Chapter 4: Differentiation
Part A: Rules of Differentiation

Table of Contents

Derivative of a Function

- Derivative of a Function
- Algebra of Derivatives
- Chain Rule
- First Fundamental Theorem

Definition of Derivative

A function $f: I \to \mathbb{R}$, where I is an open interval, has **derivative** m **at a point** $a \in I$ if for each $\epsilon > 0$ there is a $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a) - m(x - a)| \le \epsilon |x - a|$.

Definition of Derivative

A function $f: I \to \mathbb{R}$, where I is an open interval, has **derivative** m **at a point** $a \in I$ if for each $\epsilon > 0$ there is a $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a) - m(x - a)| \le \epsilon |x - a|$.

If f has a derivative at a we say that f is differentiable at a.
 The act of finding the derivative is called differentiation.

CAMBRIDGE UNIVERSITY PRESS

A function $f: I \to \mathbb{R}$, where I is an open interval, has **derivative** m **at a point** $a \in I$ if for each $\epsilon > 0$ there is a $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a) - m(x - a)| \le \epsilon |x - a|$.

- If f has a derivative at a we say that f is differentiable at a.
 The act of finding the derivative is called differentiation.
- If f has derivative m at a, the line y = f(a) + m(x a) is called the **tangent line** to the graph of f at (a, f(a)).

Definition of Derivative

A function $f: I \to \mathbb{R}$, where I is an open interval, has **derivative** m **at a point** $a \in I$ if for each $\epsilon > 0$ there is a $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a) - m(x - a)| \le \epsilon |x - a|$.

- If f has a derivative at a we say that f is differentiable at a.
 The act of finding the derivative is called differentiation.
- If f has derivative m at a, the line y = f(a) + m(x a) is called the **tangent line** to the graph of f at (a, f(a)).
- If f has derivative m at a, we use the notation f'(a) or $\frac{df}{dx}(a)$ or $\frac{df}{dx}\Big|_{x=a}$ for m.

Example

The sequence of graphs illustrates this definition for $y=x^2$, a=1, m=2 and $\epsilon=0.1$. We see that $\delta=0.05$ works for these values, and brings the curve inside the shaded zone.

Theorem 1

A function f has derivative f'(a) at a if and only if there is a function φ such that $f(x) - f(a) - f'(a)(x - a) = \varphi(x)(x - a)$ and $\lim_{x \to a} \varphi(x) = \varphi(a) = 0$.

Theorem 1

A function f has derivative f'(a) at a if and only if there is a function φ such that $f(x) - f(a) - f'(a)(x - a) = \varphi(x)(x - a)$ and $\lim_{x \to a} \varphi(x) = \varphi(a) = 0$.

Proof. Suppose the derivative f'(a) exists. Define

$$\varphi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} - f'(a) & \text{if } x \neq a. \\ 0 & \text{if } x = a. \end{cases}$$

Theorem 1

A function f has derivative f'(a) at a if and only if there is a function φ such that $f(x) - f(a) - f'(a)(x - a) = \varphi(x)(x - a)$ and $\lim_{x \to a} \varphi(x) = \varphi(a) = 0$.

Proof. Suppose the derivative f'(a) exists. Define

$$\varphi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} - f'(a) & \text{if } x \neq a. \\ 0 & \text{if } x = a. \end{cases}$$

Consider any $\epsilon > 0$. The definition of derivative gives $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a) - f'(a)(x - a)| \le \epsilon |x - a|$.

Theorem 1

Derivative of a Function

0000000000

A function f has derivative f'(a) at a if and only if there is a function φ such that $f(x) - f(a) - f'(a)(x - a) = \varphi(x)(x - a)$ and $\lim_{x \to a} \varphi(x) = \varphi(a) = 0.$

Proof. Suppose the derivative f'(a) exists. Define

$$\varphi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} - f'(a) & \text{if } x \neq a. \\ 0 & \text{if } x = a. \end{cases}$$

Consider any $\epsilon > 0$. The definition of derivative gives $\delta > 0$ such that $|x-a| < \delta$ implies $|f(x)-f(a)-f'(a)(x-a)| < \epsilon |x-a|$. Then $0 < |x - a| < \delta$ implies $|\varphi(x)| \le \epsilon$, which corresponds to the desired $\lim_{x \to 3} \varphi(x) = 0$.

The steps can be reversed to obtain the converse.

Differentiability implies Continuity

Theorem 2

If a function is differentiable at a point, then it is continuous at that point.

Differentiability implies Continuity

Theorem 2

If a function is differentiable at a point, then it is continuous at that point.

Proof. Suppose f has derivative f'(a) at x = a.

There is a function φ such that

$$f(x) - f(a) - f'(a)(x - a) = \varphi(x)(x - a)$$
 and $\lim_{x \to a} \varphi(x) = 0$.

Theorem 2

Derivative of a Function

00000000000

If a function is differentiable at a point, then it is continuous at that point.

Proof. Suppose f has derivative f'(a) at x = a.

There is a function φ such that

$$f(x) - f(a) - f'(a)(x - a) = \varphi(x)(x - a)$$
 and $\lim_{x \to a} \varphi(x) = 0$.

Hence.

$$\lim_{x\to a} f(x) = \lim_{x\to a} \left(f(a) + f'(a)(x-a) + \varphi(x)(x-a) \right) = f(a).$$

Higher Derivatives

Differentiating $f: D \to \mathbb{R}$ creates a new function $f': D' \to \mathbb{R}$ where D' consists of all the points where f is differentiable.

Higher Derivatives

Differentiating $f: D \to \mathbb{R}$ creates a new function $f': D' \to \mathbb{R}$ where D' consists of all the points where f is differentiable. We can further differentiate f' to get f'' = (f')', called the **second derivative** of f, and so on.

Higher Derivatives

Derivative of a Function

0000000000

Differentiating $f: D \to \mathbb{R}$ creates a new function $f': D' \to \mathbb{R}$ where D' consists of all the points where f is differentiable. We can further differentiate f' to get f'' = (f')', called the **second derivative** of f, and so on.

