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Introduction to Signals

P 1.1 Find the recovered signal if a signal of frequency 50 Hz is sampled using
a sampling frequency of 80 Hz. What is the phase value?

Solution
Let x(t) =sin(2zFt)

Putting F =50 Hz and t = nT = n/F, we get

. [ 27x50n . [ 57zn
x(t) =sin =sin| —
80 4
=sin| 27 —3—ﬂ)n =sin| — 27 x3n
4 8

Compare the equation with x(n) =sin(27 fn), where f is the recovered digital
frequency given by f = F/F. Here f = —3/8 = —30/80, so analog frequency
recovered is 30 Hz. There is a negative sign so a phase shift of 180° is introduced.

P 1.2 An analog signal can be represented as

x(t) = cos(1507t) + 2 sin(3007t) — 400 cos(600t)

What is the Nyquist rate for this signal? If the signal is sampled with a sampling
frequency of 300 Hz, what is the DT signal obtained after sampling? What is
the recovered signal?
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Solution

The signal is given by
x(t) = cos(1507t) + 2 sin(3007t) — 400 cos(6007t)

The maximum frequency in the signal is 300 Hz. So the Nyquist frequency
is 600 Hz. If the signal is sampled using a sampling frequency of 300 Hz, by
putting ¢ = #/300 in the equation, we get

x(t) = cos(15071/300) + 2 sin ( 30077/ 300) — 400 cos (60077/300)
=cos (mz/Z) +2cos(zn) —400cos(27zn)

= COS(7Z’7’1/2) +2cos(7n) —400

Compare the equation with x(n) =sin (27 fu), where fis the recovered digital
frequency given by f = F/F,. f=-1/4, 1/2, 0 = =75/300, 150/300 and 0, so the
analog frequency recovered is 75 Hz and 150 Hz. Here the 300 Hz component
will be aliased as the DC component.

P 1.3 Let an analog signal be represented as
x(t) =sin(107t) + 2 sin(207t) — 2 cos(307t)

What is the Nyquist rate for this signal? If the signal is sampled with a sampling
frequency of 20 Hz, what is the DT signal obtained after sampling? What is the
recovered signal?

Solution

The signal is given by

x(t) =sin(107t) +2sin (207t) —2 cos (307t)
The signal has frequencies 5 Hz, 10 Hz and 15 Hz. The maximum frequency in
the signal is 15 Hz, so the Nyquist frequency is 30 Hz.

If the signal is sampled using a sampling frequency of 20 Hz, by putting
t = n/20 in the equation, we get

x(t) = sin (1021/20) + 2sin ( 20771/20) — 2 cos (30771/20)

= sin(ﬂn/Z) +2sin(zn) — 2cos(37m/2)



= sin(:m/Z) —cos (27m - 7m/2)
= sin(;m/Z) - cos(—im/Z)

Compare the equation with x(n) =sin(27 fn),, where f is the recovered digital
frequency given by f = F/F. f = —1/4, 0, =1/4 = 5/20, 0, =5/20 so the analog
frequency recovered is 5 Hz, 0 Hz, —5 Hz. The 10 Hz component will be aliased
as the DC component.

P 1.4 Find the recovered signal if a signal of frequency 150 Hz is sampled
using sampling frequencies of 400 Hz and 200 Hz, respectively. What is the
phase value in each case?

Solution
Let x(t) =sin(2zFt). Putting F = 150 Hz and t = nT = n/F,, F, = 400 Hz, we get

. [ 27 x150n . (27%x3 . (37 . 3nn
x(t) =sin =sin X n |=sin| —xn |=sin| 2x——
400 8 4 8

Compare the equation with x(n) =sin(27 fn), where f is the recovered digital
frequency given by f = F/F,. Here f = 3/8 = 150/400, so the analog frequency
recovered is 150 Hz. There is a positive sign so a phase shift of 0° is introduced.

Let x(t)=sin(2zFt). Putting F = 150 Hz and t = nT = n/F,, F, = 200 Hz, we

get
. (27 %x150n . [27m%x3 . 2 . 27mn
x(t) =sin =sin xn |=sin| 27 ———xn |=sin| ———
200 4 4 4

Compare the equation with x(n) =sin(27 fn), where f is the recovered digital
frequency given by f = F/F_. Here f = —1/4 = —50/200, so the analog frequency
recovered is 50 Hz. There is a negative sign so a phase shift of 180° is introduced.

P 1.5 Design an anti-aliasing filter for a signal represented as
x(t) =sin(807t) +sin(100st) — 6 cos(1507t)

Solution

We have to design an anti-aliasing filter for a signal represented as

x(t) =sin (807t) +sin (10077t) — 6 cos (1507t)

‘ w ‘ Introduction to Signals
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Compare the equation with x(n)=sin(27Fn), where F is the analog frequency.
We find that the signal contains frequencies 40 Hz, 50 Hz and 75 Hz. So the
required sampling frequency is 150 Hz and the Nyquist frequency is 75 Hz.
Anti-aliasing filter must have a cut-off frequency of 75 Hz.

P 1.6 Design an anti-aliasing filter for a signal represented as
x(t) = cos(1707t) + cos(1907t) — 3 cos(2507t)

Solution

We have to design an anti-aliasing filter for a signal represented as
x(t) = cos(1707xt) + cos(1907t) — 3 cos(2507t)

Compare the equation with x(n) =sin(277Fn), where F is the analog frequency.
We find that the signal contains frequencies 85 Hz, 95 Hz and 125 Hz. So the
required sampling frequency is 250 Hz. The Nyquist frequency is 125 Hz. Anti
aliasing filter must have a cut-off frequency of 125 Hz.

P 1.7 Find the recovered signal, if a signal with frequencies 150 Hz and 250 Hz
are sampled using a sampling frequency of 200 Hz. What is the phase value?

Solution
Let x(t)=sin(2zFt). Putting F = 150 Hz and t = nT = n/F,, F=200 Hz, we get

x[n]=sin| 27 x 1
20

50n . 3
=sin| 2 x—xn
0 4
. -2 . [ 27n
=sin| 27 — Xn |=sin
4 4

Compare the equation with x(n) =sin(27 fn), where f is the recovered digital
frequency given by f = F/F_. Here f = —1/4 = —50/200, so the analog frequency
recovered is 50 Hz. There is a negative sign so a phase shift of 180° is introduced.

Let x(t) =sin(27Ft). Putting F = 250 Hz and t = nT = n/F,, F,= 200 Hz, we get

x[n]=sin| 27 x
20

250n . 5 . 27 . (27n
=sin| 27 x—xn |=sin| | 27 +— |n |=sin| —
0 4 4 4

Compare the equation with x(n) =sin(27z fn), where f is the recovered digital
frequency given by f = F/F,. Here f = 1/4 = 50/200, so the analog frequency
recovered is 50 Hz. There is a positive sign so a phase shift of 0° is introduced.



P 1.8 Consider the analog sinusoidal signal

x(t) =5sin(5007t)

a. The signal is sampled with F, = 1500 Hz. Find the frequency of the
DT signal.

b. Find the frequency of the DT signal if F, = 300 Hz.

Solution
a. Letx(t) = 5sin(27Ft). Putting F = 250 Hzand t = nT = n/F,, F,= 1500 Hz,
we get

x(t)=sin| 27 x
() ( >

250n . 1 ([ 2r . (27n
=sin| 2r Xx—xn |=sin| —xn |=sin| —
00 6 3 3

Compare the equation with x(n) =sin(27 fn), where f is the recovered
digital frequency given by f= F/F,. Here f= 1/6 = 250/1500, so the analog
frequency recovered is 250 Hz. There is a positive sign so a phase shift of
0° is introduced.

b. Let x(t)=sin(2zFt). Putting F = 250 Hz and t = nT = n/F,, F, = 300
Hz, we get

make it x(n) =

x(t) =sin| 27 x
( 30

250n . 5 . 27 . 2rn
=sin| 2zr X—xn |=sin| 2r ——xn |=sin| ———
0 6 6 6

Compare the equation with x(n) =sin(27z fn), where f is the recovered
digital frequency given by f= F/F,. Here f=—1/6 = —=50/300, so the analog
frequency recovered is 50 Hz. There is a negative sign so a phase shift of
180° is introduced.

make it x(n) =

P 1.9 Ananalogsignal given by x(¢) =sin(2007t) + 3 cos(2507xt) is sampled at
a rate 300 sample/s. Find the frequency of the DT signal.
Solution

Given that x(t) =sin(2007t) + 3 cos(2507t) and the frequencies in the signal
are 100 Hz and 125 Hz. The sampling frequency F = 300 Hz.
Let us put F = 100 Hz and t = nT = n/F, F, = 300 Hz. We get

. 100n . (27 (27 . [ 27nn
x(t) =sin| 27 x =sin| —xn |=sin| —xn |=sin
300 3 3 3

Introduction to Signals
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make it x(n) =

Compare the equation with x(n) =sin(27 fn), where f is the recovered
digital frequency given by f= F/F_. Here f = 1/3 = 100/300, so the analog
frequency recovered is 100 Hz. There is a positive sign so a phase shift of
0° is introduced.

Let us put F = 125 Hz and t = nT = n/F, F,= 300 Hz. We get

125
x(t) =sin| 27 x "
300

=sin 27r><i><n =sin 27m><i
12 12

make it x(n) =

Compare the equation with x(n)=sin(27z fn), where f is the recovered
digital frequency given by f= F/F,. Here f= 5/12 = 125/300, so the analog
frequency recovered is 125 Hz. There is a positive sign so a phase shift of
0° is introduced.



Signals and Operations
on Signals

P 2.6 (Analog signal) Consider a signal given by x(¢) =sin(27 ft), where f is
the frequency of the signal equal to 100 Hz. Plot a signal.
Solution

The signal exists for all . This is an analog signal. The signal is plotted in
Fig. 2.1. The plot is shown only for some finite duration.

Amplitude
x(t)

Fig. 2.1 A sine wave signal existing for all continuous values of ¢

Let us do it practically. We will use MATLAB to generate and plot this analog
signal. A MATLAB program is given here. We will generate a vector of time
values with a sampling interval of 0.001 seconds. Using a plot command, it
joins all successive s values to get the appearance of a continuous signal.

clear all;
£=100;
w=2*pi*f;
£=0:0.0001:0.1;
s=sin (w*t) ;
plot (t, s);
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title(‘plot of sine wave-approximation to analog sine
wave 1s plotted’);
xlabel (‘time’); ylabel (‘amplitude’) ;

The output of the MATLAB program is plotted in Fig. 2.2.

Amplitude

P2
x(1)

Plot of sine wave-approximation to analog sine wave is plotted

0.6
0.4
0.2

I

e

o
T

-0.4r

) 0.01 002 003 004 005 006 007 008 0.09 0.1
Time

Fig. 2.2 Plot of a sine wave using MATLAB

.7 Plot an analog signal given by

=0.1xt for 0<t<10seconds
=0 otherwise

Solution

The signal is defined only for values of ¢ between 0 to 5 seconds. The signal
plot can be represented as shown in Fig. 2.3.

A

x(t)

Fig. 2.3 Plot of signal x(#) with slope = 0.1



Let us write the program to generate this signal. We will again generate a
vector of time values with a sampling interval of 0.01 seconds. Using a plot
command, it joins all successive x values to get the appearance of a continuous
signal. The output of the program is plotted in Fig. 2.4.

A MATLAB program can be written as

clear all;

£=0:0.1:10;

x=0.01*t;

plot (t,x) ;

title(‘plot of signal x');

xlabel (‘time’); ylabel (‘amplitude’) ;

Plot of signal x

0.1 T T T
0.09 1
0.08F 1
0.07r 1
_§006- 1

lit

= 0.05¢ .

Amy

0.04r 1
0.03f 1
0.02f 1
0.01r 1

Fig. 2.4 Plot of signal x

P 2.8 Plot analog signal given by

x(t) = -1 for 0<t<2seconds
=1 for 2<t<4seconds

Solution

The signal is defined only for values of t between 0 to 4 seconds. The signal
plot can be represented as shown in Fig. 2.5.
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x(t) 1

Fig. 2.5 Plot of signal x(t) defined between t = 0 to t = 4 seconds

Let us write the program to generate this signal. We will again generate a
vector of time values with a sampling interval of 0.01 seconds. Using a plot
command, it joins all successive x values to get the appearance of a continuous
signal. The output of the program is plotted in Fig. 2.6. Here, the signal values
are discontinuous. This makes the program difficult to write in the discrete
time domain. To generate an index as an integer in MATLAB, time values are
multiplied by 10.

. Plot of signal x

0.8F 1
0.6 1
04r 1

Amplitude
[}

0 5 10 15 20 25 30 35 40
Time

Fig. 2.6 Plot of signal x

A MATLAB program can be written as

clear all;

t=0:0.01:2;

1=1+t*10;

for i=1:20,
x(1i)= -1;

end



£t=2:0.01:4;
i=11+(t-1)*10;
for i=21:40,
x(i)= 1;
end
plot (x) ;
title(‘plot of signal x');
xlabel (‘*time’); ylabel (‘amplitude’) ;

P 2.9 (Discrete time signal) Consider a sampled signal x(¢) = sin(207t), where
a sample is taken at £ = 0, T, 2T, 3T etc. T represents a sampling time given by

T= fi) f. =sampling frequency.

s

The signal can be written as x(n) = sin(20znT). Plot the signal.

Solution

The sampled signal represented as x(n) exists for discrete time values, i.e., at ¢
=0,1x T, 2 x t, etc. The nth sample is represented as x(n). Hence, it is termed
as a discrete time signal or DT signal. It does not mean that the signal has a
zero value at all other values of time.

Let us write the program to generate this signal. A MATLAB program to
generate a signal is given as follows. The plot of the signal is shown in Fig. 2.7.

Plot of DT signal x
1 D0 " T 0 0 T

s o
(o)) co
T T
1 1

e
[\
T
1

Amplitude
s & &
o s~ b 9

|
e
co

T

1

[OJN0] [OJN0]

20 25

|
—

(=]
[S2]

0 1
Sample number

Fig. 2.7 Plot of signal x
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clear all;

£=10;

T=0.01;

for n=1:21,

X(n)=sin(2*pi*f* (n-1)*T);

end

stem(x) ;title(‘plot of DT signal x');

xlabel (*sample number’) ;ylabel (‘amplitude’) ;

P 2.10 (Discrete time signal) Plot a sampled signal

x(n)=1 for 0<n<3
=1 for 4<n<é6
=0 otherwise

Solution

The signal is defined as 1 for values of n from 0 to 3 and equal to -1 for
n =4 to 6 only. It is equal to zero for all other values of n. The signal plot is
shown in Fig. 2.8.

A

Amplitude
x(n)

t=0, T, 2T, 3T, 4T, 5T, 6T n

Fig. 2.8 Plot of signal x(n) in P 2.10

Let us write the program to generate this signal. A MATLAB program to
generate the signal is given as follows. The plot of the signal is shown in
Fig. 2.9. MATLAB does not use the index as zero. Hence, we have to do a trick.
Generate the s variable between 0 to 6 and plot the values of x against s.

clear all;

for n=1:4,
x(n)=1;

end

for n=5:7,
x(n)=-1;

end

s=0:1:6;



Amplitude

Amplitude
x(n)

stem(s,x) ;title(‘plot of DT signal x');
xlabel (*sample number’) ;ylabel (*amplitude’) ;

Plot of DT signal x
1§ . T

0.8F 8
0.6 1
0.4 y

0.2F .

0

|
e
3]

T

1

-0.8

-1 1 I 1 7))
6

Sample number
Fig. 2.9 Plot of signal x

P 2.11 (Discrete time signal) Plot a sampled signal

x(n)=-2 for 1<n<3
=1 for -2<n<0
=0 otherwise

Solution

The signal is defined as 1 for values of n from -2 to 0 and equal to -1 from n
from 1 to 3 only. It is equal to zero for all other values of n. The signal plot is
shown in Fig. 2.10.

Fig. 2.10 Plot of signal x(n) for P 2.11
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Let us write the program to generate this signal. A MATLAB program
to generate a signal is given as follows. The plot of the signal is shown in
Fig. 2.11. MATLAB does not use the index as zero. Hence, we have to do a
trick. Generate the s variable between -2 to 3 and plot the values of x against s.

clear all;
for n=1:2,
x(n)=0;
end
for n=3:5,
x(n)=1;
end
for n=6:8,
x(n)=-2;
end
for n=9:10,
x(n)=0;
end
s=-4:1:5;
stem(s,x) ;title(‘plot of DT signal x');
xlabel (‘sample number’) ;ylabel (‘amplitude’)

‘;‘ Signals and Systems

) Plot of DT signal x
05t
0
[}
9
2
Z 051
g
<
“1F
-15rF
-2 1 I I I
-2 -3 -2 -1 0 1 2

Sample number

Fig. 2.11 Plot of signal x(n) for P 2.11




P 2.12 Convert the samples in vector signal X to digital form.

X ={0,0.125, 0.5, 0.25, 0.125}

Solution

The digital signal X will be represented as
X = {1000, 1001, 1100, 1010, 1001}

The range of values between -1 to +1 is divided into 16 levels. The centre level
1000 represents a zero. Each level indicates a value of 0.125. Hence, the second
level, i.e., if third bit is 1, i.e., 1010 will represent a value 0.25. Level 3, i.e., if the
second bit is 1, i.e., 1100 will represent a value of 0.75.

P 2.13

i. Evaluate the integral
[~ e st-1yt.

Solution

Let us first define the delta function.

1 for t=1
5(1‘—1):{

0 otherwise
[“ e ow-ndt=[e"]>

t=1=e*l=¢?

ii. Evaluate the integral
[ ro-6yt.

Solution
Let us first define the delta function.

1 for t=6

0 otherwise

5(t—6)={

jz £25(t —6)dt =[] —

t=6=36

‘ o ’ Signals and Operations on Signals
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iii. Evaluate the integral

j fosm(m)ﬁ(t ~1)dt.

Solution

Let us first define the delta function.

1 for t=1
6(t—1):{

0 otherwise
[ sin(zt)s (¢ ~1)dt = sin(x) -

t=1=0
iv. Evaluate the integral

ji(t—l)za(t—l)dt.

Solution

Let us first define the delta function.

1 for t=1

0 otherwise

5(t—1)={

ji (t—125(t —1)dt =0

v. Evaluate the integral

Ji[sin(Zt)&(t) +sin(2t)5(t —2)]dt.

Solution

Let us first define the delta function.

1 fort=2
ot-2)= 0

otherwise

5= 1 for t=0
o

otherwise



ji [sin(26)5(£) + sin(2£)5(t — 2)]dt = sin(4)

vi. Evaluate the integral

[ e s,

Solution

Let us first define the delta function.

{1 for t=0
o(t)=

0 otherwise
[“ e swde=[" s)dt=1

Note: ¢*®*% =1

P 2.14 Evaluate the summation
i Z e"o(n).

Solution
Let us define the DT delta function.

{1 for n=0
o(n)=

0 otherwise

i e"'o(n)=1

ii. i cos(3n)o(n—2).

Solution

Let us first define the delta function.

1 forn=2

0 otherwise

5(n—2)={

(2.47)

‘ ] ’ Signals and Operations on Signals
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i cos(3n)o(n—2)=cos(6)

ii. > e™s(n+1)

Solution

Let us first define the delta function.

1 for n=-1

0 otherwise

5(n+1)={

z e"o(n+1)=e

n=-o0

P 2.15 Consider an analog signal given by
x(t)=A for —3/2<t<3/2

Find if the signal is even.

Solution

We will plot the signal and find out if x(-#) = x(¢). The plot of the signal is
shown in Fig. 2.12. We observe that x(t) = x(—t) for all £. It is symmetrical with
respect to the origin or the vertical axis, i.e., amplitude axis. Hence, the signal
is even. The same signal can also be written as

x(t)=Arect(t/3)=1 for [t|<3/2 (2.57)
=0 for |t]|>3/2
x(t) A
A
t=-3/2 0 3/2

Fig. 2.12 Plot of signal x(¢) for P 2.15



At time instant ¢t = + 3/2, the signal value is 1 and 0. This ambiguity can be
clarified as at t = + 3/2*, x(t) = 0 and at t = + 3/2, x(¢t) = 1.

P 2.16 Consider an analog signal given by

x(t)=—4 for—3/2<t<0 and
x(t)=4 for0<t<3/2

Find if it is even or odd.

Solution

Let us plot the signal. The plot is shown in Fig. 2.13. We observe that
x(t) =—x(—t) forall t. The signal is anti-symmetrical with respect to the origin
or the vertical axis, i.e., amplitude axis. Hence, the signal is an odd signal.

x(t) A
A
t=-T/2 0 T/2
| -A

Fig. 2.13 Plot of signal x(¢) for P 2.16

P 2.17 Find the even and odd parts of the following signal.
x(t) — eijt

Solution
We will write the signal as

x(t) =e”*” =cos(3mt) + jsin(3et)
So,

x(=t)=e™’" =cos(—-3wt) + jsin(—3wt) = cos(3mt) — jsin(3wt)
x,(t) =[x(t) + x(~1)] /2 = cos(3et)

x,(t)=[x(t) = x(-1)]/2 = jsin(3er)

‘ ° ’ Signals and Operations on Signals
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P 2.18 A signalis defined as x(t)=e¢”>” forall ¢ >0. Find if the signal is even
or odd.

Solution

The signal does not exist for negative values of ¢. The signal is neither even nor
odd. Thus, it is simply undefined for all negative values of ¢.

P 2.19 Find the even and odd parts of the following signals.
i.  x(t)=cos(2t)+cos(3t) + cos(t)sin(2t).
Solution

x(t) = cos(2t) + cos(3t) + cos(t) sin(2¢)
x(—t) = cos(—2t) + cos(—3t) + cos(—t) sin(—2t)
= cos(2t) + cos(3t) — cos(t) sin(2t)
x,(t)=[x(t)+x(=t)]/ 2 =cos(2t) + cos(3t)

x,(t) =[x(t) = x(=t)]/ 2 = cos(t)sin(2t)

i, x()=1+3t+1>+1.
Solution

x()=1+3t+1> +1°
x(=)=1+(=3t)+ () + ()’ =1-3t +t* —°
x, () =[x(t)+x(-t)]/2=1+¢

x,(t) =[x(t)—x(-t)]/2=3t +1°

iii. x(a) = cos(2a) + sin®(a).
Solution

x(a) = cos(2a) + sin®*(a)

x(—a) = cos(—2a) +sin’ (—a) = cos(2a) —sin’ (a)



x,(t)=[x(t)+x(-t)]/ 2 =cos(2a)

x,(t) =[x(t)— x(-t)]/ 2 =sin’(a)

iv. x(a)=a’ cos(2a)+a’ sin(2a).
Solution

x(a)=a’ cos(2a) +a’ sin(2a)

x(~a) = (~a)’ cos(-2a) +(—a)’ sin(—2a) = a’ cos(2a) +a’ sin(2a)
x,(£)=[x(t)+ x(~t)]/ 2 = a’ cos(2a) + a’ sin(2a)
x, () =[x(t) - x(~1)]/2=0

v. x(t)=1+2tcos(t)+1t*sin(3t) +1t sin(2t) cos(5t)

Solution

x(t)=1+2t cos(t) +1* sin(3t) + 1’ sin(2t) cos(5t)
x(=t) =1+ (=2t) cos(—t) + (—t)* sin(=3t) + (—t)* sin(—2t) cos(—5t)
=1-2tcos(t)—t* sin(3t) + ¢’ sin(2t) cos(5¢)
x,(t) =[x(t) +x(~1)]/ 2 =1+ sin(2t) cos(5¢)

x,(t) =[x(t)—x(=t)]/ 2 =2t cos(t) + * sin(3t)

vi. x(t)=(1+¢")cos(4t)
Solution

x(t) =1 +1t*) cos(4t) = cos(4t) +t* cos(4t)

x(t) = (1 + (=£)%) cos(-4t) = cos(-94t) + (-1t)* cos(-4t) = cos(4t) + t* cos(4t)

‘ N ’ Signals and Operations on Signals
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x, () =[x(t) + x(~1)]/ 2 = cos(4t) + 1’ cos(4t)
x,(t)=[x(t)—x(-t)]/2=0

vii. x(t)=(t+¢t’)sin(5t)
Solution

x(t) =t +1)sin(5¢) =t sin(5¢) + £ sin(5¢)

x(—=t) = (=t) + (—1)*) sin(—5t) = —t sin(5¢t) — ¢ sin(5¢t)

x,(£) =[x(t) + x(t)]/ 2 =t sin(5¢) + t’ sin(5¢)
x,(t) =[x(t)—x(-t)]/2=0
viii. x(t)=(t +¢)tan(t)

Solution

x(f)=(t+1t*)tan(t) =t tan(t) + ¢ tan(t)
x(—t)=(—t)+(-t)*) tan(~t) =t tan(t) + £’ tan(t)
x,(t) =[x(t) + x(-t)]/ 2 =t tan(t) + ’ tan(t)
x,(t) =[x(t)—x(-t)]/2=0
ix. x()=tx1+t>+¢>)

Solution

x()=tx(1+*+)=t+t" +t*
x(=)=()xA+ (=t + (=) )=—t - +t*
x,(£)=[x(t)+x(-t)]/2=t"

x,(t)=[x(t)—x(-t)]/ 2=t +£



P 2.20 Consider a discrete time signal given by

x(n)=1for —3<n<3

=0 otherwise

Find if the signal is even or odd.

Solution

Let us plot the signal. A plot is shown in Fig. 2.14. The signal is symmetrical with
respect to the origin and with respect to the amplitude axis. x(—n) = x(n) for all n.
Hence, the signal is even.

x(n)

-3 -2-1 0 1 2 3 samplenumber

>

Fig. 2.14 Plot of signal for P 2.20

P 2.21 Consider a discrete time signal given by

x(n)=1 forl<n<4
=-1 for-1<n<-4

Find if the signal is even or odd.

Solution

Let us plot the signal. The plot is shown in Fig. 2.15. The signal is anti-
symmetrical with respect to the origin and with respect to the amplitude axis.
x(—n) =—x(n) for all n. Hence, the signal is odd.

x(n)

-3 -2-1 0 1 2 3 4 samplenumber

Fig. 2.15 Plot of signal for P 2.21
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P 2.22 Consider a discrete time signal given by

x(n)=1for 1<n<3

=0 otherwise

Find if the signal is even or odd.

Solution
Let us plot the signal. The plot is shown in Fig. 2.16. The signal is having a value
zero for all negative values of n. It is neither symmetric nor anti-symmetrical
with respect to the origin and with respect to the amplitude axis. Hence, the
signal is neither even nor odd.

x(n)

n=0 1 2 3 4 5 sample number

Fig. 2.16 Plot of signal for P 2.22

P 2.23

i. Consider a signal x(t)=sin(2t). Find if the signal is periodic and find the
period.

Solution

x(t+T)=sin(2t +2T) =sin(2¢t) if 2T =27, i.e., T=x. So, the period of the
signal is 7 seconds and frequency f is 1/m. The value of the period is not
rational, still the signal is periodic. Every analog sinusoidal signal is periodic.

ii. Consider the equation given by x(t)=2t+cos(4xt). Is x(t) a periodic
signal?

Solution

Here, we will check if there is some T for which x(t)=x(t +T).Putt=t+ Tin
x(t) =2t +cos(4xt). We obtain

x(t+T)=2t+T +cos(4nt+4rT).



The component with f increases as t increases so there is no T for which the
signal will be periodic. Hence, the signal is aperiodic.

iii. Consider the equation given by x(¢) = (sin(47t))*. Is x(t) a periodic signal?

Solution

Here, we will check if there is some T for which x(t)=x(t+T). Putt=t+ Tin
x(t) = (sin(4xt))’. We obtain

x(t+T):(sin(4ﬂ(z‘+T))2 :(sin(47zt))2 when 47T =r, ie., Tzi.

The function is periodic with period equal to l
4

iv. Consider the equation given by x(¢) = |cos(47rt)‘. Is x(t) a periodic signal?

Solution

Here, we will check if there is some T for which x(t)=x(t+T).Putt=t+ Tin
x(t)= ‘cos(47zt)|. We obtain

1
x(t+T)= ‘cos(47r(t + T)| = ‘cos(47rt)‘ when 47T =r,ie., T= s

1
The function is periodic with period equal to T Let us verify this by writing a

MATLAB program. The plot of the function is shown in Fig. 2.17.

clear all;

£f=10;

T=0.005;

for n=1:41,

y(n) =abs (cos (2*pi*f* (n-1)*T) ) ;

end

s=-20:1:20;

plot(s,y);title(‘plot of absolute value of
cosine function for positive and negative
angles’) ;xlabel (‘angle pi divided in 20
points’) ;ylabel (*Amplitude’) ;
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Plot of mod of cosine function for positive and negative angles
1 T T T T

0.7 b

05F b

Amplitude

04r b

02} i

0.1f b

0 I 1 I
-20 -15 -10 -5 0 5 10 15 20
Angle pi divided in 20 points

Fig. 2.17 A plot of a signal for P 2.23 iv

P 2.24 Consider the signal shown in Fig. 2.18. Is x(t) a periodic signal?

x(t) A A

Fig. 2.18 A signal for P 2.24

Solution

The signal exists only over a small duration. It does not repeat. Hence, the
signal is not periodic.

6
P 2.25 Consider the signal x(f) shown in Fig. 2.19. If y(t) = Z x(t —2k), is y(¢)
a periodic signal? k=—6



Solution

Let us plot the signal to find if the signal is periodic. The plot of the signal is
shown in Fig. 2.19.

x(t) A A

-8 -6 -4 -2 0 2 4 6 8 10 ¢

Fig. 2.19 A signal for P 2.25

-10

Referring to Fig. 2.19 we can see that the signal repeats after t = 2. But, the
signal does not exist before t = -13 and after ¢t = 13. So, the signal can be
considered as periodic over the period for which it is defined.

P 2.26 Consider the signal x(f) shown in Fig. 2.20. If y(¢)= Z x(t —4k), is y(t)
a periodic signal? K=

Solution

Let us plot the signal to find if the signal is periodic. The plot of the signal is
shown in Fig. 2.20.

x(t) A A
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=20 -16 -12 -8 -4 0 4 8 12 16 20 t..

Amplitude

Fig. 2.20 A signal for P 2.26

Referring to Fig. 2.20, we can see that the signal repeats after t = 4. The signal
is defined and it exists from —co to +oo. So, the signal can be considered as truly
periodic.

P 2.27 Consider the equation given by x(t)=e.Is x(t) a periodic signal?

Solution

Let us plot the signal to find if it is periodic. A MATLAB program is given
here. Figure 2.21 shows a plot which indicates that the function is aperiodic.

Plot of exponential function

T T T T T

0 20 40 60 80 100 120

Sample number
Fig. 2.21 Plot of signal for P 2.27

clear all;
£t=0.05;

for n=1:101,
y(n)=exp (-5*t*n) ;
end



plot (y) ;title(‘plot of exponential function’) ;xlabel
(*samplenumber’) ;ylabel (‘Amplitude’) ;

P 2.28 Consider the signal x(n) given by x(n)=(-1/2)". Is x(n) a periodic
signal?

Solution

Let us evaluate the values of the signal for different values of n and plot the
signal. The value of the signal is positive for all even values of n and negative
for all odd values of .

x(0)=(-1/2)" =1, xQ)=(-1/2)' =—1/2,x(2)=(~1/2)* =1/ 4 and so on

a_ b o 2__ 1
x(=1)=(-1/2) ——(_1/2) 2,x(-2)=(-1/2) CL2y 4 and so on.

The signal plot is shown in Fig. 2.22. Hence, the signal is aperiodic.

Amplitude
x(n)

| ‘

| | | g
n=-3 -2-1, 0 1 2,3 4 5 n

Fig. 2.22 Plot of signal for P 2.28

P 2.29 Consider the signal x(n) given by x(n) = (-1)".Isx(n)a periodic signal?

Solution

Let us evaluate the values of the signal for different values of n and plot the
signal. The value of the signal is +1 for all even values of n and is equal to -1 for
all odd values of n for positive as well as negative values of the exponent, i.e., n.

x(0)= (—1)03 =1, x(1)= (—1)13 =-1, x(2)= (—1)23 =1 and soon
(2.96)
x(-1)=(-1)7" = % =1, x(-2)=(-1) = (+ =1 and so on

o
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The signal plot is shown in Fig. 2.23. Hence, the signal is periodic with period
equal to 2.

Amplitude
x(n)

| | | | | .

n=-3 -2 -1, 0 1 2, 3 4 5 n

Fig. 2.23 Plot of the signal for P 2.29

P 2.30 Consider the signal shown in Fig. 2.24. Is x(n) a periodic signal?

Amplitude
x(n)
1
-5 4 -3 -2 -1, 0 1 2, 3 4 5 6 7 8 9 10 11 n

Fig. 2.24 Plot of signal for P 2.30

Solution

We can refer to the plot of the signal to see that the signal repeats itself after
every 5 samples (i.e., from n = -1 to n = 3). So, the period is 5 samples.

