.

Proof. We prove the first equality.

f ′(a) = m ⇐⇒ there is φ s.t. f (x)− f (a)−m(x − a) = φ(x)(x − a)

and lim
x→a

φ(x) = φ(a) = 0

⇐⇒ lim
x→a

f (x)− f (a)−m(x − a)

x − a
= 0

⇐⇒ lim
x→a

f (x)− f (a)

x − a
= m.

□
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Power Rule

Consider the function xn, for a fixed n ∈ N. Its derivative can be
calculated as follows.

(xn)′ = lim
y→x

yn − xn

y − x
= lim

y→x

n−1∑
i=0

y ixn−1−i

=
n−1∑
i=0

x ixn−1−i =
n−1∑
i=0

xn−1 = nxn−1.

The second equality uses the identity

yn − xn = (y − x)(yn−1 + yn−2x + · · ·+ yxn−2 + xn−1).

In particular, x ′ = 1, (x2)′ = 2x , etc.
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One-Sided Derivative

• f ′+(a) = lim
x→a+

f (x)− f (a)

x − a
is the right derivative of f at a.

• f ′−(a) = lim
x→a−

f (x)− f (a)

x − a
is the left derivative of f at a.

Task 1

Show that a function f is differentiable at x = a if and only if the
left and right derivatives of f at a exist and are equal.
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Differentiability on Intervals

We say f is differentiable on an interval I if it is differentiable at every
interior point of I , and has the appropriate one-sided derivative at any
end-point which is included in I . We denote the one-sided derivative at
an end-point c by f ′(c).

Theorem 4

Suppose I is an interval and f : I → R is a differentiable function. Then
the following hold.

1 If f is an increasing function then f ′(a) ≥ 0 for every a ∈ I .

2 If f is a decreasing function then f ′(a) ≤ 0 for every a ∈ I .

Proof. Suppose f is an increasing function and a is not the right
end-point of I :

x > a =⇒ f (x)− f (a)

x − a
≥ 0 =⇒ f ′+(a) = lim

x→a+

f (x)− f (a)

x − a
≥ 0.

The other cases are proved in a similar fashion. □
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Algebra of Derivatives

Theorem 5

Let f and g be differentiable at p, and let C ∈ R. Then their
combinations satisfy the following rules.

1 (Scaling) (Cf )′(p) = Cf ′(p).

2 (Sum Rule) (f + g)′(p) = f ′(p) + g ′(p).

3 (Difference Rule) (f − g)′(p) = f ′(p)− g ′(p).

4 (Product Rule) (fg)′(p) = f ′(p)g(p) + f (p)g ′(p).

5 (Reciprocal Rule)

(
1

f

)′
(p) = − f ′(p)

f (p)2
, if f (p) ̸= 0.

6 (Quotient Rule)
(g
f

)′
(p) =

g ′(p)f (p)− g(p)f ′(p)

f (p)2
, if

f (p) ̸= 0.
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Algebra of Derivatives - Proof

1 Scaling:

(Cf )′(p) = lim
x→p

Cf (x)− Cf (p)

x − p
= C lim

x→p

f (x)− f (p)

x − p
= Cf ′(p).

2 Sum Rule:

(f + g)′(p) = lim
x→p

f (x) + g(x)− f (p)− g(p)

x − p

= lim
x→p

f (x)− f (p)

x − p
+ lim

x→p

g(x)− g(p)

x − p

= f ′(p) + g ′(p).

3 Difference Rule: Combine the sum rule with scaling by
C = −1.
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Algebra of Derivatives - Proof

4 (fg)′(p) = lim
x→p

f (x)g(x)− f (p)g(p)

x − p

= lim
x→p

f (x)g(x)− f (x)g(p) + f (x)g(p)− f (p)g(p)

x − p

= lim
x→p

f (x)
g(x)− g(p)

x − p
+ lim

x→p

f (x)− f (p)

x − p
g(p)

= f (p)g ′(p) + f ′(p)g(p).