Other choices of notation are:

$$f^{(0)}(x) = f(x),$$

$$f^{(1)}(x) = f'(x) = \frac{df}{dx}(x),$$

$$\vdots$$

$$f^{(n)}(x) = \frac{d^n f}{dx^n}(x).$$

The function $f^{(n)}$, obtained by differentiating f successively n times, is called the *n*th derivative of f.

Derivative via Limits

Theorem 3

Let $f: I \to \mathbb{R}$ where I is an open interval. Then f has derivative f'(a) at $a \in I$ if and only if

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Derivative via Limits

Theorem 3

Let $f: I \to \mathbb{R}$ where I is an open interval. Then f has derivative f'(a) at $a \in I$ if and only if

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Proof. We prove the first equality.

$$f'(a) = m \iff \text{there is } \varphi \text{ s.t. } f(x) - f(a) - m(x - a) = \varphi(x)(x - a)$$
 and
$$\lim_{x \to a} \varphi(x) = \varphi(a) = 0$$

$$\iff \lim_{x \to a} \frac{f(x) - f(a) - m(x - a)}{x - a} = 0$$

$$\iff \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = m.$$

Power Rule

Derivative of a Function

00000000000

Consider the function x^n , for a fixed $n \in \mathbb{N}$. Its derivative can be calculated as follows.

$$(x^{n})' = \lim_{y \to x} \frac{y^{n} - x^{n}}{y - x} = \lim_{y \to x} \sum_{i=0}^{n-1} y^{i} x^{n-1-i}$$
$$= \sum_{i=0}^{n-1} x^{i} x^{n-1-i} = \sum_{i=0}^{n-1} x^{n-1} = nx^{n-1}.$$

The second equality uses the identity

$$y^{n} - x^{n} = (y - x)(y^{n-1} + y^{n-2}x + \dots + yx^{n-2} + x^{n-1}).$$

In particular, x'=1, $(x^2)'=2x$, etc.

One-Sided Derivative

Derivative of a Function

- $f'_{+}(a) = \lim_{x \to a+} \frac{f(x) f(a)}{x a}$ is the **right derivative** of f at a.
- $f'_{-}(a) = \lim_{x \to a-} \frac{f(x) f(a)}{x a}$ is the **left derivative** of f at a.

One-Sided Derivative

- $f'_{+}(a) = \lim_{x \to a+} \frac{f(x) f(a)}{x a}$ is the **right derivative** of f at a.
- $f'_{-}(a) = \lim_{x \to a-} \frac{f(x) f(a)}{x a}$ is the **left derivative** of f at a.

Task 1

Derivative of a Function

Show that a function f is differentiable at x=a if and only if the left and right derivatives of f at a exist and are equal.

Differentiability on Intervals

We say f is **differentiable on an interval** I if it is differentiable at every interior point of I, and has the appropriate one-sided derivative at any end-point which is included in I. We denote the one-sided derivative at an end-point c by f'(c).

Differentiability on Intervals

We say f is **differentiable on an interval** I if it is differentiable at every interior point of I, and has the appropriate one-sided derivative at any end-point which is included in I. We denote the one-sided derivative at an end-point c by f'(c).

Theorem 4

Suppose I is an interval and $f: I \to \mathbb{R}$ is a differentiable function. Then the following hold.

- 1) If f is an increasing function then f'(a) > 0 for every $a \in I$.
- 2) If f is a decreasing function then f'(a) < 0 for every $a \in I$.

Differentiability on Intervals

We say f is **differentiable on an interval** I if it is differentiable at every interior point of I, and has the appropriate one-sided derivative at any end-point which is included in I. We denote the one-sided derivative at an end-point c by f'(c).

Theorem 4

Derivative of a Function 000000000

> Suppose I is an interval and $f: I \to \mathbb{R}$ is a differentiable function. Then the following hold.

- 1) If f is an increasing function then f'(a) > 0 for every $a \in I$.
- 2) If f is a decreasing function then f'(a) < 0 for every $a \in I$.

Proof. Suppose f is an increasing function and a is not the right end-point of *I*:

$$x>a \implies \frac{f(x)-f(a)}{x-a}\geq 0 \implies f'_+(a)=\lim_{x\to a+}\frac{f(x)-f(a)}{x-a}\geq 0.$$

The other cases are proved in a similar fashion.

Table of Contents

Derivative of a Function

Algebra of Derivatives

- Algebra of Derivatives
- Chain Rule
- First Fundamental Theorem

Algebra of Derivatives

Theorem 5

Let f and g be differentiable at p, and let $C \in \mathbb{R}$. Then their combinations satisfy the following rules.

- (1) (Scaling) (Cf)'(p) = Cf'(p).
- 2 (Sum Rule) (f + g)'(p) = f'(p) + g'(p).

Algebra of Derivatives

○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
<p

- **3** (Difference Rule) (f g)'(p) = f'(p) g'(p).
- **4** (Product Rule) (fg)'(p) = f'(p)g(p) + f(p)g'(p).
- **6** (Reciprocal Rule) $\left(\frac{1}{f}\right)'(p) = -\frac{f'(p)}{f(p)^2}$, if $f(p) \neq 0$.
- 6 (Quotient Rule) $\left(\frac{g}{f}\right)'(p) = \frac{g'(p)f(p) g(p)f'(p)}{f(p)^2}$, if $f(p) \neq 0$.