P 2.31 Consider the signal shown in Fig. 2.25. Is x(t) a periodic signal?

x() A A

-3 -2 -1 -05 0 05 1 2 3 4 t

Fig. 2.25 Signal plot for P 2.31



Solution

The signal repeats after every two time unit period after time unit 1. But, it has
a spacing of only % between the first and the second square wave. Therefore,
the signal is aperiodic.

P 2.32 Find if the following DT signals are periodic.

i

ii.

Consider the signal x(n) = cos(0.03n7). Is x(n) a periodic signal?
We have to check if x(n) = x(n + N) for some integer N
That is,

x(n) = co0s(0.03n7) = cos(0.037(n+ N))

ie., 27riN =2rk= i = ﬁ = periodis N =200

As k and N are relatively prime, the fundamental period of the sinusoid is
N =200 samples.

Consider the signal

10n
x(n)=cos| — |.
105

Is x(n) a periodic signal?
We have to check if
x(n) = x(n + N) for some integer N

That is,
10 10
x(n) =cos| —nx |=cos —ﬂ(n+N)
105 105
5 1k o
ie, 2r——N =27k=—=—= periodis N =21
105 21 N

As k and N are relatively prime, the fundamental period of the sinusoid is
N=7.
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iii. Consider the signal x(n) = cos(5zn). Is x(n) a periodic signal?
We have to check if x(n) = x(n + N) for some integer N

That is,

x(n) = cos(5nx) = cos(4nn+ zn) = cos(zn) = cos(w(n+ N))

. 1 1 k
Le, 27—N =27k =>—=—= periodis N=2
2 2 N

As k and N are relatively prime, the fundamental period of the sinusoid is
N=2.
iv. Consider the signal x(n) =sin(2n). Is x(n) a periodic signal?
We have to check if x(n) = x(n + N) for some integer N
That is,

x(n) =sin(2n) =sin(2(n+ N))

1 1
ie., 27T—N=27[k:>—:£
T 7 N

As k and N are not relatively prime, the signal is aperiodic.

v. Consider the signal

. ([ 82n
x(n) =sin (F 72') .

Is x(n) a periodic signal?
We have to check if x(n) = x(n + N) for some integer N
That is,

. [ 82n . 2
x(n)=sin| —z |=sin| 8nr+—nr
10 10

=sin i1/17[ =sin i7[(11+N)
10 10

2 2 1
i.e-, 272'—N:27z'k:>—:£:_
20 20 N 10

As kand N are relatively prime, the period of the signal is N = 10.



Vi.

vii.

Consider the signal
x(n)=5 cos(3n + %)

Is x(n) a periodic signal?
We have to check if x(n) = x(n + N) for some integer N
That is,

x(”)=5COS(3n+%]=5cos(3(n+N)+%J

3
ie., 27Z—N=27rk:>i:£
27 2r N

As kand N are not relatively prime, the signal is aperiodic.

Consider the signal

x(n)=2 exp(j(%—%)j.

Is x(n) a periodic signal?
We have to check if x(n) = x(n + N) for some integer N

That is,

x(n)=2 exp[j(%—%j]zZexp(j (HJ;N) —%)

ie., ZﬂLN=27rk:>L=£
8 87 N

As kand N are not relatively prime, the signal is aperiodic.

viil. Consider the signal

x(n) = cos (gj sin (%)

Is x(n) a periodic signal?

We have to check if x(n) = x(n + N) for some integer N
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That is,

x(n) = cos (zj sin (ﬂj =cos (zj sin [Mj
2 8 2 3

i.e., 27Z'LN =2k :>i=£
16 16 N

As k and N are relatively prime, the signal is periodic with period
N =16.

ix. Consider the signal

nr . (nx nror
x(n)=cos| — |—sin| — [+3cos| —+— |.
2 8 4 3

Is x(n) a periodic signal?
We have to check if x(n) = x(n + N) for some integer N for all 3 terms.
That is,

nw . (nx nror
x(n)=cos| — |—sin| — |[+3cos| —+—
2 8 4 3

=COS(UHN)”j—sin((n+N)ﬁj+3cos[w+£j
2 8 4

3

i.e., for the first term, 27le =27k = 1 = ﬁ
4

As k and N are relatively prime, hence the signal is periodic with period N = 4
for the first term.

1 1
For the second term, 27Z'EN =27k = _6 = ﬁ

N

As k and N are relatively prime, the signal is periodic with period N = 16 for
the second term.

For the third term, ZH%N =2rk= % = ﬁ

N

As k and N are relatively prime, the signal is periodic with period N = 8 for the
second term.



Considering the periods for all three terms, the period for the signal is the
highest common divisor, i.e., LCM value of N for all terms which is equal to 16.

P 2.33 Consider a linear combination of two analog sinusoidal functions.
x(t) =3sin(67t) + cos(4xt). Find if the signal is periodic.

Solution
We will check if x(t +T)=3sin(67(t +T))+ cos(47z(t + T)) = x(t) for some T.

x(t+T)=3sin(67r(t+T))+cos(47z(t+T))
=3sin(67rt+67zT)+cos(47rt+47zT)
351n(67rt +67Z'T) = 3sin(67rt) x(n) if 67T =27r=T=1/3

COS(4ﬂ't +47rT) = cos(47rt) if a2T=27=T=1/2

M 2/3 1
Common period T can be found using —= /3 1
2r/3 &

where M and N stand for the period of the first term and the second term

respectively.
Hence, the period for the combination signal can be found as follows.
The period for the linear combination of two terms is

1 1
2xM =3xN =2x—=3x—=1seconds
2 3
P 2.34 Consider a linear combination of two analog sinusoidal functions.
x(t) =2cos(37t)+sin(3t). Find if the signal is periodic.

Solution
We will check if x(t +T)=3cos(4z(t + T)+sin(5(t + T) for some T.

x(t+T) =2COS(372'(t +T))+sin(3(t+T))
= 2cos(3zzt + 37[T)+sin(3t +3T)
2cos(37rt +37zT)=2cos(37rt) if 32T =2r=T=2/3

sin(3t+3T)=sin(3T) if 3T =2z7=T=27/3
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M 2 1
Common period T can be found using —= /3 _1
N 27/3 =«

where M and N stand for the period of the first term and the second term
respectively.

Hence, the period for the combination signal can be found as follows.

The period for the linear combination of two terms is

2 2
7r><M:1><N:ﬂxgzlx?ﬂ:ZﬁBseconds.

The period is not a rational number. But, because it is an analog sinusoid, the
combination signal is periodic.

P 2.35 Consider a sequence x(n) = u(n) - u(n - 8). Find if it is causal.

Solution

The sequence is defined as

()= 1 forall n>0 o 1 for n>8
wm= 0 otherwise u(n-8)= 0 otherwise

1for 0<n<7

0 otherwise

x(n)=un)—un—-8)= {

This is a right-handed sequence and is causal.

P 2.36 Consider the following sequence x(n)=u(-n—1)—u(-n->5). Find if
the signal is causal.

Solution

1 for —n—1>0 or n<-1
u(-n-1)= .
0 otherwise

1 for —-n—520 or n<-5
u(-n—->5)= )
0 otherwise

1for —1<n<-5

0 otherwise

x(n)=u(-n—-1)—u(-n-5)= {



The signal exists for negative values of #. This is a left-handed and non-causal
sequence.

P 2.37 Consider a CT signal given by x(f) =e™u(f—1). Find if the signal is
causal.

Solution
Let us first write the definition of u(t - 1).

(-1 1 for t>1
u —_ =
0 otherwise

As the signal is appended by u(t - 1), it exists for positive values of £ > 1, and is
zero for all t < 0. Hence, it is causal.

P 2.38 Consider a signal given by x(¢) =2sinc(7¢). Find if the signal is causal.

Solution

The sinc function exists from minus infinity to infinity. Hence, the signal
exists for negative values of t and is anti-causal.

P 2.39 Consider a CT signal x(t) =e'[u(t +4) — u(t —3)]. Find if the signal is
causal.

Solution

Let us write the definitions of the u functions.

(t—3) 1 fort>3
u —_ =
0 otherwise

1 fort>-4

0 otherwise

u(t+4)={

The signal is both sided. It exists for negative values of t as well and hence, it
is anti-causal.

P 2.40 Consider a DT signal x(t) = [lj u(n+5)—(l} u(n—4). Find if the
signal is causal. 2 3
Solution

Let us write the definitions of the unit step functions.
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(n—4) 1 for n>4
un—4)=
0 otherwise

for n>-5

otherwise

1
u(n+5)= {0

The sequence is both sided. But, the function exists for negative values of n
and is anti-causal.

P 2.41 Find if the following are deterministic signals.

i x(t)=2t+sin(37 ft)+cos(4x ft)

. nr . (nt 7w
ii. x(n)=cos| — |+3sin| —+—
4 3 5

Solution

The equation for the signal is provided. We can use this equation to find the
value of the signal at any time ¢. Hence, the signal is deterministic.

P 2.42 Consider a sinusoid of frequency 2 kHz. Is it a power signal?

Solution

The signal is a sinusoid which exists from —co to co. Hence, the energy of a
signal is infinite. Let us calculate the average power. The period of a signal is
1/2 kHz, i.e., 0.5 milli seconds.

Solution
2000 po.0005 1000 ¢0.0005
P=""("" |sin(272000t)[ dt =——[ " [1-cos(472000t)|dt
2 —0.0005 2 —0.0005
500 .
P ="t - 472000t sin (4n2000t)]° ™ _os5
1 ~0.0005

The average power is finite. The signal is a power signal.

P 2.43 If x(¢) =sin(2750¢) for 0 <t < 1/2, is x(¢) an energy signal?

Solution

The signal is a sinusoid existing only over a finite period between t = 0 to %.
Hence, the energy of a signal is finite and the signal is an energy signal. The

1 1
period of the signal is T'=—=—=0.02 seconds. Let us find the total energy

of the signal. f 50



E= LO_Z sin’ (27[501‘) dt

:% " (1-cos (27100t ) it

1| o sin(27100t)
tdy? ————= 10
2 2007

=%[0.5—0]=

=

P 2.44 Consider a signal defined as

2t for 0<t<1
x(t)=14-2t for 1<t<2
0 otherwise

Find the energy and power of the signal and classify it as an energy or a power
signal.

Solution

Let us find the total energy of the signal.

E=[ atde+ | (4-20)dt

2t | L 28
E= 7 \Lizé + 4t J/;:f —7 \Li:f

=1+[8-4]-[4-1]
=2

The total energy is finite. So, the signal is an energy signal.

P 2.45 Consider a signal defined as

2cos(xt/2) for —1<t<1
x(t)= .
0 otherwise
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Find the energy and power of the signal and classify it as an energy or a power
signal.

Solution

Let us find the total energy of the signal.

E= J‘LIZ cos(zt [ 2)dt

E=2sin(xt/2)/(x12)¥7,

=2(sin(7 /2)/ (7 12)) = 2(sin(-7 / 2)/(7 /1 2))
=4
The total energy is finite. So, the signal is an energy signal.

P 2.46 Consider a signal defined as

2 for-3<t<3
x(t) =

0 otherwise

Find the energy and power of the signal and classify it as an energy or a power
signal.

Solution

Let us first find the instantaneous power of the signal.
Instantaneous power is given by

P (t)=|x(t)f=4for-3<t<3

=0 otherwise

The total energy of the signal is given by
3
E=[ 4dt=4xt{ =4x6=24
-3
The average power is given by

E
PX :limT—noTX:O



P 2.47 Consider a signal given by
x(t) = {3 cos(wt) +2cos(xt) for —oo <t < oo}

Find the energy and power of the signal and classify it as an energy or a power
signal.

Solution

The total energy of the signal is given by

E= Ji [9 cos’(7t) + 4 cos’ (;rt)] dt
= fi [4.5(1— cos(27t)) +2(1— cos(27t) | dt
= J: [4.5(1 —cos(2xt))+2(1— cos(27zt)] dt

The period of the signal is T = % 2nft=nt, f=—,T=2.

1
2
The average power is given by

E
P, =7X=(9+4)/2=6.5
12 2 2
P, _5'[0 [9cos (7rt)+4cos (m‘)]dt

= %J‘j [4.5(1- cos(27t)) +[2(1— cos(27t) | dt

- l[4.5(t 12 —cos(2nt)/ 27[} 1)+ {Z(t b cos(27t) % ﬂ
2 2

:l[9+4] =6.5
2

The signal has infinite energy and finite average power. Hence, the signal is a
power signal.
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P 2.48 Consider a periodic DT sinusoid given by

7k
g(k)=>5cos (%j

Find if the signal is an energy signal or a power signal.

Solution

Let us first find the period of the signal.
We have to check if x(n) = x(n + N) for some integer N, i.e.,

rk 7N
k+N)=5 s
gk+N)= COS(20 20)

. 1 1 k'
ie, 2r—N=27k' =>—=—
40 40 N

As Kk’ and N are relatively prime, the signal is periodic with period N = 40.
The signal exists for all k. Hence, the total energy of the signal is infinite. Let
us find the average power for one cycle.

39
Zz5c (”k) 252 {1+ (Zﬁkﬂzéﬂ_lw (57 /2
20 ) 40 20 )| 40 2

kO

5 - peak amplitude of the signal

We find that the average power is finite. Hence, the signal is a power signal.

P 2.49 Consider the analog periodic signal sketched in Fig. 2.26. Find if the
signal is an energy signal or a power signal?

3 A

-5 -3 -2 -1 0 1 2 3 5

Fig. 2.26 Plot of signal for P 2.49

Solution

Figure 2.26 shows that the signal is a periodic signal with period from -4 to +4,
i.e., period is 8. The signal varies from minus infinity to plus infinity. So, the



total energy of the signal will be infinity. Let us find the average power of the
signal. The average power is given by

1 ¢+t 1 9 9
PX:_I 9dx:—x9><x~1«1_1=—><2=—:4-5~
491 4 4 2

Average power is finite. So, the signal is a power signal.

P 2.50 Consider an analog periodic signal sketched in Fig. 2.27. Find if the
signal is an energy signal or a power signal?

-2

0.4 0.8 o—o-

Fig. 2.27 Plot of signal for P 2.50

Solution

Figure 2.27 shows that the signal is a periodic signal with period from 0 to 0.4,
i.e., period is 0.4 seconds. The signal varies from minus infinity to plus infinity.
So, the total energy of the signal will be infinity. Let us find the average power
of the signal. The average power is given by

0.2 2 0.4 2 _ 1 _
P, UO (2) ><dJc+J-Q2 (=2) xdx:l—a—4x[0.8+0.8]—4.

1
0.4
Average power is finite. So, the signal is a power signal.

P 2.51 Consider an analog periodic signal, a triangular wave sketched in
Fig. 2.28. Find if the signal is an energy signal or a power signal?

\

Fig. 2.28 Plot of signal for P 2.51
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Solution

Figure 2.28 shows that the signal is a periodic signal with period from 0 to
0.1, i.e,, period is 0.1 seconds. The signal varies from minus infinity to plus
infinity. So, the total energy of the signal will be infinity. Let us find the average
power of the signal. The average power is given by (the slope of the straight
line between 0 to 0.05 is 40 and that between 0.05 to 0.1 is —40)

=

1U“(léx2 ~8x+Ddx+ [ (9-24x+ 16x2)dx}
1 05

0

j“ 4x—l]2dx+jol_5[3—4x]2}

0

l 2
{16 eI YL ey u}

,_.|,_.

%—2+0.5+4.5—9+E
3 3

25

Average power is finite. So, the signal is a power signal.

P 2.52 Consider a DT periodic signal as shown in Fig. 2.29. Find if the signal
is an energy signal or a power signal? Find the average power.

Fig. 2.29 Plot of signal for P 2.52

Solution

The signal is periodic with period equal to 8 samples. The signal extends over
infinite duration. Hence, it has infinite energy. The average power is the power
for one period.



1 n=2 6
P:—[ZI+ZI}=3/4.
8 n=0 4

P 2.53 Consider a DT periodic signal as shown in Fig. 2.30. Find if the signal
is an energy signal or a power signal?

-2 -1 0 1 2.... n

Fig. 2.30 Plot of signal for P 2.53
Solution

The signal exists only for a finite duration. Hence, the signal is an energy
signal. Let us find the total energy of the signal.

E=§1=4,
n=—1

The period of the signal is infinity. The average power is given by

‘ g ’ Signals and Operations on Signals

13 4
P==> (1)) =—=0.
T;() —

P 2.54 Consider a signal defined as

n for 0<n<4
x(n)=39-n for 5<n<9
0 otherwise

Find the energy and power of the signal and classify it as an energy or a power
signal.

Solution

Let us plot the signal first. The plot of the signal is shown in Fig. 2.31.
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x(n)=n

Fig. 2.31 Plot of signal for P 2.54

The total energy of the signal is given by
4 9
E=) '+ (9-n) =1+ 4+9+16+16+9+4+1=60
0 5

Energy is finite. Hence, the signal is an energy signal.
The power of the signal is zero as the period is infinite.

P 2.55 Consider a signal defined as

{sin(;m [2) for —4<n< 4}
x(n) =

0 otherwise

Find the energy and power of the signal and classify it as an energy or a power
signal.

Solution

Let us plot the signal first. The period of the signal is

1 1
2r—N =27k = k =—, period is 4 samples.
4 N 4

The total energy of the signal is given by

4
E=) sin*(7n/2)=0+1+0+1+0+1+0+1+0=4.

n=—4

The energy is finite and the signal is an energy signal.



P 2.56 Consider a trapezoidal signal given by

t+5 —-5<t<-3

2 —3<t<L3
X(t)=

5—t¢ 3<t<5

0 otherwise

Find the total energy of the signal.

Solution

The total energy is given by

E=I73(25+10t+t2)dt+'|‘3 2xdt+j5(25—10t+t2)dt
-5 -3 3
t* t’ t* t’
:50+10?i{§ +§¢:§ +12+50—10?¢§ +§¢§

=112-80+98/3-80+98/3

=52/3

1 n
P 2.57 Find ifthe signal x(n) = (gj u(n) is an energy signal or a power signal?

Solution

N
Energy of the signal E=lim, > ‘x(m)‘z
m=—N

N

E=lim, , Y,

m=—N

‘ f, ’ Signals and Operations on Signals
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Power of the signal

. 1 <
P=lim, N1 > |xm)f
m=—N

P=lim ;ﬁl l '
Nom N 41,209

1 &1y
P=lim, —Y |~
N%’ZNH;[J

N+1
b
P=li

m
Y2 AN+1 1_(1)
9

The signal has finite energy and zero power. So, the signal is an energy signal.

P 2.58 Find if the signal x(n) =3u(n) is an energy signal or a power signal?

Solution

u(n)=1 forall n>0

The signal has infinite samples. The energy of the signal is

The average power of the signal is

N+1 3 i
IN+1 5 1s finite

1 N
P=Ilim — » 3=3x
N2 ON +1 Z,Ol
So, the signal is a power signal.

P 2.59 Find if the signal x(n)=u(n)—u(n—7) is an energy signal or a power
signal.

Solution

u(n)=1 forall n>0 and u(n—7)=1 forall n>7.



x(n)=un) -un-7)=1for0<n<e6.

6
The total energy of the signal is E = Zl =7 isfinite. So, the signal is an energy
signal. n=0

P 2.60 Find the power of the signal given by x(t)=e’* cos(3t)

Solution

x(¢) = (cos(5¢t) + jsin(5¢t)) cos(3t)
1 e .
= E[cos(St) + cos(2t)] +j E[sm(St) - sm(2t)]
Power of the signal is given by
2
pi(1) / L
2 2
P 2.61 Determine if the signal is an energy signal or a power signal. Find the

energy or power of the signal given by x(¢) = sin®(3t)

Solution

The signal extends over infinite duration and is periodic. Let us find the power
of the signal.

1 T
P=lim —| |x()[Pdt
T—o 2T J‘7T| ( ) |
P=lim LJT sin®(3t) dt
T—w 2T -T

sin®(3t) = (sin’(3t)) = (1 — cos* (3t))

= (1 —%(1 + cos(6t))j = (1 —% —%cos(6t)j

1 1
= (5 - 5cos(6t))

‘ g ’ Signals and Operations on Signals
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P=lim L (———cos(6t))d
T 2T

=lim,

11 1
——(2T)==
72205

Power is finite and the signal is a power signal.

P 2.62 Determine if the signal is an energy signal or a power signal. Find the
energy or power of the signal given by x(¢) =sin(2¢)[u(t —1) — u(t —5)].

Solution

The signal exists only over finite duration from ¢ = 1 to ¢ = 5. Hence, the signal
is an energy signal. Let us find the total energy of the signal.

E= J’j‘sin@t)’zdt - J‘15(1 —cos’ (2t))dt = f[l —%(1 - cos(4t)}dt

1 s .
:EL dt =2 joules

P 2.63 Find the energy and average power of the signal given by

x(n) — ej[(ﬂ/Z)rH—/r/é]

Solution

Energy of the signal is

P=Ilim

N 2N+l
jl(zi2)n+xl6]|  _1:
N*”2N+1;‘ ‘ - NWZN+ ZN: IN+1

N 2
E=1lim Z‘eﬂ(””’“’”z]‘ =lim, (N+1)=ow
N

N> N>

Note that ‘ej[(m)“”m‘ =1

P 2.64 Find if the following signal is an energy or a power signal.

n for0<n<4
x(n)=<10—n for 6<n<9

0 otherwise



Solution

The signal exists only for a small duration. Hence, it is an energy signal. Let us
find the energy.

4 9
E=)|nf+)>.(10-n)] =(1+4+9+16)+(16+9+4+1)

n=0 n=6

=60

P=lim ! {24:|n|2 JFZQ“(lo—n)2

N 2N+]~ n=0 n=6

=lim

N—oo

1
———[(1+4+9+16)+(16+9+4+1
TIRL )+ ( )]

0

A=
I

=lim, ———[60]=lim,  —[6
N”°°2N+1[ ) ”“2N+1[

The signal is an energy signal.

P 2.65 Find energy of the signal shown in Fig. 2.32.

A x(t)

-2 -1 0 1 2 t

Fig. 2.32 Plot of signal for P 2.65

Solution

The energy of the signal is given by
E=[ 6dt+[ 2dt +I1262dt

=36+8+36=280
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P 2.66 Consider a rectangular pulse given by

t 1 for |t|<2
x(t)=rect| — |=
4 0 for |t|>2
Draw the following functions derived from the rectangular pulse.
x(3t), x(3t + 4), x(=2t - 2), x(2(t + 2)), x(2(t - 2)), x(3t) + x(3t+4).

Solution

Let us first draw x(#). It is shown in Fig. 2.33. We will now time scale it by a
factor of 3 to get x(3¢). It is a compressed signal as shown in Fig. 2.34.

A A
1 1
rect (%] x(3t) = rect (4%]
-2 0 2 t -2/3 0 2/3 t
Fig. 2.33 Plot of x(¢) Fig. 2.34 Plot of x(3t)

x(3t + 4) = x(3(t + 4/3)) is the x(3¢) signal shifted left by 4/3 time units as
shown in Fig. 2.35.

—

_ _t
x(3t+4) = rect[4/3 + 4/3)

-2 -2/3 0 t
Fig. 2.35 Plot of x(3t + 4)

Let us plot x(2¢) and invert it to get x(-2t). We will find that x(-2¢) is the same
as x(2t), as the signal is symmetrical about y-axis. It is shown in Fig. 2.36.
x(-2t - 2) = x(-2(t + 1)) is the signal x(-2¢) shifted towards the left by 1 time
unit. Let us draw x(-2t - 2). It is shown in Fig. 2.37.



x(2t) = x(-2t) = rect(%) ! x(=2t -2)

-1 0 1 t -2 -1 0 t
Fig. 2.36 Plot of x(-21) Fig. 2.37 Plot of x(~2¢ - 2)

We have already plotted x(2¢). So, let us shift it to the left by 2 time units to get
x(2(t + 2)). It is shown in Fig. 2.38. x(2( - 2)) is x(2¢) shifted towards the right
by 2 time units as shown in Fig. 2.39.

x(2(t + 2)) x(2(t-2))
1 1
-3 ) -1 t 1 2 3t
Fig. 2.38 Plot of x(2(t + 2)) Fig. 2.39 Plot of signal x(2(f - 2))

We have already plotted x(3f). We will now plot x(3(t + 4/3)) to get
x(3t + 4) which is signal x(3¢) shifted towards the left by 4/3 time units. It is
plotted in Fig. 2.40. Let us add x(3¢f) to x(3¢ + 2) to get x(3t) + x(3t + 2). It is
shown in Fig. 2.41.

A
1 1
x(3t + 4) x(3t) + x(3t + 4)
-2 -1 -2/3 t -2 -2/3 0 2/3 t
Fig. 2.40 Plot of x(3t + 2) Fig. 2.41 Plot of x(3¢) + x(3t + 2)

P 2.67 Let us solve the same problem using precedence rule.

‘ u ’ Signals and Operations on Signals
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P 2.68 Consider signal x(n) shown in Fig. 2.42. Plot x(2n) and x(1/2n).

Fig. 2.42 Plot of signal x(n)

Solution

x(2n) will compress the signal. Here, in the DT domain, compression by a
factor of 2 will actually decimate the signal by 2, i.e., we have to collect
alternate samples only. The signal x(2n) is shown plotted in Fig. 2.43. We
can observe that the samples with value equal to 1 are lost when we collect
alternate samples.

x(n)

1

0 1 2 3 4 5 n

Fig. 2.43 Plot of signal x(2n)

The signal x(n/2) is shown plotted in Fig. 2.44.

x(n/2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n

Fig. 2.44 Plot of x(n/2)

P 2.69 Consider two CT signals x(f) and y(t) as shown in Fig. 2.45. Find
x(1) + y(1), x(t) — y(t) and x(£)y(t), x()y(t - 1), x(¢t + 1)y(t - 2), x(t - 1)y(-1), x(¢)
y(=t-1), xQt)y(-t + 2), x(2t) + y(28).



x(t)

-2 -1 0 1 2 3 4 t
y(t)
1 -1

-2 -1 0 1 2 3 4 t

-2

Fig. 2.45 Plot of x(¢)+y(¢)

Solution

Plot of x(#), y(t) and x(t) + y(¢) is all shown in Fig. 2.45. Plot of x(¢), y(¢)
and x(¢) — y(¢) is shown in Fig. 2.46. Let us now plot x(t) y(¢) in Fig. 2.47.
y(t - 1) is a signal y(f) shifted towards the right by 1 time unit. We have
plotted x(f), y(t - 1) and x(t)y(t - 1) in Fig. 2.48. x(¢t + 1) is signal x(¢)
shifted left by 1 time unit and y(t - 2) is signal y(f) shifted towards the
right by 2 time units. We have plotted x(¢t + 1), y(t - 2) and the product
x(t + 1)y(t - 2) in Fig. 2.49. x(f - 1) is signal x(¢) shifted towards the right by 1
time unit and y(-t) is the time reversed signal y(). The product x(¢ - 1)y(-t)
is shown in Fig. 2.50. y(-t - 1) is signal y(-f) shifted left by 1 time unit. x(¢)
y(-t - 1) is plotted in Fig. 2.51. x(2¢) and y(2¢) both are compressed signals by
a factor of 2. The plot of x(2f) + y(2¢) is shown in Fig. 2.52.
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x(t) A
1
-2 -1 0 1 2 4 t
y(t-1)
1 -1
| >
-2 -1 0 1 2 4 t
2 x(H)y(t-1)
1
| >
-2 -1 0 1 2 4 t
|
Fig. 2.46 Plot of x(t) - y(¢)
(1) A
1
-2 -1 0 1 2 4 t
(8
1 -1
-2 -1 0 1 2 4 t
L 2 x()y(t)
1
-2 -1 0 1 2 4 t

Fig. 2.47 Plot of x(¢), y(t) and x(£)y(¢)



x(t)

-2 -1 0 1 2 3 4 t

2 x()y(t-1)

Fig. 2.48 Plot of x(1), y(t - 1), x(¢) y(t - 1)

x(t+1) 4

-2 -1 0 1 2 3 4 t

Fig. 2.49 Plot of x(t + 1)y(t - 2)
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x(t-1)

-2 -1 0 1 4 t
y(=1)
1 -1

-2 -1 0 1 4 t

2 x(t=1)y(-1)

-2 -1 0 1 4 t
Fig. 2.50 Plot of x(t - 1)y(-t)

x(1)
1

2 -1 0 30t
y(=t-1)
1 -1

I >

3 2 -1 0 3t

2 x(t)y(-t-1)

-2 -1 0

Fig. 2.51 Plot of x(2t)y(-t + 2)



x(28) 4

-1 -05 0 05 1 1.5 2 t

-1 -05 0 05 1 1.5 2 t

—‘ 2 x(2t) + y(2t)
1

-1 -05 0 05 1 1.5 2 ¢

L

-2

Fig. 2.52 Plot of x(2£)y(3¢)

(Note: scale on the x-axis)

P 2.70 Consider DT signals x(n) and y(n) as shown in Fig. 2.53. Plot
x(n) + y(n), x(n)y(n), x(2n)y(n), x(n - L)y(n + 2).

x(n) =1{1,1,2,1,1,1,2,1}, y(n) ={2,1,2,1,1,1,2,0}

x(n) y(n)

Plot of x(n) Plot of y(n)

Fig. 2.53 Plot of signal x[#] and y[n]
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x(n) x(n)
+y(n) xy(n)
4 4
0 1 2 3 4 5 6 7 n 0 1 2 3 4 5 6 7 n
Plot of x(n) + y(n) Plot of x(n)y(n)
Fig. 2.54 a. Plot of x[n] + y[n] and x[n]y[n]
x(n-1) y(n+2)
2 2
1 1
0123456711' —2—1012345671’1'
Plot of x(n-1) Plot of y(n+2)
x(zn) x(?’l—l)
xy(n) Y(n+2)
4 2
2 1
01 2 3 4 5 n -2-1 01 2 3 4 5 6 7 n
Plot of x(2n)y(n) Plot of x(n-1)*y(n+2)

Fig. 2.54 b. Plots of x(n-1), y(n+2), x(2n)y(n) and x(n-1)*y(n+2)

P 2.71 Sketch the waveforms given by the following equations, where u(f) is
a unit step function and r(¢) is a unit ramp function.

i x(t)=ul@)—u@—-4) i, x(t)=u(t+2)-2ul)+u(t-2)

iii. x(t)=—u(t+2)+2u(t+1)+u(t—2)

iv. x()=—r@t+2)—-r(®)+r(t-2) v. x()=r(t)-r(t-2)-(t-3)+r(t-4)



Solution
Let us draw each component of x(f) one below the other and then draw x(¢).
Consider x(f) = u(t) — u(t — 4). Itis drawn in Fig. 2.55. x(f) = u(t+2) - 2u(t) +
u(t - 2) is plotted in Fig. 2.56. x(f) = —u(t + 2) + 2u(t+ 1) + u(t - 2) is depicted
in Fig. 2.57. x(t)=-r(t +2)—r(t)+r(t—2) is plotted in Fig. 2.58. Note that
slope is -1 at t = -3 and slope is equal to -2 at t = 1, slope is -1 at t = 2.
x() =r(t) - r(t - 2) - (t - 3) + r(t - 4) is plotted in Fig. 2.58. Note that slope
is zero at t = 2 and slope is equal to -1 at t = 3, slope is zero at ¢ = 4.

u(t)

u(t-4)

u(t)-u(t-4) —‘

Fig. 2.55 Plot of x(¢) in (i)

=2u(t)
01 2 t

u(t-2) .
01 2 t

u(t+2) | %

-2-10 1 2 t

u(t-2)-2u(t)+u(t+2) ’7

-10 1 2 t

Fig. 2.56 Plot of x(¢) in (ii)
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-r() 0o 1 2 t

2u(t-1) —r(t+2)

-3 -2 -1 0 1 2 t

-2
w2 r(t-2)

-3 -2 -1 0 1 2 t
—u(t+2)

-3 -2 -1 0 1 2 ¢t

2u(t-1)-u(t+2)+u(t-3)

r(t=2)-r(t)-r(t+2)

-3 -2 -1 0 1 2 t

Fig. 2.57 Plot of x(¢) in (iii) Fig. 2.58 Plot of x(¢) in (iv)

r(t)-r(t=2)-r(t-3)+r(t-4)

Fig. 2.59 Plot of x(¢) in (v)
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P 3.1 Isthe system given by y[n]=x[-n] alinear and shift invariant system?
Solution
Let us first check for linearity.

If the input is scaled, say ax[-#n], the output will be ay[n]. It is homogeneous.
Let us check for additivity.

If the input is ax [-n] + bx,[-n], the output will be ay,[n] + by,[n]. The system
obeys superposition and is linear.

To check for shift invariance, let the input be shifted by k units, say x[-7n + k]. The
output will be y[n - k]. The system is shift invariant.

P 3.2 Is the system given by y(t) = x(t - 2) a linear and shift invariant system?
Solution
Let us first check for linearity.

If the input is scaled, say ax(t), the output will be ax(t - 2). It is homogeneous.
Let us check for additivity.

If the input is ax () + bx,(¢), the output will be ay () + by,(t). The system
obeys superposition and is linear.

To check for shift invariance, let the input be shifted by k time units, say
x(t - k). The output will be y(t - k) = x(¢ - 2 - k). The system is shift invariant.

