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Classification of oscillators

a) Non sinusoidal oscillators
e Relaxation oscillators (charge-discharge osc.)
e Astable flip-flops

e Ring oscillators

b) Sinusoidal oscillators
e R-C oscillators
e [-C oscillators
- Lumped or distributed L-C oscillators
- Crystal oscillators

Principles of oscillation:

a) Negative resistance oscillators
b) Feedback oscillators
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Negative resistance oscillators

1. Oscillators operating at series resonance:
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2. Oscillators operating at parallel resonance:
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Examples to negative resistance oscillators:

a) With a single ended negative resistance circuit
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b) With a differential negative resistance circuit:
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(Small signal eq. circuit to calculate d,- d, output resistance)
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The condition of oscillation:
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Note that:

- [f M1 and M2 operate without velocity saturation ;

8n = \/2,UCOX w/ L)]D (can be controlled with 7, !)

- [f M1 and M2 operate with velocity saturation ;
g, = kWC v (can not be controlled with 7, !)

ox ~ sat
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Effects of the non-linearity:
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- Slope 1s maximum and equal to g, at mid-point.

- Therefore to guarantee the oscillation g, must be
1..10% higher then the calculated value.

- The saturation of the current at both ends results in

flattening of the current waveform at peaks.
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Simulation results :
(f,=1,6 GHz,L= 5nH,Q, =7, I, =2mA, (W /L) =108)

Ip;, Ip;(mA) Vo (V)
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Feedback Oscillators (H. Georg Barkhausen, 1921)

a
a, «> @ A > a,
afza{xﬂAM
B
a a a
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A=—, p=—, a=a+a, , A, =—
a a, a,
A
A =054
(1-44)

Condition of oscillation: A4 =1+ ;.0
U
Re{,BA} =1 and Im{,BA} =0
or |B4|=1 and ¢(BA4)=0
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Example: The Colpitts oscillator
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1
" S3LC1C2 +S2(C1C2r+LC1gds)+S[(Cl +C2)+rclgds]+gds

pA,=-g

Cl
C +C,

Im{ﬂAV}ZO — a)osc:wo\/1+r.gds

Re{fA4,}=+1,

B4,

:1 = gm:a)zcl(CZ.r-i_L.go)_go

For g U g and C/ 1 C,

I ¢+6 _ 1 C+C,
En = R . or g,=—s
eff 2 rQ- C
ot 1 C +C
To guarantee the oscillation; g, =k —5———=
rQ C

where the safety factor £k, = 1.01 ...1.1
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Negative resistance oscillators
from the point of view of feedback oscillators:
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Frequency stability of L-C oscillators

Example - 1:

Oscillation frequency expression of a Colpitts oscillator

can be arranged as:

W, 1 1+k, Sa 12 G+
VLC gm Q CZ

a)=;l+5

osc \/E

This 1s a general form valid for all L-C oscillators,

where ¢ (the error term) depends on the circuit parameters.
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For a stable oscillation frequency & must be as small as possible.

- In case of a Colpitts oscillator
[JHigh Q,
[High g ,

[ISmall g, 1s advantageous.

A more general expression:

da)osc = %dL +%dCl n aa)osc dC2 +%dgm +%dgds n Ga)osc
OL oC, 0C, og,. og . o0

provides information about the effects of the tolerances and dependences of

dQ

several parameters on dw, ., the shifts of the oscillation frequency.
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Example - 2:

Differential negative resistance oscillator:

o =0 1 L-Cr/
) = o) =\ 0 "\ L= Cr!

- r, and 7, must be as low as possible

( O, and Q. must be as high as possible)

- An 1nteresting possibility:

Forr, =7, depends only on L and C.

(osc)
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Crystal oscillators

To reach better frequency stability, a piezoelectric crystal
(a quartz crystal as the best piezoelectric material) having
appropriate dimensions, can be used as the resonator

of an electronic oscillator circuit.

x : Electrical axis

vy : Mechanical axis
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- If a sinusoidal voltage is applied to X - X' the crystal vibrates in y dimension.

- Amplitude 1s maximum for the mechanical resonance frequency of the crystal in

y direction, for which the losses are very small, consequently O very high.