Scaling:

$$(Cf)'(p) = \lim_{x \to p} \frac{Cf(x) - Cf(p)}{x - p} = C \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = Cf'(p).$$

Scaling:

$$(Cf)'(p) = \lim_{x \to p} \frac{Cf(x) - Cf(p)}{x - p} = C \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = Cf'(p).$$

2 Sum Rule:

$$(f+g)'(p) = \lim_{x \to p} \frac{f(x) + g(x) - f(p) - g(p)}{x - p}$$

$$= \lim_{x \to p} \frac{f(x) - f(p)}{x - p} + \lim_{x \to p} \frac{g(x) - g(p)}{x - p}$$

$$= f'(p) + g'(p).$$

Scaling:

$$(Cf)'(p) = \lim_{x \to p} \frac{Cf(x) - Cf(p)}{x - p} = C \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = Cf'(p).$$

2 Sum Rule:

$$(f+g)'(p) = \lim_{x \to p} \frac{f(x) + g(x) - f(p) - g(p)}{x - p}$$

$$= \lim_{x \to p} \frac{f(x) - f(p)}{x - p} + \lim_{x \to p} \frac{g(x) - g(p)}{x - p}$$

$$= f'(p) + g'(p).$$

3 Difference Rule: Combine the sum rule with scaling by C = -1.

$$(fg)'(p) = \lim_{x \to p} \frac{f(x)g(x) - f(p)g(p)}{x - p}$$

$$= \lim_{x \to p} \frac{f(x)g(x) - f(x)g(p) + f(x)g(p) - f(p)g(p)}{x - p}$$

$$= \lim_{x \to p} f(x) \frac{g(x) - g(p)}{x - p} + \lim_{x \to p} \frac{f(x) - f(p)}{x - p} g(p)$$

$$= f(p)g'(p) + f'(p)g(p).$$
(Since $f'(p)$ exists, f is continuous at p and $\lim_{x \to p} f(x) = f(p)$.)

(fg)'(p) =
$$\lim_{x \to p} \frac{f(x)g(x) - f(p)g(p)}{x - p}$$

= $\lim_{x \to p} \frac{f(x)g(x) - f(x)g(p) + f(x)g(p) - f(p)g(p)}{x - p}$
= $\lim_{x \to p} f(x) \frac{g(x) - g(p)}{x - p} + \lim_{x \to p} \frac{f(x) - f(p)}{x - p}g(p)$
= $f(p)g'(p) + f'(p)g(p)$.
(Since $f'(p)$ exists, f is continuous at p and $\lim_{x \to p} f(x) = f(p)$.

(Since f'(p) exists, f is continuous at p and $\lim_{x\to p} f(x) = f(p)$.)

5 By continuity, $f(x) \neq 0$ for x near p. Hence,

$$\left(\frac{1}{f}\right)'(p) = \lim_{x \to p} \frac{1/f(x) - 1/f(p)}{x - p} = \lim_{x \to p} \frac{f(p) - f(x)}{f(x)f(p)(x - p)} = -\frac{f'(p)}{f(p)^2}.$$

(Since f'(p) exists, we have $\lim_{x\to p} f(x) = f(p)$.)

4
$$(fg)'(p) = \lim_{x \to p} \frac{f(x)g(x) - f(p)g(p)}{x - p}$$

$$= \lim_{x \to p} \frac{f(x)g(x) - f(x)g(p) + f(x)g(p) - f(p)g(p)}{x - p}$$

$$= \lim_{x \to p} f(x) \frac{g(x) - g(p)}{x - p} + \lim_{x \to p} \frac{f(x) - f(p)}{x - p} g(p)$$

$$= f(p)g'(p) + f'(p)g(p).$$
(Since $f'(p)$ exists f is continuous at p and $\lim_{x \to p} f(x) = f(p)$

(Since f'(p) exists, f is continuous at p and $\lim_{x\to p} f(x) = f(p)$.)

5 By continuity, $f(x) \neq 0$ for x near p. Hence,

$$\left(\frac{1}{f}\right)'(p) = \lim_{x \to p} \frac{1/f(x) - 1/f(p)}{x - p} = \lim_{x \to p} \frac{f(p) - f(x)}{f(x)f(p)(x - p)} = -\frac{f'(p)}{f(p)^2}.$$

(Since f'(p) exists, we have $\lim_{x\to p} f(x) = f(p)$.)

6 Quotient Rule: Combine the product rule and reciprocal rule.

Example

Derivative of a Function

With these rules we can differentiate polynomials and rational functions. For example,

$$(x^{45} + 7x^4 + 99)' = (x^{45})' + (7x^4)' + (99)'$$
 (sum rule)
= $(x^{45})' + (7x^4)'$ ($C' = 0$)
= $(x^{45})' + 7(x^4)'$ (scaling)
= $45x^{44} + 28x^3$. (power rule)

Trigonometric Functions

Theorem 6

For every $x \in \mathbb{R}$, $\sin' x = \cos x$ and $\cos' x = -\sin x$.

Trigonometric Functions

Theorem 6

For every $x \in \mathbb{R}$, $\sin' x = \cos x$ and $\cos' x = -\sin x$.

Proof. We differentiate the sine function, and leave the cosine for the reader.

$$\sin' x = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$
$$= \lim_{h \to 0} \left(\frac{\cos h - 1}{h} \sin x + \frac{\sin h}{h} \cos x\right) = 0 \cdot \sin x + 1 \cdot \cos x = \cos x.$$

Trigonometric Functions

Theorem 6

Derivative of a Function

For every $x \in \mathbb{R}$, $\sin' x = \cos x$ and $\cos' x = -\sin x$.

Proof. We differentiate the sine function, and leave the cosine for the reader.

$$\sin' x = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$
$$= \lim_{h \to 0} \left(\frac{\cos h - 1}{h} \sin x + \frac{\sin h}{h} \cos x\right) = 0 \cdot \sin x + 1 \cdot \cos x = \cos x.$$

Task 2

Use the reciprocal and quotient rules to show that

$$\sec' x = \sec x \tan x,$$
 $\csc' x = -\csc x \cot x,$
 $\tan' x = \sec^2 x,$ $\cot' x = -\csc^2 x.$

To differentiate the log function, we need the following inequalities:

Chain Rule

Theorem 7

For
$$x > 0$$
, $1 - \frac{1}{x} \le \log x \le x - 1$.