(Since f ′(p) exists, f is continuous at p and lim
x→p

f (x) = f (p).)

5 By continuity, f (x) ̸= 0 for x near p. Hence,(
1

f

)′

(p) = lim
x→p

1/f (x)− 1/f (p)

x − p
= lim

x→p

f (p)− f (x)

f (x)f (p)(x − p)
= − f ′(p)

f (p)2
.

(Since f ′(p) exists, we have lim
x→p

f (x) = f (p).)

6 Quotient Rule: Combine the product rule and reciprocal rule.
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Example

With these rules we can differentiate polynomials and rational
functions. For example,

(x45 + 7x4 + 99)′ = (x45)′ + (7x4)′ + (99)′ (sum rule)

= (x45)′ + (7x4)′ (C ′ = 0)

= (x45)′ + 7(x4)′ (scaling)

= 45x44 + 28x3. (power rule)
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Trigonometric Functions

Theorem 6

For every x ∈ R, sin′ x = cos x and cos′ x = − sin x.

Proof. We differentiate the sine function, and leave the cosine for the
reader.

sin′ x = lim
h→0

sin(x + h)− sin x

h
= lim

h→0

sin x cos h + cos x sin h − sin x

h

= lim
h→0

(
cos h − 1

h
sin x +

sin h

h
cos x

)
= 0 · sin x + 1 · cos x = cos x .

□

Task 2

Use the reciprocal and quotient rules to show that

sec′ x = sec x tan x , csc′ x = − csc x cot x ,

tan′ x = sec2 x , cot′ x = − csc2 x .
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Logarithm

To differentiate the log function, we need the following inequalities:

Theorem 7

For x > 0, 1− 1

x
≤ log x ≤ x − 1.

Proof. For x ≥ 1 these inequalities are obtained from∫ x

1

1

x
dt ≤

∫ x

1

1

t
dt ≤

∫ x

1
1 dt.

Substituting 1/x for x gives the inequalities for 0 < x ≤ 1. □
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Logarithm

Theorem 8

For every x > 0, log′ x =
1

x
.

Proof. We apply the limit definition of the derivative.

log′ x = lim
y→x

log y − log x

y − x
= lim

y→x

log(y/x)

y − x

= lim
h→1

log(hx/x)

hx − x
=

1

x
lim
h→1

log h

h − 1
.

For h > 1, we have
1

h
≤ log h

h − 1
≤ 1 from Theorem 7. The

Sandwich Theorem gives lim
h→1+

log h

h − 1
= 1.

If h < 1, the inequalities reverse and again give lim
h→1−

log h

h − 1
= 1. □
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General Logarithm, Estimating e

Task 3

Let a > 0 and a ̸= 1. Show that log′a x =
1

x log a
.

The limit calculation that we carried out in the last proof can also
be expressed as

lim
h→0

log(1 + h)

h
= 1 or lim

h→0
log((1 + h)1/h) = 1.

Applying the exponential function, and recalling that it is
continuous, we get.

lim
h→0

(1 + h)1/h = e.

We can use this limit to get better estimates of e.
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Chain Rule

Theorem 9

Let g be differentiable at a and let f be differentiable at b = g(a). Then
the composition f ◦ g is differentiable at a and the derivative is given by

(f ◦ g)′(a) = f ′(g(a))g ′(a).

Proof. Let f ′(g(a)) = m and g ′(a) = n. By Theorem 1, we have
functions φ and ψ such that:

1 g(x)− g(a) = (n + φ(x))(x − a) and lim
x→a

φ(x) = φ(a) = 0.

2 f (y)− f (b) = (m + ψ(y))(y − b) and lim
y→b

ψ(y) = ψ(b) = 0.

