
11

Agent based modelling

11.1 Excitable agents as cells in a tissue

11.1.1 Simulate the excitable media cellular automata with σ = 10 and
σ = 20, for an N=100 system with site number 50 always being excited.

Answer The cellular automaton is defined in terms of a site variable s(x),
which takes value 0, 1, 2, ... σ+1 where the last state is the excited one. At
each time step all sites x = 1, 2, ....L are updated synchronously:

• For all sites x where s(x) < σ then s(x) → s(x) + 1

• For all sites where s(x) = f then neighboring sites are set = f if they
already have a value s = σ. Subsequently the firing site is reset to zero,
s(x) = f → s(x) = 0.

• The source is maintaining by always setting s(50) = σ + 1.

Figure 11.1 shows the results of simulations for σ = 10, and σ = 20.

11.1.2 Simulate the excitable media cellular automaton with σ = 10, and size
N=100 where a random site becoming excited for every system update. Also
consider a random excitation for every 10 system updates.

Answer The algorithm from the previous question is repeated, except that
now the excited state is set to a random point with probability α after all
sites are updated. Figure 11.2 shows the results of simulations for α = 1 and
α = 0.1.
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Figure 11.1 Spreading of excitation from a source at x=50, using a refractory
period of respectively 10 and 20 time steps.
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Figure 11.2 Spreading of excitation waves from random sources, using a
refractory period of 10 time steps.

11.1.3 Simulate an excitable medium in two-dimensions using stochastic
updating with p = 0.5 and σ = 5.

Answer As for Question 11.1.1, except that one now allows spreading to
the four nearest neighbors. A snapshot is shown in Fig. 11.3.

11.2 Information spreading on social scales

11.2.1 Simulate a Schelling-like model with three colors, where all agents
want four nearest neighbors to be the same color as themselves. At each step,
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Figure 11.3 Two-dimensional spreading of excitation waves from a source in
the middle. In the right-hand panel we only update each site with probability
0.5, giving the same average ageing as in the left-hand panel.

select two agents. If both agents either win or at least do not lose in the
exchange, then switch positions. Simulate an N = 100 system for 2000
updates per agent in the system.

Answer At each step, select two agents i and j. Count the number of agents
at i−2, i−1, i+1, i+2 that have the same color as agent number i, c(i) and
also the number of agents that have the same color as the agent at position
j, c(j). Similarly, count the colors of agents at positions j − 2, j − 1, j + 1,
j+2. If none of the agents lower their number of similar color neighbors, then
switch their positions, i.e. update c(i), c(j) = c(j), c(i). Coarsening dynamics
are illustrated in Fig. 11.4.

11.2.2 Simulate and visualize the spread of signals along a one-dimensional
line, with new words appearing at position x = n/2 with high frequency (for
example, each time each agent has been involved in one word exchange). At
each step, select two neighbors, and let the youngest word spread to replace
the oldest word.

Answer There is one parameter in the problem, the word-initiation fre-
quency. Define a state vector a(i) that specifies the birth age of a word at
position i ∈ [1, n], where n = 100. At each time t select a random num-
ber r ∈ [0, 1]. If r < α then set a(n/2) = t. At the same time step, select
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Figure 11.4 Simulation of the three-state Schelling model with time counted
as the number of attempted updates per agent.
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Figure 11.5 Minimal model of word spreading, with new words initiated at
position x = 50 at various rates. Rate α = 1 is the same rate as pairs of
agents communicate with each other. In the right-hand panel we explore a
lower word-initiation rate.

subsequently n pairs of neighboring nodes i, i + 1. For each pair compare
a(i) with a(i + 1) and assign both positions the maximum value of their a
values: a(i) = a(i + 1) = max(a(i), a(i + 1). Results for α = 1 and α = 0.1
are shown in Fig. 11.5. Notice that the dynamics far from initiation become
independent of the initial “innovation rate.”

11.2.3 A classical way to obtain scale-free behavior is “the rich get richer
dynamics” [588, 589, 473]. For networks this is formulated in terms of a
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growth model where each node links to already present nodes by linking up
to the nodes at the end of random selected links in the network [589, 473].
Start with one node at time t = 0 and let n(k, t) be the number of nodes with
connectivity k at time t. Show that [590]:

n(k, t+ 1)− n(k, t) =
(k − 1) · n(k − 1, t)− k · n(k, t)∑

kn(k)
for k > 1

Each added node is associated with one link, which means two edge ends, and
thus

∑
k kn(k, t) = 2 · t.