- This mechanical vibration provokes a voltage on X - X'; therefore a piezoelectric

crystal can be used as a very high O resonance circuit from its X - X' port.

Mechanical resonance frequencies of a prism shaped body:

) b ) 1/2
f:l l & + n_y + &
2\pll) ) L

(y: Young modulus, p: density)

. . 1
The fundamental resonance frequency in y direction: f, = — Y

2L\ p
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Electrical equivalent circuit of a piezoelectric crystal:

o 21 "
.
C, T E . wg /| .
RV
(a) (b)
Example:

[ =0.636 cm, ly =2.75cm, [, =3.33 cm; f, =430 kHz
L=3.3H,R=4500 ohm, C=42{F, C =58 pF = Q112000
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Example:

An oscillator operating at the parallel resonance frequency of the crystal

VDD

M2

out

xtal

(A negative resistance oscillator or a Colpitts oscillator?)
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Example:

An oscillator operating at the series resonance frequency of the crystal

I M1 M2 ;"—0
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Phase-lock technique
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When the loop 1s open at C:

v. =k [wa sin(a)reft)} X {Vx sin (% + o, ﬂ

1
v = %kafo COS Ha)ref — %)t -, } — E ererx COS Ka)ref

|
v, = Eererx COS eref —%)t— (ox}
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The on-set of locking upon the closing of the loop:

V. (8) Steady-state
error
A VCO frequency voltage
changing away from f,

Control voltage
corresponding to f,,

Control voltage in /

locked condition VCO frequency

changing toward f.

l—‘.‘:———!

Loop Lock
closed established
here here

U
At the on-set of locking; f, = f.

(After Alan B. Grebene)
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Phase noise 1n oscillators

power T power T

1 Hz

— —
Jo frequency Jo frequency

(a) (b
(a) Frequency spectrum of an ideal oscillator.

(b) Frequency spectrum of a non-ideal oscillator.

Phase noise: L (Aw) = IOIOg(P(ﬁ);—(i‘f))BIHZ j
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There are several mechanisms contributing to the phase noise:

- Random changes of the frequency due to the low stability,
- The thermal noise on the voltages and currents in the circuit,
- Shifts of the zero-crossing point of the output signal,

- Frequency modulation of f, with thermal noise.
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Frequency modulation of f, with thermal noise

power /r power T
Jo > Jo s
frequency frequency
(a) (b)

(a) Spectrum of an oscillator, amplitude modulated with white noise,

(b) Spectrum of an oscillator, frequency modulated with white noise.
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e One of the reasons behind the random frequency modulation of @,
is the uncertainty of the oscillation frequency, due to the three

frequencies, @, @g,, and ®

max ?

different but very close to each other.

e The amplitudes of the side frequencies of a carrier f,,, frequency
modulated with a signal, f are given in terms of Bessel functions
of the modulation index, 6 = Af, / f, , where Af, is the frequency

deviation that is very small and random in our case.
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e From these data, for small values of o, the rate of decrease
of the r.m.s. values of the side frequencies can be calculated
as approximately 20 dB/decade, in good agreement with

the measured data.

e Another important issue related to the phase noise 1s the "jitter",
the RMS amplitude of the variations of the zero cross point of
the signal in time axis, that 1s related to the phase noise in

/, to f, mterval as

L(f)
Trssl s o)~ 27 f, \/j
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Example:

+Vp

Il
LI

C

M1 |:|M2
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W/L =100, L=0.18um

I;=12mA
L= 10 nH
C=1 pF

f, = 1.6 GHz
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Differential Negative Resistance Oscillator fosc=1.53GHz

—RL=40hm RC=4chm —RL=8chm RC=0ohm

-25.0

—~

N -50.0

T
~~

(@)

m

) (-70.32dBc/Hz@10.31kHz)

© (-75.16dBc/Hz@10.16kHz)

(7))

o -75.0

pd

(¢D)

(2]

®

e

o

-100.0
-125.0
102 103 104 10° 108

Relative Frequency (Hz)
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Jitter = 1.12 ps
Jitter =515 fs
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