To differentiate the log function, we need the following inequalities:

Theorem 7

For
$$x > 0$$
, $1 - \frac{1}{x} \le \log x \le x - 1$.

Proof. For $x \ge 1$ these inequalities are obtained from

$$\int_1^x \frac{1}{x} dt \le \int_1^x \frac{1}{t} dt \le \int_1^x 1 dt.$$

Derivative of a Function

To differentiate the log function, we need the following inequalities:

Theorem 7

For
$$x > 0$$
, $1 - \frac{1}{x} \le \log x \le x - 1$.

Proof. For $x \ge 1$ these inequalities are obtained from

$$\int_1^x \frac{1}{x} dt \le \int_1^x \frac{1}{t} dt \le \int_1^x 1 dt.$$

Substituting 1/x for x gives the inequalities for $0 < x \le 1$.

Theorem 8

For every
$$x > 0$$
, $\log' x = \frac{1}{x}$.

Derivative of a Function

Theorem 8

For every
$$x > 0$$
, $\log' x = \frac{1}{x}$.

Proof. We apply the limit definition of the derivative.

$$\log' x = \lim_{y \to x} \frac{\log y - \log x}{y - x} = \lim_{y \to x} \frac{\log(y/x)}{y - x}$$
$$= \lim_{h \to 1} \frac{\log(hx/x)}{hx - x} = \frac{1}{x} \lim_{h \to 1} \frac{\log h}{h - 1}.$$

Theorem 8

For every
$$x > 0$$
, $\log' x = \frac{1}{x}$.

Proof. We apply the limit definition of the derivative.

$$\log' x = \lim_{y \to x} \frac{\log y - \log x}{y - x} = \lim_{y \to x} \frac{\log(y/x)}{y - x}$$
$$= \lim_{h \to 1} \frac{\log(hx/x)}{hx - x} = \frac{1}{x} \lim_{h \to 1} \frac{\log h}{h - 1}.$$

For h>1, we have $\frac{1}{h}\leq \frac{\log h}{h-1}\leq 1$ from Theorem 7. The Sandwich Theorem gives $\lim_{h\to 1+}\frac{\log h}{h-1}=1$.

Derivative of a Function

Theorem 8

For every
$$x > 0$$
, $\log' x = \frac{1}{x}$.

Proof. We apply the limit definition of the derivative.

$$\log' x = \lim_{y \to x} \frac{\log y - \log x}{y - x} = \lim_{y \to x} \frac{\log(y/x)}{y - x}$$
$$= \lim_{h \to 1} \frac{\log(hx/x)}{hx - x} = \frac{1}{x} \lim_{h \to 1} \frac{\log h}{h - 1}.$$

For h > 1, we have $\frac{1}{h} \le \frac{\log h}{h-1} \le 1$ from Theorem 7. The

Sandwich Theorem gives $\lim_{h\to 1+} \frac{\log h}{h-1} = 1$.

If h < 1, the inequalities reverse and again give $\lim_{h \to 1_{\pm}} \frac{\log h}{h - 1} = 1$. \square

General Logarithm, Estimating e

Task 3

Derivative of a Function

Let
$$a > 0$$
 and $a \ne 1$. Show that $\log_a' x = \frac{1}{x \log a}$.

General Logarithm, Estimating e

Task 3

Let
$$a > 0$$
 and $a \ne 1$. Show that $\log_a' x = \frac{1}{x \log a}$.

The limit calculation that we carried out in the last proof can also be expressed as

$$\lim_{h \to 0} \frac{\log(1+h)}{h} = 1$$
 or $\lim_{h \to 0} \log((1+h)^{1/h}) = 1$.

General Logarithm, Estimating e

Task 3

Derivative of a Function

Let
$$a > 0$$
 and $a \ne 1$. Show that $\log_a' x = \frac{1}{x \log a}$.

The limit calculation that we carried out in the last proof can also be expressed as

$$\lim_{h \to 0} \frac{\log(1+h)}{h} = 1$$
 or $\lim_{h \to 0} \log((1+h)^{1/h}) = 1$.

Applying the exponential function, and recalling that it is continuous, we get.

$$\lim_{h \to 0} (1+h)^{1/h} = e.$$

We can use this limit to get better estimates of e.

Table of Contents

- Derivative of a Function
- Algebra of Derivatives
- Chain Rule
- First Fundamental Theorem

Chain Rule •0000000000000

Theorem 9

Let g be differentiable at a and let f be differentiable at b = g(a). Then the composition $f \circ g$ is differentiable at a and the derivative is given by

Chain Rule

$$(f\circ g)'(a)=f'(g(a))g'(a).$$

Chain Rule

Theorem 9

Let g be differentiable at a and let f be differentiable at b = g(a). Then the composition $f \circ g$ is differentiable at a and the derivative is given by

Chain Rule

•••••••••••••••

$$(f\circ g)'(a)=f'(g(a))g'(a).$$

Proof. Let f'(g(a)) = m and g'(a) = n. By Theorem 1, we have functions φ and ψ such that:

2
$$f(y) - f(b) = (m + \psi(y))(y - b)$$
 and $\lim_{y \to b} \psi(y) = \psi(b) = 0$.

Chain Rule

Derivative of a Function

Theorem 9

Let g be differentiable at a and let f be differentiable at b = g(a). Then the composition $f \circ g$ is differentiable at a and the derivative is given by

$$(f\circ g)'(a)=f'(g(a))g'(a).$$

Proof. Let f'(g(a)) = m and g'(a) = n. By Theorem 1, we have functions φ and ψ such that:

1
$$g(x) - g(a) = (n + \varphi(x))(x - a)$$
 and $\lim_{x \to a} \varphi(x) = \varphi(a) = 0$.

2
$$f(y) - f(b) = (m + \psi(y))(y - b)$$
 and $\lim_{y \to b} \psi(y) = \psi(b) = 0$.