Hence, f (g(x))− f (g(a)) =
(
m + ψ(g(x))

)
(g(x)− b)

=
(
m + ψ(g(x))

)(
n + φ(x)

)
(x − a)

= mn(x − a) + E (x)(x − a),

and lim
x→a

E (x) = lim
x→a

(
mφ(x) + nψ(g(x)) + ψ(g(x))φ(x)

)
= 0.

This establishes that (f ◦ g)′(a) = mn = f ′(g(a))g ′(a). □
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Chain Rule - Applications

Differentiate the given functions:

1 f (x) = (x2 + 1)10.

2 g(x) = | cos x |.
3 h(x) = cos |x |.

4 k(x) =
sin2 x

sin x2
.
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Implicit Differentiation

Consider the relation x2 + y2 = 1. For any x ∈ [−1, 1] we can solve for
corresponding y = ±

√
1− x2. We say that x2 + y2 = 1 defines y

implicitly in terms of x . In fact this implicit relation can be separated
into two explicit functions y+ =

√
1− x2 and y− = −

√
1− x2.

−1 1

−1

1 x2 + y2 = 1

−1 1

−1

1 y+

y−

The Chain Rule allows us to calculate dy/dx without solving explicitly for
y :

x2 + y2 = 1 =⇒ 2x + 2y y ′ = 0 =⇒ y ′ = −x/y (if y ̸= 0).

This works simultaneously for both cases of y± = ±
√
1− x2 !
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Folium of Descartes

The need of this process of implicit differentiation is that one may be
unable to solve for y as an explicit function of x .

Consider the relation x3 + y3 = 6xy . Its solutions plot as follows.

−4 −2 2

−4

−2

2

It is hard to separate this into explicit functions, but easy to differentiate
implicitly:

x3 + y3 = 6xy =⇒ 3x2 + 3y2y ′ = 6y + 6xy ′

=⇒ (y2 − 2x)y ′ = 2y − x2 =⇒ y ′ =
2y − x2

y2 − 2x
.
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Tangent to Ellipse

The equation of an ellipse in standard form is

x2

a2
+

y2

b2
= 1.

Implicit differentiation gives

2x

a2
+

2y

b2
y ′ = 0.

If (x0, y0) is a point on the ellipse, the slope m of the tangent line there is
given by

2x0
a2

+
2y0
b2

m = 0 or m = −x0
y0

b2

a2
.

Hence the equation of the tangent line at (x0, y0) is

y = y0−
x0
y0

b2

a2
(x−x0) or

yy0 − y2
0

b2
+
xx0 − x20

a2
= 0 or

yy0
b2

+
xx0
a2

= 1.
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Derivative of Inverse Function
Theorem 10

Let f be a continuous and monotonic bijection between two intervals.
Let f ′(a) exist and be non-zero. Then f −1 is differentiable at b = f (a)
and the derivative is given by

(f −1)′(b) =
1

f ′(a)
.

Proof. If a line with slope m ̸= 0 is reflected in the y = x line, the
resulting line has slope 1/m. The following picture now represents a
proof.

a

a

b

b

f (x)

f −1(x)
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Derivative of Inverse Function

An Alternate Proof: First, we note that f −1 is a monotone
function whose image is an interval, hence f −1 is continuous.

Now, define a function g by

g(y) =


f −1(y)− f −1(b)

y − b
if y ̸= b,

1/f ′(a) if y = b.

Substituting y = f (x) and b = f (a) gives

g(f (x)) =


x − a

f (x)− f (a)
if x ̸= a,

1/f ′(a) if x = a.

So g ◦ f is continuous at a. Therefore g = g ◦ f ◦ f −1 is
continuous at b. This gives the result. □
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Inverse Trigonometric Functions

The restriction sin : [−π/2, π/2] → [−1, 1] is a bijection, hence has an
inverse function that is called arcsine and is denoted by sin−1 x or
arcsin x .