P 3.3 Verify that the systems given by y[n] = x[n]cos(wn) and y[n]=nx[n] are
shift variant.
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Solution

Let the input of the first system be shifted by k units. The output is
yln—k]=x[n—k]cos(wn) # x[n—k]cos(w(n—k))

The system is time variant.
Let the input of the second system be shifted by k units. The output is

yln—k]=nx[n—k]#(n—k)x[n—k]
The system is time variant.

P 3.4 Check if the systems given by y(f) = (¢ - 1) x(¢) and y(t) = x(¢) cos(wt +
7/4) are shift invariant?

Solution
Let the input of the first be shifted by k time units. The output is

y(t—k)=(t-Dx(t—k)=({t-1-k)x(t—k)

The system is time variant.
Let the input of the second system be shifted by k time units, the output is

y(t —k)=x(t—k)cos(at + 7/ 4)# x(t —k)cos(w(t —k)+ 7/ 4)
The system is time variant.

P 3.5 Find if the following systems are time invariant.

a. yln] = x[n] - x[n - 1]. Yes. If the input is shifted by k units, the output is
y[n - k] =x[n - k] - x[n - 1 - k]. Thus, the system is time invariant.

b. y[n] = nx[n - 1]. No. If the input is shifted by k units, the output is y[n - k]
=nx[n-1-k] # (n-k) x[n-1 - k]. Thus, the system is time variant.

¢. yln] =x[1 - n]. Yes. If the input is shifted by k units, the output is y[n - k]
= x[1 - (n - k)]. Thus, the system is time invariant.

d. y[n]=x[n]sin(wn). No. If the input is shifted by k units, the output is
y[n - k] = x[n - k] sin(wn) # x[n - k] sin(w(n - k)). Thus, the system is
time invariant.



y(t) = x(t) + x(t + 1). Yes. If the input is shifted by k time units, say x(t - k),
the output will be x(¢ — k) + x(t + 1 - k) = y(t - k). Thus, the system is time
invariant.

y(t) = £x(t). No. If the input is shifted by k units, the output is y(t - k) = £
x(t — k) # (t - k)*x(t - k). Thus, the system is time variant.

y(t) = x(4 - t). Yes. If the input is shifted by k time units, say x(¢ - k), the
output will be x(4 - t + k) = y(t - k). Thus, the system is time invariant.

y(t) = x(t)sin(t). No. If the input is shifted by k units, the output is y(t - k)
= x(t - k) sin(#) # x(t - k) sin(¢ - k). Thus, the system is time variant.

P 3.6 Find if the following systems are linear.

a.

b.

y[n] = (n + 1)x[n]. Yes, linear

y[n] = x[n?]. Yes, linear. Let input be 2x[n]. Let x[4] be = 4 and x[2] = 2.
The output is 2x[n?] = ay[n]. If the input is ax,[n]+bx,[n], the output is
yln] = ax,[n*]+bx,[n’].

y[n] = x°[n]. No. Not linear. Let input be ax[n]. Then, the output is
a*x*[n] # ay[n]. If the input is ax,[n]+bx,[n], the output is y[n] =
ax,’[n]+bx,’[n] #[ax, [n] + bx, [n]].

y[n] =2x[n] + 3. No, not linear. Let the input be = 2 and doubled. Then, the
output is initially 7 and after doubling, it is 11. The output is not doubled.
The system is non-linear. The graph of the system is linear but not passing
through the origin.

y(t) = (t + 2) x(t). Let the input be doubled. Say for t = 2, x(2) = 4. ¥(2) =
(4)(4) =16. When input is 8, the output is 4 x 8 = 32. The output is also
doubled. If the input is ax,(f) + bx,(t), the output is y(¢) = (t + 2)(ax (t) +
bx,(t)). Thus, the system is linear.

y(t) = x(t). No, not linear. Let input be ax(t); the output is
@’x’(t) # ay(t). If the input is ax (t)+0bx,(t), the output is y(t) =
ax,’ (t)+bx,’ (t) #[ax, (t) + bx, (t)].

y(t) = 3x(t) + 1. No, not linear. Let the input be 2 and doubled; the output
is initially 7 and after doubling, it is 13. The output is not doubled. The
system is non-linear. The graph of the system is linear but not passing
through the origin.

y(t) = sin(t) x(¢). No, not linear. Let the input be 2 and doubled; the output
is initially 2 sin(t,) and after doubling, it is 4 sin(¢,). The output is not
doubled. The system is non-linear. The graph of the system is linear but
not passing through the origin. The sin function is not linear.

CT and DT Systems
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P 3.7 Find if the following systems are causal.

P

o

y[n] = 5x[n]. The current output depends only on current input so the
system is causal.

n+l
yln]= Z x(k). The current output depends on current and past inputs and
k=—o0
also on the next input. So the system is non-causal.
yln] = x[3 - n]. Put n = -2. The output at n = -2 depends on x[3-(-2)] = x[5].
This is the next input. So the system is non-causal.

y[n] = x[3n]. The current output depends on the next input, so the system
is non-causal. Put n = 2, y[2] depends on x[6].

y(t) = x(#?). The current output depends on the next input, so the system is
non-causal. Put ¢t = 2, y(2) depends on x(4).

¥(t) = x(5 - t). The current output depends on the next input, so the system
is non-causal. Put n = 2, y(t) depends on x(6).

y(t) = x(2t - 2). The current output depends on the next input, so the
system is non-causal. Put t = 3, y(3) depends on x(4).

y(t) = x(-2t). The current output depends on the next input, so the system
is non-causal. Put n = -2, y(-2) depends on x(4).

P 3.8 Find if the following systems are memoryless

a.

y(t)=e"x(t). Yes, memoryless. The current output depends only on
current input.

y()=cos(x(t)) . Yes, memoryless. The current output depends only on
current input.

y[n]=>5x[n]+2x[n]uln]. Yes, memoryless. The current output depends
only on current input.

t/3
y(t)zj x(r)dr. No, the system is with memory. The current output
depends on several previous inputs.

y()=x(7-2t). No, the system is with memory. The current output
depends on the next input. Put t = -2, y(-2) = x(11) or put t = 2, ¥(2) =
x(3).

y(t) = x(t / 5). No, the system is with memory. The current output depends
on the previous input. y(5) = x(1)

P 3.9 Find if the following systems are stable.

a.

y(t) =cos(x(t)). If the input is bounded, the output is also bounded as it is
a cos function. The system is stable.



ylnl=log,,(|x[n]|). If the input is bounded, the log function is also
bounded. So, the system is a stable system.

y[n]=cos(2zx[n])+ x[n]. The function includes an addition of the cos
function which has a value less than 1 and the input. If the input is
bounded, the output is also bounded. The system is stable.

dr _
)’(t)ZE[e tx(t)} The function is a differentiation of the exp function
which decays to zero as time tends to infinity. The system is stable.
y(t)=x(t/3) . The system is stable.

yln]= z x[m+3]

m=—o0

The output of the system is a sum of infinite terms. The system may
diverge.

yln]=x[n] i O[n—5m]

M=—0

P 3.10 Find if the following systems are invertible.

a.

n

yln]= Z x[m+3]

m—oo

The system is non-invertible as the values summed cannot be recovered.

y[n]=x[n—1]+4. The input can be recovered as y[n]—4=x[n—1]. The
system is invertible.

y(t) = x*(¢). The input can be recovered from the output as the cube root.
The system is invertible.

. y(t)=x(t/9). The input can be recovered from the output. The system is

invertible.

y(t)=+/x(t). The input can be recovered as the square of the input. But,
there is no one to one correspondence. The system is non-invertible.

y[n] = x[2n]. The input can be obtained by interpolating zeros between
alternate samples of x[2n]. The system is non-invertible

P 3.11 Represent the following systems in terms of interconnection of
operators

1.

y(t) = x(t) + x(¢ - 3) + x(t - 6)

The student may use S to represent a delay of 3 time units.

CT and DT Systems
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\/

x(t-6)

— (®

2. y(t) =x(t-1) - y(t - 2) - y(t - 3). Let S represent the time delay of 1 unit.

-y(t-2)

x(t)

x(t-1)

+

-y(t-3)

v y(1)

3. ylnl=x[n] +yln-1] +y[n-2]




4. y[n]l=x[n-2]+y[n-2]-y[n-4]

Let S represent the delay of 2 time units.

S

x[n-2]

S

yln-4]

+

yln-2]

> y[n]

P 3.12 Find the overall impulse response for the interconnection of three

systems.

(a)

x(t)

hy(0)

¥(t)

hy1)

e

M ) = {[1,(8) + 1, ()] % I (1)

(b)
x(t)

hy(2)

hyt)

hyt)

hy(t)

hoverall (t) = {l:hl (t) X hz (t)] + l:hz (t) X h3 (t)]} X I’l3 (t)

hy(t)

hy1)

CT and DT Systems
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()
x(1) z(t) y(B)

(1) @n mo || ok |

hy1) hy1)

B (8) = {hl (t) +|:hz (t) x h, (t)]} x h,(t) x h,(t)

(d)
x[n] z[n]
hi[n] . + hln) |
ylnl
hy[n] hy[n]
> w(n)
h'[n) :{[hl[n] x hy[n] | +] hy[n] x hl[n]}} x h[n]
(e)
x[n] z[n]
yln]
J o lnl Minl |
hy[n] hy[n]
> w[n]

Wln)={[ Wln) % hy[n] |+ [ hln) x b [n] }



P 3.13 Find the possible interconnection for the following equation of the
overall impulse response of the system.

@) hyalnl= {[h1 [n]+h, [Yl]] X [h3[n] +h, [n]]} x h,[n]

) 2lnl yln]
hy[n] ]

hyln] h[n]

wln]

(b)) ={[ Il Iyl ]+ [ ) L ]} ¢ [ )+ y ]

x{n] z[n]
yln]
o Al || hyln] hy[n]
w(n]
hy[n] hy[n] hy[n]
(C) hoverall (t) = {hl(t) + [hz (t) X h3 (t)]} X h3 (t)
x[n] 2[n)
> hln] hy[n]
yln]

hZ[n] hs[”l]

CT and DT Systems
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Time Domain Response of
CT and DT LTI Systems

P 4.1 Consider a simple second order system with characteristic equation
given by (D* + 5D + 6) y(t) = 0. Find the zero input response if the initial
conditions are y(0) = 0 and Dy(0) = 5.

Solution
(D*+5D+6)=0=>D+3)(D+2)=0
The roots are D =-3 and D = -2

D is of the form e*and e™. The solution can be written as
yt)=ce +c,e™

This is called the zero input response. We will now apply initial conditions to
find the values of ¢ and c,.

Put t = 0 in the solution to get y(0)=c, +¢c,=0

Find the derivative of the solution and put ¢ = 0 in the equation to get

Dy(t)=-3ce”™ —2c,e ™ =5
Putt=0toget -3¢, =2¢,+5

Put €, =-¢,3c,=2¢,+5
c,=5and¢ =-5

y(t)=(5e" —5e " Ju(t)



P 4.2 Determine the impulse response for a system given by the differential
equation (D* +5D +6) y(t) = Dx(t).

Solution

Let us first evaluate the characteristic equation of the system and then evaluate
the roots of the characteristic equation.
The characteristic equation is given by

(D*+5D+6)=0= (D + 3)(D+2)=0
The roots are D= -3 and D = -2 (4.14)
The solution can be written as

y(t)=(c,e™ +c,e” Yult) (4.15)

We need to find the values of the constants. The derivative of y(f) can be
written as

y(t)=-3ce™ —2ce”’ (4.16)

For any system with the denominator polynomial of order n, the initial
conditions are given as follows.

¥(0)=0, Dy(0)=0,.......,D"?y(0)=0and D" y(0) =1 (4.17)

We will use the result without going into the proof of the result. The initial
conditions for the system with denominator polynomial of order 2, the initial
conditions, will be translated as

y(0)=0 and ¥(0)=1
where

¥(0)=Dy(0) is first derivative of y.

Putting values of initial conditions in above equations gives

y(0)=c,+¢,=0 and 7(0)=-3c, —2c, =1

7(0)=3c, —2¢, =1

‘ 3 ‘ Time Domain Response of CT and DT LTI Systems
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Solving the equations leads to —¢, =¢, =1

y(t)=(=e" +e ™ ult) .

The second order term is zero in the numerator polynomial, i.e., m < n. Hence,
put a, = 0 in the impulse response equation. The solution is

h(t)=(—e +e™ u(t)
which contains only the characteristic mode terms.

P 4.3 Determine the impulse response for a system given by the differential
equation

D(D+3)y(t)=(D +2)x(¢)-

Solution

Let us first evaluate the characteristic equation of the system and then evaluate
the roots of the characteristic equation.
The characteristic equation is given by

D(D+3)=0= roots are D=-3 and D=0
The solution can be written as
y(t)=ce™ +c,

We need to find the values of the constants. The derivative of y(f) can be
written as

y(t)=-3ce”™

For any system with the denominator polynomial of order n, the initial
conditions are given as follows.

For the system with denominator polynomial of order 2, the initial
conditions will be translated as y(0)=0 and y(0) =1, where y(0)=Dy(0) is
the first derivative of y. Putting values of initial conditions in the previous
equations gives

y(0)=c, +c, =0and)7(0):—3c1 =l=¢ =-1/3

Solving the equations leads to ¢, = —¢c, = -1/3



y(t) =(—§e‘2’ +§j u(t) .

The second order term is zero in the numerator polynomial, i.e., m < n. Hence,
put a, = 0 in the impulse response equation. The solution is

1 1
h(t)=| ——e™ += |u(t)
3 3
which contains only the characteristic mode terms.

P 4.4 Determine the impulse response for a system given by the differential
equation

(D+3)y(t)=(D+1)x(t) .

Solution

Let us first evaluate the characteristic equation of the system and then evaluate
the roots of the characteristic equation.
The characteristic equation is given by

(D+3)=0 = rootsare D=-3

The solution can be written as
y(t)=a,5(t)+ce™

We need to find the values of the constants. The derivative of y(f) can be
written as a, is the value of the nth order term in the denominator polynomial
and is equal to 1. y(t)=-3ce”™

For any system with the denominator polynomial of order n, the initial
conditions are given as follows.

For the system with denominator polynomial of order 2, the initial
conditions will be translated as y(0)=0and 3(0) =1, where y(0) = Dy(0) is
first derivative y. Putting values of initial conditions in the previous equations
gives

y(0)=a,+c, =0and§(0):—3c1 =1=¢=-1/3

Solving the equations leads to a, = 1/3
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y(t)= [—%e‘”u(t) +§5<t)) .

The order of the numerator is the same as that of the denominator polynomial,
i.e., m = n. Hence, the a, term exists in the impulse response equation. The
solution is

oo 1
h(t)—(—ge u(t)+35(t)j

which contains the characteristic mode terms and the response due to the unit
impulse at £ = 0.

P 4.5 Determine the impulse response for a system given by the differential
equation (D +1) y(t) = x(¢).

Solution

Let us first evaluate the characteristic equation of the system and then evaluate
the roots of the characteristic equation.
The characteristic equation is given by

(D+1)=0 = rootsare D= -1
The solution can be written as
y(t)=a,0(t)+ce”

We need to find the values of the constants.

m < n. Hence, put a, = 0 in the impulse response equation.

For any system with a denominator polynomial of order , the initial
conditions are given as follows.

For a system with a denominator polynomial of order 1, the initial
conditions will be translated as y(0) = 1. Putting the values of initial conditions
in the previous equations gives y(0) = ¢, = 1.

Solving the equations leads to

() =(e"u(t)) -

The solution is h(t)=(e u(t)) which contains only the characteristic mode
terms.



P 4.6 Let x(t)=e'[u(t)—u(t—3)], h(t) =e'u(t). Find x(t) x h(¢).

Solution
We start with step 1, i.e., drawing x(7) and h(-7).
Step 1 Let us draw both these waveforms. Plots of x(7) and k(¢ - 1) for

different intervals are shown in Fig. 4.1. We have to shift h(t - 7) slowly
towards the right.

Step 2 Start with time shift ¢ large and negative. Let ¢ vary from minus
infinity to zero. We find that until  crosses zero, there is no overlap between
the two signals. Hence, the convolution integral has the value of zero from
minus infinity to zero. At t = 0, the right edge of h(-7) touches left edge of x(7).

Step3 Consider the second interval between t = 0 to 3. x(z)h(t —7)=e e ™.
The overlapping interval will be between 0 to . The output can be calculated as

£
2
t wv
y(t) = L x(0)h(t —7)dr = J: e e " dr A
'_
-
a
t
= .[ e'edr=e'[-e "] =e"[-e" +1] -,%
0 =
O
k]
— e—t _e—zt §
g
g
y2)=e? -e™ £
1S
8
Step4 The third interval is between 3 to infinity. For t > 3, the overlapping g
interval will be 0 to 3. The output is given by =
77

y(t) = j03 x(z‘)h(t — T)dz‘ _ J’03 efzref(tfr)dz_
CAr— 4 4 . .
=_[Oe e‘dr=e'[-e ]y =e"[-e" +1]

=e¢'[l—e7’]

y3)=e"—¢”’



‘ > ‘ Signals and Systems

x(1)=e " for0<7<3

I h(-D=eTfor-00<7<0

h(t-17)=e"efor0<7<3

y

h(t-1)=e"effor3<1<00

S

Fig. 4.1 Plots of x(7) and k(¢ - 1) for various time intervals

The output of the system is shown plotted in Fig. 4.2.

I y(0) .

-3t

e'-e

0 3 t
Fig. 4.2 The output of the system
The output can be specified as follows.

y()=0 for t<0

=e'—e™ for 0<t<3

=e¢‘(1-¢) for t>3



P 4.7 Let x(t)=1-t for 0<t<1, p(t)=¢"u(t). Find x(f) x h(t).
Solution

We start with step 1, i.e., drawing x(7) and h(-7).

Step1 Let us draw both these waveforms. Figure. 4.3 shows plots of x(7) and
h(-1).

Step 2 Start with time shift ¢ large and negative. Let ¢ vary from minus
infinity to zero. We find that until f crosses zero, there is no overlap between
the two signals. Hence, the convolution integral has a value of zero from minus
infinity to zero. At t = 0, the right edge of h(-7) touches the left edge of x().

Step3 Consider the second interval between t=0to 1. x(7)h(t —7)=e " (1 -t + 7).
The overlapping interval will be between 0 to . The output can be calculated as
t t
y(t)= L x(D)h(t—7)dr = IO e "(1-t+r)dr
t t t t
=(-0)[ edr+[ e dr=0-[-e" | +[((-r-1)]
=(-t)1-e"]+[te" —e™ +1]
yt)=1-t—e" +te' —te' —e" +1

=[2-t-2¢"] for 0<t<1

Step4 The third interval is between 1 to infinity. For t > 1, the overlapping
interval will be t - 1 to t. The output is given by

y0)=[ 2@t -0y =] e (-t +0)dr

=(1- t)J‘tl1 e ‘dr+ J‘til e 'dr=(1-1) [e’r ]iil + {i e (-r— 1)]

t-1

=(1-t)(e " —e")- [te" —e ' 4te T —eT Y - 1]

y(t)=e "V —2¢ for t>1
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x(7)=eTfor0< 1<

h(-1)=1+71 for-1<7<0

-1 T
h(t-1)=1-t+7Tfort-1<1<t
0<t<1
-1 P T h(t-7)=1-t+7for1<7<eo
t>1
0 t-1 t T

Fig. 4.3 Plot of x(7) and h(t - 7) for different intervals

The output can be specified as follows.

y(t) =0 for t<0

=(2-t-2¢e") for 0<t<1

=e "V _2¢" for t>1

P 4.8 Let x(t)=2 for 1<t <2, h(t)=1for 0<t<4. Find x(t) x h(¢).

Solution

We start with step 1, i.e., drawing x(7) and h(-1).



Step1 Let us draw both these waveforms. Figure. 4.4 shows plots of x(7) and
h(t - 1) for different intervals.

Step 2 Start with time shift ¢ large and negative. Let ¢ vary from minus
infinity to 1. We find that until f crosses 1, there is no overlap between the two
signals. Hence, the convolution integral has value of zero from minus infinity
to 1. At t = 1, the right edge of h(-7) touches the left edge of x(7).

Step3 Consider the second interval between ¢ = 1 to 2. x(7)h(t —7)=2. The
overlapping interval will be between 1 to . The output can be calculated as

Y= 2x1dz =20 L= (2t -2)
Step4 Consider the second interval between t = 2 to 5. x(7)h(t —7) =2, The
overlapping interval will be from 1 to 2. The output can be calculated as

y(t) = Lz 2x1dr =21 if =2. The output is constant equal to 4.

Step5 Consider the second interval between ¢ = 5 to 6. x(7)h(t —7)=2. The
overlapping interval will be from ¢ - 3 to 2. The output can be calculated as

y=[" axidr=2012 =22t +4)=26-1)

Step 6 Consider the second interval between ¢ = 5 to infinity. x(7)h(t —17)=2.
No overlapping interval will be there. The output is zero.
The overall output can be summarized as

y() =0 for t<1
=2(t—2) for 1<t<2
=2 for 2<t<5
=2(6-t) for 55t<6

=0 for t>6

The output y(¢) is drawn in Fig. 4.5.
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x(1)=2for1<7<2

h(t-t)=1fort-4< 1<t
no overlap — o <t<1

h(t-1)=1fort-4<71<t

1<t<2
[ ]
t-4 t T
h(t-1)=1fort-4<71<t¢t
2<t<5
L]
-4 t T

h(t-1t)=1fort-4< 1<t
5<t<é6

[ ]

t-4 t T

h(t-1)=1fort -3< 1<t

6 < t < o0 no overlap

.

! t-4 t T

Fig. 4.4 Plots of x(7) and h(t - 1) for different intervals

J40)

2(t-1)

2(6-t)

Fig. 4.5 Plot of the output of the system



P 4.9 Let x(t)=1for0<t<2, h(t)=t for 0 <t <3. Find x(¢t) x h(t).
Solution
We start with step 1, i.e., drawing x(7) and h(-7).

Step1l Letus draw both these waveforms. Figure. 4.6 shows plots of x(7) and
h(t - 1) for different intervals.

x(7)=1for0<7<2

h(t-1)=t-tfort-3<1<t
no overlap -0 <t <0

t-3 t T

h(t-1)=t-tfort-3<71<t
0<tL2

-3 t T

h(t-1)=t-tfort-3<71<t
2<t<3

-3 t T

h(t-1)=t-tfort-3<71<t
3<t<5

t-3 t T

h(t-1)=t-tfort-3<1<t
5 <t < cono overlap

t-3 t T

Fig. 4.6 Plots of x(7) and h(t - 7) for different intervals
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Step 2 Start with time shift f large and negative. Let ¢ vary from minus
infinity to zero. We find that until ¢ crosses zero, there is no overlap between
the two signals. Hence, the convolution integral has value of zero from minus
infinity to zero. At t = 0, the right edge of h(-7) touches the left edge of x(7).

Step 3 Consider the second interval between ¢ = 0 to 2. x(7)h(t —7)=1(t — 7).
The overlapping interval will be between 0 to . The output can be calculated as

yO=[ t-0ydr=tr by~ /2= -1 12) =1 /2

as shown in Fig. 4.7.

Step 4 Consider the second interval between t = 2 to 3. x(7)h(t —7)=(t —7).
The overlapping interval will be from 0 to 2. The output can be calculated as

YO =[ t-oydr=trd} - 1242 =2-2.

The output is as shown in Fig. 4.7.

Step 5 Consider the second interval between t = 3 to 5. x(0)h(t —7)=(t — 7).
The overlapping interval will be from ¢ - 3 to 2. The output can be calculated
as

y(t)= f_s(t —o)dr=trdl 07 1247 ;=12 -t +3) —(z —%(tz —6t + 9))

1 9 1 5
=5t 24—t B+ =2 ——t*+=
2 2 2 2

as shown in Fig. 4.7.

Step 6 Consider the second interval between ¢ = 5 to infinity. x(7)h(t - 1) =
(t-1).

No overlapping interval will be there. The output is zero.

The overall output can be summarized as

y()=0 for t<0
=t*/2 for 0<t<2
=2t—2 for 2<t<3
=2t—1*/2+5/2 for3<t<5

=0fort>5



The overall output can be drawn as shown in Fig. 4.7.

2t-t2/2 + 5/2

Fig. 4.7 Overall output of the system

P 4.10 Consider a system given by (D +1) y(t) = x(t) . The impulse response is
calculated ash(t) = (e 'u(t)) . Let the external input be applied as x(¢) = (e " u(t))-
Find the response of the system for the applied input.

Solution

We have to find the zero state response by convolving the impulse response
with the externally applied input assuming all initial conditions as zero.
We start with step 1, i.e., drawing x(7) and h(-7).

Step1 Let us draw both these waveforms. Figure. 4.8 shows plots of x(7) and
h(t - 1) for different intervals.

Step 2 Start with time shift ¢ large and negative. Let ¢ vary from minus
infinity to zero. We find that until ¢ crosses zero, there is no overlap between
the two signals. Hence, the convolution integral has value of zero from minus
infinity to zero. At t = 0, the right edge of h(-7) touches the left edge of x(7).

Step3 Consider the second interval between ¢ = 0 to o. x(7)h(t—7)=e "¢ " ".
The overlapping interval will be between 0 to t. The output can be calculated as

y(t) = J-Ot X(Z')]’l(t — z')dz- — J.Ot e—ref(t,ﬂdz_
- .[ot e'dr=e"[r]; =e"[t]

=te”"
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x(T)=e " for0<7< 00

‘J h(-7)=e " for—-<7<0

h(t-17)=eTefor0< 7< 00

Fig. 4.8 Plots of x(7) and k(¢ - 1) for various time intervals

The output of the system is shown plotted in Fig. 4.9.

A

y(B)

Fig. 4.9 Overall output of the system

The output can be specified as follows.

y(t)=0fort <0
—e'—efor0<t<oo (4.52)

or y(t)=(e" —e)ul(t)



The output has a term due to external input and a term due to system
characteristic equation.

P 4.11 Consider the difference equation
yIk] - 0.4 ylk - 1] = f[K]

y[-1]=8 and f[k] =k

Find the solution using recursive procedure.

Solution
Put k =0 to get

y[0] - 0.4y[-1]=0, y[0]= 3.2
Put k=1, y[1] - 0.4y[0] = f]1]
y[1]=1.25+1=2.28 (4.58)

Similarly, one can find y[2] and so on.

P 4.12 Consider a simple second order system with characteristic equation
given by

ylk+2]-0.2y[k +1]—0.15y[k] =5 f[k +2] with y[~1]=0 and y[-2]=5

fIk]=2""ulk]

Find the zero input response for the system.

Solution

The system equation is given in advance form so that we can write it in

operational form. It can be written as (D* —0.2D —0.15)y[k] = 5D f[k].
We will first write the characteristic equation by equating the denominator
polynomial to zero when f[k] =0, i.e.,

(D*-0.2D-0.15)=0

(D-0.5)(D+0.3)=0
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The solution is D = 0.5 and D = -0.3.

The zero input response can be written as

ylkl=¢,(0.5) +¢,(-0.3)"

We will now use initial conditions to find the constants.

k=—1 y[-1]=¢,(0.5)" +¢,(-03)" =2¢ —?cz 0

1
k=-2,y[-2]=¢,(0.5)7 +¢,(—0.3) =4c, + %cz =5
k=-1,6¢ -10c,=0, 3c, - 5¢,= 0

k =-2,36¢, + 100c, = 45
Solving, we get ¢,=15/32,¢,=9/ 32
. . 15 k k
The solution can be written as y[k] = 5(0.5) + 5(—0.2)

P 4.13 Consider a simple second order system with characteristic equation
given by

ylk+2]-0.2y[k+1]-0.15y[k] =5 f[k + 2] with y[-1]=0 and y[-2]=5

flk1=2"ulk]

Find the impulse response of the system.

Solution

The system equation is given in advance form. We can write it by allowing a
delay of samples as y[k]—0.2y[k—1]—-0.15y[k —2] =5 f[k].

We will put flk] = 6[k] and y[k] = h[k]. The equation becomes
h{k]—0.2h[k —1]—0.15h[k —2] = 55]k]
We will put initial conditions as zero.

h[-1] = h[-2] = ..... = h[-n]= 0 for a causal system



Put k=0, h[0] - 0.2h[-1] -0.15h[-2]=5

h[0] =5

Put k=1, h[1] - 0.2h[0] -0.15h[-1]=5x 0

h[1]-02x5=0=h[l]=1

To find the closed form expression for /[n], we proceed as follows.
The characteristic equation for the system is

(D*-0.2D-0.15)=0

(D-0.5)(D+0.3)=0

Solutionis D = 0.5 and D = -0.3
The solution can be written as

k] =[c,(0.5)" +c,(—0.2)" Julk]

It is appended by u[k] as it exists only for k >0 because the system is causal.

We will now use initial conditions to find the constants.
k=0,h[0] = (0.5)°+c,(-0.3)=c +c,=5

k=1,h[1] = ¢ (0.5)'+c,(-0.3)! = 0.5¢c, - 0.3¢c,= 2

Solving, we get ¢, = 35/8, c,=5/8

The solution can be written as

35 061t +.5(_0.2)
h[k]—[§(0.6) +8( 0.2) }u[k]

P 4.14 Consider a simple second order system with impulse response and the

input signal given by

h[k]=(0.2)" u[k]and f[k]=(0.3)" u[k]

Find the zero state response of the system.

‘ 2 ‘ Time Domain Response of CT and DT LTI Systems
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Solution

Here, we have to convolve the impulse response with applied input. The zero
state response can be written as

k
ylk]= Z flm]hlk —m] for a causal system. (Refer to Section 4.8 for LTI causal
m=0

system impulse response)

ylk]= Y [(0.3)"]x(0.2)*™
x| (03
ylk]=(0.2) ZH O‘ZJ }

~ L (0.3)k+1 _ (0‘2)k+1
ykl=(02) H (0.2)"(0.3-0.2) H
y[k]=10[(0.3)"" —(0.2)"*" Ju[k]

P 4.15 Useinputside algorithm for convolution to convolve the two sequences
x[n]=[1211]and h[n] =[122].

Refer to text for input side algorithm.

P 4.16 Use output side algorithm to convolve the same two sequences.

Convolve the two sequences using conventional method.

P 4.17 An LTI system has an impulse response given by h[n] = u[n]— u[n—7]-
If the input is x[n] = u[n—2]—u[n—4], find the output of the system.

Solution

Let us first plot the two signals. Figure. 4.10 shows plots of h[n], x[n] and
x[-n]. Let us find the output y[n] sample by sample using the conventional
method by shifting x[-n] towards the right one sample at a time.



0O 1 2 3 4 5 6 7 n
x[n]

0 1 2 3 4 5 6 7 n
x[-n]

-4 -3 -2 -1 0 1 2 3 4 5 6 7 n
Fig. 4.10 Plots of h[n], x[n] and x[-n]
y[0] =0,y[1] =0,y[2] =1, y[3] =2, y[4] =2, y[5] =2

yl6] =2,y[7] =2, y[8] = 2, y[9] = 1, y[10] = 0, y[11], y[12] =0

0 forn<l and n>10
We can write y[n]=41 forn=2 and n=9
2 for3<n<$§

The plot of the output signal is shown in Fig. 4.11.

01 2 3 4 5 6 7 8 9 1011 12 n

Fig. 4.11 Plot of output signal y[n]

P 4.18 An LTI system has the impulse response given by h[n] = (0.2)n{u[n] - u[n
-2]}. If the input is x[n]=(0.4)"u[n], find the output of the system.
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Solution

Let us first plot the two signals. Figure. 4.12 shows plots of h[n], x[n] and
x[-n]. Let us find the output y[n] sample by sample using the conventional
method by shifting x[-n] towards the right one sample at a time.

hln] = (0.2)" {uln]-u[n-2]}

o 1 2 3 4 5 6 7 n
‘ x[n] = (0.4)"
I
0O 1 2 3 4 5 6 7 n
‘ x[-n]
R A
-4 -3 -2 -1 0 1 2 3 4 5 6 7 n

Fig. 4.12 Plots of h[n], x[n] and x[-n]

y[0] = 1, y[1] = (0.2) + (0.4), y[2] = (0.2)(0.4) + (0.4)?,

y13] = (0.4)%(0.2) + (0.4)%, .......
We can write y[0] = 1, y[1] = 0.6,
y[n] =(0.2), (0.4)""' + (0.4)"forn = 2

The plot of the output signal is shown in Fig. 4.13.

Fig. 4.13 Plot of output signal y[n]



P 4.19 An LTI system has the impulse response given by h[n] = u[n —2]. If the
input is x[n] = u[n], find the output of the system.

Solution

Let us first plot the two signals. Figure. 4.14 shows plots of h[n], x[n] and
x[-n]. Let us find the output y[n] sample by sample using the conventional
method by shifting x[-n] towards the right one sample at a time.

