
CN Chapter 7

CT Supplement: Sum-Frequency

Mixing

In this chapter of the online supplement to “Compact Blue-Green Lasers,” we elaborate

on using sum-frequency mixing, generally of two infrared wavelengths, to produce blue-

green light. In the usual configuration, a relatively weak signal at λ1 is converted to

an output at λ3 by sum-frequency mixing with a strong pump field at λ2. For example,

one of the earliest interactions that was explored involved mixing the 809-nm signal

from a diode laser with the 1064-nm signal from a diode-pumped solid-state laser to

produce blue light at 459 nm. At the time this was first explored (mid-1980s), the

power that could be produced by a 809-nm diode laser in a suitable spatial mode was

relatively low, generally several tens of milliwatts, while powers of several watts could
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be obtained at 1064 nm.

In the first part of this supplement, we will derive equations for the plane-wave

case that include the effect of depletion of the weak signal at λ1—in the ideal case, all the

power at λ1 would be converted to λ3, so that depletion cannot be ignored. However,

in actual practice Gaussian beams rather than plane waves are used and complete

conversion is usually not obtained. Hence, in the second part of the supplement, we

will adapt the Boyd-Kleinman analysis presented in the previous supplement for second-

harmonic generation to some special cases of sum-frequency mixing relevant to many

of the practical implementations that have been explored for blue-green generation.

A 7.1 Plane Wave Treatment

The coupled equations relating the amplitude of the 1, 3 fields are:

dA3(x)

dx
=

(−4j

n2
3

deff
A2

4
k3e

j∆kxe−j∆φ

)
A1(x) (7.1)

dA1(x)

dx
=

(−4j

n2
1

deff
A2

4
k1e

−j∆kxej∆φ

)
A3(x) (7.2)

where we have assumed that the strong 2 pump field is not depleted.

We can introduce the constants:
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κ1 =
k1deffA2

n2
1

(7.3)

κ3 =
k3deffA2

n2
3

and taking ∆φ = 0 we can then write the coupled equations as:

dA3(x)

dx
= −jκ3e

j∆kxA1(x) (7.4)

dA1(x)

dx
= −jκ1e

−j∆kxA3(x) (7.5)

Differentiating the first equation we obtain:

d2A3(x)

dx2
= −jκ3

(
j∆kA1(x) +

dA1(x)

dx

)
ej∆kx (7.6)

We can substitute for A1(x) using the first equation above and for dA1(x)
dx

using

the second to obtain:

d2A3(x)

dx2
= −jκ3

j∆k ·
dA3(x)

dx
−jκ3ej∆kx

+−jκ1e
−j∆kxA3(x)

 ej∆kx (7.7)

= j∆k
dA3(x)

dx
− κ1κ3A3(x)
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or

d2A3(x)

dx2
− j∆k

dA3(x)

dx
+ κ1κ3A3(x) = 0 (7.8)

We take a trial solution of the form

A3(x) =
(
Cejγx + De−jγx

)
ej∆kx/2 (7.9)

from which we obtain:

dA3(x)

dx
=

(
Cejγx + De−jγx

) (
j∆k

2
ej∆kx/2

)
+ jγ

(
Cejγx − De−jγx

)
ej∆kx/2(7.10)

= jej∆kx/2

[
Cejγx

(
∆k

2
+ γ

)
+ De−jγx

(
∆k

2
− γ

)]

and

d2A3(x)

dx2
= j

(
j∆k

2
ej∆kx/2

) [
Cejγx

(
∆k

2
+ γ

)
+ De−jγx

(
∆k

2
− γ

)]
(7.11)

+jej∆kx/2

[
jγCejγx

(
∆k

2
+ γ

)
− jγDe−jγx

(
∆k

2
− γ

)]

= jej∆kx/2

{
Cejγx

[(
j∆k

2

) (
∆k

2
+ γ

)
+ jγ

(
∆k

2
+ γ

)]
+ De−jγx

[(
j∆k

2

) (
∆k

2
− γ

)
− jγ

(
∆k

2
− γ

)]}

= −ej∆kx/2

{
Cejγx

[
γ2 + γ∆k +

(
∆k

2

)2
]
+ De−jγx

[
γ2 − γ∆k +

(
∆k

2

)2
]}
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Inserting these expansions into the second-order differential equation above

we obtain:

Cejγx

{
−

[
γ2 + γ∆k +

(
∆k

2

)2
]
+∆k

[
∆k

2
+ γ

]
+ κ1κ3

}
+De−jγx

{
−

[
γ2 − γ∆k +

(
∆k

2

)2
]
−∆k

[
γ − ∆k

2

]
+ κ1κ3

}
= 0

(7.12)

In order for the equality to be satisfied generally, the factor inside the braces

must be zero, which reduces to:

−γ2 +

(
∆k

2

)2

+ κ1κ3 = 0 (7.13)

γ2 =

(
∆k

2

)2

+ κ1κ3

Recall that the trial solution is A3(x) = (Cejγx + De−jγx) ej∆kx/2.We ex-

pect that A3(0) = 0, thus C + D = 0.Therefore A3(x) = C (ejγx − e−jγx) ej∆kx/2 =

2jC sin(γx)ej∆kx/2

Rearranging one of the original coupled equations, we find:

A1(x) =
dA3(x)

dx
· 1

−jκ3ej∆kx
=

−2C
[
ejγ

(
∆k
2
+ γ

) − e−jγ
(

∆k
2
− γ

)]
e−j∆kx/2

κ3

(7.14)
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¿From this

A1(0) =
−2Cγ

κ3
(7.15)

or

C =
−κ3A1(0)

2
(7.16)

Therefore,

A3(x) = 2j

(−κ3A1(0)

2

)
sin(γx)ej∆kx/2 (7.17)

I3(x) =
A3 (x)A∗

3 (x)

2η3
=

η1

η3
· κ2

3 · I1(0) ·
(
sin γx

γ

)2

(7.18)

Under phasematching conditions (∆k = 0), γ =
√

κ1κ3 and for maximum

conversion efficiency, we must have
√

κ1κ3�x = π/2. When we write κ1,3 in terms of

intensities, we find that for a fixed crystal length �x, maximum conversion efficiency

requires that the pump beam have a particular intensity I2 =
π2n2

1n2
3

8�2xk1k3η2d2
eff

. Thus,

under these ideal conditions, I3(�x) =
λ1

λ3
I1(0). If we re-write this expression in terms

of the average number of photons N1,3 at the two wavelengths, we find that N3 = N1,

meaning that under optimum conditions, all the photons at wavelength λ1 that are

introduced into the interaction are converted to photons at wavelength λ3.
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A 7.2 Focused Gaussian Beams

As mentioned in the text of “Compact Blue-Green Lasers”, the case of sum-frequency

generation using focused Gaussian beams is somewhat more complicated than the case

of second-harmonic generation, simply because there are now two input beams, each

of which could be focused to a different degree, could be propagating in a different

direction and could pass through the crystal at a different location. However, in most

practical cases of blue-green generation, the goal is to maximize the power generated

at the sum-frequency; hence, it is obviously desirable to overlap the beams well and to

have them propagate in the same direction. However, the question of how each beam

should be focused remains.

Recall that there were really two pieces to the solution of the second-harmonic

generation problem: first, we had to determine the spatial variation of the nonlinear

polarization induced by the electric field distribution of the input beam; second, we

viewed this induced polarization as a source, and calculated the freely propagating

electric field produced by it. Hence, if we can contrive a situation such that the two

input beams in sum-frequency generation produce a polarization that has the same form

as we obtained in second-harmonic generation, we may be apply some of the results

from our earlier analysis of second-harmonic generation to the case of sum-frequency

mixing.
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We will use similar notation to that used in the supplement explaining the

Boyd-Kleinman treatment of second-harmonic generation, with additional subscripts

added where they are needed to distinguish between the two input beams required for

sum-frequency mixing.