−π/2
π/2

1

−1

−1

1

π/2

−π/2

y = sin x

y = arcsin x

Similarly, cos : [0, π] → [−1, 1] has an inverse function called arccosine,
and denoted by cos−1 x or arccos x .
Finally tan: (−π/2, π/2) → R has an inverse function called arctan, and
denoted by tan−1 x or arctan x .
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Derivatives of Arcsin and Arccos

Theorem 11

arcsin′ x =
1√

1− x2
for x ∈ (−1, 1),

arccos′ x =
−1√
1− x2

for x ∈ (−1, 1).

Proof. Apply the formula for differentiating inverse functions:

arcsin′ x =
1

sin′(arcsin x)
=

1

cos(arcsin x)
.

Now cos2(arcsin x) = 1− sin2(arcsin x) = 1− x2. Since
arcsin x ∈ [−π/2, π/2], we know that cos(arcsin x) ≥ 0. Hence

arcsin′ x =
1√

1− x2
, for x ∈ (−1, 1).

The calculation for arccosine is similar and is left to the reader. □
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Derivative of Arctan

Theorem 12

arctan′ x =
1

1 + x2
for x ∈ R.

Proof.

arctan′ x =
1

tan′(arctan x)
=

1

sec2(arctan x)

=
1

1 + tan2(arctan x)
=

1

1 + x2
.

□
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Exponential Function

Theorem 13

The derivative of the exponential function is itself:

(ex)′ = ex .

Proof. Consider f (x) = log x . Its inverse function is f −1(x) = ex .
Applying the formula for differentiating an inverse function, we get

(ex)′ = (f −1)′(x) =
1

f ′(f −1(x))
=

1

log′(ex)
=

1

1/ex
= ex .

□

Task 4

Let a > 0. Show that (ax)′ = ax log a.

Task 5

Prove that cosh′ x = sinh x and sinh′ x = cosh x.
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Power Rule

Theorem 14 (Power Rule)

If r ∈ R then (x r )′ = r x r−1 for x > 0.

Proof. (x r )′ = (er log x)′ =
r

x
er log x =

r

x
x r = rx r−1. □

Example 15

We’ll differentiate the function y = xx , with x > 0. We use the
same technique as in the proof of the Power Rule.

(xx)′ = (ex log x)′ = ex log x(x log x)′ = xx(1 + log x).
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Inverse Hyperbolic Functions

Task 6

Show that sinh: R → R is a strictly increasing bijection.

So sinh x has an inverse which is strictly increasing as well as continuous.
We denote it by sinh−1 or arsinh x .

The cosh x function is even and hence not one-one. So we restrict its
domain to [0,∞).

Task 7

Show that cosh: [0,∞) → [1,∞) is a strictly increasing bijection.

The corresponding inverse function is called cosh−1 x or arcosh x . It is
also strictly increasing and continuous.

Task 8

Prove that (sinh−1 x)′ =
1√

x2 + 1
and (cosh−1 x)′ =

1√
x2 − 1

.
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First Fundamental Theorem

Theorem 16 (First Fundamental Theorem)

Let I be an interval and f : I → R be integrable on each
subinterval [a, b] ⊆ I . Fix a ∈ I and consider the indefinite integral
F : I → R defined by

F (x) =

∫ x

a
f (t) dt.

Then F ′(c) = f (c) if f is continuous at c. (If c is an end-point,
use the appropriate one-sided notion of continuity and
differentiability.)
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First Fundamental Theorem – Proof

For h ̸= 0 we have

F (c + h)− F (c) =

∫ c+h

a

f (t) dt −
∫ c

a

f (t) dt =

∫ c+h

c

f (t) dt.

Hence, F (c + h)− F (c)− hf (c) =

∫ c+h

c

f (t) dt −
∫ c+h

c

f (c) dt

=

∫ c+h

c

(f (t)− f (c)) dt.

Define φ(h) = 1
h

∫ c+h

c
(f (t)− f (c)) dt. Consider ϵ > 0. If f is continuous

at c , there is a δ > 0 such that |t − c | < δ implies |f (t)− f (c)| < ϵ.
Therefore, if 0 < |h| < δ, we obtain

|φ(h)| = 1

|h|
∣∣ ∫ c+h

c

(f (t)− f (c)) dt
∣∣ ≤ 1

|h|
|h|ϵ = ϵ.