Argue that:

dn

dt
= − 1

2t
· d(k · n)

dk

Use the “ansatz” n(k, t) = f(t) ·N(k) to prove that N(k) ∝ 1/k3.

Answer Notice that the presented growth model is based on minimal infor-
mation in the sense that each new node is attached to the end of a randomly
selected old link. Thus one connects new nodes to old nodes, with a prob-
ability of connecting that is proportional to the degree of the older nodes.
Highly connected nodes therefore grow faster; it pays to be “popular.” After
t steps, t nodes are added and, for the simplest version, also t edges.

Let n(k, t) be the number of nodes with connectivity k at time t. Adding
one link to previous nodes means that the number of nodes with connectivity
k increases by one with probability n(k − 1) × (k − 1)/

∑
kn(k). Similarly,

the number of nodes of connectivity k is decreased by one with probability
n(k)k/

∑
kn(k). As a result:

n(k, t+ 1)− n(k, t) =
(k − 1) · n(k − 1, t)− k · n(k, t)∑

kn(k)
for k > 1 (11.1)

In this equation the first term represents the addition of a link to a node of
connectivity k− 1, thereby adding to the number of nodes of connectivity k.
The second term represents the addition of a link to a node of connectivity
k, thereby reducing the number of nodes with connectivity k by moving one
of them to the next connectivity value.

Each added node is associated by one link, which means two edge ends,
and thus

∑
k kn(k, t) = 2 · t. Accordingly, the continuous limit:

dn

dt
= − 1

2t

d(k · n)
dk

(11.2)
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To solve this equation we make the “ansatz”:

n(k, t) = f(t) ·N(k) (11.3)

which gives:

2t
f ′(t)

f(t)
= − 1

N

d(kN)

dk
(11.4)

where f(t) ∝ t since f(t)
∑

kN(k) = 2 · t. Thus, our factorization implies
that the addition of nodes at constant rate implies that nodes of low and
intermediate connectivity are increased at a constant rate. This implies that:

−1− d ln(N)

d ln(k)
= 2 (11.5)

Using this, one obtains N ∝ k−3, and subsequently:

n(k) ∝ 1

k3
(11.6)

Notice that if we instead added two links for each new node, each attached to
the new node, then the nominator and the denominator in Eq. (11.1) would
both double and the scaling word therefore be exactly maintained.

Notice also, that if one instead added links preferentially without adding
new nodes, each such link would contribute with two times the nominator
(one for each link end), and with 2t in the denominator, changing 1/(2t) →
(1+2)/((2+2)t). Thus the factor 2 in 2tf

′(t)
f(t)

= − 1
N

d(kN)
dk

. changes to 4/3 and

the scaling becomes N(k) ∝ 1/k2.33. In general, adding links preferentially
between older nodes changes the scaling law 1/k3 → 1/kγ with γ ∈ [2; 3].

11.2.4 Consider the distribution [591, 592, 588]

p(s) ∝ 1/sτ

as a distribution for wealth in human society. Ague that τ ≤ 2 is funda-
mentally different society than τ > 2. Notice that τ = 2 is the famous Zipf
distribution observed, for example, for word frequencies in books [593].

Answer The distribution p(s) ∝ 1/s2 is marginal in the sense that the
average

〈s〉 =

∫ max

min

sds

sτ
(11.7)
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Figure 11.6 Connectivity distribution in a preferential attachment model for
three different values of Rnew, a parameter that specifies the fraction of times
one adds a node with a link, and 1−Rnew the fraction of times one add links to
the growing network, each end being linked to a node with a probability pro-
portional to the connectivity of that node. For all values of Rnew one obtains
a power law, dependent on Rnew and approaching 1/K3 when Rnew = 1.

has a large contribution from the upper cut-off of the integral, i.e. with power
laws that are wider than 1/s2, like 1/s1.5, a huge fraction of the assets is bound
relatively close to the upper cut-off. On the other hand, a narrower scaling,
like 1/s2.5, will have an average that is independent of the upper cut-off.

If s denotes the resources/money, social systems should become unstable
when the exponent τ becomes less than 2: popularly speaking, the rich then
becomes so rich that by taxing their fortunes, the majority could increase
their living standard substantially.