0 for0<n<2
We can write y[n] =
(n—1) foralln>2

The plot of the output signal is shown in Fig. 4.15.

yln]

Fig. 4.15 Plot of output signal y[n]
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P 4.20 An LTI system has the impulse response given by h[n] = 1 for n =0, -1.
If the input is

0] 1 forn=0,1
M= 3 forn=2,3,

find the output of the system.

h[n]

-2 -1 0 1 2 (3|4 5 6 7

x[n]

3 -2 -10 1 2 3 4 n
Fig. 4.16 Plot of h[n], x[n] and x[-n]

)’[O] =2, )’[1] =4, )/[2] =6, y[3] =3, y[4] =0, y[S] =0.......

y[-1=1, y[-2]=0, y[-3] =0,......

0 forn<-2and n>4
1 forn=-1

2 forn=0

4 forn=1

6 forn=2

3 forn=3

We can write y[n] =

The plot of the output signal is shown in Fig. 4.17.



-4 -3 -2 -1 0 1 2 3 4 5 6n

Fig. 4.17 Plot of output signal y[n]

P 4.21 An LTI system has the impulse response given by h[n] = u[n] —u[n—7]. If
the inputis x[#n] = u[n—2]—u[n — 4], find the output of the system. Let us write a
MATLAB program for the same. M Check if the following CT systems ATLAB
uses ‘conv’ command to execute convolution. The output of the convolution is
shown in Fig. 4.18. Compare Fig. 4.18 with Fig. 4.11.

Outp\ut of x(n) x h(n)

0 > 4 6 8 10 12 14
Sample number

Fig. 4.18 Plot of convolved output for P 4.21

clear all;

x=[1,1,1,1,1,1,1]1;

h=[0,0,1,1,0,0];

b=conv(x,h) ;

stem(b) ;title (‘output of x(n)*h(n)’);
xlabel (‘sample number’) ;ylabel (‘Ampltude’) ;

Note that the index for the output starts at n = 1 rather than zero.
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Amplitude

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

P 422 An LTI system has the impulse response given by
h[n]=(0.2)"{u[n] —u[n—2]} . If the input is x{n]=(0.4)"u[n], find the output of
the system. Let us write a MATLAB program for the same. The output of the
convolution is shown in Fig. 4.19. Compare Fig. 4.19 with Fig. 4.13.

clear all;

x=[1,0.2,0,0];
h=[1,0.4,(0.4)%2,(0.4)"3,(0.4)%4,(0.4)"5,(0.4)"6, (0
.4)"7,(0.4)78,(0.4)"9, (0.4)"10];

b=conv (x,h) ;

disp(b) ;

stem(b) ;title (‘output of x(n)*h(n)’);

xlabel (‘sample number’) ;ylabel (‘Ampltude’) ;

Output of x(n) x h(n)

E1 T (P Q Q @D o aD o @D o ha)}

0 2 4 6 8 10 12 14
Sample number

Fig. 4.19 Plot of convolved output for P 4.23
Note that the index for the output starts at n = 1 rather than zero. First 11
values displayed are
Columns 1 through 9
1.0000 0.6000 0.2400 0.0960 0.0384 0.0154 0.0061 0.0025 0.0010
Columns 10 through 11
0.0004 0.0002



P 4.23 An LTI system has the impulse response given by h[n] = u[n—3]. If the
input is x[n]=u[n], find the output of the system. Let us write a MATLAB
program for the same. The output of the convolution is shown in Fig. 4.20.
Compare Fig. 4.20 with Fig. 4.15. Here, we have taken only 10 samples of i and
x sequence. Hence, the output decreases after sample number 10. Actually, it
extends up to infinity. Hence, the actual output after sample number 10 will

continuously increase as a function of (n - 2) and will tend to infinity.

Output of x(n) x h(n)

Amplitude
o

T T T T

2 3 4 5

Sample number

Fig. 4.20 Convolved output for P 4.22

clear all;
for i=3:10,
x(1)=1;

end

for i=1:10,
h(i)=1;

end

b=conv (x,h) ;
for i=1:10,
bl(i)=b(i);
end

6

—
o
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Amplitude

stem(bl) ;title (‘output of x(n)*h(n)’);
xlabel (‘sample number’) ;ylabel (‘Ampltude’) ;

P 4.24 An LTI system has the impulse response given by h[#x]. If the input is
x[n] as shown in Fig. 4.16, find the output of the system. The output of the
convolution is shown in Fig. 4.21. Compare Fig. 4.21 with Fig. 4.17. Note that
we have shifted sample number -2 to 0 and so on. Otherwise the nature of the
graph matches.

clear all;

x=[1,1,0,0,0,0];

h=[0,1,1,3,3,0];

b=conv (x,h) ;

stem(b) ;title (*output of x(n)*h(n)’);
xlabel (‘sample number’) ;ylabel (‘Ampltude’) ;

Output of x(n) x h(n)

— @

NG
o®

2 3 4 5 6
Sample number

Fig. 4.21 Convolved output for Example 20

P 4.25 Find the step response of the LTI system with impulse response given
by h(t)=(e)” u(t).

Solution

We need to find

hn] x u[n] =(e)7t u(t) x u(t)



Let us plot both the signals and u(t - 7). The plot is shown in Fig. 4.22.

h(-7) = h(7) = ¢

u(t-1) fort<0

u(t- 1) fort>0

Fig. 4.22 Plot of h(7), u(r) and u(t - 7) for different intervals for
P 4.22

Consider the first interval for —eo < t < 0. The convolution integral is zero as

there is no overlap.
The integral for ¢ > 0 can be written as

h[n] xu[n] = (e)ft ut) x u(t) = I(: e dr=—e" »Lf)z — ' —(-)=1-¢"

P 4.26 Find the step response of the LTI system with impulse response given
by h(t) =u(t) —u(t —1).

Solution
We need to find

hln] x u[n]=[u(t) —u(t —1)] x u(t)

Let us plot both the signals and u(t - 7). The plot is shown in Fig. 4.23.
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h(7t) =u(t) —u(t-1)

t=0 1
u(t-1)fort<0

u(t-1)for0<t<1

u(t-7)fort>1

£

2z

&

2

c Fig. 4.23 Plot of h(7), u(r) and u(t - 7) for different intervals for
E P 4.26

2

wv

So0 Consider the first interval for —eo < t < 0. The convolution integral is zero as

there is no overlap.
Consider the interval 0 < t < 1. The convolution integral can be written as

Hln) x uln) =[u(t)—u(t ~2)) x u(t) = [ dr =7 4 =t
For interval 1 < t < oo, the convolution integral can be written as

Hln) % uln)=[u(t)~u(t ~2)] x u(t)= [ dr =74} =1

( t for0<t<1
N= 1 fort>1

P 4.27 Find the step response of the LTI system with impulse response given
by h(t)=0(t)—o(t -3).



Solution
We need to find

h(n] x u[n] = [&(t) - &t - 3)] x u(t)

Let us plot both the signals and u(t - 7). The plot is shown in Fig. 4.24.
\ h(t) = d(t) - &(t - 3)

0 3\

u(t-1)=fort<0

t

u(t-1)for0<t<3

u(t- 1) fort>3

Fig. 4.24 Plot of h(7), u(7) and u(t - 1) for different intervals for
P 4.27

Consider first interval for —eo < t < 0. The convolution integral is zero as there
is no overlap.
Consider the interval -eo < t < 3. The convolution integral can be written as

Hin) x uln) =[5(6) -5t -] x u(t) = [ 5(t)dr =1

For interval 3 < t < oo, the convolution integral can be written as

Hin) x uln] =[8(H) -8t 2)] x u(t) = | 5(0)dz—[ 8z -3)dr =1-1=0

‘ ° ‘ Time Domain Response of CT and DT LTI Systems
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0 1 fort<3
r= 0 fort>3

P 4.28 Find the step response of the LTI system with impulse response given
by h(t) =tu(t—-1).

Solution
We need to find

h[n] x uln] =[tu(t —1)] x u(t)

Let us plot both the signals and u(t - 7). The plot is shown in Fig. 4.25.

h(7) = tu(t)

I
t=0 1

u(t-1)fort<0

u(t-1)for0<t<oo

Fig. 4.25 Plot of h(7), u(r) and u(t - 7) for different intervals for
P4.28

Consider the first interval for —eo < t < 1. The convolution integral is zero as
there is no overlap.
Consider the interval 1 < t < oo, The convolution integral can be written as

_ _ _ ¢ _i t=(t2_1)
hin] x u[n] =[tu(t —1)] x u(t)= .[1 rdr = 3 i«l 5



2_
y(t)z{t 5 1fort>l}

P 4.29 Find the step response of an LTI system with impulse response given

by

Solution
We need to find
1Y g
hln] x u[n]=| = | u[n] x u[n] o
> &
5
Let us plot both the signals and u[-n]. The plot is shown in Fig. 4.26 =
2
h[n] |f_°
‘ e et
L1 . ;
01 2 3 4 5 6 7 n S
o
&
x[n] c
s
HENE— .
0 1 2 3 4 5 6 7 n °§’
=
RN =
4 -3 -2-101 2 3 4 5 6 7 n

Fig. 4.26 Plot of h[n], x[n] and x[-#]
The output of convolution is given by

Y0]=1,y[1]=1+1/3,y[2]=1+1/3+1/9,

1YI+1
1Y _(Ej 3
S141/341/ 94+ | = | =——22 =2 (1-(1/3)"
o] (J S(1-ar3)

-1
3



P 4.30 Find the step response of an LTI system with impulse response given

by hn] = 8[n]-Sln-2)

Solution
We need to find

h(n] x u[n] = {0[n] - o[n - 2]} x u[n]

Let us plot both the signals and u[-n]. The plot is shown in Fig. 4.27.

h(n]
| | .
0O 1 2 3 4 5 6 7 n
x[n]
I :
0 0o 1 2 3 4 5 6 7 n
§
‘i x[-n]
(Y]
"g“ S | | | I | R
‘_cén -4 -3 -2 -1 0 1 2 3 4 5 6 7 n
S
104 Fig. 4.27 Plot of h(n], x[n] and x[-#]

The output of convolution is given by
y[0]=1Ly[1]=1, y[2]=0,.....

yln]l=9d[n]+ d[n-1]

P 4.31 Find the step response of an LTI system with impulse response given
by Aln]=(-1)"[uln+1]—u[n—1].

Solution
We need to find

h[n] x u[n]=(-1)"{u[n+1]—u[n—1]} x u[n]

Let us plot both the signals and u[-n]. The plot is shown in Fig. 4.28.



h[n]

-2 -1 0 1 2 3 4 5 6 7 n
x[n]
0 1 2 3 4 5 6 7 n
x[-n]
-4 -3 -2 -1 0 1 2 3 4 5 6 7 n

Fig. 4.28 Plot of h[n], x[n] and x[-#]

The output of convolution is given by

y[0]=0, y[1]=-1, y[2] =—1,.....

P 4.32 Find the step response of an LTI system with impulse response given by
h[n]l=u[n-1}

Solution
We need to find

h[n] x u[n]=u[n—1] x u[n]
Let us plot both the signals and u[-#]. The plot is shown in Fig. 4.29.

The output of convolution is given by
y[0]=0,y[1] =1 y[2]=2,.....

y[nl=n-1
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-2 -1 0 1 2 3 4 5 6 7 n
x[n]
‘ ‘ ‘ ‘ ‘ e R
0o 1 2 3 4 5 6 7 n
x[-n]
e L] :
-4 -3 -2 -1 0 1 2 3 4 5 6 7 n

Fig. 4.29 Plot of h[n], x[n] and x[-n]

P 4.33 Check if the following CT systems are memoryless.
i. h(t) = etu(r)
ii. h(t) = e*u(t - 2)
iii. A(t) = u(t + 4) - 2u(t - 2)
iv. h(t) = 26(t)
v. h(t) = sin(57t)u(t)

Solution
We have to check if the impulse response of the system is a delta function.

i h(t)=e'u(t). The impulse response is not a delta function; hence the
system is with memory.

ii.  h(t)=e"u(t—2). The impulse response is not a delta function; hence the
system is with memory.

iii.  h(t)=u(t+4)—2u(t —2). The impulse response is not a delta function;
hence the system is with memory.



iv.

h(t)=26(t). The impulse response is a scaled delta function; hence the
system is memoryless.

h(t) =sin(57t)u(t). The impulse response is not a delta function; hence
the system is with memory.

P 4.34 Check if the following DT systems are memoryless.

i, hn] = 5" u[—n+1]
ii. in)=e"u(n-1)

i, h{n] = cos& ﬂnj[u([n - un—3]
iv. ) = 2uln]— 2uln—1]

v. h[n] = sin(7 zn)u(n]

vi. h[n] = o[n]+ cos(27zn)

Solution

We have to check if the impulse response of the system is a delta function.

i.

ii.

ii.

iv.

Vi.

h[n]=5"u[-n+1]. The impulse response is not a delta function; hence
the system is with memory.

h[n]=e*"uln—1]. The impulse response is not a delta function; hence; the
system is with memory.

1
h[n]= cos(; 72'1’1)[1/![1’11] —u[n—3]]. The impulse response is not a delta

function; hence the system is with memory.

h[n]=2u[n]—2u[n—1]=206[n]. The impulse response is a scaled delta
function; hence the system is memoryless.

h[n] =sin(7 zn)u[n] . The impulse response is not a delta function; hence
the system is with memory.

h[n] = S[n]+cos(27zn). The impulse response is not a delta function;
hence the system is with memory.
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P 4.35 Consider the system represented by

1

ylnl= Y xlklhln—k]

k=2

Is the system casual? If not, explain why.

Solution
yn]=x[-2]hln+ 2]+ x[-1]A[n + 1] + x[0]h[n] + x[1]h[n —1]

The current output depends on the next input sample. Hence, the system is
non-causal. If A[#] is non-zero for n < 0, we can conclude that the system is
non-causal.

P 4.36 Check if the following CT systems are causal.
i. h(t) = e'u(t)
ii. h(t) = e*u(t - 2)
iii. A(t) = u(t + 4) - 2u(t - 2)
iv. h(t) = 26(t)

v. h(t) = sin(57t)u(t)

Solution

We have to check if the impulse response of the system is zero for all # < 0.

i h(t)=e". The impulse response is zero for all ¢ < 0; hence the system is
causal.

ii.  h(t)=e"u(t —2). The impulse response exists for all t > 1as u(t - 1) = 1
for all £ 2 1; hence the system is causal.

iii.  h(t)=u(t+4)—2u(t —2). The function h(t) is equal to 1 for -2 < ¢t < 1.
The impulse response exists for negative vales of f up to t = —2; hence the
system is non-causal.

iv.  h(t)=206(t). The impulse response is a scaled delta function and is zero
for all negative values of #; hence the system is causal.

V. h(t) =sin(57t)u(t). The impulse response is zero for all negative values
of #; hence the system is causal.



P 4.37 Check if the following DT systems are causal.

i. h[n]=5"u[-n+1]

ii. i[n]=e*u(n-1)
iii. h[n]= cos(i ﬂnj [u([n+1]—u[n-13]

iv. h[n] =2u[n] —2u[n—1]
v. h[n] = sin(7 zn)u(n]

vi. h[n] = o[n]+ cos(27zn)

Solution
We have to check if the impulse response of the system is zero for all negative
values of n.

i h{n]=5"u[-n+1]. The impulse response exists for all negative values of
n; hence the system is non-causal.

ii.  h[n]=e""u[n—1]. The impulse response is zero all negative values of n as
it exists for n = 2; hence the system is causal.

iii.  h[n]=cos lﬂ'n [u[n+1]— u[n—3]]- The impulse response exists for -1 <

n <2 and 1s not zero for all negative values of #; hence the system is non-
causal.

iv.  h[n]=2u[n]-2u[n—1]=206[n]. The impulse response is a scaled delta
function and is zero for all negative values of #; hence the system is
causal.

v.  h[n]=sin(7zn)uln]. The impulse response exists for n > 0 and is zero for
all negative values of n; hence the system is causal.

vi.  h[n]=0[n]+cos(27n). The impulse response exists for n = 0 and for all
values of #; hence the system is non-causal.

P 4.38 Find if a system with the following impulse response h[n] is stable.
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Solution

We have to prove that the impulse response is absolutely summable. That is,

Z hlk] is finite

k=-x

The impulse response h[#n] is a right-handed sequence or is causal. The limit
for k will be between zero and infinity. That is,

BB

This infinite geometric series will converge. The system is stable.

P 4.39 Check if the following CT systems are stable.

i h(D) = eu()
ii. h(t) = eu(t - 2)

iii. h(f) = u(t +4) - 2u(t - 2)
iv. h(t) = 28(1)

v. h(t) = sin(57mt)u(t)

Solution

We have to prove that the impulse response is absolutely summable. That is,
[” hwydt s finite.

i ht)=e",

[ h@)dt=|"e"dt=—e" L7=1 is finite
The impulse response is absolutely summable; hence the system is stable.
ii.  h(t)=e*u(t-2).
[" eyt = [ et =2 L="foo—e*] > on
- 2 2 72

The impulse response is not absolutely summable; hence the system is
not stable.



iii.

iv.

h(t)=u(t +4)—2u(t-2)

[* neyde =] dt+ [ -2dt=6-0——o

The impulse response is not absolutely summable; hence the system is
not stable.

h(t)=25(t).

[ nde=2[" st)dt=2x1=2 is finite.
The impulse response is absolutely summable; hence the system is stable.

h(t) = sin(57zt)u(t)

J: h(t)dt = j: sin(57t)dt =lim %[cos(Sm‘) ~L0T ]

N—oo

=lim,,_, g[l ~(-1)]==
T

T represents the period of the cos function. The impulse response is not
absolutely summable; hence the system is not stable.

P 4.40 Check if the following DT systems are stable.

i, hln] = 5" ul—n—1]
ii. Wn)=e"u(n-1)

i, h{n] = COSG ﬂnj[u([n - uln—3]
iv. ) = 2uln]— 2uln—1]

v. h[n] =sin(7 zn)u[n]

vi. h[n] = o[n]+ cos(27zn)
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Solution

We have to prove that the impulse response is absolutely summable. That is,
z h[n] = finite
i. h[n]=5"u[-n-1],

> < I 1 1 1
Zh[n]:25":g+5—2+ ....... =— ~1=, =finite.

The impulse response is absolutely summable; hence the system is stable.

iil.  hn]=e"uln-1]

The impulse response is not absolutely summable; hence the system is
not stable.

iii.  hn]= cos(i ”"j[“[" +1]—u[n—-3]]

3 3 1 1 1 1 3
Zh[n]chos —7zn |=cos| —— 7 |+l1+cos| —7z |+cos| —7z |+cos| —7
= 1 4 4 4 2 4

1
——1is finite

1 1
=—+1+—-
V2 V2 2
The impulse response is absolutely summable; hence the system is stable

iv.  h[n]=2u[n]-2u[ln—1]=26[n).

2" 8[n]=2is finite.

The impulse response is absolutely summable; hence the system is stable

V. h[n] = sin(7 zn)u[n)-



0

Z h[n]= Z sin(7zn) = — infinity
0

0

The impulse response is not absolutely summable; hence the system is
unstable.

vi.  h[n]=06[n]+ cos(2xzn).

0

Zh[n] =90[n]+ i cos(zn) = — infinity

0

The impulse response is not absolutely summable; hence the system is
unstable.

P 4.41 Consider the interconnections of the systems as shown in Fig. 4.30. Let
the impulse responses be specified as

h, (t) =u(t)
h,(t)=6(t)

h,(t)=0(t-2)
Find the response of the overall interconnection.

x(t) (B

‘ 5 ‘ Time Domain Response of CT and DT LTI Systems

ho(2)
h(t)

h(t)

Fig. 4.30 Interconnection of systems for P 4.38



Solution

The impulse response of the overall interconnection can be written as
h, () x {h, (£) + hy ()} = {u(®)} x {5() + 5(t - 2)}
Figure 4.31 shows a plot of two signals.

h(7) = &(t) + 6(t - 2)

I

| >
t=0 1 2
u(t-1) fort<0

| :

u(t-1)for0-<t<1

£
L
2 u(t-1fort>1
(V]
©
5
=
C
=2
wm
T Fig. 4.31 Plot of h(7), u(z) and u(t - 1) for different intervals for

P 4.38
Consider the first interval for —eo < t < 0. The convolution integral is zero as
there is no overlap.

Consider the interval —eo < t <1. The convolution integral can be written as

h[n] x u[ln]=[8(t)+ ot —2)] x u(t) :J‘Ot_ o(t)dr =1

For interval 2+ < t < o, the convolution integral can be written as

yn]=1for —o<t <2

=2for2<t<o



P 4.42 Consider the interconnections of the systems as shown in Fig. 4.32. Let
the impulse responses be specified as

h,[n]=uln]
h,[n] = u[n+2]—u[n]

h,[n] = [n—2]

Find the response of the overall interconnection.

z[n]

x[n] yln]
| i an < o >
A
holn] vl
hy[n]

Fig. 4.32 Interconnection of systems for P 4.39

Solution
The impulse response of the overall interconnection can be written as

{(h[n]+h,[n]) x h,[n]}—h,[n]

{(u[n]+u[n+2]—u[n]) x o[n—-2]}- [%) uln]

—uln+2] % S[n-2] —Gj u[n]

‘ c.:n ‘ Time Domain Response of CT and DT LTI Systems



‘ e uln+2]
-3 -2 -1 0 1 2 3 4 5 6 7 n
‘ 6[n-2]
" 01 2 3 4 5 6 7 n
£
g
2 ‘ S8[-n+2]
(Va)
©
C »
] >
v
g -4 -3 -2 -1 0 1 2 3 4 5 6 7 n
=
< uln+2] x 8[n-2]
116 ‘ ‘ ‘ I
-4 -3 -2 -1 01 2 3 4 5 6 7 n

Fig. 4.33 Convolution of u[n + 3] with §[n - 3]

P 4.43 Consider the interconnections of the systems as shown in Fig. 4.34. Let
the impulse responses be specified as

h,[n]=d[n]

h,[n]=u[n-1]

Find the response of the overall interconnection.



x[n] yln]
hy[n]

hyln]

\4

hy[n]

Fig. 4.34 Interconnection of systems for P 4.40

Solution

The impulse response of the overall interconnection can be written as

h,[n] x {h,[n]+ h,[n]}

=[%) {uln+1]—u[n—-1]} x {o[n]+uln-1]}

= @j {uln+1]-uln—1]} x u[n]

Figure 4.35 shows a plot of h,[n], u[-n] and output y[n].

‘ (1/2)"{u[n+1]-u[n-11}
|

-3-2-1 01234567 n

]
-3-2-1 0 1234567 n

-4-3-2-1012 3 4567 n

Fig. 4.35 Plot of h,[n], u[-n] and output y[n]

‘ 5 ‘ Time Domain Response of CT and DT LTI Systems



The output y[n] can be calculated as

y0]=[2+1]=3, y[1]=[2+1+1/2]=3.5,

y[2]=3.5,y[3]=3.5, y[4] =3.5,.......

‘ Signals and Systems
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S

Fourier Series Representation
of Periodic CT Signals

P 5.1 Prove that cos(5w¢) and cos(6wt) are orthogonal to each other.

Solution

Let T represent the period of the cosine function with angular frequency of
w. The period for a cosine function with angular frequency of 5w will be T/5
and the period for a cosine function with angular frequency of 6w will be T/6
and so on. We have to prove that the dot product of the two functions is zero.
We know that the integration of cosine function over one period or multiple
periods is zero.

IOT cos(5wt) cos(6at)dt = %J‘OT [cos(11wt) + cos(wt)]dt

11 1T
:EIO cos(1 la)t)dz‘+zj.0 cos(wt)dt

T T
1] 1 1] 1
=—| —sin(llwt) | +—| —sin(wt)
2| 11w 2| w

0 0

=0

P 5.2 Prove that exp(j3a)t) and exp(j7a)t) are orthogonal to each other.

Solution

Let T represent the period of the cosine function with angular frequency of w.
The period for an exponential function with angular frequency of 3w will be



T/3 and so on. We have to prove that the dot product of the two functions
is zero. We know that the integration of cosine function over one period or
multiple periods is zero.

[ exp(jsen) exp* (j7an)dt = [ lexp(j3~7)wn)ldt

{ ( j(—4)wt)}T
=l eXxp———m
JIGAE;

0

T
0

={[cos(—4wt)— jsin(—4wt)]/ —4 jw}

=0

P 5.3 Determine the FS representation for the signal given as

x(t)=3cos £t+£ .
3 2

;
2 Solution
§ Let us first determine the fundamental period of x(¢).
©
= T 2m 27
9 a)o ===
A 3 6 T
120 We can find T =6.

Let us write x(f) as a linear sum of weighted exponentials.
o ik Z |t
)= X[kle )
k=—0

X(¢) is already given in terms of a cosine function. So let us write it in terms of
exponentials and pull the coefficients.




Referring to the aforementioned equation, we can see that k = 0 will give the
constant term and k = 1 will be the coefficient of the fundamental frequency.

V.4

Ee_j(gJ fork=-1
2

(7

X[k]= %e{ZJ fork=1

0 otherwise

Let us plot the magnitude and phase of X[k]. It is shown in Fig. 5.1.

|x (k]| Arg[x[k]]
3/2 /2

-3 -2 -1 0 1 2 2 k -3 -2-10 1 2 2 k

Fig. 5.1 Magnitude and phase plot of X[k]

P 5.4 Determine the FS representation for the signal given as x(t) =4 cos (27t
+2) + sin (47t).
Solution
Let us first determine the fundamental period of x(#).
2 2
For the first term, @, = Tﬂ = ?ﬁ We find T =1.

For the second term, ), = 6—7[ = 2—7[ = ZT” we find T = 1/2.

1 1/2

The fundamental period is the larger of the two and is equal to 1.

Let us write x(¢) as a linear sum of weighted exponentials.

x(0)= Y X[kle"e™

k=—o0

is already given in terms of a cosine function. So let us write it in terms of
exponentials and pull the coefficients.

Fourier Series Representation of Periodic CT Signals
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x(t) =4 cos(2xt +2)+sin(47xt)

:41[61(2;”44) +e—j(2nt+2)]+i|:ej4m _e—j4;rt:|
2 2j

2 - o 2 . »
:_[e+2]e]2m +e 2]e ]ert:l_,’__'[eﬂ/rt —e ]4ﬂt:|
J

We can see that k = 0 will give the constant term; and k = 1 will be the coefficient
of the fundamental frequency and k = 2 will be the coefficient of the second
harmonic.

2e for k=1
27 fork=-1
X[k]=42/j=-2j fork=2

—%:2]' fork=-2
J

0 otherwise

Let us plot the magnitude and phase of X[k]. It is shown in Fig. 5.2.

|x[k]| T Arg[x[k]]
2
A -
3 -2 -1 0 1 2 3 k 32 -10 1 2 3 k

Fig. 5.2 Magnitude and phase plot of X[k]

P 5.5 Determine the FS representation for the signal given as x(t) = cos (47t) +
cos (67t).

Solution

Let us first determine the fundamental period of x(¢).

2 2
For the first term, @, :1/—”2 =Tﬂ. We find T = 1/2.



2 2
For the second term, @, = 1/—7; = 77[ Comparing, we find T' = 1/3.
The fundamental period is the larger of the two and is equal to
T = 1/2; the fundamental frequency is 2. The first term has a frequency of 2
which is the second harmonic of 1 Hz and the second term has a frequency of
3 which is the third harmonic of 1 Hz.

Let us write x(f) as a linear sum of weighted exponentials.
x(t)= ) X[kle*™"
k=—o0

is already given in terms of a cosine function. So let us write it in terms of
exponentials and pull the coefficients.

x(t) = cos(4zt)+ cos(67t)

T -
:_[e]4m +e ](4zrt):'+_|:616m t+e ]67zt:|
2 2

1 fork=2
2
1 fork=-2
2
1

X[k]= 5 fork=3
1 fork=-3
2
0 otherwise

Let us plot the magnitude and phase of X[k]. It is shown in Fig. 5.3.

|x (k]| Arg[x[k]]
1/2

-4 -3 -2 -10 1 2 3 4k -4 -3 -2-10 1 2 34
I |

Fig. 5.3 Magnitude and phase plot of X[k]

Fourier Series Representation of Periodic CT Signals
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P 5.6 Consider a pulse train of rectangular pulses of duration T and period T,
as shown in Fig. 5.4. Find FS representation.

Solution

The representation of the signal for one period can be written as

o A for0<t<T
el = 0 otherwise

A
Xp(t)
-T, 0 T T, Time
g Fig. 5.4 Periodic train of rectangular pulses
>
(V]
"'é“ We will use the formula for the Fourier series coefficients.
=
5 1 ¢x —j2znt
A cn=—J°xP(t)exp( J Jdt n=0,+1,+2....
- T o
124 0 0

=LJTAexp —j2mnt dt
T, o T,

0

_ A exp _ j2nnt i(f:i exp _ j2anT 1
2nr T, 2nr 1,

A MATLAB program to plot the Fourier series coefficients using the
aforementioned equation is given as follows. The number of coefficients
plotted is 81. Actually, the sync function extends from minus infinity to plus
infinity. The index of the coefficients is from n = -40 to 40.

clear all;
T0=4;
T=0.4;

A=1;

for n=1:40,



Amplitude

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

c(n+41l)=(1/(2*n*pi) ) * (exp((-1j*2*n*pi*T) /T0)-1) ;

end

c(41)=0.1;
for n=1:40,
c(n)=c(82-n);

end

s=-40:1:40;
stem (s, abs (c)) ;

title(‘plot of magnitude of discrete spectrum’);
xlabel (‘coefficient number’) ;

ylabel (‘amplitude’) ;

The plot of the magnitude response is shown in Fig. 5.5.

Plot of magnitude of discrete spectrum

ET T T T (_} O T L= g

Q1O n

- . -

ol |l lo 2

- 13

Q o) 5

a

i i ks

I ¢ ¢ 1 S

i o ] 5

g

Q.

- O - %

9

I I

¢ T T allli :
-40 -30 -20 -10 0 10 20 30 40

Fig. 5.5 Plot of magnitude response

We will use the property of odd symmetry to find trigonometric FS. Let us

first find

Coefficient number

a, =ijTAdt=it¢§=AT/To
I > T

a

n

2

0

t+T
T J: x, (t) cos(nwt)dt
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2 A sin(nowt) - 2Asin(nwT)

0

= iJ‘TA cos(nwt)dt =
T, o

0 Tynw

b, =[x, @)sin(non)dr

n
0

= T£|:I0T A sin(na)t)dt}

= %UOT A sin(na)t)dt} = T2A cos(nwt) J«OT = 2Aa) [cos(nwT)—1]

o1 0

The FS can be written as

x(t)=ATT+ Z 2Asjlfl—(an)(:os(na)t)+ooZ: 24 [cos(nwT) —1]sin(nwt)
0 n=-o0,n#0 0 n=-wo 4q

P 5.7 Determine the FS representation for the signal given by x(¢) =[sin(2¢)].
The periodic wave is shown in Fig. 5.6.

A

x(t)

Fig. 5.6 Plot of signal for Problem 5.7

Solution
Step1 Let us first find the period of the wave. The wave repeats after a time

. 2 . . . .
period of m seconds. @ ==—=2; period of the rectified sine wave is 2 seconds.
7

Step2 Let us now find the equation for the sine wave between 0 to 7 seconds.
This is a half part of the sine wave with a period of 27 seconds. So, angular

27
frequency of the sine wave @, =1= Py and the signal between 0 to 7 seconds
pa

can be written as x(t) = sin ().



Step 3 Let us write x(#) as a linear sum of weighted exponentials.

x(t)=Y X[kl

We can find X[k] using the formula

_ l — jkot
X[k] = ; I(T)x(t)e dt

Step4 Use the formula to find X[k].

X[k] = l-‘.”sin(t)e*]'k(Z)tdt — L.J'O” [ejt _e—jt] eijktdt

o 27j

1 M ej(l—zk)t e—j(1+2k)t 4
= +
2rj| (1=-2k)j (1+2k)j .

1 e](l—zk);r _1 e—jir(1+2k) _1
+
2j| (-2k)  (1+2K)

_L[—z(uzk)—zu—zk)}
2j (1-4k*)x

Fourier Series Representation of Periodic CT Signals
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2j(1-4k)r  (1-4K)x

forall k

Note that e =¢/” =(=1) and e /"% =¢/*2M = (1) for even and odd
values of k.

Step5 Evaluate X[0] by integrating the signal over the period.

X[0] = % [ xdt = % [['sin(rt)dt

2
=—cos(nt)/ wdl==
r
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The magnitude response can be written as

2

m fOI' allk¢0
- T

X[k]=

2 fork=0
pid

Step 6 The exponential Fourier series can be written as

2 > 2 )
)=+ > — e

T im0 (1— 4K’ )z
Let us find trigonometric FS.