Therefore, φ(h) → 0 as h → 0, and so F ′(c) = f (c).

Amber Habib Calculus



Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

First Fundamental Theorem – Proof

For h ̸= 0 we have

F (c + h)− F (c) =

∫ c+h

a

f (t) dt −
∫ c

a

f (t) dt =

∫ c+h

c

f (t) dt.

Hence, F (c + h)− F (c)− hf (c) =

∫ c+h

c

f (t) dt −
∫ c+h

c

f (c) dt

=

∫ c+h

c

(f (t)− f (c)) dt.

Define φ(h) = 1
h

∫ c+h

c
(f (t)− f (c)) dt. Consider ϵ > 0. If f is continuous

at c , there is a δ > 0 such that |t − c | < δ implies |f (t)− f (c)| < ϵ.
Therefore, if 0 < |h| < δ, we obtain

|φ(h)| = 1

|h|
∣∣ ∫ c+h

c

(f (t)− f (c)) dt
∣∣ ≤ 1

|h|
|h|ϵ = ϵ.

Therefore, φ(h) → 0 as h → 0, and so F ′(c) = f (c).

Amber Habib Calculus



Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

First Fundamental Theorem – Proof

For h ̸= 0 we have

F (c + h)− F (c) =

∫ c+h

a

f (t) dt −
∫ c

a

f (t) dt =

∫ c+h

c

f (t) dt.

Hence, F (c + h)− F (c)− hf (c) =

∫ c+h

c

f (t) dt −
∫ c+h

c

f (c) dt

=

∫ c+h

c

(f (t)− f (c)) dt.

Define φ(h) = 1
h

∫ c+h

c
(f (t)− f (c)) dt. Consider ϵ > 0. If f is continuous

at c , there is a δ > 0 such that |t − c | < δ implies |f (t)− f (c)| < ϵ.

Therefore, if 0 < |h| < δ, we obtain

|φ(h)| = 1

|h|
∣∣ ∫ c+h

c

(f (t)− f (c)) dt
∣∣ ≤ 1

|h|
|h|ϵ = ϵ.

Therefore, φ(h) → 0 as h → 0, and so F ′(c) = f (c).

Amber Habib Calculus



Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

First Fundamental Theorem – Proof

For h ̸= 0 we have

F (c + h)− F (c) =

∫ c+h

a

f (t) dt −
∫ c

a

f (t) dt =

∫ c+h

c

f (t) dt.

Hence, F (c + h)− F (c)− hf (c) =

∫ c+h

c

f (t) dt −
∫ c+h

c

f (c) dt

=

∫ c+h

c

(f (t)− f (c)) dt.

Define φ(h) = 1
h

∫ c+h

c
(f (t)− f (c)) dt. Consider ϵ > 0. If f is continuous

at c , there is a δ > 0 such that |t − c | < δ implies |f (t)− f (c)| < ϵ.
Therefore, if 0 < |h| < δ, we obtain

|φ(h)| = 1

|h|
∣∣ ∫ c+h

c

(f (t)− f (c)) dt
∣∣ ≤ 1

|h|
|h|ϵ = ϵ.

Therefore, φ(h) → 0 as h → 0, and so F ′(c) = f (c).

Amber Habib Calculus



Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

First Fundamental Theorem – Proof

For h ̸= 0 we have

F (c + h)− F (c) =

∫ c+h

a

f (t) dt −
∫ c

a

f (t) dt =

∫ c+h

c

f (t) dt.

Hence, F (c + h)− F (c)− hf (c) =

∫ c+h

c

f (t) dt −
∫ c+h

c

f (c) dt

=

∫ c+h

c

(f (t)− f (c)) dt.

