
to the geometric phase picked up along an infinitesimal loop. When
only IS is broken, the Berry curvature is point-antisymmetric, and its
sign inverts for opposite DAB; see Fig. 2e. The spread of V(q) increases
with the size of the gap. Its integral over the first Brillouin zone, the Chern
number n, is zero, corresponding to a topologically trivial system. How-
ever, with only TRS broken, n 561, V(q) is point-symmetric, and its sign
changes when reversing the rotation direction of the lattice modulation.

To determine the topology of the lowest band, we move the atoms
along the y direction such that their trajectories sample the regions where
the Berry curvature is concentrated, and record their final position. As
atoms move through regions of q-space with non-zero curvature, they
acquire an orthogonal velocity proportional to the applied force and V(q)
(refs 23–26). The underlying harmonic confinement caused by the laser
beams in the experiment couples real and momentum space, meaning
that a displacement in real space leads to a drift in quasi-momentum.
We apply a gradient of DE/h 5 114.6(1) Hz per site and measure the
centre of mass of the quasi-momentum distribution in the lowest band
after one full Bloch cycle. Because the velocity caused by the Berry cur-
vature inverts when inverting the force, we subtract the result for the
opposite gradient to obtain the differential driftD. This quantity is more
suitable for distinguishing trivial from non-trivial Berry-curvature dis-
tributions than the response to a single gradient (Methods)25. The latter
does however provide information about the local Berry curvature and
is shown in Extended Data Fig. 2.

When breaking only IS, we observe thatD vanishes and is independent
of DAB, because the Berry curvature is point-antisymmetric; see Fig. 2c.
In contrast, when only TRS is broken, we explore the topological regime
of the Haldane model with DAB 5 0. A differential drift is observed for
Q 5 90u, which, as expected, is opposite for Q 5 290u; see Figs 2d and
4c. This is a direct consequence of the Berry curvature being point-
symmetric, with its sign given by the rotation direction of the lattice mod-
ulation. In fact, here a non-zeroD can only originate from a non-zero
integrated Berry curvature (Methods). As the modulation becomes linear,
the drift disappears. This is smoothed by the increased transfer to the
higher band when the gap becomes smaller, which predominantly affects
atoms that would experience the strongest Berry curvature. These obser-
vations are qualitatively confirmed by semiclassical simulations shown
in Extended Data Fig. 1.

Within the Haldane model, the competition of simultaneously broken
TRS and IS is of particular interest, as it features a topological transition
between a trivial band insulator and a Chern insulator. In this regime, both
the band structure and Berry curvature are no longer point-symmetric
and the energy gap G6 at the two Dirac points is given by

G+~ DAB+Dmax
T sin Qð Þ

!! !! ð3Þ

On the transition lines the system is gapless with one closed and one
gapped Dirac point, G1 5 0 or G2 5 0. We now discuss measurements
in which we extend the parameter regime to allow for the simultaneous
breaking of both symmetries.

We map out the transition by measuring the transfer j6 for each Dirac
point separately, see Fig. 3a. j1 (j2) is the fraction of atoms occupying
the upper (lower) half of the second Brillouin zone after one Bloch oscil-
lation along the x direction. We observe a difference between j1 and
j2, which shows that the band structure is no longer point-symmetric,
allowing for the parity anomaly predicted by Haldane1. When the topol-
ogy of the band changes, the gap at one of the Dirac point closes. We
identify the closing of a gap with the point of maximum measured transfer
when varying DAB. For Q 5 0uwe find, as expected for preserved TRS, that
the maxima of both j1 and j2 coincide; see Fig. 3b. The maxima are
shifted in opposite directions for Q 5 90u, showing that the minimum
gap for each Dirac point occurs at different values of DAB. In between
these values the system is in the topologically non-trivial regime. We
explore the position of each maximum for varying Q and find opposite
shifts for negative Q as predicted by equation (3) using no free param-
eters; see Fig. 3c.

In Fig. 4 we show the measured differential driftD for all topological
regimes, allowing for simultaneously broken IS and TRS. Here, we reduce
the modulation frequency to 3.75 kHz, where the signal-to-noise ratio
ofD is larger, but which is less suited for a quantitative comparison of
the transfer jbecause the lattice modulation ramps are expected to be
less adiabatic.D is non-zero only for broken TRS and shows the expected
antisymmetry with Q and symmetry with DAB. For large DAB, deep inside
the topologically trivial regime,D vanishes for all Q. For smaller DAB, the
differential drift shows precursors of the regimes with non-zero Chern
number: non-zero values ofD extend well beyond the transition lines
when IS and TRS are both broken. Semiclassical simulations (see Ex-
tended Data Fig. 1c) suggest that the main contribution to this effect
arises from the transfer to the higher band.
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Figure 3 | Mapping out the transition line. a, Atomic quasi-momentum
distribution (averaged over six runs) after one Bloch oscillation for Q 5 190u,
DAB/h 5 292(7) Hz. A line sum along qx shows the atomic density in the first
Brillouin zone in grey; atoms transferred at the upper (lower) Dirac point
are shown in orange (green) throughout. The fraction of atoms in the
second Brillouin zone differs for qywv0. This is a direct consequence of
simultaneously broken IS and TRS, which allows band structures that are not
point-symmetric. b, Fractions of atoms j6 in each half of the second Brillouin
zone. For linear modulation (left) the gap vanishes at DAB 5 0 for both
Dirac points, while for circular modulation (right) it vanishes at opposite values
of DAB. Gaussian fits (solid lines) are used to find the maximum transfer,
which signals the topological transition. Data are mean 6 s.d. of at least six
measurements. c, Solid lines show the theoretically computed topological
transitions, without free parameters. Dotted lines represent the uncertainty
of the maximum gap Dmax

T

!! !!"h~88z10
{34 Hz, originating from the uncertainty of

the lattice parameters. Data are the points of maximum transfer for each Dirac
point, 6 the fitting error, obtained from measurements as in b for various Q.
Data points for Q 5 6180u correspond to the same measurements. Between
the lines, the system is in the topologically non-trivial regime.
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(a)

(b)

Extending our work to interacting systems requires sufficiently low
heating. We investigate this with a repulsively interacting spin mixture
in the honeycomb lattice previously used for studying the fermionic
Mott insulator27. We measure the entropy in the Mott insulating regime
by loading atoms into the lattice and reversing the loading procedure
(see Methods and Extended Data Fig. 3). The entropy increase is only 25%
larger than without modulation. This opens up the possibility of study-
ing topological models with interactions28 in a controlled and tunable
way. For example, lattice modulation could be used to create topological
flat bands, which have been suggested to give rise to interaction-induced
fractional Chern insulators29,30. Furthermore, our approach of periodi-
cally modulating the system can be directly extended to engineer Hamil-
tonians with spin-dependent tunnelling amplitudes and phases (Methods).
This can be achieved by modulating a magnetic field gradient, which leads
to spin-dependent oscillating forces owing to the differential Zeeman
shift. For example, TRS topological Hamiltonians, such as the Kane–
Mele model3, can be implemented by simultaneously modulating the
lattice on one axis and a magnetic field gradient on the other.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 4 | Drift measurements. a, Differential drift D in quasi-momentum.
Each pixel corresponds to at least one pair of measurements, where the modulation
frequency was set to 3.75 kHz. Data points for Q 5 6120u, DAB/h 5 503(7) Hz
were not recorded and are interpolated. b, All topological regimes are
explored and the expected momentum-space drifts caused by the Berry
curvature are sketched for selected parameters. c, Cut along the DAB/h 5 15(7) Hz
line. Data show mean 6 s.d. for at least six pairs of measurements.
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