=lj.lsin(7zt)dt =—cos(nt)/ w4 =— D-1_2
170 T T

a

0

2 ot+T J
an—FJ.t xp(t)cos(na)t) t

= %I; sin(7zt) cos(2nzt)dt = _[Ol[sin(Zn + 1)t +sin(1—2n)t]dt
=[—cosQn+ 1)zt / (2n+1)w —cos(1—2n)xt / (1-2n)7x] i«;

)M (DT -1 2(1-2m)+2(142n) 4
 @n+Dhr (A-2m7 (1-4n")1 C(1-4n))7

orn

2 et+T .
b :FL xp(t)sm(na)t)dt

n
0

- %[J‘: sin(ﬁt)sin(Zmzt)dt} = J: [cos(l —2n)xt —cos(1+ zn)ﬂt]dt

3 {_ sin(1+2n)rt N sin(1—2n)st } .
B 1+2n)7 a-2n)x 0

=0foralln (5.71)



The FS can be written as

x(t) ——+ Z cos(2mz't) (5.72)

Nn=—0 n:tO

Let us convert the trigonometric FS coefficients to exponential FS coefficients.

1 . 1 )
:E[Gn _]bn], c_, :E[an +]bn]’co =4,

c—l{ 4 }_ 2
"2l -4k)r | (1-4k))7

2

c_, Zm, (5.73)

NO sine terms exist as the waveform has even symmetry.

Let us write a MATLAB program to plot the spectrum for the signal.

clear all;
t=-5:0.1:5;
x=abs (sin (pi*t)) ;
plot (t,x);title(‘plot of rectified sine wave’);
xlabel (‘time’) ;ylabel (‘amplitude’) ;
for k=1:21,
=2/ ((1-4*(k-11) .*(k-11)) *pi) ;
end
figure;
k1=-10:1:10;
stem(kl,y);title(‘plot of spectrum of the signal’);
xlabel (*frequency index’) ;ylabel (‘amplitude’) ;

Figure 5.7 shows the plot of the signal and Fig. 5.8 shows the plot of the
magnitude spectrum for the FS representation of the signal.

Fourier Series Representation of Periodic CT Signals
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Amplitude

Amplitude

Plot of rectified sine wave

09r

0.7

0.6 -

0.4

0.3

0.2

0.1

T

T T T T T

-4

-1

0 1 2 3 4
Time

Fig. 5.7 Plot of the full wave rectified sine wave

Plot of spectrum of the signal

0.7 F

0.6 -

0.5

0.3

0.2

T T T T T

0}

-0.1 1

-0.2 1

CB@Q)Q)UU\JU

-10

Frequency index

Fig. 5.8 Plot of the FS spectrum for the signal



P 5.8 Determine the FS representation for the signal with the periodic wave
as shown in Fig. 5.9. [Note: The signal has no symmetry. It will have sine and
cosine terms.]

Fig. 5.9 The signal wave for P 5.8

Solution

Step1 Let us first find the period of the wave. The wave repeats after a time
2z

period of 4 seconds. w=7 = e 7/ 2; period of the wave is 71/2 seconds.

Step 2 Let us now find the equation for the wave between 0 to 2 seconds.

This is a half part of the wave with a period of 4 seconds. The equation of the

signal between 0 to 1 seconds can be written as x(¢) = ¢ and that between 1 to
2 can be written as x(t) = t- 2.

Step 3 Let us write x(¢) as a linear sum of weighted exponentials.

Fourier Series Representation of Periodic CT Signals

x(t)=Y X[kl
k;m 131

We can find X[k] using the formula
XK= x(t)e " dt
T
Step4 Use the formula for FS to find X[k].

20t ke 2 oy —ikzi)t
X[k]_z[jotef dt+j1 (t —2)e *=21 gy
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—jk(zi2)t —jk(zi2)t
Xk = o e
2| —jkz /2 k'x —jkz /2
B 24 : efjk(;z/z)t J'f > e—:ik(zr/Z)t f
k' —jkr /2
—jk(z/2)
XMk =2 £ e )
2| —jkm /2 k'm
Ze—jk/z _e—jk(ﬂ'/z) B 4 [ et _e_jk;;/z]_z e—jk/rt _e—jklez
—jkm /2 k*n* —jkm /2
_nk _(_ k
Xtk =2 | E2 4 12CD
2| jkz /2 km
=—L+%for kodd
kr k'rm
1
=—for k even
T

Note that e 7™ =’ =(-1) and e """ =¢/""" = (1) for even values of k and
e 70 =N = (1) for odd values of k.

Step 5 Evaluate X[0] by integrating the signal over the period.
X[o]=0
The magnitude response can be written as
X[K]= -+ —for k odd
kr k'z
1
=—for k even

kx

Step 6 The exponential Fourier series can be written as

o |k + 2/ Kt ™

x(t)= i { 2 }forkodd



0

x(t)= Y [-2j/kx)e”™" for k even

k=-00,k#0

Let us find sine and cosine series using the formula for a_and b,.

a,=0

A 2
a,= —IZJ. t cos(nrt /2)dt + J. (t—2)cos(nxt / 2)dt}
4 0 1

cos(nrt /2) L)

a, :2X%|:tsin(n7[t/2)/n7z/2~l«; -

n27z_2

+tsin(nrt /2)/n 247 - 4 COS(Zmit /2) ) sin(nzt /2) if}
nrzw nw/2
ERREE)
nr nr
=i+ 28 5 for n odd
nro onrw

2
=—forneven
nr

Fourier Series Representation of Periodic CT Signals
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Let us derive the exponential series from the trigonometric series. -

1 . 1 ,
Cn :E[an _]bn]’cfn :E[an +.]bn]’C0 :ao =0

" 2lur WPt

c =l[i+ 8 }fornodd

1
=—forneven
nr
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P 5.9 Determine the FS representation using exponential series for a signal with
periodic wave as given in the following equation. Find the FS representation
using sine and cosine series.

0 for—-1<t<0
x(t)= .
1-0.5sin(7wt) for0<t<l1

Solution

Step 1 Let us first find the period of the wave. The wave repeats after 2

seconds. The period is . w= 277[ =7.

Step 2 Find X[k].

_ l — jkoot
X[k]= : I(T)x(t)e dt

It . —jk(z)t
X[k]ZE O(l—O.Ssm(;rt)e’ dt}
M —j(k-1)zt —j(k+1)zt
X[k]:l 1 e—jk;zt:|¢(1) _i|: e‘ _ e. :|\L§)
2 || jkm 4j| —jlk-Dzr —jlk+)x
1
X[k]=—
(k] 5

_efk”—l}_ 1 {(k+l)[e("”” —1]—[(k—1)[ef“k“>”—1]}}

| —jkm | 4j -jk* -\«

{—.;[e—jkzr _ 1]} _ L'|:[efi(k1)7r ~1] ~ [e—]"(kﬂ);[ 1] :|}
__Jkﬂ' 4] _](k—l)ﬂ' _](k+1)7z'

-4 (D)1
Ak -V jkx

-1+ forkodd
20k -7z jkr

=0 for k even



Step5 Evaluate X[0] by integrating the signal over the period.
NI I o
X(0)=— jo x(t)dt = E[ jo (1-0.5sin(t)) t}

1o 1 1 (-1 1 1
—z[ti«o] 4[cos(;zt)/;z]]¢0_2 yr .

Step 6 The exponential Fourier series can be written as

0

x(t)=l+i+ > L+72_k e’ for k odd
2 2r k=—o0,k#0 _]kﬂ' 2(k - 1)7[

Let us find the sine and cosine series using the formula for a_and b .

2
a, = T I(T) x(t) cos(nwt)dt

= %J.O] (1-0.5sin(7t) cos(nzt))dt

= [sin(nm‘) \ —isin(n + l)ﬂt/(n +D)7 i) +isin(n - l)ﬂt/(n -zl }

= —i cos(n+ 1)7rt/(n +)7x Jf(l) + i cos(n— 1)7rt/(n -z

=0 for neven

=—( 211) for nodd
n° —Dr

2 .
b= I(T)x(t)sm(nwt)dt

= %Jj (1 -0.5 sin(;z't) Sin(”lﬂ't))dt

= [Sin(nﬂt) ~Lf) —icos(n - l)ﬁt/(n -+ i cos(n+ l)ﬂt/(l’l + 1)7[:|

1
0

Fourier Series Representation of Periodic CT Signals
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= cos(nrrt)/mr s i[sin(n + l)ﬂ't/(}’l +1)z 4, —sin(n— l)ﬂt/(n -z »Jz(l)]

=[(-1)"-1]/nx
=0 for n even

= 2 for nodd
nr

Let us derive the exponential series from the trigonometric series.

1 1 1 1
= — —.b s = — +.b s = =—+—

Cn Z[an ] n] C—n z[an ] n] CO aO 2 272_
" cnzl %—]i :—++ifornodd
£ 2| (k" -V “kx 2k -z jkrm
[
&
2
b P 5.10 Find if the following signals satisfy the Dirichlet conditions.
» x(t) =2 tan(st)

136

x(t)=sin(0.57 / t) for 0 <t <1land the signal repeats with a period of 1

Solution

Signal 1 is not absolutely integrable and signal 2 has infinite number of extrema
points. So, both the signals do not satisfy Dirichlet conditions.

P 5.11 Consider a train of pulses as shown in Fig. 5.10. Find the FS
representation for this periodic signal.

Fig. 5.10 Plot of signal for Problem 5.11



Solution

We will use the formula for exponential FS. The signal has a period of T.
Consider the time interval between —#/2 and T/2.

1 . 1 12 .
—_ —jkot 3. —jk2xt/T
Xlk] = [, x®e " dt = : [, 0@e7 " dr

Put t = 0 in the equation,

1 fort=0

0 otherwise

1
X[k]=c, _5,5@)_{

0

1.
x(t)= Z Ee’k"”

k=-

The FS is again a train of impulses with a separation of 1/2 as shown in Fig. 5.11.

-1 -1/2 0 1/2 t

Fig. 5.11 Plot of spectrum for the train of impulse in P 5.11

P 5.12 Use the Fourier series representation for P 5.6 and find the Fourier
series representation for the following signal. Use the property of time shifting.

xp(t)

-3 -1 0 1 3
Fig. 5.12 Plot of signal for Problem 5.12

Solution

Here, T'= 2 and T, = 3. Time shifting property says that

if x(t) < C,

Fourier Series Representation of Periodic CT Signals
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then «x(t—t,)) <> e "o C,

Fourier series for Problem 6 is given by

A j2rnT
c, = exp| — -1
2nr T,

If x(t) > C,

then x(t—t,)<>e"™C,

X[k]= _j [e—jk(zm> _ejk(2n/3)]
27k

—— L sin@rk/3) for k20
k

P 5.13 Use the property of differentiation in time to find the FS representation
for the signal shown in Fig. 5.12.

D 2jT,
Cﬂz ' n__ . .] 0 Sin 27z-nT :-LSIH(M_ﬂj)putT/ZzlandT;) :3
jno  jn2rl] 2T, nw 3

P 5.14 Find the time domain signal with FS coefficients given as follows and
with w = 7.

C. = jo(n-2)— jo(n+2)+45(n—3)+45(n+3)

Solution

x(t)=-2sin(27rt) + 8 cos(37t)

P 5.15 Determine the time domain signal using its magnitude and phase
spectrum given in Fig. 5.13.



|Cul

-2 -1 0 1 2 3
/4 '3 angle C,
-2 -1 0 1 2 3

Fig. 5.13 Plot of signal for Problem 5.15

Solution

x(t)=2cosQQwt — 7 /4)+4cos(wt + 7 /3)

P5.16 Findthe DTES coefficients for the signal givenby x[n]=3sin (% n+p j

Solution

Step1 Find the fundamental period and fundamental frequency.
(7 . [ 27n
x[n]= 3sm(zn+ﬁ) = 3sm[T+ﬂ)

Here, fundamental period is N = 8; fundamental frequency is 1/8
Step2 We will write the signal in terms of exponentials.

e o o _
X[}’l] =3sin £n+ﬂ :—.[EJZHn/Sem _e*]Zﬂn/Se—]ﬂ}
4 2j

The fundamental period is 16. The DTFS will consist of 16 coefficients varying
from k =-3 to 4.

4
x[n] — X[k]ejk(ﬂ/4)n
3

k=—

Fourier Series Representation of Periodic CT Signals
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1
——e’ fork=-1

2j
X[k]= L.ej'g fork=1
2j
0 otherwise

X[k] is also periodic with period of 8. The magnitude and phase plot is shown

in Fig. 5.14.
B
|x[K]| Arg[x[k]]
1
2j
| |
-4 -3 -2-1 0 1 2 3 4k -4 -3 -2 -1 0 1 2 3 4
: |
2z
&
2
© Fig. 5.14 Magnitude and phase plot for the FSin P 5.16
g
2
wv
- P 5.17 Find the DTFS coefficients for the signal given by
140

x[n] :1/2+cos(£n+£j
5 4
Solution
Step1 Find the fundamental period and fundamental frequency.

x[n]=1/2+cos £n+£ —1/2+ cos 27rn+£
5 4 10 4

Here, fundamental period is N = 10; fundamental frequency is 1/10

Step2 We will write the signal in terms of exponentials.

1r . . . .
x[n]=1/2+cos (%n +%j =1/2+ E[eﬂ’"'“oe”m + e”z’"'“oe’]”/“}



The fundamental period is 20. The DTFS will consist of 20 coefficients varying
from k =-4to 5.

xlnl= Y X[kJeH "

k=—4
1
Ze ™ fork=-1
2

1.
—e™* fork=1

fork=0

1
2
0 otherwise

X[k] is also periodic with a period of 20. The magnitude and phase plot of FS
is shown in Fig. 5.15.

A
|x[K]| Arg[x[k]]

2—]~ /2

-4 -3 -2-1 0 1 2 3 4k -4 -3 -2 -1 0 1 2 3 4

Fig. 5.15 Magnitude and phase plot for the FSin P 5.17

P 5.18 Find the DTFS coefficients for the DT periodic signal shown in
Fig. 5.16.

-5 -3-2-1012 3 45 n

Fig. 5.16 Plot of signal for Problem 5.18

Fourier Series Representation of Periodic CT Signals
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Solution

Step1 Find the fundamental period and fundamental frequency. The signal
is periodic with a period of 6 samples from -2 to 3. We will use the formula
for x[k].

z x[n]efjkn2ﬂ/6 — g|:e72]71k/3 + eZ]nkB + 26]7[}(/3 + zefﬂzk/S + 1:|

1
X[k]=—
(k] N &

X[k]= % + %COS(ﬂ'k /3)+ %COS(Zﬂk /3)

%ejk”/S +% e for1<k<3

1 .. 1 .
X[k]= —e"m+ge'21k’”3 for—2<k<-1

fork=0

AN |~ W



Fourier Transform
Representation of Aperiodic
Signals

P 6.1 Determine the FT representation for the signal given as x(t) = [2e™ +
3e*]u(t). Find the magnitude using manual calculations for 5 points, namely
w=1,2,3,4and5.

Solution

The exponential signal x(#) exists between zero to infinity and is termed as a
right-handed signal. We can use Eq. 6.5 to find the FT.

X (]a)) = J.Z[Ze’” +3e7" } u (t)e’j‘”‘ dt = J‘: [Zef(zﬂ'")t 43¢ (HHeN }dt

3 — ji ©
e (4+jw)t i/o

2 .
e

2+ jw 0

2 3
+

_2+ja) 4+ jo

We can write the magnitude and phase spectrum as

|2 2-jo|_[22-jo)
‘2+ja) 2—ja)‘ | 4+ |

| first term | =

= square root (real part’ + img part?)
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2 2
5 .
=square root 2 x = |+ JO P
4+w 4+w

4+

2
=2 =
(4+0)2)2 \[4+a)2

| 3 4-jo| |3(4-jo)
X =
4+ jo 4—jo| | 16+ |

|second term | =

= square root (real part* + img part?)

2 . 2
—3x 4 L e
16+ @’ 16+ @’
16+a° 3
=3)< 73 =
16+@’) 16+

To evaluate the magnitude of the response, we have to put different values of
w in the equation. We can find the magnitude of FT by finding a square root
of the sum of the square of the real part and square of the imaginary part as
the equation for FT is a complex quantity. Let us put values of w as 1, 2, etc. in
the equation.

2 3
Ifa)=0,|X(]a))|:ﬁ+ﬁ=l+3/4=175
) 2 3
If 0=+1, X(]a))|=\/m+ 16+1=1.6220
) 2 3
Ifa):i2,|X(]a))|:\/m+ 16+4:1.3779
. 2 3

2 3
If 0 =+4,| X(jo)| = + =0.9775
v4+16 +16+16
. 2 3
If o=15,| X(jo)= =0.8399, etc

+
Ja+25 16+25



Let us now write a MATLAB program to plot the magnitude and phase
response and verify the result of the manual calculations. Figure 6.1 shows the
plot of the signal and Fig. 6.2 shows the phase plot of the signal.

clear all;
£t=0:0.1:40;
X=2*exp (-3*t)+3*exp(-4*t) ;
plot (t,x);title(‘plot of exponential
signal’) ;xlabel (‘time’) ;ylabel (‘amplitude’) ;
for i=1:20,
y(i)=abs(2/sqrt ((4+(i)*(i)))+abs(3/
sqrt ((16+(i)*(1))));
end;
z(21)=1.75;
for i=1:20,
z(i+21) =y (i) ;
end
for i=1:20,
z(i)=y(21-1);
end
figure;
subplot(2,1,1);
s=-20:1:20;
plot(s,z) ;title(’'Magnitude plot of Fourier transform
of exponential signal’) ;xlabel (’'frequency’) ;ylabel
("amplitude’) ;
subplot (2,1,2) ;
for i=1:20,
y1l(i)=angle((2/(4+13*1i))+(3/(16+1j*1)));
end;

z1(21)=0.0;
for i=1:20,

z1 (1i+21)=y1(1i);
end

for i=1:20,

z1(i)=-y1(21-1);
end;
plot (s, zl) ;title(’Phase plot of FT of exponential si
gnal’) ;xlabel (' frequency’) ;ylabel ('angle’) ;
the magnitude of the first 5 frequency points is
1.75 1.6220 1.3779 1.1547 0.9775 0.8399
These values tally with the values found using hand
calculations.

Fourier Transform Representation of Aperiodic Signals
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Plot of exponential signal
5 T T T T T T T

4.5 q

et
w i W
i T T
1 1 1

Amplitude
[\
(5]

2 -
1.5 4

1H 4
05 .

0 . . . . . . !

0 5 10 15 20 25 30 35 40
Time
Fig. 6.1 Plot of the exponential signal

R Magnitude plot of Fourier transform of exponential signal

1.5

Amplitude

0.5
0 I 1 1 1 I I 1
-20 -15 -10 -5 0 5 10 15 20
Frequency
Phase plot of FT of exponential signal
2 T T T T T T T

-20 -15 -10 -5 0 5 10 15 20
Frequency

Fig. 6.2 Plot of magnitude and phase of FT of the exponential signal



P 6.2 Consider a rectangular pulse of duration 0.4 s and amplitude 2, as
shown in Fig. 6.3 below. Find its FT.

Solution

The rectangular pulse in Fig. 6.3 can be mathematically defined as

2 —-02<t£0.2
rect(t) =
0 [t[>02

x(t)

-0.2 0 0.2 Time
Fig. 6.3 A rectangular pulse of duration 0.4 and amplitude 2
A rectangular pulse of duration 0.4 and amplitude 2 can be written as
x(t) = 2 rect(t/0.4)

A Fourier transform of this rectangular pulse can be written as

0.2 .
X(@)= [, 2exp(~jot)dt

:_jiwzejwt J(o.;zz_jiw[ejo.zw _ejO.Zw]

_ 2j2sin(0.2w) _ 4sin(0.20)
j@ @

Let us write a MATLAB program to plot the continuous spectrum. We have
used the value of T' = 0.4. The value of A is kept constant and equal to 2.

Fourier Transform Representation of Aperiodic Signals
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Amplitude

clear all;
T=0.4;
A=2;
N=50;
for n=1:N,
¢ (n+N+1)=4*sin (n*pi*0.2)/ (n*pi) ;
end
c(N+1)=0.8;
for n=1:N,
c(n)=c(2*N+2-n) ;
end
plot (abs(c)) ;
title (*Plot of magnitude of continuous spectrum for
T =4");
xlabel (*frequency’) ;
ylabel (*amplitude’) ;

Plot of magnitude of continuous spectrum for T'= 4
0.8 T T T T T

0.7

0.6

e
5
T

o
=~
T

o
w
T

0.2F

0.1r

0 1
0 20 40 60 80 100 120
Frequency

Fig. 6.4 Plot of t magnitude of response for FT of rectangular pulse-
duration 0.4 sec.

Note: Width of main lobe in frequency domain is 10 units.

1 -01<w<0.1 .
P 6.3 Find the IFT of X(jw)= as shown in Fig. 6.5.
0 J|w|>01



x(jw)

-0.1 0 0.1 w

Fig. 6.5 A rectangular frequency domain signal of width 0.1 and
amplitude 1

Solution
To find IFT, we will use the equation for IFT

x(t)= i [ X(jw)e™ deo

1 pcor .
— ](,Ut
x(t)= . Lue do

1 pfor . 1 1 .
— joot — = | L et |01
x(t) = - L)Ale do 27[{ —e i_m}

Jt

_ zi [ 1 {ejo.u_ejo.n}}
|t

~ L sin(0.10)]
t

Fourier Transform Representation of Aperiodic Signals
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This is a sinc function. Let us write a MATLAB program for this example.
Fig. 6.6 show the magnitude of the response plot of the frequency domain with
rectangular pulse of width 0.1.

clear all;
w=2;
A=1;
N=50;
for n=1:N,
X (n+N+1)=sin (n*2) / (pi*n) ;
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end
X (N+1) =w/pi;

for n=1:N,

X(n)=X(2*N+2-n) ;

end
plot (abs (X)) ;

title(‘plot of magnitude of IFT of frequency domain
rectangular pulse of width w=2');
xlabel (‘time’) ;
ylabel (*amplitude’) ;

Plot of magnitude of IFT of frequency domain rectangular pulse of width w = 0.1
0.035 T T T T T T

0.03

T

0.025

g

=

0
T

Amplitude
o
=
=
T

0.01F

T

0.005

0 I
-100 -80

=20 0 20 40 60 80 100
Time

-60 -40

Fig. 6.6 Magnitude plot of the response for frequency domain of width = 0.1

P 6.4 Find FT of the aperiodic signal given by

2t for0<t<1
x(t)= .
0 otherwise

Solution

FT of x(t) can be written as

: * —jot ! —jot
X(jo)= | x(W)e ™ dt = [ 2te7dt



2 » efjru
e Y L
1) 1)

Note that we have to use integration by parts to solve the problem.

P 6.5 Find FT of the aperiodic triangular signal given by

© 1-t/2 for0<t<2
X =
0 otherwise

Solution

Let us plot the signal first. The plot of the signal is shown in Fig. 6.7.

A

x(t)

Fig. 6.7 Plot of x(¢) for P 6.5

FT of x(t) can be written as

. * —jot 2 —jot
X(jo)= | x(We ™ dt = [ x(t)e " dt

_ Ioz(l—t /2)e i dt

Fourier Transform Representation of Aperiodic Signals
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—2jw —1 26—2]’(0 e—ij -1
2

—j@ 2jw 20

_2e70 422077 P01
- - 2

2jw 20

C1-2e70 g1
- - 2

jo 20
Note that we have to use integration by parts to solve the problem.

P 6.6 Find FT of aperiodic signal given by x(t) = e u(t-3).

Solution

FT can be written as

X(jo)= [ xwe " dt = ["ee " dt

o0 :
:J. e—(3+]w)rdt
3

e—(3+ja))t

©

-3+ jw)

1 e—(3+jm)

—(3+jo) -G+ jo)

e—(3+jw) -1

3+ jw
P 6.7 Find FT of the aperiodic signal given by x(t)=e"' cos(37t)u(t). This is
a decaying sinusoid.

Solution

FT can be written as

X(jo) =[x dt = | e cos(3at)e i



1o .. , »
:EJ‘ e (1+]a))t(e]3ﬂt +e ]3m)dt
0

1 0 _ . _ 0 _ .
:E J‘O P 3n))tdt+J‘0 o (o3t gy

e—(1+j((o—3lz))t e—(l+j(w+3ﬂ))t . :|

1
2| S0t j@—37) 1+ j(w37)

o 1
=— +
2|1+ j(o-3m) 1+j(a)+37z)}

P 6.8 Find FT of the aperiodic signal given by x(t) = # for | | < 1.

Solution

FT can be written as

X(jo)=[" x()e de = re ™ at

{ CRRTI Y }

2. . 2 , —jaot
_ ]s.1na)+‘_ tefjwr+@_2 ~L1,1
jo jo @

2sinw | 2 2 |
St T e PR
1) jo jo’

_ 25.ina)+ 4cosw 4sinw
- 3

w jo w

Fourier Transform Representation of Aperiodic Signals
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P 6.9 Find FT of aperiodic signal given by x(¢)= e*u(—t +1).

Solution

FT can be written as

X(jo)=[" xe ™ dt = e dt

1 .
:J e—(](u—z)tdt

—0

P 6.10 Find FT of x(t)=06(t)+u(t).

Solution
FT[6(t)+u(®)]= J:[é'(t) +u(t)]exp(—j2x ft)dt

S

—jot

e

‘ ¢;°=1+,i+7z5(a>)
—jo jo

=1+
We know that FT of the unit step function is

X(jo)= %FT[u(t) —1+sgn(t)]

=1{2ﬁ5<@+4=ﬁ5<@+¢
2 jo jo



P 6.11 Find FT of the signal x(¢)=[3cos(27t)+2sin(3xt)] for all t using the
Dirac delta function.

Solution
Let us find the Fourier transform of the exponential signal. Let the signal be
given by

x(t)=exp(j2z f.t)forall t

To find the Fourier transform, we will use the result for the Dirac delta function
and the frequency shifting property of Fourier transform, namely

If x(t) = X(f)

exp(j27 ft)x(t) < X(f - f,)

X(jw)=275(w) 4 =2718(0-.)

Let x(t) be a D.C. signal. We know it transforms to
A S 270 (w)
We will multiply the D.C. signal by the complex exponential to get the signal

x(t)=1xexp(j2zft) forall t

Now, the Fourier transform of the signal can be found by using the frequency
shifting property of the Fourier transform.

If 1 < 270(w)

exp(j2rft)x1 < 2m6(w—o,)

x(t) =3cos(27t) +2sin(37t) = 3/2[e/™ + 7™ ] - jle” —e*™]
X(jo) :§[2ﬁ5(w—wl)+27r5(a)+ w)]- jl2ré (00— w,) - 276(w— w,)]

where @, =2mand w, = 37

Fourier Transform Representation of Aperiodic Signals
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P 6.12 Find the FT of an ideal sampling function with sampling interval of 4
seconds.

Solution

An ideal sampling function is an infinite sequence of uniformly spaced delta
functions. The ideal sampling function can be written as

5.0)= Y 8t—mT,)

m=—o0

We can recognize the generating function for the ideal sampling function as

the delta function &(t) with FT of X Tij =1forall .

0

% Fig. 6.8 shows a plot of a periodic pulse train and its FT.

:>1‘ Or(t)

©

c

©

E

C

.9 __________ I I I I ________
(V2]
156 >

-8 -4 0 4 8
FT(6.(1))

-3/4 -2/4 -1/4 0 1/4 2/4 3/4

Fig. 6.8 A plot of a periodic pulse train and its FT

P 6.13 Find inverse FT of

4cos(3w) for|w|<x

0 for|w|>7x



Solution

To find IFT, we will use the equation for IFT

x(t)= ijz X(jw)e™ do
x(t)=—— [* 4cosGae™ do
2r -7

4 ez : . . 4
x(t) = — e]3w+efj3w e](urda):_|:
=] ( ) —J

T T
e]w(r+3)dw+‘|‘ e](o(r73)da)j|
T v4 -

= i ; ejw(HS) y_r” + 1 ej!o(t—3) J/_Z”
27| j(t+3) j(t—3)

_ 4 1 {ej/r(t+3) _eszr(t+3)}+ 1 {ejn(H) _efj/r(lffa)}
27 t+3 t-3

= 3{Lsin(ﬁ(t +3)+ Lsin(fr(l‘ - 3))}
| t+3 t-3

P 6.14 Find the inverse FT using partial fraction expansion of

1
" (jow) +7jw+10

Fourier Transform Representation of Aperiodic Signals

X(jeo)

Solution

Step1 We will first decompose the denominator into two factors. -
157

1 1

X(jo)=—F— =— ,
(jo) +7jo+10  (jo+5)(jo+2)

Step2 Decompose the transfer function into component functions using the
partial fraction expansion.

1 _k k
(jo+5)(jo+2) jo+5 jo+2

1 2

X(jw)=
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Find k1 and k2

k=t Ly, =13
Jo+

kzz.;s‘l’jm:fz:l/3
Jo+

X(joo) = /3 1/3

jo+2  jo+5
Step 3 Find IFT of each component term

1/3 1/3

jo+2  jo+5

X(jw)=

xX(t)= %(e*‘ e ()

This result is a standard FT pair.

P 6.15 Find the inverse FT using partial fraction expansion of

jo+1

X(ja)) :W

Solution

Step1 We will first decompose the denominator into two factors.

. jo+1
X(jo)=—"—"——
() (jo+2)

Step2 Decompose the transfer function into component functions using the
partial fraction expansion.

jo+1 k k,

X(jo)= = +
(jeo) Go+2¢  (jo+2?  jo+2

Find k, and k,



k :Lﬂ(]a)+2) s

1 (_]60+ ) jo= 2=

d| jo+1 . )
L L Sl U
2 da)((ja)+2)2 e )J o

1 + 1
(jo+2)  jo+2

X(jw)=-

Step3 Find IFT of each component term

1 . 1
(jo+2)°  jo+2

X(jw)=-

x()=(—te™ +e u(t)
P 6.16 Find the inverse FT using partial fraction expansion of

1
X(jo)=—————
Ty 3jo+2
Solution

Step1 We will first decompose the denominator into two factors.

Fourier Transform Representation of Aperiodic Signals

1 1
—@0’ +3jo+2  (jo+2)(jo+1)

X(jo)=

Step 2 Decompose the transfer function into component functions using
partial fraction expansion. v

159
Xjo)= (]a)+2)1(]a)+1) ]aj(:LZ ]a])(irl
Find k, and k,
k = ! Voo,=-1

jo+1
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1
k, =— =1
jo+2 7

. 1 1
X(jo)= { = }
jo+1 jo+2
Step 3 Find the IFT of each component term

. 1 1
X(Jw){. - }
jo+1 jo+2

x(t)=(e" —e u(t)

This result is a standard FT pair.

P 6.17 Find the inverse FT using partial fraction expansion.

—(jw)* -3jw-3

X(jw):[(ja))2+3w+2](ja)+3)

Solution
Step1 We will first decompose the denominator into two factors.
—(jo) -3jo-3  —(jo) -3jo-3

X(]w): RV . . - . . .
[(jo)" +3jo+2](jo+3) (jo+2)(jo+1)(jo+3)

Step 2 Decompose the transfer function into component functions using
partial fraction expansion.

X(o)=— YO 303 _ k| kK
(jo+2)(jo+1)(jo+3) jo+2 jo+l1 jo+3

Find k , k,, and k3

:—(J'a))2—3]‘w—3i _4+6-3 -1
(jo+)(jo+3) 7 (DO -1



p o —Uer-3je-3,  _-1+3-3 -1

. . jiwo=—1" —_:_1/2
(jo+2)(jo+3) '’ 1) 2
p— g 2 — ; p— p— j— f—
ey dje3,  _9v93 3
(jo+2)(jo+1) (-D(=2) 2
. 1 1/2 3/2
X(jo)=| ——————-
jo+2 jo+l1 jo+4
Step3 Find IFT of each component term
. 1 1/2 3/2
X(jo)=| ——————-
jo+2 jo+l jo+3
1 3
x(t)=] e ——e —==e |u(t
(t) ( 5 5 j (t)
This result is a standard FT pair.
1 for0<n<2
P 6.18 Find FT of x[n]=<-1 for—-2<n<-1
0 otherwise
Solution
Let us use the definition of DTFT
X)) = z x[nle”’" = Z x[nle " = e —e” +14+e7” + 7
n=—00 n=-2

Multiply both sides by e7” and subtract from the first equation

X(e7™)=1+e7" -/ +e" —e¥”

X(e™")=1-2jsin(w)-2jsin(2w)

We have to put different values of w in the equation and find the real and
imaginary parts to find the magnitude of response. Magnitude and phase can
be calculated using rectangular to polar conversion. Let us write a MATLAB
program to plot magnitude and phase response (Figs 6.9 and 6.10). We will

use abs and angle command to find magnitude and phase.