Hence,
$$f(g(x)) - f(g(a)) = (m + \psi(g(x)))(g(x) - b)$$

$$= (m + \psi(g(x)))(n + \varphi(x))(x - a)$$

$$= mn(x - a) + E(x)(x - a),$$
and $\lim_{x \to a} E(x) = \lim_{x \to a} (m\varphi(x) + n\psi(g(x)) + \psi(g(x))\varphi(x)) = 0.$

Chain Rule

Derivative of a Function

Theorem 9

Let g be differentiable at a and let f be differentiable at b = g(a). Then the composition $f \circ g$ is differentiable at a and the derivative is given by

$$(f\circ g)'(a)=f'(g(a))g'(a).$$

Proof. Let f'(g(a)) = m and g'(a) = n. By Theorem 1, we have functions φ and ψ such that:

2
$$f(y) - f(b) = (m + \psi(y))(y - b)$$
 and $\lim_{y \to b} \psi(y) = \psi(b) = 0$.

Hence,
$$f(g(x)) - f(g(a)) = (m + \psi(g(x)))(g(x) - b)$$

$$= (m + \psi(g(x)))(n + \varphi(x))(x - a)$$

$$= mn(x - a) + E(x)(x - a),$$

and $\lim_{x \to \infty} E(x) = \lim_{x \to \infty} \left(m\varphi(x) + n\psi(g(x)) + \psi(g(x))\varphi(x) \right) = 0.$

This establishes that $(f \circ g)'(a) = mn = f'(g(a))g'(a)$

Chain Rule - Applications

Derivative of a Function

Differentiate the given functions:

$$(x) = (x^2 + 1)^{10}.$$

2
$$g(x) = |\cos x|$$
.

$$(x) = \cos |x|.$$

$$4 k(x) = \frac{\sin^2 x}{\sin x^2}.$$

Consider the relation $x^2 + y^2 = 1$. For any $x \in [-1, 1]$ we can solve for corresponding $y = \pm \sqrt{1-x^2}$. We say that $x^2 + y^2 = 1$ defines y **implicitly** in terms of x. In fact this implicit relation can be separated into two explicit functions $y^+ = \sqrt{1-x^2}$ and $y^- = -\sqrt{1-x^2}$.

Chain Rule 00000000000000

Implicit Differentiation

Consider the relation $x^2 + y^2 = 1$. For any $x \in [-1, 1]$ we can solve for corresponding $y = \pm \sqrt{1 - x^2}$. We say that $x^2 + y^2 = 1$ defines y **implicitly** in terms of x. In fact this implicit relation can be separated into two explicit functions $y^+ = \sqrt{1-x^2}$ and $y^- = -\sqrt{1-x^2}$.

Chain Rule 00000000000000

The Chain Rule allows us to calculate dy/dx without solving explicitly for *y*:

$$x^2 + y^2 = 1 \implies 2x + 2y y' = 0 \implies y' = -x/y$$
 (if $y \neq 0$).

This works simultaneously for both cases of $y^{\pm} = \pm \sqrt{1 - x^2}$

Folium of Descartes

The need of this process of **implicit differentiation** is that one may be unable to solve for y as an explicit function of x.

Folium of Descartes

The need of this process of **implicit differentiation** is that one may be unable to solve for y as an explicit function of x.

Consider the relation $x^3 + y^3 = 6xy$. Its solutions plot as follows.

Folium of Descartes

The need of this process of **implicit differentiation** is that one may be unable to solve for y as an explicit function of x.

Chain Rule

000000000000000

Consider the relation $x^3 + y^3 = 6xy$. Its solutions plot as follows.

It is hard to separate this into explicit functions, but easy to differentiate implicitly:

$$x^{3} + y^{3} = 6xy \implies 3x^{2} + 3y^{2}y' = 6y + 6xy'$$

$$\implies (y^{2} - 2x)y' = 2y - x^{2} \implies y' = \frac{2y - x^{2}}{y^{2} - 2x}.$$

The equation of an ellipse in standard form is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Chain Rule

00000 000000000

Implicit differentiation gives

$$\frac{2x}{a^2} + \frac{2y}{b^2}y' = 0.$$

The equation of an ellipse in standard form is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Chain Rule 00000000000000

Implicit differentiation gives

$$\frac{2x}{a^2} + \frac{2y}{b^2}y' = 0.$$

If (x_0, y_0) is a point on the ellipse, the slope m of the tangent line there is given by

$$\frac{2x_0}{a^2} + \frac{2y_0}{b^2}m = 0 \quad \text{or} \quad m = -\frac{x_0}{y_0}\frac{b^2}{a^2}.$$

Tangent to Ellipse

Derivative of a Function

The equation of an ellipse in standard form is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Implicit differentiation gives

$$\frac{2x}{a^2} + \frac{2y}{b^2}y' = 0.$$

If (x_0, y_0) is a point on the ellipse, the slope m of the tangent line there is given by

$$\frac{2x_0}{a^2} + \frac{2y_0}{b^2}m = 0 \quad \text{or} \quad m = -\frac{x_0}{y_0}\frac{b^2}{a^2}.$$

Hence the equation of the tangent line at (x_0, y_0) is

$$y = y_0 - \frac{x_0}{y_0} \frac{b^2}{a^2} (x - x_0)$$
 or $\frac{yy_0 - y_0^2}{b^2} + \frac{xx_0 - x_0^2}{a^2} = 0$ or $\frac{yy_0}{b^2} + \frac{xx_0}{a^2} = 1$.

Theorem 10

Derivative of a Function

Let f be a continuous and monotonic bijection between two intervals. Let f'(a) exist and be non-zero. Then f^{-1} is differentiable at b = f(a)and the derivative is given by

Chain Rule 00000000000000

$$(f^{-1})'(b) = \frac{1}{f'(a)}.$$

Derivative of Inverse Function

Theorem 10

Let f be a continuous and monotonic bijection between two intervals. Let f'(a) exist and be non-zero. Then f^{-1} is differentiable at b = f(a) and the derivative is given by

$$(f^{-1})'(b) = \frac{1}{f'(a)}.$$

Proof. If a line with slope $m \neq 0$ is reflected in the y = x line, the resulting line has slope 1/m. The following picture now represents a proof.