Define φ(h) = 1
h

∫ c+h

c
(f (t)− f (c)) dt. Consider ϵ > 0. If f is continuous

at c , there is a δ > 0 such that |t − c | < δ implies |f (t)− f (c)| < ϵ.
Therefore, if 0 < |h| < δ, we obtain

|φ(h)| = 1

|h|
∣∣ ∫ c+h

c

(f (t)− f (c)) dt
∣∣ ≤ 1

|h|
|h|ϵ = ϵ.

Therefore, φ(h) → 0 as h → 0, and so F ′(c) = f (c).

Amber Habib Calculus



Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

Examples

Example 17

Suppose we have to differentiate F (x) =
∫ x
0 sin

√
t dt. By the First

Fundamental Theorem we know immediately that F ′(x) = sin
√
x .

Example 18

We shall combine the First Fundamental Theorem and the Chain
Rule to differentiate G (x) =

∫ x2

x sin
√
t dt, x > 0.

First, let F (x) =
∫ x
0 sin

√
t dt, as in the previous example. Then

G (x) =

∫ x2

0
sin

√
t dt −

∫ x

0
sin

√
t dt = F (x2)− F (x).

Hence, by the Chain Rule,

G ′(x) = F ′(x2)2x−F ′(x) = 2x sin
√
x2−sin

√
x = 2x sin |x |−sin

√
x .

Amber Habib Calculus



Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

Examples

Example 17

Suppose we have to differentiate F (x) =
∫ x
0 sin

√
t dt. By the First

Fundamental Theorem we know immediately that F ′(x) = sin
√
x .

Example 18

We shall combine the First Fundamental Theorem and the Chain
Rule to differentiate G (x) =

∫ x2

x sin
√
t dt, x > 0.

First, let F (x) =
∫ x
0 sin

√
t dt, as in the previous example. Then

G (x) =

∫ x2

0
sin

√
t dt −

∫ x

0
sin

√
t dt = F (x2)− F (x).

Hence, by the Chain Rule,

G ′(x) = F ′(x2)2x−F ′(x) = 2x sin
√
x2−sin

√
x = 2x sin |x |−sin

√
x .

Amber Habib Calculus



Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

Examples

Example 17

Suppose we have to differentiate F (x) =
∫ x
0 sin

√
t dt. By the First

Fundamental Theorem we know immediately that F ′(x) = sin
√
x .

Example 18

We shall combine the First Fundamental Theorem and the Chain
Rule to differentiate G (x) =

∫ x2

x sin
√
t dt, x > 0.

First, let F (x) =
∫ x
0 sin

√
t dt, as in the previous example. Then

G (x) =

∫ x2

0
sin

√
t dt −

∫ x

0
sin

√
t dt = F (x2)− F (x).

Hence, by the Chain Rule,

G ′(x) = F ′(x2)2x−F ′(x) = 2x sin
√
x2−sin

√
x = 2x sin |x |−sin

√
x .

Amber Habib Calculus



Derivative of a Function Algebra of Derivatives Chain Rule First Fundamental Theorem

Examples

Example 17

Suppose we have to differentiate F (x) =
∫ x
0 sin

√
t dt. By the First

Fundamental Theorem we know immediately that F ′(x) = sin
√
x .

Example 18

We shall combine the First Fundamental Theorem and the Chain
Rule to differentiate G (x) =

∫ x2

x sin
√
t dt, x > 0.

First, let F (x) =
∫ x
0 sin

√
t dt, as in the previous example. Then

G (x) =

∫ x2

0
sin

√
t dt −

∫ x

0
sin

√
t dt = F (x2)− F (x).

Hence, by the Chain Rule,

G ′(x) = F ′(x2)2x−F ′(x) = 2x sin
√
x2−sin

√
x = 2x sin |x |−sin

√
x .

Amber Habib Calculus


	Derivative of a Function
	

	Algebra of Derivatives
	

	Chain Rule
	

	First Fundamental Theorem
	