Fourier Transform Representation of Aperiodic Signals
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clear all;

w=0:0.1:20;

wl=w/pi;

x=(1-1j*2*sin(w) -1j*2*sin (2*w) ;
plot (wl,abs (x));

title('magnitude response of FT');

xlabel (‘angular frequency as multiple of pi’);
ylabel (‘magnitude’) ;
figure;
plot (wl,angle(x)) ;
title ('phase response of FT');
xlabel ("anglular frequency as multiple of pi’);
ylabel (' phase value’) ;
. Magnitude response of FT
35F .
3 - m
]
2
‘g 251 _
&
=
2 i
1.5 .
1
0 1 2 3 4 5 7

Angular frequency as multiple of 7z

Fig. 6.9 Magnitude response with period 27
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o
n

Phase value
()

-0.5F

-15 1 1 L L L
0 1 2 3 4 5 6 7

Anglular frequency as multiple of
Fig. 6.10 Phase response with period 27

1/2 for0<n<3

P 6.19 Find FT of x[n]= .
0  otherwise

Solution
Using the definition of DTFT

Fourier Transform Representation of Aperiodic Signals

, 0 . 3 . 1 . . ,
X(e!) = Z x[n)e " = Zx[n]e"’”” = 5[1 +e 7 47 4 e'”“’]
n=—wn n=0
1 1
= 5 (1+ cos(w) + cos(2w) + cos(3w)) — Ej(sin(a)) +sin(2w) +sin(3w)) 163

To find the magnitude of the response using manual calculations, we have to
put different values of w in the equation and find the real and imaginary parts.
Magnitude and phase can be calculated using rectangular to polar conversion.
Let us write a MATLAB program to plot magnitude and phase response.
We will use abs and angle command to find the magnitude and phase.
Figures 6.11 and 6.12 show the magnitude and phase response. We can note
that the magnitude response and phase response are both periodic with period
equal to 27.



clear all;

w=0:0.1:20;

wl=w/pi;

x=1/2* (1+cos (w) +cos (2*w) +cos (3*w) ) -1j/2* (sin(w) +sin
(2*w) +sin (3*w) ) ;

plot (wl,abs (x)) ;

title (‘magnitude response of FT');

xlabel (*angular frequency as multiple of pi’);
ylabel (‘magnitude’) ;

figure;

plot (wl,angle (x)) ;

title(‘phase response of FT');

xlabel (‘anglular frequency as multiple of pi’);
ylabel (‘phase value’) ;

Magnitude response of FT

1.8 .

141 .
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Magnitude

164

0.6 .

0.2F .

0 1 I 1 1 1

0 1 2 3 4 5 6
Angular frequency as multiple of 7

Fig. 6.11 Magnitude response with period 27
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Fig. 6.12 Phase response with period 27
P 6.20 Findi DTET of X(e*) L=z
. ind inverse of X(e™)= 0 z12<|Ql<z|"

Solution

As DTFT is periodic with period of 27, it is specified only between -7 to +7.
We will use the formula for inverse DTFT to find the signal x[#].

!

1 © . . 1 2 . 1
x[n]=—/| X(*)e'""dw=— e’dw =
=] X" |

[ejzmlz _eszm/zj|
Tl 27nj

=s1n(7m/2) for n¢0&x[n]=sm(”n/2) 7z/2_)l

nr an/2 T

as n—0

Figure 6.13 shows the plot of the signal and DTFT of the signal. A MATLAB
program to plot inverse DTFT of the periodic rectangular pulse in frequency
domain is given here. Inverse DTFT is a DT signal which is a sinc function
(aperiodic signal).

Fourier Transform Representation of Aperiodic Signals
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clear all;
w=pi/2;
A=1;
N=50;
for n=1:N,
X (n+N+1)=(1/ (n*pi)) *sin(n*pi/2) ;
end
X(N+1)=1/2;
for n=1:N,
X(n)=X(2*N+2-n) ;
end
nl=-50:1:50;
stem(nl, X) ;
title(‘plot of magnitude of Inverse DTFT of frequency
domain rectangular pulse of width w=0.2");
xlabel (‘time’) ;ylabel (*amplitude’) ;

Plot of magnitude of inverse DTFT of frequency domain rectangular pulse of width w = 7/2
0.5 T T T T T T T T

OO

0.4 -
0l o ]
%02- 1
2
]
Zo1f .
0 Qﬁ&ﬁ%&%&%%%&%ﬁ%é&ﬁ%jiji m:E;&ﬁ%Q%A%A%ﬁ%A%£%&hﬁmp
FEEL FET S TD

_0.2 1 1 1 1 1 1 1 1 1
-50 -40 -30 -20 -10 0 10 20 30 40 50

Time

Fig. 6.13 Inverse DTFT of a periodic rectangular pulse
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P 6.21 Find DTFT of x[n]=0o[n]+d[n—1].

Solution

We know that the unit impulse is an aperiodic DT signal.

X(e?)= Y {S[n]+Sn—1]}e ™ =1+
A MATLAB program to plot the inverse DTFT of the rectangular pulse in
the frequency domain is given as follows. The plot of the signal and DTFT is
shown in Fig. 6.14.
x(eja)) 5[”]
2

[
-t 0 T Q -3 -2-10 1 2 3n

Fig. 6.14 Plot of DTFT and DT signal

clear all;

w=0:0.1:pi;

X=1l+exp (-1j*w) ;

stem(w, (X)) ;

title(‘plot of magnitude of Inverse DTFT of frequency
domain rectangular pulse of width w=pi/2’);

xlabel (‘time’) ;ylabel (‘amplitude’) ;

Plgt of magnitude of inverse DTFT of frequency domain rectangular pulse of width w = /2
C\ T T T T T T
Po ®
1.8 © [0) T
¢ (0]
1.6 o S b
14 © 1
1.2 0} b

1F o 1
0.8 .
0.6 .
0.4+

o.(z)- | TTTZTS?@Q()@A

0 0.5 1 1.5
Time

3.5

Fig. 6.15 Plot of Inverse DTFT for Problem 6.21
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P 6.22 Find inverse DTFT of X(e*)=8(Q)+5(Q—-x/2), for —7<Q< .

Solution

We will use the formula for inverse DTFT.

A =—— [ X(e®)e™ dar=—L [* s@edn
2> 2r -7

1 1
=—+—c¢
2 21w

jrnl2

A MATLAB program to plot the DT signal in the frequency domain is given
as follows. Fig. 6.16 shows a plot of the DT signal

Fig. 6.16 shows a plot of the DT signal.

clear all;

n=0:0.1:pi;

X=(1/(2*pi) ) * (1+exp (1j*n*pi/2)) ;

stem(n, (x)) ;

title(‘plot of DT signal for frequency domain signal
delta (w)+delta(w-pi/2) ") ;

xlabel (‘time’) ;ylabel (‘amplitude’) ;

0.35 Plot of DT signal for frequency domain signal delta(w) + delta(w-7/2)

®o

03r ® o 1

o)

0.25 ® E
o)

o)

Amplitude
(=}
- o
w 8]

e
—
T
1

TTT%@WMjﬂ |

0 0.5 1 1.5 Time 2

Fig. 6.16 Plot of signal

1Y) 1Y)
P 6.23 Find DTFT of the exponential sequence x[n]= (gj ul[n] +(Zj uln].

Solution

We know that the exponential sequence is an aperiodic DT signal. Let us find
DTFT using the formula.



The exponential sequence can be written as

x[n]z(éj u[n]+(ij u[n]

X(e?) = i(gj e 4 i(ij e/ = i(%e’n] +i(ie’ﬂj

n=0

1-lem Lo

Magnitude response of FT

3 T T T T
2.5 a
[}
!
2
'g
&b
<
=
2 - -
1 '5 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5
Angular frequency in radians
L4 Phase response of FT

Phase value

Fig. 6.17 Plot of phase response

0 0.5 1 1.5 2 2.5 3 35
Angular frequency in radians
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The limits are from 0 to infinity as the sequence is appended by u[#n].
A MATLAB program to plot the magnitude response and phase response of
the FT is given as follows.

clear all;

w=0:0.1:pi;
x=abs(1./(1-(1/3)*exp(-1j*w)))+abs(1./
(1-(1/4) *exp (-1j*w))) ;

plot (w,x) ;

title(‘magnitude response of FT');

xlabel (‘angular frequency in radians’) ;

ylabel (‘magnitude’) ;

figure;
a=angle(1./(1-(1/3)*exp(-1j*w)))+abs(1./
(1-(1/4) *exp (-1j*w))) ;

plot (w,a) ;

title(‘phase response of FT');

xlabel (‘anglular frequency in radians’) ; ylabel (‘phase
value’) ;

P 6.24 Find inverse DTFT of X(e’*)=2cos(3Q).

Solution

We will use the formula for inverse DTFT.

1 ¢x I 1 ¢7 26 20
xnl=—| X(Ee"do=—/| [ +e 7/ ]dQ
=] X&) = L ]

-

- [ or ej(”’”QdQ}
7[ L - -

1 [ G e T 1 [2jsinG+mx | 2jsin(n=3)z
27| jB+n) jn-3)] 2« j(3+mn) jn-3)

=2forn=43

and = 0 otherwise



P 6.25 Find inverse DTFT of X(e/”)=cos(Q/2)+ jsin(Q2/2).

Solution

We will use the formula for inverse DTFT.

X(e’) =cos(Q/2)+ jsin(Q/2) = e/

xnl=—[" X(*)e™de
2w I

:LJ‘” 21221 40y
2"

1 j(n+1/2)Q2 ]7[

T 27j(n+1/2) N

1
_27rj(n+1/2)

jn+112)r e*j(n+1/2)7r]

_sin(n+1/2)x
(n+1/2)x

=1forn=-1/2
=0 otherwise

e?? for—r<Q<0

P 6.26 Find inverse DTFT of X(e**)=1
e for0<Q<rx

Solution

We will use the formula for inverse DTFT.

Anl=—— [ X(e)e™dQ
2>

1 0 ; 1 T .
=_J‘ eQ/ze]QndQ"F—.[ e*Q/Ze]QndQ
2z 27 =0

Fourier Transform Representation of Aperiodic Signals
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_ L[ I " enDe g0 4 j ”e(j"’l/z)ﬂdQ}
- 0

27

1 Um0 0 U120 i
=— +
2 {jn+1/2} {jn—l/Z}

- 0

1 |:1_e(jn+1/2)/r e(jn—l/Z)ir _1:|

=— +
2| jn+1/2 jn—=1/2

A MATLAB program to plot the DTFT and the recovered signal is given as
follows. Figures 6.17 and 6.18 show the plot of DTFT and the signal and the
plot of the inverse DTFT, i.e., the signal.

clear all;

=-pi:0.1:pi;
x=exp (-abs (w/2)) ;
plot (w,x) ;title('plot of DTFT of the
signal’) ;xlabel (‘angular frequency’) ;ylabel (‘amplit
ude’) ;

figure;
n=-31:1:31;
z=(1./(2.%pi))*((1./(1j.*n+1/2)).*(1.-exp((-
(1.*n)-1/2) .*pi)))+(1./(1j.*n-1/2)) .* (exp((1j.*n-
1/2) .*pi)-1.);

stem(n, z) ;title(‘plot of the signal’) ;xlabel(‘time
sample’) ;ylabel (‘amplitude’) ;

Plot of DTFT of the signal

Amplitude
S © © © o o ©
w =~ w [o)} N oo} o —
T T T T T T T

e
o

|
NS

-3 -2 -1 0 1 2 3 4
Angular frequency

Fig. 6.18 Plot of DTFT



Plot of the signal

1.8} ¢®
1.6}

14}
121

mplitude

< 0.8}

(—)40 30 0 20 -10 B 0 - 10 20 30 40
Time sample

Fig. 6.19 Plot of the signal

—sin(3Q) for-7<Q<0

) .. X(e/?) =
P 6.27 Find inverse DTFT of X(e™) { §n(3Q) for0<Q<x

Solution

We will use the formula for inverse DTFT.

1 e S
Knl=—| X(Ee™"dw
27—

1 po . 1 ¢7 .
=— | —sin(3Q)e™™"dQ+—| sin(3Q)e**dQ
2 J:” (3¢ 27 IO ()

= %[_J‘O |:ej(n+3)Q + ej(”’3)Q:IdQ " J'Ofr [ej(n+3)9 + ej(nfs)Q:IdQ
T j -7

1 |: im0 }0 |:ej(n3)§2 :|° |:ej(n+3)Q }” |:ej(n3)Q 7"
=—1| - - + +
Azj |l jn+3) ] |j(=3)]  [jn+3) ] [jn=3)]

1 |: l_e—j(n+3)/r l_e—j(n—3)lz . ej(n+3)7r -1 ej(n—?:)/r _1:|

j(n+3) jn-3) jn+3) * jn-3)
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1 _ej(n+3)7r _efj(n+3)7z ej(n73)7r _efj(n73)7r :|

+
4rj| j(n+3) jn-3)

_L_stin(n+3)7z N 2jsin(n—3)x
rj|  j(n+3) jn-3)

_L_sin(n+ 3z N sin(n —3)7[}
2zl (n+3) (n—3)

=0forn#—-3and n#3

1
=—forn=13
2j

P 6.28 Find inverse FT of the following signal using partial fraction

% expansion. Use the property of linearity.
&
e . 2(jo+3
: X(joy=— 2+
2 jol(jo) +3jo+2]
5
(V2]
S Solution
174

Step1 We will first decompose the denominator into two factors.

X(joy-— 2D ot )
jol(jo) +3jo+2] jo(jo+1)(jo+2)

Step 2 Decompose the transfer function into component functions using
partial fraction expansion.

X(J'a))={c—l‘*'.k—2 k—
jo jo+1 jo+2

3

Find k, k, and k,

_ 2(jo+3)
' (jo+2)(jo+1)

jo=0

6
2



L 2jo+3) _20)
P jo(jo+2) TN -1(1)

_20je+3) | 2D
P ja(jo+1) T —2(-1)

Using the property of linearity,

x(t) =3u(t)—4e " 'ult) —e > u(t)
x()=B—4e" —eu(t)

P 6.29 Find FT of x(f)=cos(3w,t)u(f) using the property of frequency
shifting.

Solution
Let us first find FT of u(¢).

—jot

e

w 1
. ‘Loz._

X(jo)= [ utye dt=[ e " dt =~ PR

We will now use the frequency shifting property of FT to find FT of
x(t) = cos(3at)u(t)

Frequency shifting property of FT states that if x(t) <> X(jw) then
' x(t) & X(j(o—a,).

cos(3e,t) u(t) =l|:ej3w0t +e—j3m0tJ u(t) (_)l : 1 - 1
2 2| jlo-3w,) jlo+3w,)

Fourier Transform Representation of Aperiodic Signals
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P 6.30 Find FT of x(t)=e’"sin(e,t)u(t) using the property of frequency
shifting.

Solution

Frequency shifting property of FT states that if x(t)<> X(jw) then
' x(t) & X(j(o-®,))

So, we evaluate FT of x(t)=sin(w,t)u(t). We will then use the frequency
shifting property to find FT of the signal x(#).

. Lyt _ g LY [
sin(@)ut)=-[ e ~e ]”(”sz{ﬂw—wo) j<w+wo)}
e sin(wot)u(t)ei.{ . l T 1 }

2j jlo—w,+3)  jl@+a,+3)

P 6.31 Find FT of x(t)=sin(27f (t —5))u(t) using the property of time
shifting.

Solution

The time shifting property states that if x(t)<> X(jw) then
x(t—t,) <> e’ X(jo)

We know that

sin(27 ft)ul(t) <> — “

(jo) + a3}

SinQr f, (¢ - 5)u(t) -2

(jo) + o}
P 6.32 Use the time shifting property to find FT of the rectangular pulse

shown in Fig. 6.20.

Solution
We note that y(t) = x(t - T)



Amp

0 T/2 t
Fig. 6.20 Signal for P 6.32

We use the time shifting property to find Y(jw)

X(jo)= is.in(a)T /2)
w

; 2
Z(jo)=e""* Zsin(wT /2)
o

P 6.33 Use the frequency shifting property to find inverse DTFT of
. 1

2= e

Solution

We know the following result

(=5)"u[n] < L

a'uln] <> : —
1—ae™ 1+5¢

We will now use the property of frequency shifting.

1
1+ 5¢/@7/»

(=5) uln] > ——— = (=5)"e " uln] >
1+ 5¢’
P 6.34 Use the frequency differentiation property to find FT of
x(t) =t cos(107zt)u(t).

Solution

The frequency differentiation property states that if x(t) <> X(j®) then
. d .

tx(t) > j—[X(j(®))]
do

Fourier Transform Representation of Aperiodic Signals
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We know that

-, , ] ) .
£) = cos(107)u(t) = =| &7 477107 | 5 = .
x(t) = cos(107t)u(t) 2[ e ] 2{1'(@_107;) jlw+107)

We will now use the frequency differentiation property to find FT of
x(t) =t cos(107t)u(t).

cos(lOmf)u(t)(—)l{ ! +- 1 }
2| jlw-107) j(w+107)

l‘cos(107rt)u(t‘)<—>ji 1 - J +- J
do| 2\ j(w-107) j(w+107)

i s
| 2(@-107)  (w+107)

d
P 6.35 Use the time differentiation property to find FT of E(COS(ﬂt)U(t)).

Solution

We know thate “u(t) <> . We will now use the time differentiation

property

jo+a

cos(at)u(t) =%[e’”' +e‘f“’] u(t) < l{ 1 1 }

+
2| jlw—a) jlwo+a)

d 1 _jo_, o
then 1 (cos(at)u(t)) <> 5 [j(a) . + ot a)}

P 6.36 Use the differentiation in frequency, time scaling property to find IFT

of
d | e
X(jw)=j— .
(jeo) ]da)(2+ja)J




Solution

We know that using the time shifting property

x(t) © X(jo)

then x(t—t,) <> e’ X(jw)

1
jo+a

e ult) &

1
jo+2

So, e u(t) &

We will use time shifting property

-3jow

Jjo+2
We will now use the frequency differentiation property which states that

if  x(t)> X(jo) then tx(t)(—)j%[X(j(a)))]

=3jo
te > u(t) H]i[ ¢ J

do\ 2+ jo

P 6.37 Use the result of FT for a rectangular pulse of amplitude 1 between -1
to 1 and find FT of the scaled rectangular pulse of amplitude 2 between —1/2
to 1/2.

Solution

We know that the FT of a rectangular pulse of width 2T (between -T to T) is
given by

X(jo)= 3sin(a)T)
10}

Put T=1.

Fourier Transform Representation of Aperiodic Signals
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X(jo)= 3sin(a))
w

To find FT of a scaled rectangular pulse with a scaling factor of 2, we will use
the property of scaling for FT to get

y(t)=x(2t)

Y(jo)=2X(jw/2),
. 8 .
Y(jw)=—sin(w/2)
w

P 6.38 Find DTFT of the signal x[n] and use the result of the property of
scaling to find DTFT of y[n] shown in Fig. 6.21.

- x[n]
983 1
2
(Y]
©
c
o
= 2 -1 0 1 2 =n
C
Ky
w
_ yln]
180
1
-8 -4 0 4 8 n

Fig. 6.21 The signal x[n] and its scaled version y[n]

Solution

M 2
X(?)= ) x[nle™ =) x[nle ¥ =&+ 414+
n=—M n=-2

X(e™) =1+2cos(Q) +2cos(2Q)

Put m=M+n



It can also be written as

2M 2M
X(e™) = Zx[m]e”“"”’m = /M Ze—;om
m=0

m=0
X)) =e™M[1+e ™ +e 0 e M
1—e7™)X (") =M1 —e /M)

. ] eieMine
X(e™) =M —
1-e”’

e—j(2M+1)Q/Zej(2M+1)Q/2 _e—j(2M+!)Q/26—j(2M+l)Q/2
joM

=e
—jQ/2 _jQ/2 —jQ12 _—jQ/2
e J e] e J e /

_ o0 e TR jsin((2M +1)Q/ 2)
e (2jsin(Q/2))

sin((2M +1)Q/2)

oy _
™) sin(Q/2)

for Q#0,127,t4r....etc

=2M+1) for Q=0,+27,+47....etc

Fourier Transform Representation of Aperiodic Signals

We will now use the property of scaling to obtain DTFT of y[n]. Here, scaling
factor is ¥.

x[n] <> 1+2cos(Q) +2cos(2Q2)

181
then yln]=x[n/4]<> |—1| X(Q/ a) = 4(1+ 2 cos(4Q) + 2 cos(80))
a

Y (') =4 +8cos(4Q) + 8 cos(8Q)

E 6.39 Show that the DTFT of x[n]=ne’"""a" *u[n—2]is

) ) d 672]‘(97”/4)
X(e]Q) = JE{—I ~ ae—j(Q—n/Al)
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Solution

We will use the result

a"uln] < !
u :
1—ae

We will use the time shifting property

1

x[n] =a"uln] < X(e™) = —
1—ae™

then x[n—2]=a"uln-2] < e’jm/(l —ae™?)

We will use frequency shifting property

-j20 _
If a"2xn—2]<> —< then e /*a"*x[n-2]<

1—ae™

We will use frequency differentiation property to get

, , g 2i@-I)
If e’™a"x[n-2]< T
—ae

) d e*Zj(szr/fi)
then ne”’™*a"’x[n-2]<> j—| —————
Q| 1—ge /@

E 6.55 Usethe property of convolution in frequency or property of modulation

to find inverse DTFT of
X(e) = e sin(13Q2/2)
1+le—j9 sin(Q2/2)
Solution

Property of modulation states that

x,[n] < X, (¢”)and x,[n] < Xz(ejn)

then x [n]xx,[n] < X, (ejQ)(*)X2 (")

e j2(Q-7/4)

—a

1 e*j(Q*l[/é})



(*) denotes circular convolution as DTFT is periodic

We will find inverse DTFT of the two individual terms that are convolved.
We will use the result

1Y 1
—= u[n]<—>17
2 1+
2

We will use the time shifting property
(—lJ uln] < 711
2 1+
2

n-3
then (—%) uln—3]<>e /(1 +%e’ﬂ]

We will now find inverse DTFT of the second term.

sin(2M +1)Q2/2)

Al X(e7) = sin(Q/2)

for Q# 0,127, t4r....etc

=Q2M+1) for Q=0,+27,%47....etc

Here, x[n] is a rectangular wave sequence between —-M to +M

sin(13Q2/2)

<> y[n] is arectangular wave sequence between —6 to +6
sin(Q)/2)

1 for-6<n<é6

0 otherwise

So, yln] ={

The inverse DTFT of the given convolved signal is now the multiplication of
their inverse DTFTs.

n-3
[—lJ uln-3]<e’*° /[1+le"nj
2 2

Fourier Transform Representation of Aperiodic Signals
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sin(13Q2/2)
sin(QQ/2

Inverse DTFT of the convolution of two transforms is

(_%j ) uln—=3]x{uln+6]-uln-"7]}

:(-%J ) {uln—-3]-u[n-71}

1
E 6.56 Use the property of duality to find FT of x(t) = ot
J

Solution

We know the following result.

x(t)=e u(t) <> ——
1+ jw

Replace w by t. We get

x(jt) = L & 27x(—w) =27me’u(—w)
1+jt

E 6.57 Use Parseval’s theorem to evaluate the sum Z sin (4n).
n=—o0 7T 1’1

Solution

Consider the DT signal

x[n] _ Sin(4n) ( }Q) {1 for | Q | <4

zn 0 for4<|Q|<x

We can write

sum — Zsm *(4n) z{ o

n=o0



Using Parseval’s theorem

sum:LJ4 | X(e’) dQ:LQiz::AL/;r
2o 2r

E 6.58 Let the impulse response of the system be given by h(t)=e > u(t —2)
and the input to the system be x(¢) =e*u(t). Find the output of the system.

Solution
Let us first find FT of the input signal x(f).

1

e "u(t) < ,
a+jw

x(t)=e M u(t) <> ——
4+ jo

We will now find FT of the impulse response.

e "ut) & .
a+jw
e u(t) <> ——
2+ jo
6—46—2]'(0
etut-2)=e'e " Put-2) ,
2+ jo

We have used the time shifting property of FT
Let us multiply the two transforms.

1

1 et k k,
y _

4+jo 2+jo  4+jo 2+ jo

We have used partial fraction expansion

-4 2jo -4 8 4
e e

k = o=
b 24jo TN 2 2

Fourier Transform Representation of Aperiodic Signals

185
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e—4e—2j(u —4 4 1
k,=——— jo=—2T " o 5
44 jo 2 2

Taking inverse FT of both terms

4
e

1
Output = 5 e ’4‘u(t)+ze’2tu(t)

E 6.59 The output of a system in response to an input x(t)=e >u(t)is
y(t) = e "u(t). Find the frequency response and impulse response of the system.

Solution
We will find FT of the input as well as the input.

x()=eult) &

3+ jo

1

1+ jw

y(t)=e"u(t) <

H(ja))=Y(Jw)=3+]w=1+ 2
X(jo) 1+ jo 1+ jo
The frequency response can be evaluated by putting different values of w in

the equation. Let us now find the inverse FT to get the impulse response of
the system.

e u(t) < .
a+jo

_Y(]a))_3+]a):1Jr 2

H(jo)=—"—=— .
X(jo) 1+ jo 1+ jo

h(t)=6(t)+2e " ult)



E 6.60 If a system is described by the differential equation given by

2

d d d
E}/(t) + SEy(t) +6y(t)= ZEx(t) + x(t)>

find the frequency response and input response of the system.

Solution

2
To find the frequency response, we will put %:( ja))z,di: jo in the
t t

2
differential equation %y(t) + S%y(t) +6y(t)= Z%x(t) +x(t) toget

t 0
e
2
(]a))2 Y(jo)+5(jw)Y (jo)+6Y (jo) =2(jo)X(jo)+ X(jo) v
3
[J]
. . o
Hjo-2u)___Zjerl &, & 3
X(jo) (jo) +5jo+6 jo+3 jo+2 <
[
C
; _ @
k1:2.]a)+1 s 6+1:5 g
jo+2 -3+2 §-
£
. o
kzzz.]a)+1 .w?z:—4+1:_3 2
jo+3 -2+3 =
Q
5
3 2

H(jw)=

ja)+3_ja)+2

h(t)=5e " u(t)—3e " u(t) -
187

E 6.61 If the impulse response of a system is given by x(t)= sin’ (2t),

find the frequency response.

't

Solution

We will use the modulation property of FT to get the FT of x(¢).

x(t) = ——sin* 21) :(isin(Zt)j
Tt 7t
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We know the result

sin(wt) & X(jo

| 1 for—-w<w<w
0 for|w|>w

2 for-2<w<2
0 for|w|>2

2 Si‘:;tzt) = x,(1) & X(jo) ={

x(t) > X(jo)* X(jo)

We need to convolve the two rectangular window functions.
The transform X(jw) is shown plotted in Fig. 6.22. The same signal is
convolved with itself to get the result of the convolution as shown in Fig. 6.23.

x(jow)
2

Fig. 6.22 Signal X(jw)

x(jw)*x(jw)

16

-4 0 4 t

Fig. 6.23 Result of convolution of X(jw) with itself



Laplace Transform Solution

P 7.1 Find LT of the function x(t) =t5(t).

Solution

We will use the property of differentiation in the S domain.

o)1
d
té(t)e—g(l)—o

P 7.2 Find LT of the function x(¢t) = (t - 2)u(¢).

Solution
We will use the definition of LT.

X(5)= [ (t=2ut)e " dt = LT(tu(t) - 2u(t) = L 2 _ (=29 ¢ all Re(s) >0

2 2
s s s

ROC is the entire right half S plane excluding s = 0

P 7.3 Find LT of the function x(t) = &*u(t) and x(t) = e?'u(t).

Solution
We will use the definition of LT.

e*(&*.’)j)t .

0

X(s)= [ e ut)edt=[ e edt =—
()= e™u(t) [ —y




! -for all Re(s) >0
s—3j
ROC is the right half S plane with Re(s) > 0

The function has a pole at s = j3 which lies on the vertical line passing
through zero, i.e., the imaginary axis.

Note: s=0 + jo =0+ ja,.

We will equate the real parts on both sides and the imaginary parts on both
sides. We find that the pole is on the imaginary axis at jw = j3 and the ROC is
the plane on the right side of the imaginary axis.

The pole and the ROC are plotted in Fig. 7.1.

A
ROC
Imaginary L
axis j2
£
ot
S >
©
c
o
2 Poleat 0 +j3 0 Real axis
2
w
190 Fig. 7.1 Plot of ROC and a pole for X(s) for x(t) = &* u(t) in P 7.3
Let us find LT of the other function.
» ) © ) —(s+3))t
X()=[ e uwedt = e e dt =———7
- 0 s+ jo,

1

—for all Re(s) >0
+j3

ROC is the right half S plane with Re(s) > 0

The function has a pole at s = —j3 which lies on the vertical line passing
through zero.

The pole and the ROC are plotted in Fig. 7.2.



Imaginary /
axis j€2

Pole at ——»
0-j3 ,
0 Real axis ¢

Fig. 7.2 Plot of ROC and a pole for X(s) for x(t) = e u(t) in P 7.3
Note: Both the functions have same ROC but different LTs.

P 7.4 Find LT of the sine and cosine function x(t) = cos(4mt)u(t) and x(t) =
sin(4mt)u(t).

Solution
We will use the definition of LT.

X(s)= J.:; cos(4zt)u(t)e > dt = j: cos(4rt)e *dt
» jant —jant —[s—jarlt —[s+jarx]t
:J' e te gLl RS LA N
0 2 2| —{(s—j4r] —s+ j4r]

= 1 ! + ! for all Re(s) >0
2| (s—j4r) (s+j4rx)

ROC is the right half S plane with Re(s) > 0

S
(s +1677)

X(s)

We will find LT of the other function.

X(s)= I: sin(47t)u(t)e ™ dt = J.Ow sin(47t)e™ dt

o pldnt _ —j4nt —(s—j4m)t —(s+j4m)t
[ = | |
0 2j 2j| —(s—jar) —(s+ j4r)

Laplace Transform Solution

-
O
pr
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= L L - L for all Re(s) >0
2j| (s—jar) (s+jdr)

ROC is the right half S plane with Re(s) > 0

X(s )__{s+j4§ﬂ—s+zj47r}={ : 4 : }
2j (s +1677) (s*+167°)

P 7.5 Find LT of the damped sine and cosine function x(t)=e > sin(2t)u(t)
and x(t) =e™ cos(2t)u(t).

Solution
We will use the definition of LT.

X(s)= J.i e sin(2t)u(t)e " dt = I: e sin(2t)e " dt

N e 1 o220 } ol j20 *
:J. e —eVdt=—1| ——— i«o— —_—
0 2j 2j || -l(s+2)—j2] —[(s+2)+ j2] .

1 ! - 1 for all Re(s) > -2
2j1 (s+2)—j2 (s+2)+j2

ROC is the right half S plane with Re(s) >-2

X(s )__{s+2+j2—2s—22+j2}={ 2 }
2j (s+a) + o, (s+2)° +4

There are two poles. One at s = -2 + j2 and the other at s = -2 - j2. The ROC
and the pole plot is shown in Fig. 7.3.
Let us find LT of the other function.

X(s)= I "cos(2t)u(t)e ' dt = I  cos(2t)e ™ dt

" 2t it 1 ~[(s+2)-j2t —[(s+2)+ /2]t *
[ e gt T et
0 2 2 || -l(s+2)-j2] —{(s+2)+j21 )



1 11
21 (s+2)—j2 (s+2)+j2

} for all Re(s) > -2

ROC

-

T

Imaginary
axis j2

-2 Real axis &
Fig. 7.3 Plot of ROC and poles for LT of the damped sine function

ROC is the right half S plane with Re(s) > -2

X(S):miz)
(s+2)" +4

The ROC and the pole plot are shown in Fig. 7.4.
Note that ROCs and the pole zero plots for damped sin and cosine functions
are the same but they have different LTs.

Imaginary |

/ ROC

axis j€2 ! /

L /
:/

Poles at ! /

-a+ jwo 1
and !
1

-a-jm, i
-a Real axis o

Fig. 7.4 Plot of ROC and poles for LT of the damped cosine function

P 7.6 Find LT of the both-sided signal x(t)=e™u(t)+e>u(-t). Also find
ROC.

Laplace Transform Solution

-
O
w



Solution
We will use the definition of LT.

X(S)= jz e u(t)e ™ dt + J:e’”u(—t)e’“dt

0 0
=I e'Ste‘“dt+I e e dt

0

—(s+5)t —(s+2)t
e w €
_ 0

s+5 ' s+2 7

1 1 s+2-s-5_ -3

T 545 s+2 S 475410 S +7s+10

The first term converges for all s + 5 > 0, i.e., Re(s) > -5
ROC is the right half S plane with Re(s) > -5

g The second term converges for all -s -2 > 0, i.e., Re(s) > -2
:>,‘ ROC is the left half S plane with Re(s) < -2
"'é“ The common area of convergence exists from -5 to -2. ROC is shown
'_E plotted in Fig. 7.5. Note that ROC is a strip parallel to the imaginary axis.
2
wv ! ! A ROC
194 Imaginary |
axis j[|2/:
- -2 Real axis

Fig. 7.5 ROC of x(t)=e"u(t)+e'u(-t)

P 7.7 Find LT of the signal x(f) = u(u - 7). Also find ROC.

Solution
We will use the definition of LT.

XO)=[" ule—a)ed = [ e di = e_—s %



=75

for all Re(s) >0
s

ROC is the right half S plane with Re(s) > 0

Note: When s < 0, the integral - oo

There is a pole at s = 0.

Note: The LT function has a pole at s = 0 and a zero at s = o

P 7.8 Find LT of x(t)=eu(t —5). Also find ROC.

Solution
We will use the definition of LT.

