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Relaxation oscillators (charge-discharge osc.)
        a) Non sinusoidal oscillators
                    
                    Astable flip-flops
                    Ring os

Classification of oscillators
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L-C oscillators

Lumped or distributed L-C osci
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         b) Sinusoidal oscillators
                    
                 
                          

  
    - 

      

  

 


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Crystal oscillators              
         

    
    

  
  

   - 
    

        
        a) Negative resistance oscillators
        b) Feedback oscillators

Principles of oscillation:



©2012 
Leblebici/Leblebici, Fundamentals of High-Frequency CMOS Analog Integrated Circuits, Cambridge University Press, 2009 

3

Negative resistance oscillators
1. Oscillators operating at series resonance:

Example: Tunnel diode oscillator

0
1

LC
 

 

- reff 



©2012 
Leblebici/Leblebici, Fundamentals of High-Frequency CMOS Analog Integrated Circuits, Cambridge University Press, 2009 

4

2. Oscillators operating at parallel resonance:
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a) With a single ended negative resistance circuit

Examples to negative resistance oscillators:
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1 1( ) ( )
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r
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b) With a differential negative resistance circuit:

1 2(Small signal eq. circuit to calculate d - d  output resistance)
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(can be controlled with !)

(can not be controlled

- If M1 and M2 operate without velocity saturation ;

- If M1 and M2 operate with velocity saturation ;

Note that:
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Effects of the non-linearity:

- Slope is maximum and equal to  at mid-point.
- Therefore to guarantee the oscillation  must be
   1..10% higher then the calculated value.
- The saturation of the current at both ends results in
   

o

m

g
g

flattening of the current waveform at peaks.
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0( 1, 6 GHz,  5 nH, 7,  2 mA, ( / ) 108)

Simulation results :

L Tf L Q I W L    
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Feedback Oscillators
 

(H. Georg

 

Barkhausen, 1921)
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Example: The Colpitts oscillator
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Negative resistance oscillators 
from the point of view of feedback oscillators:
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Frequency stability of L-C oscillators

1 2
2

2

Example - 1:

Oscillation frequency expression of a Colpitts oscillator 
can be arranged as:

1 1               1   ds
osc s

m

g C Ck
g Q CLC

 
 

1                 =  1

This is a general form valid for all L-C oscillators,
where  (the error term) depends on the circuit parameters.

osc LC
 




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    For a stable oscillation frequency  must be as small as possible.

     - In case of a Colpitts oscillator
            High ,
            High g ,
            Small    is advantageous.

m

ds

Q

g



1 2
1 2

A more general expression:

provides information about the effects of the  and  of
several par

tolerances dependen
ameters on 

ces
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d dL dC dC dg dg dQ
L C C g g Q
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           
     

     

,  the shifts of the oscillation frequency.osc
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2

(Re) ( ) 2

Example - 2:

Differential negative resistance oscillator:

1                        L
osc

C
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LC L Cr

  
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

-   and  must be as low as possible
   (  and  must be as high as possible)

L C

L C

r r
Q Q

( )

- An interesting possibility: 
  F  depends only oor , n  and  .L C osc L Cr r 



©2012 
Leblebici/Leblebici, Fundamentals of High-Frequency CMOS Analog Integrated Circuits, Cambridge University Press, 2009 

17

Crystal oscillators

To reach better frequency stability, a piezoelectric crystal 
(a quartz crystal as the best piezoelectric material) having 
appropriate dimensions, can be used as the resonator
of an electronic oscillator circuit.

:  Electrical axis
:  Mechanical axis

x
y



©2012 
Leblebici/Leblebici, Fundamentals of High-Frequency CMOS Analog Integrated Circuits, Cambridge University Press, 2009 

18

- If a sinusoidal voltage is applied to -  the crystal vibrates in  dimension.

- Amplitude is maximum for the mechanical resonance frequency of the crystal in
   direction, for which the losses are 

X X y

y



very small, consequently  very high.

- This mechanical vibration provokes a voltage on - ;  there
can be used as a very hi

fore a piezoe
gh  resonance circuit from its -  port.
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Electrical equivalent circuit of a piezoelectric crystal:

0

Example:
0.636 cm, 2.75 cm, 3.33 cm; 430 kHz

, 4500 ohm, 42 f3.3 F,  H 2005.8 p   0F
x y z

p

l l l f

R CL QC

   

   
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An oscillator operating at the parallel resonance frequency of the crystal 
Example:

(A negative resistance oscillator or a Colpitts oscillator?)
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An oscillator operating at the series resonance frequency of the crystal 
Example:
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Phase-lock technique

0 0 00 0

00

sin( ) 

sin( )

sin

ref ref ref

x x x

v V t
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 
 
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 

   
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00sin( )  sin   c ref ref x xv k V t V
N
            

00 001 1cos cos
2 2m ref x ref x ref x ref xv kV V t kV V t

N N
                           

001 cos
2c ref x ref xv kV V t

N
         

When the loop is open at C:
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The on-set of locking upon the closing of the loop:

0

                                      
       At the on-set of locking;  reff f




(After Alan B. Grebene)

VCO frequency 
changing away from f(ref)

VCO frequency 
changing toward f(ref)

Control voltage 
corresponding to foo

Control voltage in 
locked condition
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Phase noise in oscillators

frequency

power

f0

1 Hz

power

f0

(a) (b)

frequency

(a) Frequency spectrum of an ideal oscillator.
(b) Frequency spectrum of a non-ideal oscillator.

  0 1

0

( )Phase noise: L 10log
( )

B HzP f f
P f
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   
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- Random changes of the frequency due to the low stability,
- The thermal noise on the voltages and currents in the circuit,
- Shifts of the 

There are several mechanisms contributing to the phase noise:

0

zero-crossing point of the output signal,
- Frequency modulation of   with thermal noise.f
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power

frequencyfrequency

f0 f0

power

(a) (b)

(a) Spectrum of an oscillator, amplitude modulated with white noise,
(b) Spectrum of an oscillator, frequency modulated with white noise.

0Frequency modulation of   with thermal noisef
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0

0 (Re) max

 One of the reasons behind the random frequency modulation of 
   is the uncertainty of the oscillation frequency, due to the three 
   frequencies, ,  and , different but very close to ea



  



ch other.

0

0 0

 The amplitudes of the side frequencies of a carrier , frequency 
   modulated with a signal,  are given in terms of Bessel functions 
   of the modulation index, / ,  where  is the frequen

m
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   deviation that is very small and random in our case. 
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 From these data, for small values of , the rate of decrease
   of the r.m.s. values of the side frequencies can be calculated
   as approximately 20 dB/decade, in good agreement with
   the measured d



ata.

 Another important issue related to the is the , 
   the RMS amplitude of the variations of the zero cross point of 
   the signal in time axis, that is related 
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W/L = 100, L=0.18um
IT

 

= 1.2 mA
L =  10  nH
C =  1  pF
fo

 

= 1.6 GHz

Example:
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Jitter = 1.12 ps
Jitter = 515 fs

Ph
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se

 (d
B

c/
H

z)
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