Derivative of Inverse Function

An Alternate Proof: First, we note that f^{-1} is a monotone function whose image is an interval, hence f^{-1} is continuous.

000000000000000

An Alternate Proof: First, we note that f^{-1} is a monotone function whose image is an interval, hence f^{-1} is continuous. Now, define a function g by

Chain Rule 000000000000000

$$g(y) = \begin{cases} \frac{f^{-1}(y) - f^{-1}(b)}{y - b} & \text{if } y \neq b, \\ \frac{1}{f'(a)} & \text{if } y = b. \end{cases}$$

Derivative of Inverse Function

Derivative of a Function

An Alternate Proof: First, we note that f^{-1} is a monotone function whose image is an interval, hence f^{-1} is continuous. Now, define a function g by

$$g(y) = \begin{cases} \frac{f^{-1}(y) - f^{-1}(b)}{y - b} & \text{if } y \neq b, \\ \frac{1}{f'(a)} & \text{if } y = b. \end{cases}$$

Substituting y = f(x) and b = f(a) gives

$$g(f(x)) = \begin{cases} \frac{x-a}{f(x)-f(a)} & \text{if } x \neq a, \\ 1/f'(a) & \text{if } x = a. \end{cases}$$

An Alternate Proof: First, we note that f^{-1} is a monotone function whose image is an interval, hence f^{-1} is continuous. Now, define a function g by

Chain Rule 000000000000000

$$g(y) = \begin{cases} \frac{f^{-1}(y) - f^{-1}(b)}{y - b} & \text{if } y \neq b, \\ \frac{1}{f'(a)} & \text{if } y = b. \end{cases}$$

Substituting y = f(x) and b = f(a) gives

$$g(f(x)) = \begin{cases} \frac{x-a}{f(x)-f(a)} & \text{if } x \neq a, \\ 1/f'(a) & \text{if } x = a. \end{cases}$$

So $g \circ f$ is continuous at a. Therefore $g = g \circ f \circ f^{-1}$ is continuous at b. This gives the result. 40 × 40 × 40 × 40 × 9 × 90 0

Inverse Trigonometric Functions

Derivative of a Function

The restriction sin: $[-\pi/2,\pi/2] \rightarrow [-1,1]$ is a bijection, hence has an inverse function that is called arcsine and is denoted by $\sin^{-1} x$ or arcsin x.

Chain Rule 000000000000000

000000000000000

Inverse Trigonometric Functions

Derivative of a Function

The restriction sin: $[-\pi/2, \pi/2] \rightarrow [-1, 1]$ is a bijection, hence has an inverse function that is called arcsine and is denoted by $\sin^{-1} x$ or arcsin x.

Similarly, cos: $[0,\pi] \to [-1,1]$ has an inverse function called arccosine, and denoted by $\cos^{-1} x$ or $\arccos x$.

Inverse Trigonometric Functions

Derivative of a Function

The restriction sin: $[-\pi/2, \pi/2] \rightarrow [-1, 1]$ is a bijection, hence has an inverse function that is called arcsine and is denoted by $\sin^{-1} x$ or arcsin x.

Chain Rule

Similarly, cos: $[0,\pi] \to [-1,1]$ has an inverse function called arccosine, and denoted by $\cos^{-1} x$ or $\arccos x$.

Finally tan: $(-\pi/2, \pi/2) \to \mathbb{R}$ has an inverse function called arctan, and denoted by $tan^{-1}x$ or arctan x.

Derivatives of Arcsin and Arccos

Theorem 11

Derivative of a Function

$$\arcsin' x = \frac{1}{\sqrt{1-x^2}}$$
 for $x \in (-1,1)$, $\arccos' x = \frac{-1}{\sqrt{1-x^2}}$ for $x \in (-1,1)$.

Derivatives of Arcsin and Arccos

Theorem 11

$$\arcsin' x = \frac{1}{\sqrt{1-x^2}}$$
 for $x \in (-1,1)$, $\arccos' x = \frac{-1}{\sqrt{1-x^2}}$ for $x \in (-1,1)$.

Proof. Apply the formula for differentiating inverse functions:

$$\arcsin' x = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)}.$$

Derivatives of Arcsin and Arccos

Theorem 11

$$\arcsin' x = rac{1}{\sqrt{1-x^2}}$$
 for $x \in (-1,1)$, $\arccos' x = rac{-1}{\sqrt{1-x^2}}$ for $x \in (-1,1)$.

Proof. Apply the formula for differentiating inverse functions:

$$\arcsin' x = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)}.$$

Now $\cos^2(\arcsin x) = 1 - \sin^2(\arcsin x) = 1 - x^2$. Since $\arcsin x \in [-\pi/2, \pi/2]$, we know that $\cos(\arcsin x) \ge 0$. Hence

Derivatives of Arcsin and Arccos

Theorem 11

Derivative of a Function

$$\arcsin' x = rac{1}{\sqrt{1-x^2}}$$
 for $x \in (-1,1)$, $\arccos' x = rac{-1}{\sqrt{1-x^2}}$ for $x \in (-1,1)$.

Proof. Apply the formula for differentiating inverse functions:

$$\arcsin' x = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)}.$$

Now $\cos^2(\arcsin x) = 1 - \sin^2(\arcsin x) = 1 - x^2$. Since $\arcsin x \in [-\pi/2, \pi/2]$, we know that $\cos(\arcsin x) \ge 0$. Hence

$$\arcsin' x = \frac{1}{\sqrt{1-x^2}}, \quad \text{for } x \in (-1,1).$$

Derivatives of Arcsin and Arccos

Theorem 11

$$\arcsin' x = \frac{1}{\sqrt{1-x^2}} \qquad \qquad \textit{for } x \in (-1,1),$$

$$\arccos' x = \frac{-1}{\sqrt{1-x^2}} \qquad \qquad \textit{for } x \in (-1,1).$$

Proof. Apply the formula for differentiating inverse functions:

$$\arcsin' x = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)}.$$

Now $\cos^2(\arcsin x) = 1 - \sin^2(\arcsin x) = 1 - x^2$. Since $\arcsin x \in [-\pi/2, \pi/2]$, we know that $\cos(\arcsin x) \ge 0$. Hence

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}, \quad \text{for } x \in (-1, 1).$$

The calculation for arccosine is similar and is left to the reader.

