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and

�ml(t) ≡
∫ t

0
γ �G(τ )τ

l

l! dτ l = 0, 1, 2, . . . . (4.89)

�ml is the lth order gradient moment.

Proof of Eq. 4.87. The exact path �r(t) followed by
the moving spin is unknown. However, any physical
motion can be expanded in a Taylor series around
t = 0. Hence,

�r(t) = �r(0) + d�r
dt

(0)t + · · · + dl�r
dtl

(0)
tl

l! + · · · .
(4.90)

The position �r, the velocity �v(�r), and the acceleration
�a(�r) of the spin at time t = 0 can be introduced in this
equation:

�r(t) = �r + �v(�r) t + �a(�r) t
2

2
+ · · · . (4.91)

Substituting Eq. 4.91 in Eq. 4.86 yields:

�(�r, t) = �r ·
∫ t

0
γ �G(τ ) dτ + �v(�r) ·

∫ t

0
γ �G(τ )τ dτ

+ �a(�r) ·
∫ t

0
γ �G(τ )τ

2

2
dτ + · · ·

or, using the gradient moments as defined in Eq. 4.89

�(�r, t) = �r · �m0(t)+ �v(�r) · �m1(t)+ �a(�r) · �m2(t)+ · · · .
(4.92)

Rewriting Eq. 4.47 as

s(t) =
∫
�r
ρ∗(�r) e−i�(�r,t) d�r, (4.93)

and substituting Eq. 4.92 into Eq. 4.93, yields Eq. 4.87.

Without motion, only the zeroth-order moment
�m0(t) in Eq. 4.87 causes a phase shift. This phase shift
is needed for position encoding when using the �k-
theorem. Motion introduces additional dephasing of
the signal s(t), yielding distortion and contrast loss.
However, motion-induced dephasing can be reduced
by back-to-back symmetric bipolar pulses of opposite
polarity. They are able to restore hyperintense vessel
signals for blood flowing at a constant velocity. In case
of constant velocity Eq. 4.87 becomes

s(t) =
∫
�r
ρ∗(�r) e−i�v(�r)· �m1(t) e−i�r· �m0(t) d�r (4.94)

and contains only two dephasing factors, one neces-
sary for position encoding and the other introduced
by the blood velocity �v(�r).

Eq. 4.55 shows that for stationary spins (�v(�r) = 0)
the net phase shift due to simple bipolar gradient
pulses (Figure 4.27(a)) is zero. This is the case at t =TE
in the frequency-encoding and slice-selection direc-
tions. For moving spins (�v(�r) �= 0), however, a simple
bipolar pulse sequence as in Figure 4.27(a) introduces
a phase shift because its first gradient moment �m1 at
t = TE is nonzero:

m1(TE) = −γ �G (	t)2 �= 0. (4.95)

Back-to-back symmetric bipolar pulses of opposite
polarity on the other hand (Figure 4.27(b)) remove
the velocity-induced phase shift at t = TE while
they have no net effect on static spins. Both their
zeroth and first-order gradient momentsm0(TE) and
m1(TE) are zero. Higher order motion components
are not rephased, however, and will still cause dephas-
ing.

The rephasing gradients can be applied only
in the frequency-encoding and slice-selection direc-
tions. This technique is known as gradient moment
nulling, gradient moment rephasing, or flow compen-
sation. It is built-in in sequences to remove velocity-
induced artifacts. A diagram of a 3D spoiled GE
sequence with first-order motion compensation is
shown in Figure 4.28. Technical considerations limit
the motion compensation to the first-order or at most
the second-order gradient moments. Very complex
motion patterns, such as the turbulence in the aor-
tic arch and behind stenotic plaques, continue to
produce signal dephasing.
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Figure 4.27 (a) Simple bipolar pulses cannot provide a
phase-coherent signal for moving spins. (b) Back-to-back
symmetric bipolar pulses of opposite polarity on the other hand
restore the phase coherence completely for spins moving at a
constant velocity.
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