Suppose that the two input beams are coaxial Gaussian beams and that they

have their waists at the same value of z. We can write:

Ẽ1 (r, z) =
E1o

2

w1o

w1 (z)
e−

α1

2
ze

− r2

w2
1(z) e−jk1zejΨ1(r,z)ejΦ1(z) (7.19)

Ẽ2 (r, z) =
E2o

2

w2o

w2 (z)
e−

α2

2
ze

− r2

w2
2(z) e−jk2zejΨ2(r,z)ejΦ2(z) (7.20)

We now define the parameters ζ1,2 = 2z/b1,2 and write:

w1(z) = w10

[
1 + ζ2

1

]
(7.21)

ejΨ1(r,z) = e
j

ζ1r2

w2
10(1+ζ2

1) (7.22)

ejΦ1(z)= 1− jζ1√
1 + ζ2

1

(7.23)

with similar definitions for beam 2. Hence, we can write an expression for the

first input beam as:
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Ẽ1 (r, z) =
E1o

2
e−

α1

2
z 1√

1 + ζ2
1

e
− r2

w2
1o(1+ζ2

1) e−jk1ze
j

ζ1r2

w2
1o(1+ζ2

1) 1− jζ1√
1 + ζ2

1

(7.24)

=
E1o

2
e−

α1

2
z 1

1 + jζ1

e
− r2

w2
1o(1+jζ1) e−jk1z

Similarly, for the second input beam we write:

Ẽ2 (r, z) =
E2o

2
e−

α2

2
z 1√

1 + ζ2
2

e
− r2

w2
2o(1+ζ2

2) e−jk2ze
j

ζ21r2

w2
2o(1+ζ2

2) 1− jζ2√
1 + ζ2

2

(7.25)

=
E2o

2
e−

α2

2
z 1

1 + jζ2
e
− r2

w2
2o(1+jζ2) e−jk2z

The Gaussian beams as we have written them her both have their waists at

z=0, which is normally where we consider the input face of the crystal to be. We can

make the expression more general by placing the waist at some position z=f and we

can achieve this change by re-defining ζ1,2 = 2 (z − f) /b1,2.

The nonlinear polarization induced by the interaction of these two beams

through sum-frequency generation is given by:

P̃ (ω3) = 4εodeff Ẽ(ω1)Ẽ(ω2) (7.26)

= 4εodeff

[
E1o

2
e−

α1
2

z 1

1 + jζ1
e
− r2

w2
1o(1+jζ1) e−jk1z

][
E2o

2
e−

α2
2

z 1

1 + jζ2
e
− r2

w2
2o(1+jζ2) e−jk2z

]

= εodeffE1oE2oe
− 1

2
(α1+α2)z 1

1 + jζ1

1

1 + jζ2

e
− r2

w2
1o(1+jζ1) e

− r2

w2
2o(1+jζ2) e−j(k1+k2)z
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Inserting this expression into the generating equation for the sum-frequency

field, we obtain:

dẼ3 (x) =
−j

2εon2
3

k3e
jk3zP̃ (ω3)dz (7.27)

=
−jk3

2n2
3

ej∆kzdeffE1oE2oe
− 1

2
(α1+α2)z 1

1 + jζ1

1

1 + jζ2
e
− r2

w2
1o(1+jζ1) e

− r2

w2
2o(1+jζ2) dz

If the two beams have the same confocal parameter b1 = b2 = b, then ζ1 =

ζ2 = ζ

then the expression above simplifies to:

dẼ3 (x) =
−jk3

2n2
3

ej∆kzdeffE1oE2oe
− 1

2
(α1+α2)z

[
1

1 + jζ

]2

e
− r2

(1+jζ)

(
1

w2
1o

+ 1

w2
2o

)
dz (7.28)

If we define an effective beam waist

we can write

dẼ3,SFG (x) =
−jk3

2n2
3

ej∆kzdeffE1oE2oe
− 1

2
(α1+α2)z 1

1 + jζ

{
1

1 + jζ
e
− r2

(1+jζ)

(
1

w2
1o

+ 1

w2
2o

)}
dz

(7.29)