Derivative of a Function

Theorem 12

$$\operatorname{arctan}' x = \frac{1}{1+x^2} \ \textit{for} \ x \in \mathbb{R}.$$

Chain Rule

00000000000000

Theorem 12

$$\arctan' x = \frac{1}{1+x^2} \text{ for } x \in \mathbb{R}.$$

Proof.

Derivative of a Function

$$\arctan' x = \frac{1}{\tan'(\arctan x)} = \frac{1}{\sec^2(\arctan x)}$$
$$= \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}.$$

Exponential Function

Theorem 13

Derivative of a Function

The derivative of the exponential function is itself:

$$(e^x)'=e^x.$$

Exponential Function

Theorem 13

Derivative of a Function

The derivative of the exponential function is itself:

$$(e^x)'=e^x.$$

Proof. Consider $f(x) = \log x$. Its inverse function is $f^{-1}(x) = e^x$. Applying the formula for differentiating an inverse function, we get

$$(e^{x})' = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\log'(e^{x})} = \frac{1}{1/e^{x}} = e^{x}.$$

Exponential Function

Theorem 13

Derivative of a Function

The derivative of the exponential function is itself:

$$(e^x)'=e^x.$$

Proof. Consider $f(x) = \log x$. Its inverse function is $f^{-1}(x) = e^x$. Applying the formula for differentiating an inverse function, we get

$$(e^{x})' = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\log'(e^{x})} = \frac{1}{1/e^{x}} = e^{x}.$$

Task 4

Let a > 0. Show that $(a^x)' = a^x \log a$.

Task 5

Prove that $\cosh' x = \sinh x$ and $\sinh' x = \cosh x$.

Power Rule

Derivative of a Function

Theorem 14 (Power Rule)

If $r \in \mathbb{R}$ then $(x^r)' = r x^{r-1}$ for x > 0.

Power Rule

Derivative of a Function

Theorem 14 (Power Rule)

If
$$r \in \mathbb{R}$$
 then $(x^r)' = r x^{r-1}$ for $x > 0$.

Proof.
$$(x^r)' = (e^{r \log x})' = \frac{r}{x} e^{r \log x} = \frac{r}{x} x^r = r x^{r-1}$$
.

Power Rule

Derivative of a Function

Theorem 14 (Power Rule)

If $r \in \mathbb{R}$ then $(x^r)' = r x^{r-1}$ for x > 0.

Proof.
$$(x^r)' = (e^{r \log x})' = \frac{r}{x} e^{r \log x} = \frac{r}{x} x^r = r x^{r-1}$$
.

Example 15

We'll differentiate the function $y = x^x$, with x > 0. We use the same technique as in the proof of the Power Rule.

$$(x^{x})' = (e^{x \log x})' = e^{x \log x} (x \log x)' = x^{x} (1 + \log x).$$

Inverse Hyperbolic Functions

Task 6

Show that $sinh: \mathbb{R} \to \mathbb{R}$ is a strictly increasing bijection.

So $\sinh x$ has an inverse which is strictly increasing as well as continuous. We denote it by \sinh^{-1} or arsinh x.

Inverse Hyperbolic Functions

Task 6

Show that $sinh: \mathbb{R} \to \mathbb{R}$ is a strictly increasing bijection.

So $\sinh x$ has an inverse which is strictly increasing as well as continuous. We denote it by \sinh^{-1} or $\operatorname{arsinh} x$.

The $\cosh x$ function is even and hence not one-one. So we restrict its domain to $[0,\infty)$.

Task 7

Show that $\cosh: [0,\infty) \to [1,\infty)$ is a strictly increasing bijection.

The corresponding inverse function is called $\cosh^{-1} x$ or $\operatorname{arcosh} x$. It is also strictly increasing and continuous.

Inverse Hyperbolic Functions

Task 6

Derivative of a Function

Show that $sinh: \mathbb{R} \to \mathbb{R}$ is a strictly increasing bijection.

So sinh x has an inverse which is strictly increasing as well as continuous. We denote it by $sinh^{-1}$ or arsinh x.

The cosh x function is even and hence not one-one. So we restrict its domain to $[0, \infty)$.

Task 7

Show that $\cosh: [0,\infty) \to [1,\infty)$ is a strictly increasing bijection.

The corresponding inverse function is called $\cosh^{-1} x$ or $\operatorname{arcosh} x$. It is also strictly increasing and continuous.

Task 8

Prove that
$$(\sinh^{-1} x)' = \frac{1}{\sqrt{x^2 + 1}}$$
 and $(\cosh^{-1} x)' = \frac{1}{\sqrt{x^2 - 1}}$.

Table of Contents

Derivative of a Function

- Derivative of a Function
- Algebra of Derivatives
- Chain Rule
- First Fundamental Theorem

First Fundamental Theorem

Derivative of a Function

Theorem 16 (First Fundamental Theorem)

Let I be an interval and $f: I \to \mathbb{R}$ be integrable on each subinterval $[a, b] \subseteq I$. Fix $a \in I$ and consider the indefinite integral $F: I \to \mathbb{R}$ defined by

$$F(x) = \int_a^x f(t) dt.$$

Then F'(c) = f(c) if f is continuous at c. (If c is an end-point, use the appropriate one-sided notion of continuity and differentiability.)