—(s+5)t
e o0

—(s+5) °

X(S)= J.:e’stu(t —5)e dt = .EO e e dt =

—5(s+5)

= for all Re(s) > -5
(s+5)

ROC is the right half S plane with Re(s) > -5
Note: When s < -5, the integral - oo

There is a pole at s = 0. Pole and ROC are shown plotted in Fig. 7.6.

Imagina; | “ ROC

maginary |

axis jQ ?;
— ‘

Pole at 0=3 6/

- Real axis

Fig. 7.6 Plot of ROC and pole of the function for P 7.8

Note: The LT function has a pole at s = -5.

P 7.9 Find LT of x(t)=06(t +3). Also find ROC.

Solution
We will use the definition of LT.

X(S)= j“‘; St+3)edt=e 1

t=—3

Laplace Transform Solution

-
O
wn



=e* foralls

ROC is the right half S plane with Re(s) < 0
Note: When s > 0, the integral - oo

There is a pole at s = 0. Pole and ROC are shown plotted in Fig. 7.7. The
function has a zero at s = oo,

ROC
Imaginary _—
aXiSjQ /
Pole at
s=3
Real axis &
% Fig. 7.7 Plot of ROC and pole of the function for P 7.9
2
5 Note: The LT function has a pole at s = 0.
c
©
T P 7.10 Find LT of x(t)=sin(3t)u(t —5). Also find ROC.
2
< Solution
196 We will use the definition of LT.

X(8) = ji sin(3t)u(t —5)e " dt = zl] f[e” —eMedt

_1 e—(s—3)t . e—(s+3)t m}

. ‘L3 - 5
2j| —(s—3) —(s+3)

1 e—5(3—3) e—S(s+3) :|

2j| (s=3) (s+3)

= ROC is the right half S plane with Re(s) > 3 for the first term and
ROC is the right half S plane with Re(s) > -3 for the second term
The common area of convergence is the right half S plane with Re(s) > 3.

There is a pole at s = 3 and s = -3. Pole and ROC are shown plotted in
Fig. 7.8.



oC

=l

T

Imaginary
axis jQ

y

;

/|

Poleat =3
and o=-3

3 Real axis o

Fig. 7.8 Plot of ROC and pole of the function for P 7.10
Note: The LT function has a pole at s=2 and s = -2.

P 7.11 Find LT of x(t)=¢”". Also find ROC.

Solution
We will use the definition of LT.

X(S) = Iie’”"e’“dt

= J.: e'edt + J'io ele " dt

:_ef(s+7)t ‘Lw _67(577)1 \Lo
s+7 " s=7 77
1 1 14

Ts47 s—7 $£—-49

The first term converges for all s + 7 > 0, i.e., Re(s) > -7
ROC is the right half S plane with Re(s) > -7

The second term converges for all - s + 7 > 0, i.e., Re(s) <7
ROC is the left half S plane with Re(s) < 7

ROC -7 < Re(s) < 7

The plot of ROC and LT are depicted in Fig. 7.9.

Laplace Transform Solution

-
O
N



Imaginary

axis jQ2 ; Poles at
s=-7and
s=7

A

AN

7 Real axis o

Fig. 7.9 Plot of poles and ROC for x(t) = e M

P 7.12 Find LT of x(t)=e"* cos(7t)u(t) and find ROC.

Solution
We will use the definition of LT.

X(S)= I ) e cos(7t)u(t)e* dt

_1 Jwe’ﬁe’”eﬂ’dt + J‘we’“e’“e’j”dt]
2 0 0

‘ Signals and Systems

1 B o s3I —(s43+j7)t

o0 e 0
198 =Y T (7.61)
2] s+3-j7 s+3+j7

1 1 .
2| s+3-j7 s+3+j7

_ s+3
(s+3)* +49

The first term converges for all s + 3 —j7 > 0, i.e., Re(s) > -3
ROC is the right half S plane with Re(s) > -3

Note: If Re(a) =s>-3,(s+3) >0, e¢*¥* >0
If Re(a)=s<-3,(s+3)<0,e¢"9> 0

The second term converges for all s + 3 + j, > 0, i.e., Re(s) > -3
ROC is the right half S plane with Re(s) > -3

The poles of the function are at s = -3 + j7 and s = -3 - j7. The plot of ROC and
LT are depicted in Fig. 7.10.



Imaginary

/

/
/:
Poles at |
-3+j7
and -3 Real axis o
3-j7

Fig. 7.10 Plot of poles and ROC for x(t)=e™' cos(7t)u(t)

P 7.13 Find LT of x(t) =eu(t) +e*u(t). Also find ROC.

Solution
We will use the definition of LT.

X(S)= J:O e e dt + J:C eMedt

. —(s+3)t . e—(s—s)z i/w
s+3 ° s—8 °
1 1 2s-5

= + ==
s+3 s—8 s —5s-24

The first term converges for all s + 1 > 0, i.e., Re(s) > -3
ROC is the right half S plane with Re(s) > -3

The second term converges for all s - 2 > 0, i.e., Re(s) > 8
ROC is the right half S plane with Re(s) > 8

The common area of convergence is the area with Re(s) > 8. ROC and poles
are plotted in Fig. 7.11.

Laplace Transform Solution

-
O
O



A

ROC

i)

Imaginary
axis jQ

Poleat 6=-3 /|
ando=38 -3 8 Real axis &

\

Fig. 7.11 ROC and poles for P 7.13

P 7.14 Find LT of x(t) =e > u(—t)+e>u(—t). Also find ROC.

Solution
" We will use the definition of LT.
g
wn 0 ) 0
A X(S) :I e'”e‘“dt+j etedt
ke —° =
C
o
‘_é —(s+2)t —(s—5)¢t
e e
g TR S
s+2 s—5
200
1 1 2s—3

- _ - 7.63
s+2 s-5 s*=3s5-10 (7.63)

The first term converges for all s + 2 < 0, i.e., Re(s) < -2
ROC is the left half S plane with Re(s) > -2

The second term converges for all s - 5 < 0, i.e., Re(s) < 5
ROC is the left half S plane with Re(s) < 5

The common area of convergence is the area with Re(s) < -2. ROC and poles
are plotted in Fig. 7.12.



i

ROC

' Imaginary

Fig. 7.12 ROC and poles for P 7.14

P 7.15 Find LT of x(t) =e* sin(3t)u(t). Also find ROC.

Solution

We will use the definition of LT.

]. © ; 0 .
X(S):z_ .[0 ereJ3te*stdt_J'o EZte—Jate—stdt:|
jL
1 B —(s—2-j3)t —(s—2+j3)t
= _¢ : ~L°0°+e 1
jL s—2-j3 s—2+73
_L_ 11 _1[s=2+j3-s+2+/3
2j|s—2-j3 s—2+j3] 2j (s—2) +9
3
T -2 19 (7.64)

The first term converges for all s - 2 > 0, i.e., Re(s) > 2
ROC is the right half S plane with Re(s) > 2

The second term converges for all s - 2 again, i.e., Re(s) > 2

The common area of convergence is Re(s) > 2. The ROC and the poles are

plotted in Fig. 7.

13.

Laplace Transform Solution
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A
: ROC
Imaginary L
axis jQ !
7 ' g
Poleat 6=2 i

3]

Real axis o

Fig. 7.13 Plot of ROC and poles for P 7.15

P 7.16 Find LT of x(t) = cos’(6t)u(t). Also find ROC.

Solution
We will use the definition of LT.

X(S) = j“‘; cos? (6t )u(t)e ™ dt = %[ I: (1+cos12t)e ™ dt

RN  12jt st ®12jt st
_EUO e dt+f0 e e dt+J‘O e Tetdt

1 —st —(s—12j)t —(s+12j)t
= N -
2| —s s—=12j s+12j

A SR S s +144+5° +12js+5° —12js
20s s—12j s+12j5| 2 s(s® +144)

357 +144

s(s* +144)

The second term converges for all s - 12 j > 0, i.e., Re(s) > 0
ROC is the right half S plane with Re(s) >0
The third term converges for all s + 12 j > 0 again, i.e., Re(s) > 0

The common area of convergence is Re(s) > 0. The ROC and the poles are
plotted in Fig. 7.14.



A
Imaginary ROC
axis j€2 L
Poles at 12j, /'
0 and -12j Real axis o

Fig. 7.14 Plot of ROC and poles for P 7.16

P 7.17 Find LT of x(¢)=(1+sin 3t cos3t)u(t). Also find ROC.

Solution
We will use the definition of LT.

© © 1
X(S)= I_w(l +sin 3t cos 3t)u(t)e ' dt = jo [1 + Esin6tj e "dt

w0 1 © X w0 .
= I e dt + —U e dt —J. e’”e’“dt}
0 4jl 0 0

[ st 1 —(s—6j)t —(s+6))t
S L N R i
=S 4j| s—6j s+6j

i af v ] f1, s+6j-s+ej
|5 4j|s—6j s+6j] |s  4j(s’+36)

1 1 " +s5+36
—t = 2
s (s°+36) s(s°+36)

The second term converges for all s — 6 j > 0, i.e. Re(s) > 0
ROC is the right half S plane with Re(s) > 0
The third term converges for all s + 6 j > 0 again, i.e., Re(s) > 0

The common area of convergence is Re(s) > 0. The ROC and the poles are
plotted in Fig. 7.15.

Laplace Transform Solution
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A
Imaginary ROC
axis j€2 —
Poles at 6§, 0 /'
0 and -6 Real axis o

Fig. 7.15 Plot of ROC and poles for P 7.17

P 7.18 Find LT of the signal drawn in Fig. 7.16. Also find ROC.

x(t)
£
2 | >
2 0 2 4  Time
©
&
S -1
2
(V2]
204 Fig. 7.16 Plot of signal for P 7.18

Solution
We will use the definition of LT.

_ 2 —st _ 4 —st
X(S)_joe dt Le dt
e—st ) e—st .
LIPS
S S

1 1
:__[6—2: _1]+_[e—4s _e—ZS]
N N

1 1
:_[1_26—25+e—s4]:_[l_e—2:]2
S N



Both the terms converge for all s > 0, i.e., Re(s) > 0
ROC is the right half S plane with Re(s) > 0

Note: If Re(a) =0>0,e=—> 0

IfRe(a) =s<0,e~—>0

The ROC and poles/zeros are plotted in Fig. 7.17. There is a double zero at

s=0
A
ROC
Imaginary .
axis jQ
Pole and a
double zero .
Real axis &

ats=0 0

Fig. 7.17 Plot of ROC and poles for P 7.18

P 7.19 Find LT of the signal drawn in Fig. 7.18. Also find ROC.

x(t)

0 T

Fig. 7.18 Plot of signal for P 7.19

Solution
We will use the definition of LT.

X(S) = jOTA e dt

Aefst
Y

N

Time

Laplace Transform Solution
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A
=2 1)
N

A o
=Z[1-e)
s
The term converges for all s > 0, i.e., Re(s) > 0

ROC is the right half S plane with Re(s) > 0
The ROC and poles/zeros are plotted in Fig. 7.19. There is a zero at s =0

A
ROC
Imaginary |
axis jQ
Pole and a :
Real axis o
zeroats=0 0

Fig. 7.19 Plot of ROC and pole and zero for P 7.19

P 7.20 Find LT of the signal drawn in Fig. 7.20. Also find ROC.

x(t)

\J

0 T Time

Fig. 7.20 Plot of signal for P 7.20

Solution
We will use the definition of LT. The equation of the straight line is x(¢) = #/2.

T —st
X(S):AJO t/Txe " dt



I
~ e
1

-

<
&%
(_
o'~
|
S5
L
“ a
QL
~
[

:é_Te—Ts _efst J/T
T| -s s "]

_é_Te'TS B e 1] _A 1-sTe ™ —e ™
T| -s s | T s

The term converges for all s > 0, i.e., Re(s) > 0
ROC is the right half S plane with Re(s) > 0

The ROC and poles/zeros are plotted in Fig. 7.21. There is a double pole at
s=0

A
ROC
Imaginary .
axis jQ
Double pole
ats=0 0 Real axis &

Fig. 7.21 Plot of ROC and pole and zero for P 7.20

P 7.21 Find LT of the signal drawn in Fig. 7.22. Also find ROC.

x(t)

0 A Time

Fig. 7.22 Plot of signal for P 7.21

Solution

We will use the definition of LT. We have to find equation of the straight line.

Laplace Transform Solution
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Y=mx+c.

Points (0, A) and (A, 0) are on the line. These coordinates must satisfy the
equation.

A=cand0=m+c

Hence m = —¢ = -1; The equation becomes y = -x + A. We have to write the
signal as x(t) = -t + A.

X(S)= LA (A—t)edt

) )

—st —st —st
e te Ae
=A|— =12 +j —dt}
—S 0

ROC: Re(s) >0
The ROC and poles/zeros are plotted in Fig. 7.23. There is a double pole at
s=0

A
ROC
Imaginary |
axis jQ
Double Pole .
ats=0 0 Real axis o

Fig. 7.23 Plot of ROC and pole and zero for P 7.21



P 7.22 Find LT of the signal drawn in Fig. 7.24. Also find ROC.

x(t)=sint,0<t <1

=0 elsewhere

x(t)

Fig. 7.24 Plot of signal for P 7.22

Solution
We will use the definition of LT.

X(S):Llsintxe_ﬂdtzi[

2j

0

=i_ oG v _{ o+ }\Ll
2j| 6= " |-G+’

1_e*5+1_e*5+1
2j| s—j  s+j

Ileﬁe'”dt—

1|se’+s+je’ +j—se”’ —s+je’ +j

7 Time

1 .
I e"’e'“dt}
0

2j| s +1

The term converges for all s > 0, i.e., Re(s) > 0
ROC is the right half S plane with Re(s) > 0

S +1

}: (e +1)

The ROC and poles/zeros are plotted in Fig. 7.25. There is a double pole at

s=0

Laplace Transform Solution

N
(=]
3



A
ROC
Imaginary L
axis j€2
Double pole .
ats=0 0 Real axis

Fig. 7.25 Plot of ROC and pole and zero for P 7.22

P 7.23 Find LT of the signal drawn in Fig. 7.26.

x(t)
1

£ .
b5 >
A 0 T/2 T  Time
©
&
2 Fig. 7.26 Plot of signal for P 7.23
5
wv

—_— Solution

210

We will use the periodicity property of LT.

X(8)=

[transform of one period]

T
j x(t)e " dt =
0 1

l_e—sT _e—sT

Let us find the transform of one period.

T2 _,
X(S) = jo edt

e 1
Sk



(1 _ e—sT/Z ) 1

periodic signal = S(l_e—sT) = S(1+675T/2)

X(S)

P 7.24 Find LT of the signal drawn in Fig. 7.27.

A
x(t)
-1/2 0 1/2 1 2 T

Fig. 7.27 Plot of signal for P 7.24

Solution
We will find LT of one period first.

1/2 1 12 . 1/2 .
X(S) :J cosmtxe tdt== j e™e Tt dt +I e e dt
~1/2 2 -1/2 -1/2

B 1 e*(s*]'ﬂ)t \Ll/z e—(s+jir)t il/z
y . -1/2 + . -1/2

2| —(s—jm) —~(s+ jn)

_ (s=jm)2 _ —(s=jm)1/2 (s+jm)/2 _ —(s+jm)1/2 , .

= l € e n e 6 [Note e]n/z — ef]n/Z — 1]

2 S— s+
B 1 565(1/2) _Se—(s)uz +J-”e(s)1/2 _jﬂe—(s)uz +Se(s)1/2 _Se—(s)llz _jﬂe(s)uz +J-7Ze—(s)1/2

2 s+
 (se? —se™"?)

s+
2 _-si2
s(e” —e .

X(S)periodicsignal = m, perlod =1

Laplace Transform Solution

N
-
-
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P 7.25 Find LT of the signal drawn in Fig. 7.28.

X 4

-3 -2 -1 0 1 2 3 4 5T

Fig. 7.28 Plot of signal for P 7.25

Solution
Let us find LT of one period. It is same as that for P 7.24.

X©)=[" (-xede+ [ (1-t)xedr

B tefst 0 0 efst efst . tefst .
S [} +J‘_1_—5dt}+{_—s}io{_—s}io

—S —st it et —st
e e e -1 e e
=—+—1° + !
2 1 2 0
s s —$ —-s s

e 1-¢ e’ 1 ' e’'-1
+

_l-e +s+se” +e —1

2
N

_ s(I+e)+(e —¢)

2
N

1
g
0

—st

e

)

The term converges for all s > 0, i.e., Re(s) > 0, double pole at s = 0

ROC is the right half S plane with Re(s) > 0

_s(I+e7)+ (e —e)
periodicsignal 52 (1 _ 6_25)

X(s) , period =2

dt



P 7.26 Find LT of the following signals using properties of LT.
L x(t)=te?u(t) 2. x(t)=te™ sin(t)u(t) 3. x(t)=eu(-t)
4. x(t)=e" cos(t)u(t)

Solution

1. LT(tu(t))= iz (we will use property of differentiation in frequency.)
N

2
$

LT(Eu(t)) :_di[iz] _

S\ S

2

LTt e ™ ult)=——

( ue) (s+2)°

2. Wehave to find LT (x(t) = te” sin(t)u(t)); we know that LT (tu(t)) = iz
s

To find LT of LT(te™'u(t)), we will use the property of frequency shifting.

1 3t
— thene™'tu(®) <> X(s +3)=——
If tu(t) & () > X(s+3) Gy

jt —jt
e] _pJ

We can write sin(t) =
shifting.

and again use the property of frequency

then

If te ™ ult
ey

1 —jty -3t ~_i 1
Z_j[e te u(t)](—)X(s+3+])—zj{(s+3+j)2}

R I S

_1 4(s+3)j _ 2(s+3)
D 2j| (43— )P (s 43+ | ((s+3) +1)°

Laplace Transform Solution

N
-
w
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3.  Wehave to find LT of x(t)=e""u(-t).

1
We know that x(t) =™ u(t) <> oW will use property of time reversal.
S —_—

If x(t)=e”u(t) & X(s)= L then x(—t) = e’ u(-t) < X(-s)= b
s—=5 s+5

We have to find LT of x(t)=e™ cos(t)u(t).

N

We know that LT (cos(t)u(t)) =—
s +1

We will use the property of frequency shifting to find

s+5

LT(e™ cos(t)u(t)) =————
(s+5)°+1

P 7.27 Find LT of the following signals using properties of LT.
L x(t) = =30)u(t—2) 2. x(t)=(—-4)u(t—4)
3. x(t) = (2tu(t) - 3(t - 5)u(t - 5))

Solution

1.  Wehaveto find LT of x(t)=(t* —=3t)u(t —2)

x(t) =" =30)u(t —2) =tu(t —2) - 3tu(t - 2)

LT (P u(t)) = %; LT(Pu(t-2))=
s

26—25
3
N

LT(=3tu(t-2)) ==
N
LT(:(1) =S (2-35)
N

We have used the time shifting property for all the signals.



We have to find LT of LT(x(t))=LT(tu(t)) <> Lz
s

6—45

2
N

LT(x(t—4))=LT((t —4)u(t —4))=

We have to find LT of LT(x(t)) = LT (2tu(t)—3(t —5)u(t —5))

2 3¢ 2-3¢

2 2 2
N N N

P 7.28 LTs of some signals are given here. Find the initial and final value of
the signal using initial and final value theorem.

1 2
L X(s)= 2 X()=— o
s(s=5) sSS+2s+1
s+2
5. X(s)= 2t 4 X(s)=——
s(2s+3) s (s+3)
Solution
1.  Initial value is given by
. . 1
x(0)=lim_,_sX(s)=lim_, ——=0
s=5
Final value is given by
. . 1 1
x(0) =lim_, sX(s)=lim_  ——=——
s=5 5
2. Initial value is given by
P42 1+2
x(0)=lim_, sX(s)=lim,_,, 2 _Jim_ —1*2/S __
s 4+2s+1 1+2/s+1/s
Final value is given by
. . s +2s
x(0) =lim _; sX(s)=lim_,, ————=0

s +25+1_

Laplace Transform Solution

N
-
V]



3. Initial value is given by

x(0)=lim__ sX(s)=lim,_, %> _fim 335 55
25+3 2+3/s
Final value is given by
+
() =lim, , sX(s)=lim,_, 2> ~5/3
2s+3
4. Initial value is given by
2 1/s+2/s°
x(0)=lim_, sX(s)=lim_, A lim_, Vs+2ls 0
s(s+3) 1+3/s
Final value is given by
£
g x(0) =lim__ sX(s)=lim_, s+2 =
A s(s+3)
©
c
©
E
S P 7.29 A signal is given by x(¢) = e 7Pyt —7). Find LT.
wv
216 Solution

We know that

LT(y(t)=e"u(t)) -1
s+1

We will use the time shifting property to find

e—75

s+1

LT(y(t-7)) = LT(e " u(t-7))=

We will now use the time scaling property to find

LT(y(t-7)/3))=LT(e " u(t-7))= 3¢
s+1




P 7.30 A signal is given by x(¢) =sin(2t) cos(3t)u(t). Find LT.

Solution

x(t) =sin(2t) cos(3t)u(t) = %[sin(Z +3)t +sin(2 — 3)tu(t)

We will use the property of linearity to find LT of the two terms.

LT(x(t))z%{ > 1 }

$$425 s7+1

P 7.31 Find LT of x(t) =e™u(t)* t*u(t)

Solution
We know that

M) =
LT(e u(t))—s_3

LT(u(t) =
S

LT(Pu(t)) = —%[Sizj = %

N

Note: We have used the property of differentiation in the s domain.

1 2 2
LT u(®)* Pu(t)) = X — =
®) s=3 s s(s—3)

Note: We have used the convolution property.

P 7.32 Find LT of x(t) =3¢’ u(t) using the property of differentiation in time
domain.

Solution
We know that

M (F)) =
LT(e u(t))—s_3

Laplace Transform Solution

N
-
N



LTGe" u(t) =——
s—=3
We will now apply the property of differentiation in time for x,(¢) = e*u(t)

RPN
LT (e u(t)) = 3

LT[% e3fu(t)j =LT(3e”u(t)) =sX,(s) - x(0")

Let us find the initial value using initial value theorem.

» . s 1
x(0")=lim___ sX (s)=lim_._ ——=Ilim _——=
E ( ) §—®0 1() s—>oos_3 s—>ool_3/s
&
©
5 1
- P 7.33 Find the inverse LT of X(s) =———————— with ROC given by
5, (s+2)(s"+s+1)
2 Re(s) > -0.5. Plot poles and zeros.
218 Solution

The denominator is already in the factored form. So Step 1 is over.

Step 2 We will use partial fraction expansion and decompose the function
into three terms.

1 Kk N k,s+k,

X(s)= 5 = 5
(s+2)(s"+s+1) s+2 s +s+1

Find k , k, and k3

1

kl :(5+2)X(S)~L m

1
s==2" 5

s=0 =

1=§[52 +s+1]+5°(k,) + 2k, +k,)s + 2k,



1=s*(1/3+k,)+s(1/3+2k, +k,)+(1/3+2k,)
1/3+2k,=1=k,=1/3
1/3+k,=0=k,=—1/3

We have to study ROC to find the inverse LT. If the pole for the term is on
the left-hand side of the imaginary axis, like at s = -1, we have recover the
right-handed signal. If the pole for the term is on the right-hand side of the
imaginary axis, like at s = 1, we have to recover the left-handed signal. Here,
the common area of convergence is Re(s) > 0. We will recover all the signals as
right-handed signals.

1/3 -1/3s+1/3
+

X(s)=
s+2 sS+s+1
X(s)= 1/3 +l S+20.5 2+'577 0.?66 :
s+2 3(s+0.5)° +0866 (s+0.5)° +0.866
Taking ILT, we get

Laplace Transform Solution

1 1
x(t) = [ge”u(t) + ge*‘“’f c0s(0.8661)u(t)+0.577¢ " sin(0.866t)u(t)j

N
-
‘ O

Let us draw the pole zero plot using the following MATLAB program. Figure 7.29
shows the pole zero plot.

clear all;
clc;

s = tf('s’);
b=[1 3 3 2];
a=[1];

f=tf (a,b);
pzmap (f) ;



Pole-zero map
1 T T T T T T T T T

0.8 b

04 B

021 B

Imaginary axis
=

-1 | | I | | 1 | | 1
-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Real axis

Fig. 7.29 Plot of poles and zeros for the transfer function for P 7.33
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P 7.34 Find the inverse LT of X(s) - with ROC given by -1 <

220 Re(s) < 0. s(s+1)(s+2)

Solution
The denominator is already in the factored form. So Step 1 is over.

Step 2 We will use partial fraction expansion and decompose the function
into three terms.

X(s) = 2 :£+k k,
s(s+1)(s+2) s s+1 s+2

2

Find k, k, and k,

22
(s+1)(s+2) a a

k, =(s)X(s) ‘Lszo: 2x1



() (s+2) T (=)<l

k,=(s+1)X(s) 4

s=—2 = 2 \Ls:72 = 2 =
(s+1)(s) —1x-2

k,=(s+2)X(s) ¥

We have to study ROC to find the inverse LT. The common area of convergence
is -1 < Re(s) < 0. We will recover the term with pole at zero as a left-handed
signal and terms with poles at -1 and -2 as the right-handed signals.

2 1 -2 1
X(s) —+

= = +
s(s+1)(s+2) s s+1 s+2

Taking ILT, we get
x() = (u(=t) = 2(e"u(t) + e > u(t))
We have to study ROC to find the inverse LT.
If the ROC is specified as -2 <Re(s) < -1, we will recover the terms with

poles at zero and -1 as the left-handed signals and terms with a pole at -2 as a
right-handed signal.

x() = (=) + 2" u(-t) + e u(t))

2
P 7.35 Find the inverse LT of X(s)=— 5 "0 *2 |
(s+3)(s* +25+10)

Solution

Step1 The denominator is in the factored form.

Let us draw the pole zero plot using the following MATLAB program. Figure 7.30
shows the pole zero plot.

clear all;
clc;

s = tf('s’);
b=[1 5 16 30];
a=[3 8 23];
f=tf (a,b);
pzmap (f) ;

Laplace Transform Solution

N
N
-
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Imaginary axis

Pole-zero map

3 T T T 7~ T
O
2 - -
1 L -
0
1k i
2k i
O
-3 1 L 1 N L
-3 =25 -2 -1.5 -1 -0.5 0
Real axis

Fig. 7.30 Pole zero plot for P 7.35

Step 2 We will use partial fraction expansion and decompose the function
into three terms.

35 +8s+23 k ks+k
X(s)=—— 2 ST, S
(s+3)(s" +2s+10) s+3 s +2s+10

Find k, k, and k,

3s® +8s+23 26
S S ~L ___2

k, = (s+3)X(s) is:_ﬁm =

Put the value of k, in the equation and equate the numerators on both sides;
we get

3s* +85+23=2(s" +2s+10) + k,s* + (3k, + k,)s + 3k,

3s* +8s5+23=(k, +2)s* + 3k, + k, +4)s + (3k, +20)



Equate the coefficients of s%, s and a constant term.

k,+2=3=k, =1
3k, +20=23=k, =1

putting values of the constants k1, k2 and k3 we get

35> +8s+23 2 s+1
X(s)= 5 = +
(s+3)(s"+25s+10) s+3 s +2s+10
2 +1
X(S):_Jr#
s+3 (s+1)"+9
Take ILT.

x(t)=2e"u(t)+e " cos(3t)u(t)

P 7.36 Find the inverse LT of X(s) =; with ROC -4 < Re(s) < -2.
(s+2)(s+4)

Solution

Step1 The denominator is to be in the factored form.

X(s)=
(s+2)(s+4)

Step 2 We will use partial fraction expansion and decompose the function
into three terms.

4 Kk . k,
(s+2)(s+4) s+2 s+4

X(s)=
Find k, k|

k=+2X)d,_=— =22

s+4 2

Laplace Transform Solution

N
N
w
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4_
-2

k=(+a)X(s)b_ =1 =2-
s+2

4 2 2

X(s)= = -
(s+2)(s+4) s+2 s+4

x(t)==2eu(-t)—2e " u(t)

Note that the term with pole at -2 is recovered as the left-handed signal and
the term with pole at -4 is recovered as the right-handed signal so that the
common area of convergence is same as the ROC specified.

+2
P 7.37 Find the inverse LT of X(s) =257 with ROC -1 < Re(s) < 0 and
ROC Re(s) >0 s (s+1)

Solution

Step1 The denominator is already in the factored form.

Step 2 We will use partial fraction expansion and decompose the function
in three terms.

s+2 _k kK

TR+ s 8 (541

X(s)

Find k, k, and k,

i _i s+2
k, _E[(S )X(s) ‘Ls:0] T ds ((s+l)j b

_s+l-s-2 -1 -1
(s+1)° (s+1?% " 1

s+2 ¢ g

k2 :(S) X(S) ‘Ls:(): (S+1) s=0 1

k=(+DX() 4, =21 o1

2 s=—1
N



s+2 -1 2 1
= - - 4" 4
(s)s+D) s (s) (s+])

X(s) (7.146)

We will now find ILT by inspection. If ROC is Re(s) > 0,
x(t) =—u(t) + 2tu(t) + e u(t)

Note that we have recovered all signals as causal signals.
IfROC is -1 < Re(s) < 0, we have to recover the term with pole at 0 as a left-
handed signal and terms with pole at -1 as the right-handed signals.

x(t) = u(=t) = 2tu(—t) + e u(t)

s’ 45545
P 7.38 Find the inverse LT of X(s) =————— with ROC Re(s) > -1
$"+3s+2

Solution

Step 1 Factorize the denominator. Note that the degree of the numerator
is the same as the degree of the denominator. So, we have to bring it into the
fraction form so that we can apply partial fraction expansion.

s +55+4 25+3

X(s)= =
" +3s+2 (s+2)(s+1)

Step 2 We will use partial fraction expansion and decompose the function
into three terms.

25+3 k, k,
=1+ +
(s+2)(s+1) s+2 s+1

X(s)=1+

Find k, and k,

k =[(s+2)X(s)4_ 1= (2”3 J V=1
(s+1)

2s+3
k,=(s+1)X(s)¥,_ = 512) \Ls:—l =1

Laplace Transform Solution

N
N
(V)]
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1 1
X(s)=1+——+—
s+2 s+1

We will now find ILT by inspection. If ROC is Re(s) > -1,
x()=0@)+e ult)+e > u(t)

Note that we have recovered all signals as causal signals.

3 2
P 7.39 Find the inverse LT of X(s) _S A #1349 with ROC Re(s) > -2

s*+4s+8

Solution

Step 1 Factorize the denominator. Note that the degree of the numerator is
same as the degree of the denominator. So, we have to bring it into the fraction
form so that we can apply partial fraction expansion.

3 2
+55"+13s+9 +1
s“+4s+8 s“+4s+8
s+2 1
=s+1+ (7.154)

(s+2)* +2? _(s+2)2 +2°

We will now find ILT by inspection. If ROC is Re(s) > -2,

x()=8"(t)+ 1) +e™ cos(2t)u(t) —%e'” sin(28)u(t)

Note that we have recovered all signals as causal signals. §'(t) stands for the
derivative of §(t). We have used the standard formula for cos and sin functions.

2
P 7.40 Find the inverse LT of X(s)= 52_7354-1 with ROC Re(s) > -1
$"+2s+1
Solution
Step 1 Factorize the denominator. Note that the degree of the numerator is
same as the degree of the denominator. So, we have to bring it into the fraction

form so that we can apply partial fraction expansion.

2
—3s+1 =5
X(s) =" o2
s"+2s+1 s“+2s+1




5(s+1) 5
- +
(s+1° (s+1)

We will now find ILT by inspection. If ROC is Re(s) > -1,
x(t)=06(t)—5e " u(t) + 5te” u(t)

Note that we have recovered all signals as causal signals.

P 7.41 UseLT to find the output of the system if the system is described by the
differential equation % y(t)+3y(t) = x(t) with input given by x(t)=e " u(t)

and initial condition is y(0*) = -2. Draw the response of the system using a
MATLAB program.

Solution

Take LT of the given differential equation.
2y )+ 3y(0)=x(0
PR y

LT gives

sY(s)— y(07)+3Y(s) = X(s)

SY(s) 424+ 3Y(s) =——
s+4

1
(S +3)Y(S) —S+—4—2

1 B 2
(s+4)(s+3) (s+3)

Y(s)=

A MATLAB program to plot the response of the system to the given input with
and without initial conditions is given as follow. The responses are shown in
Figs 7.31 and 7.32.

clear all;
clc;
s = tf('s");

Laplace Transform Solution

N
N
N



b=[1 7 12];

a=[1];

f=tf (a,b);

c=impulse (f) ;

plot (c) ;title(‘response to the input’) ;xlabel(‘time’);
ylabel (*amplitude’) ;

clear all;

c=impulse (f) ;
plot (c) ;title(‘response to the input with initial co
nditions’) ;xlabel (‘time’) ;ylabel (‘amplitude’) ;

Response to the input
O. 12 T T T T T T T
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Amplitude

0 10 20 30 40 50 60 70 80

Time

Fig. 7.31 Response of the system to the given input
We will use partial fraction expansion.