This expression describes the contribution to the sum-frequency field from a

slab of the nonlinear crystal with width dz, located at a position z inside the crystal
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(0 < z < l) . Recall that in the case of second-harmonic generation, we had a similar

expression:

dẼ3,SHG (x) =
−jk3

2n2
3

ej∆kzdeff
E2

o

2
e−α1z 1

1 + jζ

{
1

1 + jζ
e
− 2r2

w2
o(1+jζ)

}
dz (7.30)

Note that if we define

2

w2
eff

=
1

w2
10

+
1

w2
20

(7.31)

Eo,eff = 2
√

E1oE2o (7.32)

αeff =
1

2
(α1 + α2) (7.33)

then we can write for this sum-frequency generation case the expression:

dẼ3,SFG (x) =
−jk3

2n2
3

ej∆kzdeff
Eo,eff

2
e−αeff z 1

1 + jζ

{
1

1 + jζ
e
− 2r2

w2
eff (1+jζ)

}
d (7.34)

which has exactly the same form as the preceding one for second-harmonic

generation.

Hence, from this point on, the development is the same as what was presented

in the supplemental chapter on second-harmonic generation. We can therefore skip
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to the end and modify the result obtained for the generated SHG power to derive an

expression for the generated SFG power. Using the result from the supplement on

focused SHG, and making the substitutions described above, we expect that

P3 =
1

32η3

k2
3

n4
3

(
4E2

1oE
2
2o

)
d2

effb2πw2
effe−α

′
lξh (7.35)

where

α
′
= αeff +

1
2
α3 =

1

2
(α1 + α2 + α3) (7.36)

We note that since b1 = b2 = b

2

w2
eff

=
1

w2
10

+
1

w2
20

=
2πn1

λ1b
+

2πn2

λ2b
=

2π

b

(
n1

λ1
+

n2

λ2

)
=

2πn3

bλ3
(7.37)

or

w2
eff =

bλ3

πn3

where the last equality results from the use of momentum conservation and

the assumption of perfect phasematching (∆k = 0). In addition, we recall that the

power of the input beams is given by
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P1 =
E2

1o

2η1

πw2
1o

2
(7.38)

P2 =
E2

2o

2η2

πw2
2o

2

Using these relations, we can write:

P3 =
1

8η3

k2
3

n4
3

(
4η1P1

πw2
1o

) (
4η2P2

πw2
2o

)
d2

effb2π

(
bλ3

πn3

)
e−α

′
l l

b
h (7.39)

=
2η1η2

π2η3

1

n5
3

(
2πn3

λ3

)2 (
2πn1

bλ1

) (
2πn2

bλ2

)
λ3P1P2d

2
effb2e−α

′
llh

=
32π2d2

eff

εocn2
3λ1λ2λ3

P1P2e
−α

′
llh

B 7.2.1 Special Cases

Since the analysis follows that of the SHG case, we might expect that with no walk-off,

optimum SFG will occur when both of the input beams are focused such that l/b = 2.84.

Under these conditions, h ≈ 1, so that with negligible loss,

P3,opt ≈
32π2d2

eff

εocn2
3λ1λ2λ3

P1P2l (7.40)

In the case of loose focusing, i.e., l/b � 1, h → l/b,so that
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P3,loose ≈
32π2d2

eff

εocn2
3λ1λ2λ3

P1P2
l2

b
(7.41)

For cases other than these, the reader is referred to the paper by S. Guha

and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J.

Appl. Phys., 51(1), 50–60 (1980), in which the Boyd-Kleinman analysis described here

is carried out for more general cases. Their analysis leads to the following conclusions:

• When there is no walk-off, SFG efficiency is maximized when both beams have

the same confocal parameter

• When there is walk-off, but when both beams have the same propagation con-

stant, SFG efficiency is maximized when both beams also have the same confocal

parameter.

• When there is walk-off and when the two beams have different propagation con-

stants, the optimum values for the confocal parameters of the two beams must be

found numerically. Their paper contains numerous plots from which the values

can be estimated.
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