First Fundamental Theorem – Proof

CAMBRIDGE UNIVERSITY PRESS

For $h \neq 0$ we have

Derivative of a Function

$$F(c+h) - F(c) = \int_a^{c+h} f(t) dt - \int_a^c f(t) dt = \int_c^{c+h} f(t) dt.$$

For $h \neq 0$ we have

$$F(c+h) - F(c) = \int_{a}^{c+h} f(t) dt - \int_{a}^{c} f(t) dt = \int_{c}^{c+h} f(t) dt.$$

Hence,
$$F(c+h) - F(c) - hf(c) = \int_{c}^{c+h} f(t) dt - \int_{c}^{c+h} f(c) dt$$
$$= \int_{c}^{c+h} (f(t) - f(c)) dt.$$

First Fundamental Theorem - Proof

For $h \neq 0$ we have

$$F(c+h) - F(c) = \int_a^{c+h} f(t) dt - \int_a^c f(t) dt = \int_c^{c+h} f(t) dt.$$

Hence,
$$F(c + h) - F(c) - hf(c) = \int_{c}^{c+h} f(t) dt - \int_{c}^{c+h} f(c) dt$$
$$= \int_{c}^{c+h} (f(t) - f(c)) dt.$$

Define $\varphi(h) = \frac{1}{h} \int_c^{c+h} (f(t) - f(c)) dt$. Consider $\epsilon > 0$. If f is continuous at c, there is a $\delta > 0$ such that $|t - c| < \delta$ implies $|f(t) - f(c)| < \epsilon$.

First Fundamental Theorem - Proof

For $h \neq 0$ we have

$$F(c+h) - F(c) = \int_a^{c+h} f(t) dt - \int_a^c f(t) dt = \int_c^{c+h} f(t) dt.$$

Chain Rule

Hence,
$$F(c + h) - F(c) - hf(c) = \int_{c}^{c+h} f(t) dt - \int_{c}^{c+h} f(c) dt$$
$$= \int_{c}^{c+h} (f(t) - f(c)) dt.$$

Define $\varphi(h) = \frac{1}{h} \int_c^{c+h} (f(t) - f(c)) \, dt$. Consider $\epsilon > 0$. If f is continuous at c, there is a $\delta > 0$ such that $|t - c| < \delta$ implies $|f(t) - f(c)| < \epsilon$. Therefore, if $0 < |h| < \delta$, we obtain

$$|\varphi(h)| = \frac{1}{|h|} \Big| \int_{c}^{c+h} (f(t) - f(c)) dt \Big| \le \frac{1}{|h|} |h| \epsilon = \epsilon.$$

First Fundamental Theorem – Proof

For $h \neq 0$ we have

Derivative of a Function

$$F(c+h) - F(c) = \int_a^{c+h} f(t) dt - \int_a^c f(t) dt = \int_c^{c+h} f(t) dt.$$

Hence,
$$F(c + h) - F(c) - hf(c) = \int_{c}^{c+h} f(t) dt - \int_{c}^{c+h} f(c) dt$$
$$= \int_{c}^{c+h} (f(t) - f(c)) dt.$$

Define $\varphi(h) = \frac{1}{h} \int_{c}^{c+h} (f(t) - f(c)) dt$. Consider $\epsilon > 0$. If f is continuous at c, there is a $\delta > 0$ such that $|t - c| < \delta$ implies $|f(t) - f(c)| < \epsilon$. Therefore, if $0 < |h| < \delta$, we obtain

$$|\varphi(h)| = \frac{1}{|h|} \Big| \int_{c}^{c+h} (f(t) - f(c)) dt \Big| \leq \frac{1}{|h|} |h| \epsilon = \epsilon.$$

Therefore, $\varphi(h) \to 0$ as $h \to 0$, and so F'(c) = f(c).

Derivative of a Function

Example 17

Suppose we have to differentiate $F(x) = \int_0^x \sin \sqrt{t} \ dt$. By the First Fundamental Theorem we know immediately that $F'(x) = \sin \sqrt{x}$.

Examples

Derivative of a Function

Example 17

Suppose we have to differentiate $F(x) = \int_0^x \sin \sqrt{t} \, dt$. By the First Fundamental Theorem we know immediately that $F'(x) = \sin \sqrt{x}$.

Example 18

We shall combine the First Fundamental Theorem and the Chain Rule to differentiate $G(x) = \int_{x}^{x^2} \sin \sqrt{t} dt$, x > 0.

Examples

Example 17

Suppose we have to differentiate $F(x) = \int_0^x \sin \sqrt{t} \, dt$. By the First Fundamental Theorem we know immediately that $F'(x) = \sin \sqrt{x}$.

Example 18

We shall combine the First Fundamental Theorem and the Chain Rule to differentiate $G(x) = \int_{x}^{x^2} \sin \sqrt{t} \ dt$, x > 0.

First, let $F(x) = \int_0^x \sin \sqrt{t} \, dt$, as in the previous example. Then

$$G(x) = \int_0^{x^2} \sin \sqrt{t} \, dt - \int_0^x \sin \sqrt{t} \, dt = F(x^2) - F(x).$$

Derivative of a Function

Example 17

Suppose we have to differentiate $F(x) = \int_0^x \sin \sqrt{t} \, dt$. By the First Fundamental Theorem we know immediately that $F'(x) = \sin \sqrt{x}$.

Example 18

We shall combine the First Fundamental Theorem and the Chain Rule to differentiate $G(x) = \int_{x}^{x^2} \sin \sqrt{t} \, dt$, x > 0. First, let $F(x) = \int_0^x \sin \sqrt{t} \, dt$, as in the previous example. Then

$$G(x) = \int_0^{x^2} \sin \sqrt{t} \, dt - \int_0^x \sin \sqrt{t} \, dt = F(x^2) - F(x).$$

Hence, by the Chain Rule,

$$G'(x) = F'(x^2)2x - F'(x) = 2x \sin \sqrt{x^2} - \sin \sqrt{x} = 2x \sin |x| - \sin \sqrt{x}.$$