1 2

Y(s)= -
(s+4)(s+3) (s+3)




1 1 2

Y(s)= - -
s+3 s+4 s+3
s+4 s+3
Take ILT

y(t)=—eu(t)—eu(t)

Response to the input with initial conditions

Amplitude
| | | | | |
= = | o o < e
S o —_ ) o 'S o
: : :

|
—
[=)}
T

-1.8+

50 60 70 80 90 100
Time

Fig. 7.32 Response of the system to the given input with initial
conditions

P 7.42 Use LT to find the transfer function and the impulse response of the
system, if the system is described by the differential equation

a4’ d
— () +4—
tzy() dt

7 y()+10y(t) = x(2).

Laplace Transform Solution

N
N
‘ o



Write a MATLAB program to draw the impulse response.

Solution

Take LT of the given differential equation to find the transfer function.

d’ d
2;14ﬂ+45;y0%H0y0)_xu)

STY(s)+4sY(s)+10Y(s) = X(s)

1
H®_5+%+w

_ 1

S (s+2)+6
h(t) = %e” sin(v/6t)u(t)

A MATLAB program to plot the impulse response of the system is given as
follows. The response is shown in Fig. 7.33.

Impulse response
O. 16 T T T T T

‘ Signals and Systems

230 0.14

0.12 J

0.1F 4

Amplitude
e I
(] o
(o)} ]

T T
1 1

-0.02 1 1 1 1 1
0 10 20 30 40 50 60
Time

Fig. 7.33 Impulse response for P 7.42



clear all;

clc;

s = tf('s");

b=[1 4 10];

a=[1];

f=tf (a,b);

c=impulse (f) ;

plot (c) ;title(*impulse response’);xlabel (‘time’);yl
abel (‘amplitude’) ;

P 7.43 Use LT to find the transfer function and the impulse response of the
causal and stable system if the system is described by the differential equation

d’ d d’ d

— () +3—y(O)+2y(t) =—x(t) + 6—x(t) + 7x(t

dtzy()+ dty()+ y(t) dtzx()+ dtx()+ x(t)
Solution

Take LT of the given differential equation.

2 2

d d d d
Fy(t) + 3Ey(t) +2y(t) —Ex(t)+6ax(t) +7x(t)

STY(s)+3sY(s)+2Y(s) =s* X(s) +6sX(s) +7X(s)

Y(s) s*+6s+7

H(s)= ==
X(s) s +3s+2

_32+65+7_1+ 3545
S +3s+2 (s+2)(s+1)

H(s)

Use partial fraction expansion

1 2
H(s)=1+——+——
s+2 s+1

Take ILT

h(t) =801 +e > u(t)+2e " u(t)

Laplace Transform Solution

N
w
-
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A MATLAB program to plot the impulse response of the system is given as
follows. The response is shown in Fig. 7.34.

Impulse response
3 T T T T T T T

Amplitude

0 10 20 30 40 50 60 70 80
Time

Fig. 7.34 Impulse response for P 7.43

=impulse (f) ;
plot(c) ;title(‘impulse response’) ;xlabel(‘time’);yl
abel (‘amplitude’) ;

P 7.44 Find the forced response of the system with differential equation given
by
d d

?)’(t)+3a)’(t)+2y(t)=x(t)



to the input given by x(t)=e *'u(t). Write a MATLAB program to plot the

impulse response and the forced response.

Solution

We will first find the transfer function of the system. Take the LT of the given
differential equation.

2

d d
ﬁ)’(t)ﬁay(t)”y(t)—x(ﬂ

(s> +3s+2)Y(s) = X(s)

Y(s) 1
X(s) (s> +3s+2)

H(s)=

A MATLAB program to plot the impulse response of the system is given as
follows. The response is shown in Fig. 7.35.

(a,b);

=impulse (f) ;
plot (c) ;title(‘impulse response’) ;xlabel (‘time’);yl
abel (‘amplitude’) ;

Impulse response
0.25 T T Ip p T T T

Amplitude
o

o =

— 191

0.05F

0 1 1 1 1 I
0 10 20 30 Time 40 50 60 70

Fig. 7.35 Impulse response for P 7.44

Laplace Transform Solution

N
W
w
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To find the forced response, we will apply the input x(¢) =e > u(t)

Y(s) 1
X(s) (s*+3s+2)

1

Y(s)=——X(s)=
(s+2)(s+1) (s+2)(s+3)(s+1)

We will use partial fraction expansion.

~ 1 _L o y2 12
(s+2)(s+3)(s+1) s+2 s+3 s+1

Y(s)

Teaser: The reader is encouraged to verify the coefficients.
Take ILT to find the solution. The response due to input is the steady state
response and response due to the poles of the system is the transient response.

1/2 1/2 1
Y(s)= / + /2 _
s+1 s+3 s+2

y(t)= (%e“u(t)j + (%e’u(t) - eZtu(t)j

Forced resonse = Steady state response + Transient response
A MATLAB program to plot the forced response of the system is given as
follows. The response is shown in Fig. 7.36.

clear all;

clc;

s = tf(‘'s’);

b=[1 6 11 6];

a=[1];

f=tf(a,b);

c=impulse(f) ;

plot (c) ;title(*forced response’) ;xlabel(‘time’);yla
bel (tamplitude’) ;



Forced response
0.0 8 T T T T T T T T

0.07 - b

0.06 - b
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0.04 |- T

Amplitude

0.03 | T

0.02 | b

0.01 | 4

0 1 1 1 1 1 L L

0 10 20 30 40,. 50 60 70 80 90
Time

Fig. 7.36 Forced response of the system for P 7.44

P 7.45 Find the natural response, forced response and total response of the
system with a differential equation given by

2

d d
ﬁ)’(t)ﬁay(t)”y(t)—x(ﬂ

to the input given by x(#) = u(#). The initial conditions aredi ¥(0)=3, y(0)=1.
t
Write a MATLAB program to draw the natural response and forced response.

Solution

We will first find the transfer function of the system. Take the LT of the given
differential equation and apply initial conditions.

2

d d d
?y(t) + 3Ey(t) +2y(t) —Ey(O) - y(0) = x(t)

(s*Y(s) —sy(0) —%y(o) +3(sY(s)— y(0)+2) = X(s)

s’Y (s)—(s+3)y(0) —%y(O) +3sY(s)+2Y(s) = X(s)

Laplace Transform Solution

N
W
V]



‘ Signals and Systems

236

Y(s)(s* +3s+2)=X(s)+(s+3)x1+3

s+6 N X(s)

Y(s)= > >
S"+3s+2 sT+3s+2

The response due to the first term is due to the initial conditions and hence is
the natural response.

s+6
Y()=———
T +3s5+2
5 4
Y()=—————
s+1 s+2

y(t)=5e " u(t) —de > u(t)

A MATLAB program to plot the natural response is given as follows. The
response is plotted in Fig. 7.37.

Natural response
T T

1.6 T T

1.4

1.2

1

Amplitude
s o o
= o >

e
[

10 20 30 Time 40 50 60 70

(=)
(=)

Fig. 7.37 Plot of natural response for P 7.45

clear all;
clc;

s = tf('s’");
b=[1 3 2];
a=[1 6];
f=tf (a,b);



b=impulse (£f) ;
plot (b) ;title(*natural response’);xlabel (‘time’);yl
abel (‘amplitude’) ;

The response due to the second term is the forced response. To find the forced
response, we will apply the input x(t) =e u(t)

Y(s) 1
X(s) (s>+3s+2)

1 1

Y= 60 " r26+D

We will use partial fraction expansion.

VoL U312

_s(s+2)(s+1)_ s s+l s+2

Teaser: The reader is encouraged to verify the coefficients.

Take ILT to find the solution. The forced response is the sum of the steady
state response and the transient response. The response due to the input is the
steady state response and the response due to the poles of the system is the
transient response.

Y(s)=1/—3— 1 +1/2
s s+1 s+2

(1) =G u(t)]—(etu(t)—%e”u(t)j

A MATLAB program to plot the forced response is given as follows. The
response is plotted in Fig. 7.38.

b=impulse (f) ;
plot (b) ;title(‘forced response’);xlabel (‘time’);yla
bel (‘amplitude’) ;

Laplace Transform Solution

N
W
N
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0.5
0.45 -
0.4 r
0.35F
03F
025
02
0.15
0.1F
0.05F

0 L 1 1 1 L 1 1 1
0 10 20 30 40 .. 50 60 70 80 90
Time

Amplitude

Fig. 7.38 Plot of forced response for P 7.45

The total response is given by the addition of the natural response and the
forced response.

y(t)=5e"u(t)—4e u(t) + (% u(t)j - [etu(t) - % eZtu(t)j

y(t)= %u(t) +4e”ut) - % e u(t)



Z Transform

P 8.1 Find ZT of the following sequences

a. f(n)=2e""—2¢>" +24ne™

b. f(n)=0+nU(n)

c. f(n)=cos(nwT)U(n)

d. f(n)=na"sin(nwT)U(n)

e. f(n)=n’U(n)

£ f(n)=cos(nz /3)U(n)
Solution

a. f(n)=2¢"" —2¢" +24ne™™"

We will assume that the sequence exists for n > 0. We will use the
basic formula for ZT.

FZz)=3 fmz"
n=0
Let us put the value of f(n) in the equation to get

F(Z)= 226’6”2’" - izﬁ"Z*" + iz4ne*6”2*" (1)

n=0 n=0 n=0
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F(Z)= zi(e‘éz‘l)" —25“(532'1 )"+ 24i nle*z™)" 2)

n=0 n=0
We will use the closed form expression for the infinite sum to get
1 1 e’z

F(Z)=2 -2 +24
O e e ey ®

Note that we have used the property of differentiation in the Z
domain to get the ZT of the last term.

To calculate the ROC, we have to equate the terms in bracket in
Eq. (2) less than 1. ROC is thus

le*Z k1= | Z >
for the first and the last terms. For the second term, the condition is
le?Z k1= | Z>e” |

Thus, the ROC is the radius of the larger circle, that is, | Z [>|e™ |.

f(n)=1+mU(n)

The sequence exists for n > 0 as it is appended by U(n). We will use
the basic formula for ZT.

F2)=Y fnz"

Let us put the value of f(n) in the equation to get

F2)=Y +mz" =Y 2" +3 nz"
n=0 n=0 n=0

Therefore, the ZT is found as

1 z'  1-z'+7" 1

F(Z): _1+ 12 N —-1y2
1-Z a-z7) a-z7) a-z7)

We can find ROC by putting |Z7' | <1= | Z|>1



¢ f(n)=cos(nwT)U(n)

The sequence exists for n > 0 as it is appended by U(n). We will use
the basic formula for ZT.

F2)=Y fmz"

Let us put the value of f(n) in this equation to get

n=0

F(Z) = i COS(na)T)Z’" — %|:i ejrw)Tzfn + i ejn(uTan|
n=0 n=0

1 1 1 1| 2—("+e )z
F(Z)== P T 1 | o (: +'eT )1 2
201-e27" 11—z | 2| 1=’ +e )2 + 27

2-2cos(wT)Z™
2| 1-2cos(0T)Z7 + 27

1—cos(wT)Z™
F(2)= ( )_1 =
1-2cos(0T)Z +Z

We can find ROC by putting |e/”'Z7' |<1=|Z]|>1
and |[e " Z" |<1=|Z|>1 as || =1 and |e 7" | =1
d. f(n)=na"sin(nwT)U(n)

The sequence exists for n > 0 as it is appended by U(n). We will use a
basic formula for ZT and calculate ZT of f(n) = sin(n@T)U(n).

FZ)=) f(mz™
n=0
Let us put the value of f(n) in this equation to get

F(Z) = i Sin(na)T)Z*" — 2i|:i ejanZ—n _ iej"“’TZ"}

n=0 n=0 n=0

Z Transform

‘ N
S
—
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F(Z)_i_ 1 ~ 1 _L (ej(z)T _e—ja}T)Z—l
2j |1-e/"Z7" 1-e 77 2j 1-(e™" +e 7z + 272

1] 2isin(@)z”
F(Z)= . / ( )-1 )
2j|1-2cos(0T)Z" +2Z

Now, we will calculate ZT of f(n)=a"sin(nwT)U(n). We have
to use the property of scaling in the Z domain to get ZT of
f(m)=a" sin(noT)U(n).

sin(wT)Z™

F(Z)=
2) 1-2cos(wT)Z ' + 27

sin(wT)aZ™

F(Z)=
2) 1-2cos(wT)aZ ™" +a*Z™*

Note that we have replaced Z by aZ™'. We will use the property
of differentiation in the Z domain to get ZT of f({n) = na"
sin(n@wT)U(n). We have to calculate -Zd(F(Z))/dZ. The reader is
encouraged to find the result. ROC is |’"aZ™" | <1=|Z|>a and
le " az' |<1=|Z|>a as |[¢”" | =1 and [e " | =1

fm)=n"U(n)

The sequence exists for n > 0 as it is appended by U(n). We will use a
basic formula for ZT and calculate ZT of U(n).

F2)=Y fz"

n=0

Let us put the value of f(n) in the equation to get

F(Z)= iz*"
1
Fz)= 1-7"

We will use the property of differentiation in the Z domain two times
to get ZT of f(n) = n*U(n).



F(Z)

_1djd( 1 _ld( =Z7 \ 10=Z7)227+27027 =227
21dz| dz\1-z" 2dz\1-z7"'Y) 2 1-z"*

ROC |Z| > 1 and double zero is introduced at the origin or a pole at
infinity. This indicates that ROC excludes infinity.

f.  f(n)=cos(nz/3)U(n)

The sequence exists for n > 0 as it is appended by U(n). We will use a
basic formula for ZT and calculate ZT of U(n).

F2)=Y fmz"

Let us put the value of f(n) in this equation to get

F(2)= Zc:os(mr/3)Z’" :E{Ze”’”aZ” + Ze’”””Z”}
n=0 n=0 n=0
1_ 1 1 1 2 jrl3 —jz/3 Z—l
F(Z)=— e y—— B, | 5 (f +'e/3 )1 2
201-ePZ7" 1-e P77 ] 2| 1-(eP +e )2 v Z7

F(Z)=

1] 2-2cos(z/3)2"
| 1-2cos(7/3)Z7 + 27

™ |

1- 13)Z7
F(Z)= cos( )_1 _
1-2cos(x/3)Z7 +Z

We will find ROC by putting |¢°Z7|<1=]Z|>1 and
le 77 |<1=|Z]|>1as [¢"”|=1 and e =1.
P 8.2 Given a 6-periodic sequence,

F(n)={1,1,1,-1,-1,-1,1,1,1,-1}

show that

Z(Z* +Z+1)

F(Z)=
() 7’ +1

Z Transform

‘ N
=Y
w



Solution

We will use a basic formula for ZT and calculate ZT
F2)=1+Z"'+Z27 -2 +Z*+Z27 +...
Let us put the value of f(n) in the equation to get

F(Z)=[1+Z’1 +Z’2]x[1—Z’3 +Z2-77° ]

_ -1 PREN _q\n 73
_[1+Z +Z ]Z;( 'z

:[1+Z‘1+Z‘2] ! -
1+2°
" Z*+7Z+1 z?

£ = x

g 7? YAES |
A

©

C

a Z(Z*+Z+1)

© -

5 73 +1

wm
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P 8.3 Express the Z transform of

n

ym)= " x(k)

k=—o0

in terms of X(Z).
Hint: Find the difference y(n) — y(n - 1).

Solution

The difference y(n) — y(n - 1) is found out as

n n

Y- yin-1="3 x()- Y x(k)

k=—o0 k=—0

y(n)—y(n—1)=x(n)



Taking Z transforms on both sides, we get

ZT(y(n) = y(n-1))=ZT(x(n))
Y(2)-Z"Y(Z)=X(Z)

Therefore, the Z transform of y(n) in terms of X(Z) is obtained as

X(2)

Y2)= 1-z"

P 8.4 Find IZT of the following Z domain functions

1+327"
a. X(Z):ﬁ
1+3Z2 +2Z
b X(Z)—HZZ_Z
' 1+27
1-aZ™
¢ X(Z)=—t
Z5+z7
d X(Z)=————
() 1-z!
Solution
1+327"
a. X(Z):%
1+3Z27 +2Z

We will use the partial fraction method to calculate IZT.
Step1 We will first decompose the denominator polynomial into a number
of factors.
Z’+3Z  I’+3Z
ZP+3Z+2 (Z+1)(Z+2)

X(2)=

Step2 We express X(Z)/Z as the sum of two terms

X(z) Z°+3Z = Z'+3Z
Z ZP43Z+2 (Z+1)(Z+2)

Z Transform

‘ N
=Y
b



X2)_ k_, k
Z Z+1 Z+2

Let us calculate k and k,

k—Z+3 _—1+3_2
Z+2|, ., -1+2
3 _Z+3 _ 243
PoZ+1,, -2+1

Step3 We put these values in the equation for X(Z)/Z

X(zZ) 2 1
Z Z+1 Z+2

: 2 1
& XDz
5 1+Z27 1+2Z
&
g Step4 We find IZT
S
246 x(n) =2(=1)"u(n) - (=2)"u(n)
1+227
b. X(2)=
(2) 1+2Z7

We will use the residue method to find IZT

Step 1 Express X(Z)/Z as a sum of two terms

X(2z) 7Z*+2 ZP+2
Z  Z(Z*+1) Z(Z+)(Z-))

X(Z) _k kK

= +
Z Z Z+j Z-j

Let us calculate k , k, and k,



_ZP+2 | -1+42 1
Y2z, i) -2

Note: (j)*=-1

Step 3  Substitute values of k , k, and k, to get

X(2)_2 -1/2 -1/2
Z Z Z+j Z-j
£
- - S
X(Z):2+( 1/2).Z+( 1/2).Z g
Z+j Z—j o
—
N
247

Taking IZT we get,

x(n)=26(n)—%(—j)”u(n)—%(j)”u(n)

_ 1-aZ™

C. X(Z)=——
(2) Z'-a

We can write X(Z) as

Z—-a 1 Z-a
X(2)= =~ ()
—aZ +1 a Z-1/a

Let us calculate X(Z)/Z

X(Z)__l( Z-a J
Z  a\Z(Z-1/a)



Step1 Express X(Z)/Z as a sum of two terms

X(Z)__ Z-a _k k,

Z aZ(Z-1/a) Z Z-1/a

Step 2 Calculate k, and k,

Z-a | a
k =- = =—a
a(Z—l/a)‘Z:0 a(-1/a)

@ o ].
X(8)=]" (1+sin3tcos3t)u(te "dt = | [1+Esin6tj edt

Step 3  Substitute the values of k, and k; we get

% 7 Z Z-1/a
©

5

“ a-1 Z
2 X(Z)=—a+

S 2 Z-1/a
wm

248

Step4 Taking IZT, we get

x(n)=—ad(n) + aza—l [lj u(n)

Z8+77

d X2)=
(2) -z

We can write X(Z) as

1+Z" _ g Z+1

X(2)=27"°
2) 1-z"! Z-1



Step1 Calculate X(2)/Z.

X(Z)—Z"" Z+1
z O z2z-1)

We will take aside Z and calculate IZT of the rest of the terms

X(Z) Z+1 _£+ k,
Z Z(Z-1) Z Z-1

Step2 Calculate k, and k,

Z+1
k=——1 =-1
zZ-1,.,

Z+1
k,=—— =2
Z Z=1

Step 3  Substitute the values of k, and k, and find IZT

X(Z):—1+£
Z-1

x(n) =—0(n) +2u(n)

Taking Z¢ into consideration, we have to introduce the delay of 6 samples in

the signal.

x(n)=—-0(n—6)+2u(n—=o6)

P 8.5 Use PFE to find IZT of the following ZTs:

VA

R

where a and b are positive constants.

ZZ

b. F(Z)=—F—7F7——
(Z-1)(Z-0.8)

Z Transform

N
£
‘ o



Solution

B VA
(Z-e)(Z-eT)

a. F(Z)

where a and b are positive constants.

Step1 Find F(2)/Z

F(Z) 1 K . k,
Z (Z-e)Z-e') Z-e* Z-e?

Step2 Find k and k,.

1 1
k, = % =T %
Z—e |, . e‘—e
1 1
2 k = = —
E AT e —e”
&
2
a Step 3  Substitute values of k, and k, and find F(Z)
n Z Z
o — F(Z)=(e“—e" -
250 (2)=( {Z—e“ Z—e"}

Step4 Find IZT

1 —an _ —bn
fn) "L" — }[(e e Ju(n) |
b FZ)-— L

(Z-1)(Z-0.8)
Step1 Find F(2)/Z

F(Z) z _ koK
Z (Z-1)(Z-08) Z-1 Z-08




Step2 Find k, and k,.

k, = - =5
Z-08|,, 1-08
z 0.8
k2 = = —_— =
z-1,,, 08-1

Step 3 Substitute values of k, and k, and find F(Z)

-2 A7
Z-1 Z-08

Step4 Find IZT

Fm)=[501)" +4(0.8)" Ju(n)

P 8.6 Using partial fraction expansion, find IZT of F(Z) and verify it using the

long division method.

1+27!

F(Z)=
) 1-0427"'-0.1227

if f(n) is causal.

Solution
Given that

1+22

F(Z)=
2) 1-0477"'-0.127*

We can also write F(Z) as

Z*+27
F(2)=—2 22
Z°-0.4Z-0.12

Z Transform

N
(V)]
-
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Step1 Find F(2)/Z.

F(Z) Z+2 ko, K
Z  (Z-06)(Z+02) Z-06 Z+0.2

Step2 Find k, and k,.

Z+2 0.6+2 2.6
= = =—=325
Z+02|,,, 06+02 0.8
Z+2 -02+2 -1.8
= = = =-2.25
Z-06|,_,, —-02-06 038

Step 3  Substitute values of k, and k, and find F(Z).

3.25Z  2.25Z
Z-0.6 Z+0.2

F(Z)=

Step4 Find IZT.

f(n)= [3.25(0.6)” ~2.25(-0.2)" ] u(n)

We will also solve the problem using long division method.

1+22'
F(Z)= i =1424Z 7" +1.08Z 7 +...
1047 —0.127"

The reader is encouraged to verify that the results are the same.

P 8.7 Use residue method to find IZT of the following ZTs:

(Z-0.5)
b. F(2) 1

T (Z-17(Z-05)



Solution

2

& F(Z)= 2 +3Z
(Z-0.5)

Step1 Find G(Z) = F(2)Z"~

zZm 437"

=2 0sy

Letn>1.

Step2 There is a double pole at Z = 0.5. Find the residue at Z = 0.5.

1 d2 n+l n
R[G(Z)]Z:O,S = EE(Z + 3Z )

Ediz[(” +1)Z" + 3(n)zH]

Z=0.5

= %[(n +D)nZ" " +3n(n-1)2"" J
_ %[(n +Dn(05)" +3n(n-1)(05)"" ]

=n(n+1)(0.5)" +3n(n—1)(0.5)""

Step3 Find IZT.

f(n)=(0.5"" [% n(n+1)+3n(n— 1)} u(n)

b. F(Z) =+
(Z-1(Z-0.5)

Step1 Find G(Z) = F(Z)Z"!

anl

GZ)=—o
(Z-1)(Z-0.5)

Z Transform

N
(Y,
w



Letn>1.

Step2 There is a double pole at Z =1 and a pole at Z = 0.5. Find the residue
atZ=1andZ=0.5.

Zn—l B (0‘5)n—1

RIGENN 1e0s= i Vias= oo

=4(0.5)""

RGZ)I d{ z" } ZZI:<Z—0.5)(n—1)z"*—z"f1 L

1747 (2-05) (Z-0.5) -

_ 0.5 (n-DO)"> - ()" _(n-1)(0.5)-1 _

(0.5) (0.5)* 2n=1)-4

Step3 Find IZT

§ f(n)=4(0.5)""+2(n-1)—4 forn>1
&

-"é“ P 8.8 Given the difference equation

E

o y(n)+b*y(n—2)=0forn>0and|b| <1
254

with initial conditions y(-1) = 0 and y(-2) = -1, show that
y(n)=b"" cos (ﬂ)
2
Solution

Take ZT of each term

Y(2)+b [Z’ZY(Z) +Z7 (-1 + y(—z)] =0

Putting values of y(—1) and y(-2), we get

Y(Z)1+b°Z7?)=b
b7’

Y(Z)=—2—
2) 7 + b



We will use the residue method to find IZT

bZZnJrl

GZ)=—————
(Z + jb)(Z - jb)

Now y(n) can be written as
ym)=R,_ , +R,_,

where

B blbn+1 (]-)n+1 B bn+2 (])n
Y )

R

As j = &7, on putting this valuewe get R, _,, as

B benJrl (j)n+1 3 bn+2 (e)jmr/Z
wr 2jb 2

and

B bzbn+1(_j)n+1 B bn+2 (e)—jnir/z
e 2(=j)b 2

Taking IZT, we get

n+2

b |:ejn/r/2 + e—jnﬂ/2:| — bn+2 cos ﬂ
2 2

y(n)=

P 8.9 Find f(n) corresponding to the difference equation

f(n=2)-2f(n—-1)+ f(n)=1 for n=0

with initial conditions f{-1) = -0.5 and f{-2) = 0. Show that

f(n)=(0.5n> +nforn=>0

Z Transform

N
wn
wn



Solution
Given that

f(n=2)-2f(n-1)+ f(n)=1 for n=0
Taking ZT, we get

Z2F(Z2)+ Z7 f(-)+ f(-2)-2Z"'F(Z) -2 f(-1)+ F(2) =E

Putting values of f(—1) and f(—2), we get

z: L 052 _1.52°-0.5Z
z-vy -y 2Z-r

F(Z)=

We can find f(n) using the residue method where

=
9
wn n+1_ n
-f G(Z)= 157 03.5Z
S (Z-1)
=
S
& and IZT is found to be
256
1 d2 n+l n 2
n)=— . -0. =0.5n" +nforn>
fon=— 152" ~052" =050 +nfor n>0



Handom Signals and
Processes

P 9.1 Write the question as 'Let there be 80 balls in a box, all of same size
and shape. There are 20 balls of red color, 30 balls of blue color and 30 balls of
green color. Let us consider the event of drawing one ball from the box. Find
the probability of drawing a red ball, blue ball and a green ball.

P(red ball) = 2%0 =25%, P(blue ball) = 3%0 —37.5%,

P(green ball) = 3%0 =37.5%

Total probability sums to one.

P 9.2 Let the event A be drawing a red ball in problem 1 and event B be
drawing a blue card on second draw without replacing the first ball drawn.
Find. P(A intersection B)

P(A)=2/8 and P(B/A)=-2
79
So, P(ANB)=P(B/ A)x P(A)=-2x2 =50
79" 8 632

P 9.3 Consider a binary symmetric channel with a priori probabilities. A
priori probabilities indicate the probability of transmission of symbols 0 and
1 before the experiment is performed i.e. before transmission takes place. The
conditional probabilities are given by. Find received symbol probabilities.
Find the transmission probabilities for correct transmission and transmission
with error.

Received symbol probabilities can be calculated as
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P(A,)=P(A, /B)xP(B)+P(A, | B)xP(B,)
=0.8x0.8+0.2x0.2
=0.68
P(A,)=P(A,/B)xP(B)+P(A, |B,)xP(B,)
=0.2x0.8+0.8x0.2
=0.32

The probabilities for correct symbol transmission is given by

P(A,/B)xP(B) 0.8x0.8 _

P(B,/A)=
(B,/4) P(A) 0.68

0.94

P(A,/B,)xP(B,) 0.8x0.2 05
P(A,) 0.32 '

P(B,/ A,)=

Now, let us calculate the probabilities of error

P(A, | B)xP(B) 02x08
P(A) 032

P(B//A,)=

P(A,/B,)xP(B,) 0.2x0.2

P(B,/A)=
(B,/4) P(A) 0.68

~0.06

P 9.4 Probability of having HIV is P(H) = 0.2. Probability of not having
HIV is, probability for getting test positive given that person has HIV is and
probability for getting test positive given that person is not having HIV is find
the probability that person has HIV given that the test is positive.

P(Pos/H)xP(H)

P(H /Pos)= — —
P(H)xP(Pos/H)+ P(H)xP(Pos/ H)

0.2x0.95

= =0.9223
0.2x0.95+.8x0.02




P 9.5 Consider a pair of dice. Find the probability of getting the sum of the dots
on the two faces as less than 5. Also find the probability for getting sum of faces
equal to 9.

We understand that the probability of getting any particular combination of
faces is 1/6 x 1/6 = 1/36.

Table 9.1 Possible outcomes for throw of pair of dice

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

Total outcomes are 36. Probability of getting the sum of faces as less than 5:
count such combinations for which sum of faces is less than or equal to 5.
Probability is 10/36. The probability for getting sum of faces equal to 8: such
combinations include (4,4), (3,5), (5,3), (2,6), (6,2). The probability is 5/36.

P 9.6 A random variable has a distribution function given by

F (x)=0 —oo<x<-8
1
=— —-8<x<-5
6
:i+— —-5<x<5
15
5
=— 5<x<8
6
=1 8§<x<w

Draw the CDF. Find P(X <4) and P(-5< X <5).
Plot the pdf for a CDF specified in problem 9.5.

Let us find P(X <4)=4/15+1/2=23/30=F,(4).

P(-5<X<4)=F, (4)—F (-5)=23/30—1/6=18/30

N .
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Fig. 9.1 Plot of CDF for Problem 9.6

P 9.7 Consider a random variable X with a probability density function
shown in Fig. 1. Find A, mean value of X and variance of X.

A

fx(x)
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Fig. 9.2 Pdf for a random variable x
Solution

1. A=1/3
To find the mean value = 0
To find the variance = 7.8333

P 9.8 If a uniform random variable is defined as

fx(x)=K if 3<x<7
=0 otherwise

Find K, mean value and variance.

K="1.

u=>5.

Variance = 4/3



P 9.9 Find the probability of the event (X < 4) for a Gaussian variable having a
mean value of 2 and variance of 1.

y=(4-2)/1=2/1=2

E,(y)=P(y<2)=0.5793

We will now use the table for a normalized distribution to find the value

of CDEF. Referring to the normal distribution function table, we can read
F(4)=P(Y £2)=0.5793.

P 9.10 Find the total number of combinations of 5 things taken from 10 things.

P 9.11
things.

n
j=P,"/P:

Number of possible combinations =(
r

nl 10! 3628800

=nn—i)(n-2)...n—-r+1)/rl=——=——= =252
(n—r)!r! 515! 14400

Find the total number of permutations of 5 things taken from 10

Number of possible outcomes = P" = (n(n—i)(n—2)....(n—r +1)

nl 10! 3628800

= =30240
n—r). .
(n—r)! 5! 120

Permutations =

P 9.12 Write a MATLAB program to generate a Gaussian random variable.
Use a rand command to generate 12 random variables with uniform distribution.
(use Central limit theorem)

A MATLAB program is given as follows.

clear all;

x1l=rand (100
x2=rand
x3=rand
x4=rand
x5=rand
x6=rand
x7=rand
x8=rand
x9=rand

100) ;
100
100) ;

)
)
)
)
100) ;
)
)
)
)

1

7

100
100
100
100

1

7

1

7

~ o~~~ o~~~ —

N .
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Amplitude

x10=rand (100

)

x11l=rand (100) ;

x12=rand (100) ;
)
)
)

1

1

Py

x13=rand (100
x14=rand (100
y=(1/sqgrt (14
x11+x12) ;
z=hist (y,10) ;
bar(z) ;title(‘plot of a sum variable generated
using central limit theorem’) ;xlabel (‘bin
value'’) ;ylabel (‘amplitude’) ;

) * (X1+X24+X3+X4+X5+X6+X7+X8+x9+x10+

Plot of a sum variable generated using central limit theorem

]
(5)]
T
1

[\
(=]
T
1

—
(9]
T
1

10 - :

0 | b
10

1 2 3 4 5 6 7 8 9

Bin value
Fig. 9.3 Plot of sum of variables for P 9.12

P 9.13 The experiment is conducted with a fair die. The die is tossed 240 times,
for example. The data obtained are shown in the following table. Find the
test statistic to check if it obeys a uniform distribution.

Face No. 1 2 3 4 5 6
Observed frequency 36 40 44 38 42 40




2 2 2 2 2 2
_ (36—-40) N (40—-40) N (44 —40) N (38—-40) N (42-40) N (40—40)
40 40 40 40 40 40

=1.0

This value of test statistic is less than the 5 percent level equal to 240 x 0.05 = 1.2.
Hence, the distribution is uniform.

P 9.14 Consider a random process given by x(t)=10cos(2xt+8). Prove
that the process is wide sense stationary if 9 is a uniformly distributed random
variable on the interval 0 to 7.

Let us find the mean value of a process.
1 2z
Elx(t)]=—— [ 10cos(27t + 9)d9 =0
27 5,

Let us find the autocorrelation function.

R _(7)=E[x(t)x(t +7)] = E[A cos(a,t + $) A cos(at + w7 +I)]

A2
= T[COS(COOT) +cosayt + @, +29)]

g 100
=—cos(w,7) =——-cos(2xnt
5 (@,7) 5 (27t)

We find that the autocorrelation is a function of time difference; the mean
value is constant. The process is a wide sense stationary process.

N .
’ o ‘ Random Signals and Processes
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