11.3 Tragedy of the Commons

11.3.1 The deterministic counterpart of the non-spatial model can be given
in terms of the coupling matrix Γ through the population dynamics of any
species i,

dpi
dt

=
∑
i

Γ(i, j) · pi · pj −
∑
j

Γ(j, i) · pi · pj (11.8)
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where the first sum overruns over all prey species of i, i.e. where Γ(i, j) = 1,
and the second sum is over all predators of j (species where Γ(j, i) = 1).
Simulate a three cycle using this equation, and subsequently add an additional
species that only prey on one of the cycle species, but do not give anything
back (a parasite).

Answer The simulation of this system is complicated by the numerical
instability of the cyclic movement, i.e. that the simple first-order integration
is inherently wrong. To avoid the technicalities of a higher-order integration,
here we, for the limited time period of t = 10, use a very small dt = 0.00005.
Initially we set p(1) = 1, p(2) = 2 and p(3), and simple integration of:

dp1
dt

= p1p2 − p3p1

dp2
dt

= p2p3 − p2p1

dp3
dt

= p3p1 − p2p3

gives the results in the upper left-hand panel of Fig. 11.7. Adding a parasite,
the modified equations reas:

dp1
dt

= p1p2 − p3p1

dp2
dt

= p2p3 − p2p1

dp3
dt

= p3p1 − p2p3 − qp3

dq

dt
= p3q − q

and initiating q = 0.1, leads to overall collapse of the ecosystem, as shown in
the upper right-hand panel of Fig. 11.7.

11.3.2) Repeat the above simulation for a five-cycle system.

Answer Start the simulation with p1 = p2 = p3 = p4 = 1 and p5 = 3,
and use same basic integration with a very small time step, as used in the
previous question. Results we shown in the lower panels of Fig. 11.7.

11.3.3 The cyclic relationship from the previous questions includes a direct
predation cost on the prey, which differs from Eigen and Schusters hypercycle
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Figure 11.7 Simulation of a three-species cycle, and a five-species cycle. In
the right-hand panels we show the effect of a parasite on one of the species.

[610], where the growth of one species happens at the cost of all other species.
The hypercycle equation: dpi

dt
= pi·pmod(i+1,n)−Ω·pi where Ω =

∑
pi·pmod(i+1,n)

describes catalytic chemical equations in a chemostat, where the sum of all
species is maintained at

∑
pi = 1. Simulate a three-cycle and a five-cycle and

compare with corresponding predator–prey simulations. Hint: see Fig. 11.12.

Answer The hyper-cycle equations for the three catalytic species read:

dp1
dt

= p1p2 − p1Ω

dp2
dt

= p2p3 − p2Ω

dp3
dt

= p3p1 − p3Ω

where Ω = p1p2+p2p3+p3p1, and initially
∑

pi = 1. Start with p1 = p2 = 0.2
and p3 = 0.6 to obtain the results shown in Fig. 11.8. The simulations are
directly compared with predator–prey cyclic equations. Overall, the catalytic
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Figure 11.8 Simulation for comparison of direct cyclic predation with a
hypercycle where growth of each population is taken from everybody.

reactions assumed by the hypercycle equations lead to less oscillating behav-
ior than the direct predation cost.

11.3.4 Social dilemmas are most often modeled in the form of the classical
two-player prisoners’ dilemma [611]. In this, each player decides indepen-
dently whether to co-operate or defect. A given player subsequently is given
a score of 1 if the opponent co-operates and 0 otherwise. Further the player
is assigned an additional score −c (i.e penalty c< 1) if he collaborate. As-
sume that the opponent randomly, with probability r, chooses to co-operate;
what is your optimal strategy? Consider now an iterated game where players
play multiple times with each other. Assume that the opponent always mimics
your last choice; what then is your optimal long-term strategy as a function
of c?
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Answer If you always defect, your average score is:

s = 1 · r + 0 · (1− r) = r (11.9)

For each time you co-operate, you lose −c, thus it will never be beneficial to
cooperate with a non-responsive opponent. In this case, the optimal strategy
is to defect persistently.

If your opponent mimics your last move, persistent defection gives an
average score of s = 0.

For each collaboration step, the player loses c by collaborating, but
gains +1 by subsequently cheating a collaborating opponent. Thus the av-
erage gain by alternating between collaboration and defection becomes s =
(1− c)/2.

If both agents always collaborate, the players average gain would be 1−c,
which is better.

However, each player would gain instantly by cheating, but it effectively
forces the opponent to retaliate.

For c > 1 it is impossible to gain by collaboration.
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